WO2023190914A1 - ブテンオリゴマーの製造方法 - Google Patents

ブテンオリゴマーの製造方法 Download PDF

Info

Publication number
WO2023190914A1
WO2023190914A1 PCT/JP2023/013276 JP2023013276W WO2023190914A1 WO 2023190914 A1 WO2023190914 A1 WO 2023190914A1 JP 2023013276 W JP2023013276 W JP 2023013276W WO 2023190914 A1 WO2023190914 A1 WO 2023190914A1
Authority
WO
WIPO (PCT)
Prior art keywords
butene
mass
oligomer
oligomers
fraction
Prior art date
Application number
PCT/JP2023/013276
Other languages
English (en)
French (fr)
Inventor
允一 西谷
友美 梅村
Original Assignee
丸善石油化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丸善石油化学株式会社 filed Critical 丸善石油化学株式会社
Publication of WO2023190914A1 publication Critical patent/WO2023190914A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/10Catalytic processes with metal oxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a method for producing butene oligomers.
  • Butene oligomers such as 1-butene, 2-butene, and isobutene are useful as solvents, fuel components, and raw materials for chemical products.
  • C 12 oligomers, C 16 oligomers, and C 20 oligomers of butene are particularly utilized as solvents, diluents, lubricating oils, and the like.
  • a method for oligomerizing isobutene for example, a method is known in which isobutene in a C 4 fraction is reacted at 68° C. in the presence of a silica-alumina catalyst (Patent Document 1).
  • An object of the present invention is to provide a method capable of converting one or more butenes selected from 1-butene and 2-butene into C 12 , C 16 or C 20 oligomers with a high conversion rate and with high selectivity.
  • the present inventors investigated the oligomerization of isobutene, no improvement in butene conversion was observed when the oligomerization was carried out at high temperature conditions of 120 to 180°C, and the C 12 oligomer and C 16 oligomer in the product were not improved. It was found that the total content of C 20 and C 20 oligomers was rather reduced.
  • the present inventors found that the oligomerization method contains one or more selected from 1-butene and 2-butene, and has an isobutene content of less than 3% by mass.
  • ⁇ 1> An oligomerization step in which a C 4 fraction containing one or more selected from 1-butene and 2-butene and having an isobutene content of less than 3% by mass is brought into contact with a solid acid catalyst at 120 to 180°C.
  • a method for producing a butene oligomer comprising:
  • A represents a structural unit derived from 1-butene
  • B represents a structural unit derived from 2-butene
  • n and m each represent an integer from 0 to 5, and are numbers satisfying 2 ⁇ n+m ⁇ 5.
  • n and m in formula (1) each represent an integer of 0 to 5 and satisfy 3 ⁇ n+m ⁇ 5.
  • n and m in formula (1) each represent an integer of 0 to 5 and satisfy 3 ⁇ n+m ⁇ 5.
  • n and m in formula (1) each represent an integer of 0 to 5 and satisfy 3 ⁇ n+m ⁇ 5.
  • n and m in formula (1) each represent an integer of 0 to 5 and satisfy 3 ⁇ n+m ⁇ 5.
  • ⁇ 4> The production method according to any one of ⁇ 1> to ⁇ 3>, wherein the reaction pressure in the oligomerization step is 1 to 8 MPa.
  • the solid acid catalyst is a silica alumina catalyst.
  • ⁇ 6> The production method according to any one of ⁇ 1> to ⁇ 5>, wherein the conversion rate of one or more types selected from 1-butene and 2-butene in the oligomerization step is 90% or more.
  • one or more butenes selected from 1-butene and 2-butene can be converted into C 12 , C 16 or C 20 oligomers with a high conversion rate and with high selectivity.
  • the method for producing a butene oligomer of the present invention involves processing a C 4 fraction containing one or more selected from 1-butene and 2-butene and having an isobutene content of less than 3% by mass at 120 to 180°C using a solid acid catalyst. This method includes an oligomerization step of contacting with.
  • C 4 fraction refers to a fraction whose main component is a hydrocarbon having 4 carbon atoms.
  • the total content of hydrocarbons having 4 carbon atoms is preferably 50% by mass or more and 100% by mass or less, more preferably 70% by mass or more and 100% by mass or less, and 90% by mass or more and 100% by mass or less in the C 4 fraction. is more preferable, and particularly preferably 95% by mass or more and 100% by mass or less.
  • 2-butene include cis-2-butene and trans-2-butene. One type or two types of these may be used.
  • the total content of one or more selected from 1-butene and 2-butene is preferably 30% by mass or more and 100% by mass or less, and 40% by mass or more in the C 4 fraction. It is more preferably 100% by mass or less, and particularly preferably 45% by mass or more and 100% by mass or less.
  • the content of isobutene is less than 3% by weight in the C 4 cut. When the content of isobutene is 3% by mass or more, the amount of by-products whose number of carbon atoms is not a multiple of 4 increases.
  • the content of isobutene is preferably 0% by mass or more and 2.5% by mass or less, more preferably 0% by mass or more and 1% by mass or less, and 0% by mass in the C 4 fraction, from the viewpoint of suppressing by-products, etc.
  • the content is particularly preferably 0.5% by mass or less.
  • the total content of n-butane, isobutane, and butadiene is preferably 0% by mass or more and 60% by mass or less, and 0% by mass or more and 55% by mass or less in the C 4 fraction. is more preferable, and particularly preferably 0% by mass or more and 50% by mass or less.
  • the C4 fraction mentioned above can be selected from 1-butene and 2-butene by distilling (or reactive distillation) the fraction contained in the gas by-product of naphtha cracking or fluid catalytic cracking. It is possible to use one containing at least one type of isobutene and having an isobutene content of less than 3% by mass. Further, prior to the oligomerization step, the C 4 fraction may be subjected to pretreatment such as removal of components that cause a decrease in catalyst activity.
  • Examples of the solid acid catalyst used in the oligomerization step include catalysts containing Si and/or Al as an inorganic oxide, such as silica alumina, silica magnesia, silica boria, alumina boria, chlorinated alumina, fluorinated alumina, and synthetic zeolite. , zirconia-based composite metal oxides such as molybdenum oxide/zirconia, and tungsten oxide/zirconia; clay minerals such as acid clay, bentonite, kaolin, and montmorillonite; cation exchange resins, heteropolyacids, and the like. These solid acid catalysts may be used alone or in combination of two or more.
  • catalysts containing Si and/or Al as inorganic oxides are preferred from the viewpoint of conversion rate of 1-butene and 2-butene and selectivity of C 12 , C 16 , and C 20 oligomers; Catalysts contained as oxides are more preferred, and silica alumina is particularly preferred.
  • the solid acid catalyst a commercially available product or one synthesized according to a conventional method may be used. Moreover, it is preferable that the solid acid catalyst be dried in advance.
  • the method for drying the solid acid catalyst is not particularly limited, and examples thereof include methods such as heating under reduced pressure or flowing dry air (or inert gas), and reflux treatment using a Dean-Stark trap.
  • the drying temperature of the solid acid catalyst is usually 100 to 600°C, preferably 130 to 500°C.
  • the drying time of the solid acid catalyst is usually 10 minutes to 48 hours, preferably 30 minutes to 24 hours.
  • the amount of the solid acid catalyst used is usually 1 to 30 parts by weight, preferably 1 to 10 parts by weight, per 100 parts by weight of the C 4 fraction.
  • the reaction temperature of the oligomerization step is within the range of 120-180°C. When the reaction temperature is lower than 120°C or higher than 180°C, the conversion rate of 1-butene and 2-butene and the total content of C 12 oligomers, C 16 oligomers and C 20 oligomers in the product are significantly reduced. descend.
  • the reaction temperature in the oligomerization step is preferably 130 to 180 °C, more preferably 140 to 180 °C, especially Preferably the temperature is 150 to 180°C.
  • the reaction pressure in the oligomerization step is usually in the range of 1 to 8 MPa (absolute pressure, the same applies hereinafter), preferably in the range of 2 to 8 MPa.
  • the reaction time of the oligomerization step is usually 5 minutes to 24 hours, preferably 15 minutes to 12 hours.
  • the oligomerization step can be carried out using an adiabatic reactor, a multitubular reactor, a fixed bed, a fluidized bed, or a moving bed flow reactor. It is also possible to recycle the reaction product to the reactor or dilute the raw material with a diluent. Furthermore, the reaction mode of the oligomerization step is not particularly limited, and may be any of a batch method using a tank reactor, a semi-batch method, and a continuous flow method.
  • the method for producing a butene oligomer of the present invention may further include a distillation separation step of separating the unreacted C 4 fraction and the oligomer fraction in the reaction product by distillation.
  • n and m in formula (1) each represent an integer of 0 to 5, and 3 ⁇ n+m ⁇ 5. It may further include a distillation purification step of distilling and refining butene oligomers that satisfy the required number.
  • the conversion rate of one or more types selected from 1-butene and 2-butene in the oligomerization step is preferably 90% or more, more preferably 95% or more.
  • the total content of C 12 oligomer, C 16 oligomer and C 20 oligomer in the product of the oligomerization step is preferably 45% by mass or more, more preferably 49% by mass or more, particularly preferably 55% by mass or more.
  • butene oligomer refers to an oligomer derived from butene, and according to the method for producing a butene oligomer of the present invention, an oligomer derived from one or more butenes selected from 1-butene and 2-butene is produced. can do.
  • butene oligomers examples include those represented by the following formula (1).
  • A represents a structural unit derived from 1-butene
  • B represents a structural unit derived from 2-butene
  • n and m each represent an integer from 0 to 5, and are numbers satisfying 2 ⁇ n+m ⁇ 5.
  • n and m each represent an integer of 0 to 5, preferably a number satisfying 3 ⁇ n+m ⁇ 5. Note that both ends of the butene oligomer are, for example, hydrogen atoms.
  • the butene oligomer obtained by the butene oligomer production method of the present invention is useful, for example, as a raw material for diluents, lubricating oils, and detergents.
  • the range of the C 20 component was determined from the GC measurement results of the butene polymerization reaction to the corresponding range that is considered to be a pentameric product, and compounds with retention times above this were considered to be heavy components.
  • Known data was used for the boiling point of each compound.
  • the by-products are 69 to 101°C in terms of the boiling point range of hexane to diisobutylene, 125 to 177°C in terms of the boiling point range of n-octene to isododecane, and 125 to 177°C in terms of the boiling point range of n-octene to isododecane, and n-dodecane to isocetane.
  • the boiling point range was defined as 216-240°C.
  • Example 1 As a catalyst drying step, 4.2 g of silica alumina catalyst ("N633HN" manufactured by JGC Catalysts & Chemicals Co., Ltd.) was introduced into a 160 mL pressure-resistant container and dried at 150° C. for 2 hours. Subsequently, as an oligomerization step, 50 g of 1-butene was introduced into the reaction vessel and stirred for 6 hours at a reaction temperature of 130° C. and a reaction pressure of 5 MPa to carry out a polymerization reaction. Butene conversion and product composition are shown in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

1-ブテン及び2-ブテンから選ばれる1種以上のブテンから高転化率で且つ高選択的にC12、C16又はC20オリゴマー化できる方法を提供すること。 1-ブテン及び2-ブテンから選ばれる1種以上を含み且つイソブテンの含有量が3質量%未満であるC4留分を、120~180℃で固体酸触媒に接触させるオリゴマー化工程を含む、ブテンオリゴマーの製造方法。

Description

ブテンオリゴマーの製造方法
 本発明は、ブテンオリゴマーの製造方法に関する。
 1-ブテンや2-ブテン、イソブテンといったブテンのオリゴマーは、溶媒や燃料の成分、化学製品の原料として有用である。その中でもブテンのC12オリゴマー、C16オリゴマー及びC20オリゴマーは、溶媒、希釈剤、潤滑油等として特に利用されている。
 イソブテンのオリゴマー化方法としては、例えば、シリカアルミナ触媒存在下68℃でC4留分中のイソブテンを反応させる方法が知られている(特許文献1)。
特開2013-10717号公報
 しかしながら、ブテンをオリゴマー化させた場合には、炭素数が4の倍数でない副生成物が生成しやすい。このような副生成物は原料として再利用可能できず、しかもこのような副生成物が存在する場合、C12オリゴマー、C16オリゴマー及びC20オリゴマーの精製が困難になる。
 特に、1-ブテンや2-ブテンは、一般的に上記イソブテンよりも反応性が低いという問題がある。このような1-ブテンや2-ブテンを多く含むC4留分も存在し、このようなC4留分の有効活用が求められている。
 本発明の課題は、1-ブテン及び2-ブテンから選ばれる1種以上のブテンから高転化率で且つ高選択的にC12、C16又はC20オリゴマー化できる方法を提供することにある。
 本発明者らがイソブテンのオリゴマー化について検討したところ、120~180℃という高温条件でオリゴマー化を行った場合にブテン転化率の改善はみられず、生成物中のC12オリゴマー、C16オリゴマー及びC20オリゴマー合計含有量はむしろ低減することがわかった。
 しかるところ、本発明者らは1-ブテンや2-ブテンのオリゴマー化について鋭意検討した結果、1-ブテン及び2-ブテンから選ばれる1種以上を含み且つイソブテンの含有量が3質量%未満であるC4留分を、120~180℃という高温条件で固体酸触媒に接触させた場合には、驚くべきことに、高転化率で且つ高選択的にC12、C16又はC20オリゴマー化できることを見出し、本発明を完成した。
 すなわち、本発明は、以下の<1>~<6>を提供するものである。
 <1> 1-ブテン及び2-ブテンから選ばれる1種以上を含み且つイソブテンの含有量が3質量%未満であるC4留分を、120~180℃で固体酸触媒に接触させるオリゴマー化工程を含む、ブテンオリゴマーの製造方法。
 <2> 前記ブテンオリゴマーが、下記式(1)で表されるものである、<1>に記載の製造方法。
Figure JPOXMLDOC01-appb-C000002
〔式(1)中、
 Aは、1-ブテン由来の構造単位を示し、
 Bは、2-ブテン由来の構造単位を示し、
 n及びmは、それぞれ0~5の整数を示すが、2≦n+m≦5を満たす数である。〕
 <3> 式(1)中のn及びmが、それぞれ0~5の整数を示し、3≦n+m≦5を満たす数である、<2>に記載の製造方法。
 <4> 前記オリゴマー化工程の反応圧力が、1~8MPaである、<1>~<3>のいずれかに記載の製造方法。
 <5> 前記固体酸触媒が、シリカアルミナ触媒である、<1>~<4>のいずれかに記載の製造方法。
 <6> 前記オリゴマー化工程の1-ブテン及び2-ブテンから選ばれる1種以上の転化率が、90%以上である、<1>~<5>のいずれかに記載の製造方法。
 本発明によれば、1-ブテン及び2-ブテンから選ばれる1種以上のブテンから高転化率で且つ高選択的にC12、C16又はC20オリゴマー化できる。
 本発明のブテンオリゴマー製造方法は、1-ブテン及び2-ブテンから選ばれる1種以上を含み且つイソブテンの含有量が3質量%未満であるC4留分を、120~180℃で固体酸触媒に接触させるオリゴマー化工程を含むものである。
 本明細書において「C4留分」は、炭素数4の炭化水素を主成分とする留分をいう。炭素数4の炭化水素の合計含有量としては、C4留分中、50質量%以上100質量%以下が好ましく、70質量%以上100質量%以下がより好ましく、90質量%以上100質量%以下が更に好ましく、95質量%以上100質量%以下が特に好ましい。
 2-ブテンとしては、cis-2-ブテン、trans-2-ブテンが挙げられる。これらのうち1種を用いても2種を用いてもよい。
 1-ブテン及び2-ブテンから選ばれる1種以上の合計含有量としては、副生成物抑制等の観点から、C4留分中、30質量%以上100質量%以下が好ましく、40質量%以上100質量%以下がより好ましく、45質量%以上100質量%以下が特に好ましい。
 イソブテンの含有量は、C4留分中、3質量%未満である。イソブテンの含有量が3質量%以上の場合、炭素数が4の倍数でない副生成物の生成量が多くなる。
 イソブテンの含有量としては、副生成物抑制等の観点から、C4留分中、0質量%以上2.5質量%以下が好ましく、0質量%以上1質量%以下がより好ましく、0質量%以上0.5質量%以下が特に好ましい。
 また、n-ブタン、イソブタン及びブタジエンの合計含有量としては、副生成物抑制等の観点から、C4留分中、0質量%以上60質量%以下が好ましく、0質量%以上55質量%以下がより好ましく、0質量%以上50質量%以下が特に好ましい。
 上記のようなC4留分としては、例えば、ナフサ分解や流動接触分解で副生するガス中に含まれる留分を蒸留(または反応蒸留)するなどして1-ブテン及び2-ブテンから選ばれる1種以上を含み且つイソブテンの含有量が3質量%未満となるようにしたものを用いることができる。また、オリゴマー化工程に先立ち、触媒活性低下の原因となる成分の除去などの前処理をC4留分に行っていてもよい。
 オリゴマー化工程で用いる固体酸触媒としては、例えば、シリカアルミナ、シリカマグネシア、シリカボリア、アルミナボリア、塩素化アルミナ、フッ素化アルミナ、合成ゼオライト等のSi及び/又はAlを無機酸化物として含む触媒の他、酸化モリブデン/ジルコニア、酸化タングステン/ジルコニア等のジルコニア系複合金属酸化物;酸性白土、ベントナイト、カオリン、モンモリロナイト等の粘土鉱物;陽イオン交換樹脂、ヘテロポリ酸等が挙げられる。これらの固体酸触媒は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
 これらの中でも、1-ブテンや2-ブテンの転化率、C12、C16、C20オリゴマー選択率の観点から、Si及び/又はAlを無機酸化物として含む触媒が好ましく、Si及びAlを無機酸化物として含む触媒がより好ましく、シリカアルミナが特に好ましい。
 固体酸触媒は市販品を用いても常法に従って合成して得たものを用いてもよい。
 また、固体酸触媒はあらかじめ乾燥しておいたものが好ましい。固体酸触媒の乾燥方法は特に限定されないが、例えば、減圧下又は乾燥空気(又は不活性ガス)流通下で加熱する方法、ディーンスタークトラップを用いた還流処理等の方法が挙げられる。
 固体酸触媒の乾燥温度は、通常100~600℃、好ましくは130~500℃である。
 固体酸触媒の乾燥時間は、通常10分間~48時間、好ましくは30分間~24時間である。
 固体酸触媒の使用量は、C4留分100質量部に対して、通常1~30質量部、好ましくは1~10質量部である。
 オリゴマー化工程の反応温度は、120~180℃の範囲内である。反応温度が120℃未満の場合及び180℃超の場合には、1-ブテンや2-ブテンの転化率、並びに生成物中のC12オリゴマー、C16オリゴマー及びC20オリゴマー合計含有量が大幅に低下する。
 オリゴマー化工程の反応温度は、1-ブテンや2-ブテンの転化率、C12、C16、C20オリゴマー選択率の観点から、好ましくは130~180℃、より好ましくは140~180℃、特に好ましくは150~180℃である。
 オリゴマー化工程の反応圧力は、通常1~8MPa(絶対圧、以下同じ)の範囲、好ましくは2~8MPaの範囲である。
 オリゴマー化工程の反応時間は、通常5分間~24時間、好ましくは15分間~12時間である。
 オリゴマー化工程は、断熱反応器や多管式反応器、固定床、流動床、移動床の流通反応器を用いて行うことができる。また、反応生成物の反応器へのリサイクルや希釈剤による原料希釈を行うこともできる。
 また、オリゴマー化工程の反応様式は特に限定されるものではなく、槽型反応器によるバッチ式、セミバッチ式、連続流通式のいずれの方法でもよい。
 本発明のブテンオリゴマー製造方法としては、オリゴマー化工程に加えて、反応生成物中の未反応のC4留分とオリゴマー留分とを蒸留分離する蒸留分離工程を更に含んでいてもよい。また、オリゴマー化工程及び蒸留分離工程に加えて、蒸留分離工程で得られたオリゴマー留分から、式(1)中のn及びmが、それぞれ0~5の整数を示し、3≦n+m≦5を満たす数であるブテンオリゴマーを蒸留精製する蒸留精製工程を更に含んでいてもよい。
 オリゴマー化工程の1-ブテン及び2-ブテンから選ばれる1種以上の転化率としては、好ましくは90%以上、より好ましくは95%以上である。
 C12オリゴマー、C16オリゴマー及びC20オリゴマー合計含有量は、オリゴマー化工程の生成物中、好ましくは45質量%以上、より好ましくは49質量%以上、特に好ましくは55質量%以上である。
 そして、本発明によれば、1-ブテン及び2-ブテンから選ばれる1種以上のブテンから高転化率で且つ高選択的にC12、C16又はC20オリゴマー化できる。
 本明細書において「ブテンオリゴマー」は、ブテンに由来するオリゴマーをいい、本発明のブテンオリゴマー製造方法によれば、1-ブテン及び2-ブテンから選ばれる1種以上のブテンに由来するオリゴマーを製造することができる。
 ブテンオリゴマーとしては、下記式(1)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000003
〔式(1)中、
 Aは、1-ブテン由来の構造単位を示し、
 Bは、2-ブテン由来の構造単位を示し、
 n及びmは、それぞれ0~5の整数を示すが、2≦n+m≦5を満たす数である。〕
 式(1)中n+m=2のオリゴマーはC8オリゴマーであり、n+m=3のオリゴマーはC12オリゴマーであり、n+m=4のオリゴマーはC16オリゴマーであり、n+m=5のオリゴマーはC20オリゴマーである。
 式(1)中のn及びmとしては、それぞれ0~5の整数を示し、3≦n+m≦5を満たす数が好ましい。
 なお、ブテンオリゴマーの両末端は、例えば、水素原子である。
 本発明のブテンオリゴマー製造方法により得られたブテンオリゴマーは、例えば、希釈剤、潤滑油、洗浄剤の原料として有用である。
 以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 実施例における各分析条件は以下に示すとおりである。
<モノマー転化率(ブテン転化率)及び生成物組成測定方法>
 モノマー転化率及び生成物組成は、GC(島津製作所(株)製「SHIMAZDU GC-2014」)を使用して下記表1に示す条件で求めた。
Figure JPOXMLDOC01-appb-T000004
<C4x多量体(C4xオリゴマー)の同定方法>
 C8、C12、C16成分の各範囲は、炭素数が同じ既知化合物のGC保持時間の最大値と最小値の間として生成物組成を算出した(表2)。C8成分の沸点範囲はジイソブチレンとn-オクテンの保持時間を参考に決定し、C12成分の沸点範囲はイソドデカンとn-ドデカン、C16成分の沸点範囲はイソセタンとn-ヘキサデカンの保持時間の間で決定した。C20成分の範囲はブテン多量化反応のGC測定結果より、五量体生成物とみられる該当範囲に決定し、それより上の保持時間の化合物は重質分とした。各化合物の沸点は公知のデータを用いた。
 また、上述の各成分の範囲から、副生成物に関しては、ヘキサン~ジイソブチレンの沸点範囲換算では69~101℃、n-オクテン~イソドデカンの沸点範囲換算では125~177℃、n-ドデカン~イソセタンの沸点範囲換算では216~240℃と定義した。
Figure JPOXMLDOC01-appb-T000005
<実施例1>
 触媒乾燥工程として、160mLの耐圧容器にシリカアルミナ触媒(日揮触媒化成社製「N633HN」)を4.2g導入し、150℃で2時間乾燥を行った。
 続いてオリゴマー化工程として、上記反応容器に1-ブテン50gを導入し、反応温度130℃、反応圧力5MPaの条件で6時間撹拌することで多量化反応を実施した。ブテン転化率及び生成物組成を表3に示す。
<実施例2~4、比較例1>
 反応温度及び反応圧力を表3に示すものとした以外は、実施例1と同様にして反応を行った。結果を表3に示す。
<実施例5~8>
 原料を2-ブテン(cis-2-ブテン:trans-2-ブテン=1:2)に変更した以外は、実施例1~4と同様にして反応を行った。結果を表3に示す。
<比較例2>
 原料を2-ブテン(cis-2-ブテン:trans-2-ブテン=1:2)に変更した以外は、比較例1と同様にして反応を行った。結果を表3に示す。
<比較例3~7>
 原料をイソブテンに変更した以外は、比較例1及び実施例1~4と同様にして反応を行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000006
 表3に示すとおり、反応温度110℃のイソブテンオリゴマー化(比較例3)において、反応温度を120~180℃とした場合には(比較例4~7)、ブテン転化率に改善はみられず、生成物中のC12オリゴマー、C16オリゴマー及びC20オリゴマー合計含有量はむしろ低減した。
 一方、反応温度110℃の1-ブテン又は2-ブテンオリゴマー化(比較例1、2)において、反応温度を120~180℃とした場合には(実施例1~8)、驚くべきことに、ブテン転化率と、生成物中のC12オリゴマー、C16オリゴマー及びC20オリゴマー合計含有量とが大幅に向上した。

Claims (6)

  1.  1-ブテン及び2-ブテンから選ばれる1種以上を含み且つイソブテンの含有量が3質量%未満であるC4留分を、120~180℃で固体酸触媒に接触させるオリゴマー化工程を含む、ブテンオリゴマーの製造方法。
  2.  前記ブテンオリゴマーが、下記式(1)で表されるものである、請求項1に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    〔式(1)中、
     Aは、1-ブテン由来の構造単位を示し、
     Bは、2-ブテン由来の構造単位を示し、
     n及びmは、それぞれ0~5の整数を示すが、2≦n+m≦5を満たす数である。〕
  3.  式(1)中のn及びmが、それぞれ0~5の整数を示し、3≦n+m≦5を満たす数である、請求項2に記載の製造方法。
  4.  前記オリゴマー化工程の反応圧力が、1~8MPaである、請求項1~3のいずれか1項に記載の製造方法。
  5.  前記固体酸触媒が、シリカアルミナ触媒である、請求項1~4のいずれか1項に記載の製造方法。
  6.  前記オリゴマー化工程の1-ブテン及び2-ブテンから選ばれる1種以上の転化率が、90%以上である、請求項1~5のいずれか1項に記載の製造方法。
PCT/JP2023/013276 2022-03-30 2023-03-30 ブテンオリゴマーの製造方法 WO2023190914A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-056419 2022-03-30
JP2022056419 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023190914A1 true WO2023190914A1 (ja) 2023-10-05

Family

ID=88202909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013276 WO2023190914A1 (ja) 2022-03-30 2023-03-30 ブテンオリゴマーの製造方法

Country Status (2)

Country Link
TW (1) TW202342560A (ja)
WO (1) WO2023190914A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1164474A (en) * 1966-10-26 1969-09-17 British Hydrocarbon Chem Ltd Production of 3,4-Dimethylhexenes
JPH01272533A (ja) * 1988-02-05 1989-10-31 Exxon Chem Patents Inc ニッケル含有ゼオライト触媒でオレフィンをオリゴマー化する触媒および方法
JPH07309786A (ja) * 1994-05-16 1995-11-28 Koa Oil Co Ltd 低分岐性オレフィンオリゴマー類の製造方法
JPH08323207A (ja) * 1995-03-29 1996-12-10 Koa Oil Co Ltd オレフィンの低重合方法、その触媒及び触媒の製造方法
WO2014123243A1 (ja) * 2013-02-06 2014-08-14 Jx日鉱日石エネルギー株式会社 オレフィン低重合方法およびそれに用いる触媒
JP2019524435A (ja) * 2016-08-04 2019-09-05 クラリアント コーポレイション 固体リン酸触媒
WO2020081208A1 (en) * 2018-10-17 2020-04-23 Exxonmobil Chemical Patents Inc. Oligomerization of olefins

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1164474A (en) * 1966-10-26 1969-09-17 British Hydrocarbon Chem Ltd Production of 3,4-Dimethylhexenes
JPH01272533A (ja) * 1988-02-05 1989-10-31 Exxon Chem Patents Inc ニッケル含有ゼオライト触媒でオレフィンをオリゴマー化する触媒および方法
JPH07309786A (ja) * 1994-05-16 1995-11-28 Koa Oil Co Ltd 低分岐性オレフィンオリゴマー類の製造方法
JPH08323207A (ja) * 1995-03-29 1996-12-10 Koa Oil Co Ltd オレフィンの低重合方法、その触媒及び触媒の製造方法
WO2014123243A1 (ja) * 2013-02-06 2014-08-14 Jx日鉱日石エネルギー株式会社 オレフィン低重合方法およびそれに用いる触媒
JP2019524435A (ja) * 2016-08-04 2019-09-05 クラリアント コーポレイション 固体リン酸触媒
WO2020081208A1 (en) * 2018-10-17 2020-04-23 Exxonmobil Chemical Patents Inc. Oligomerization of olefins

Also Published As

Publication number Publication date
TW202342560A (zh) 2023-11-01

Similar Documents

Publication Publication Date Title
KR100530826B1 (ko) 비분지형 부텐의 올리고머화에 의한 사실상 비분지형의옥텐 및 도데센의 제조 방법
DK2547639T3 (en) Producing propylene VIA THE SAME TIME dehydration and skeletal isobutanol ON ACID CATALYSTS FOLLOWED BY META TESE
JP4416445B2 (ja) n−ブテン含有の炭化水素流中でイソブテンをオリゴマー化する方法
JP4076442B2 (ja) 高純度のジイソブテンの製造方法
EP2367777B1 (en) Process to make alpha olefins from ethanol
EP0183727B1 (en) Two stage process for catalytic conversion of olefins to higher hydrocarbons
JP5746144B2 (ja) オレフィンのオリゴマー化反応用触媒
KR101849422B1 (ko) 올레핀의 공-올리고머화 방법
JP2007514702A (ja) 触媒反応の改良
CN114929653A (zh) C2-c5醇的同时脱水、二聚和复分解
CA2712187C (en) Propylene oligomerization process
KR20140029474A (ko) 혼합 c4 유분을 원료로 하는 디이소부틸렌의 제조 방법
TWI826689B (zh) 控制待寡聚烴流中寡聚物含量的烯烴寡聚方法
JPH01246233A (ja) オレフィンの接触水加方法
JP4537637B2 (ja) オレフィンのオリゴマー化
WO2016209831A1 (en) Process for manufacturing methyl tertiary-butyl ether (mtbe) and hydrocarbons
TWI821432B (zh) 以具有降低的烯烴含量的流使烯烴低聚合的方法
KR20210023743A (ko) 최적화된 증류를 사용하는 올레핀의 올리고머화 방법
WO2023190914A1 (ja) ブテンオリゴマーの製造方法
EP3271315A1 (en) Process for converting an olefin containing hydrocarbon feed into an oligomerization product or a hydrogenated oligomerization product
JP4293851B2 (ja) オレフィンオリゴマーの製造方法
KR20210023744A (ko) 최적화된 증류를 사용하는 올레핀의 올리고머화 방법
KR0127863B1 (ko) 고순도 디이소부텐의 제조방법
JP2024522416A (ja) オレフィン三量体および四量体を製造するための方法
JP2005015384A (ja) オレフィンオリゴマーの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780922

Country of ref document: EP

Kind code of ref document: A1