WO2023190102A1 - 芳香族ジカルボン酸ビス(ヒドロキシアルキル)の製造方法および再生芳香族ポリエステルの製造方法 - Google Patents

芳香族ジカルボン酸ビス(ヒドロキシアルキル)の製造方法および再生芳香族ポリエステルの製造方法 Download PDF

Info

Publication number
WO2023190102A1
WO2023190102A1 PCT/JP2023/011694 JP2023011694W WO2023190102A1 WO 2023190102 A1 WO2023190102 A1 WO 2023190102A1 JP 2023011694 W JP2023011694 W JP 2023011694W WO 2023190102 A1 WO2023190102 A1 WO 2023190102A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester
aromatic
hydroxyalkyl
bis
dicarboxylate
Prior art date
Application number
PCT/JP2023/011694
Other languages
English (en)
French (fr)
Inventor
遼 鶴田
慧 須之内
Original Assignee
帝人フロンティア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人フロンティア株式会社 filed Critical 帝人フロンティア株式会社
Publication of WO2023190102A1 publication Critical patent/WO2023190102A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/28Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/29Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group by introduction of oxygen-containing functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method for producing bis(hydroxyalkyl) aromatic dicarboxylate by depolymerizing polyester, and a method for producing aromatic polyester using the same, and more particularly, it relates to a method for producing aromatic polyester by depolymerizing polyester, and more specifically, for producing polyester scraps and recovered products containing aromatic polyester.
  • the present invention relates to a method for producing a recycled aromatic polyester, in which a recycled aromatic polyester is obtained by depolymerizing the aromatic polyester contained in the aromatic polyester and polymerizing it again.
  • Aromatic polyesters such as polyethylene terephthalate, are widely used as fibers, films, and resin molded products due to their excellent properties. In these manufacturing and processing steps, unused polyester raw materials and scraps and scraps in the form of fibers, films, and other shapes are produced. Furthermore, fibers, films, and resin molded products used as polyester products are discarded after use or in an unused state, but such waste has become a problem as it degrades the environment.
  • Material recycling, chemical recycling, and thermal recycling are methods for reusing these process scraps, offcuts, unused raw materials, and product waste.
  • chemical recycling uses a monomer in which one molecule of aromatic dicarboxylic acid and two molecules of diol are bonded with an ester group, or an intermediate that is depolymerized to an oligomer in which the monomer is further bonded with an ester group. Since recycled aromatic polyester can be produced by direct polycondensation reaction, it requires less energy and is an excellent method.
  • An example of this method is to depolymerize polyethylene terephthalate in ethylene glycol to obtain bis(2-hydroxyethyl terephthalate), which is then polycondensed to obtain a regenerated aromatic polyester.
  • aromatic polyesters contain sulfonate salts such as sulfoisophthalic acid metal salts such as sodium sulfoisophthalate, tetraalkylphosphonium sulfoisophthalate salts, and tetraalkyl ammonium sulfoisophthalate salts for the purpose of improving the dyeability of polyester fibers.
  • sulfonate salts such as sulfoisophthalic acid metal salts such as sodium sulfoisophthalate, tetraalkylphosphonium sulfoisophthalate salts, and tetraalkyl ammonium sulfoisophthalate salts for the purpose of improving the dyeability of polyester fibers.
  • an isophthalic acid component is contained as a dicarboxylic acid component, and in this case, the recycled aromatic polyester obtained by simply depolymerizing and repolymerizing has problems such as molecular weight (intrinsic viscosity) and There was a problem of poor heat resistance due to a decrease in melting point and crystallinity and an increase in by-products (diethylene glycol, etc.).
  • the coloring agent removal process includes an adsorption treatment in which the coloring agent is brought into contact with an adsorbent, a decomposition treatment in which the coloring agent is decomposed with a decomposing agent, and a reduction treatment in which the coloring agent is reduced with a reducing agent. etc. are being attempted.
  • coloring agents such as dyes that are clearly mixed into the polymer can be removed to some extent, a manufacturing method for producing polyester polymers with suppressed coloring comparable to that of normally produced polyester polymers has not yet been found.
  • the present invention has been made in view of the above background.
  • the object of the present invention is, firstly, to provide a method for producing bis(hydroxyalkyl) aromatic dicarboxylate by depolymerizing polyester, and a method for producing polyester polymer from the same by depolymerizing a virgin product (without depolymerization).
  • An object of the present invention is to provide an aromatic polyester polymer with suppressed coloration comparable to that produced by polymerizing a polyester polymer, and a method for producing an intermediate thereof.
  • the purpose of the present invention is to depolymerize aromatic polyester contained in polyester fiber waste or recovered polyester products containing aromatic polyester, and to obtain recycled aromatic polyester by polymerizing it again.
  • An object of the present invention is to provide a method for producing recycled aromatic polyester that has heat resistance as excellent as that of virgin aromatic polyester.
  • the first invention of the present invention is a method for producing bis(hydroxyalkyl) aromatic dicarboxylate by depolymerizing polyester in the presence of a catalyst, in which the catalyst is a manganese-based catalyst, and the amount of catalyst used is proportional to the amount of polyester.
  • This is a method for producing bis(hydroxyalkyl) aromatic dicarboxylate, characterized in that the amount is 20 to 500 mmol%.
  • the method for producing bis(hydroxyalkyl) aromatic dicarboxylate of the present invention is a method for producing bis(hydroxyalkyl) aromatic dicarboxylate in which polyester is depolymerized in the presence of a catalyst, the catalyst being a manganese-based catalyst, It is characterized in that the amount of catalyst used is 20 to 500 mmol% based on the polyester.
  • the polyester contains polyalkylene terephthalate as a main component, and that the polyalkylene terephthalate is any one of polyethylene terephthalate, polytrimethylene terephthalate, and polybutylene terephthalate.
  • the aromatic dicarboxylic acid bis(hydroxyalkyl) is benzenedicarboxylic acid bis(hydroxyalkyl), and that the manganese-based catalyst is manganese acetate. It is preferable that the crystallization is carried out by cooling the temperature in alkylene glycol after depolymerization, and that the crystallization is washed with water after crystallization.
  • the first invention of the present invention also includes a method for producing a polyester resin, which is characterized by repolymerizing bis(hydroxyalkyl) aromatic dicarboxylate obtained by any of the above production methods. It also includes polyester resins obtained by this manufacturing method.
  • the present invention provides a method for producing a regenerated aromatic polyester in which a regenerated aromatic polyester is obtained by depolymerizing a polyester containing an aromatic polyester and then polycondensing a component obtained by the depolymerization.
  • Polymerization is carried out by depolymerizing polyester in the presence of a catalyst to produce bis(hydroxyalkyl) aromatic dicarboxylate, and the catalyst used for the depolymerization is a manganese-based catalyst, and the amount of catalyst used is proportional to the amount of polyester.
  • An embodiment of the method for producing recycled aromatic polyester is characterized in that the content of the recycled aromatic polyester is 20 to 500 mmol%.
  • the aromatic bis(hydroxyalkyl) dicarboxylate is further preferably purified after depolymerization and before polycondensation.
  • the polycondensation is carried out by polycondensing purified bis(hydroxyalkyl) aromatic dicarboxylate in the presence of an alkali metal and/or an alkaline earth metal.
  • the present invention also provides a method for producing a regenerated aromatic polyester in which a regenerated aromatic polyester is obtained by depolymerizing a polyester containing an aromatic polyester and then polycondensing a component obtained by the depolymerization, the method comprising: Bis(hydroxyalkyl) aromatic dicarboxylate is obtained by depolymerizing polyester in alkylene glycol, and the bis(hydroxyalkyl) aromatic dicarboxylate is purified to obtain the purified bis(hydroxyalkyl) aromatic dicarboxylate.
  • This is a method for producing a regenerated aromatic polyester, which comprises polycondensing the following in the presence of an alkali metal and/or an alkaline earth metal to obtain a regenerated aromatic polyester. This is the second invention of the present invention, and will be explained in detail later.
  • the present invention firstly, in the method for producing bis(hydroxyalkyl) aromatic dicarboxylate by depolymerizing polyester and the method for producing polyester polymer from it, virgin products (without depolymerization, monomer It is possible to provide a method for producing a polyester polymer with suppressed coloration comparable to that produced by polymerizing a polyester polymer and an intermediate thereof.
  • a recycled aromatic polyester is obtained by depolymerizing the aromatic polyester contained in polyester fiber waste or recovered polyester products containing the aromatic polyester, and then polymerizing it again.
  • a method for producing recycled aromatic polyester that has heat resistance as excellent as that of virgin aromatic polyester.
  • a method for producing a recycled aromatic polyester having heat resistance as excellent as that of a virgin aromatic polyester even when the aromatic polyester contains a sulfoisophthalic acid component as a dicarboxylic acid component. I can do it.
  • the present invention is a method for producing bis(hydroxyalkyl) aromatic dicarboxylate by depolymerizing polyester in the presence of a catalyst. It is a polycondensate synthesized by forming ester bonds. Alternatively, polyester is a polymer having ester bonds. As the polyester, semi-aromatic polyester is preferred.
  • dicarboxylic acid or its ester-forming derivative As the polycarboxylic acid constituting such polyester, it is preferable to use dicarboxylic acid or its ester-forming derivative, and specifically, terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 1 , 5-naphthalene dicarboxylic acid, bis(p-carboxyphenyl)methane, anthracene dicarboxylic acid, 4,4'-diphenyl ether dicarboxylic acid, 5-tetrabutylphosphonium isophthalic acid, and 5-sodium sulfoisophthalic acid. Can be mentioned.
  • aliphatic dicarboxylic acids such as oxalic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, malonic acid, glutaric acid, dimer acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, etc. Mention may be made of alicyclic dicarboxylic acids such as acids. It is also possible to use ester-forming derivatives of the dicarboxylic acids mentioned above.
  • the polyhydric carboxylic acid constituting the polyester used in the present invention it is more preferable to mainly use terephthalic acid or 2,6-naphthalene dicarboxylic acid. It is also preferably applied to polyesters in which terephthalic acid is copolymerized with an isophthalic acid component as a copolymerization component, more specifically, isophthalic acid or 5-sodium sulfoisophthalic acid.
  • the polyalcohol which is the other component constituting the polyester it is preferable to use diol or its ester-forming derivative, and specifically, aliphatic glycol having 2 to 20 carbon atoms, ie, ethylene glycol, 1,3 -propanediol, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, decamethylene glycol, cyclohexanedimethanol, cyclohexanediol, dimer diol and the like.
  • diol or its ester-forming derivative specifically, aliphatic glycol having 2 to 20 carbon atoms, ie, ethylene glycol, 1,3 -propanediol, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 1,6-hexaned
  • long chain glycols with a molecular weight of 200 to 100,000 such as polyethylene glycol, poly 1,3-propylene glycol, poly 1,2-propylene glycol, polytetramethylene glycol, etc. can be used as the polyalcohol.
  • Aromatic dioxy compounds such as 4,4'-dihydroxybiphenyl, hydroquinone, tert-butylhydroquinone, bisphenol A, bisphenol S, and bisphenol F can also be used. It is also preferable to use ester-forming derivatives of these polyalcohols and diols.
  • ethylene glycol hereinafter sometimes abbreviated as EG
  • 1,3-propanediol 1,4-butanediol
  • 1,4-butanediol ethylene glycol
  • the polyester is a semi-aromatic polyester, and more preferably a polyalkylene terephthalate.
  • the polyalkylene terephthalate is any one of polyethylene terephthalate, polytrimethylene terephthalate, and polybutylene terephthalate.
  • polyester as described above is depolymerized in the presence of a catalyst, and in the present invention, a manganese-based catalyst is selected as the catalyst. is important.
  • manganese-based catalysts examples include manganese (Mn) fatty acid salts, carbonates, sulfates, phosphates, oxides, hydroxides, halides, and alcoholates, and one type or a combination of two or more types may be used. is also preferable.
  • manganese oxide and manganese acetate can be used, and it is particularly preferable to use manganese acetate.
  • the catalyst used is used as a solution that has been previously dissolved in alkylene glycol.
  • alkylene glycol hereinafter sometimes abbreviated as AG
  • the same diol component forming the skeleton structure of the polyester used as the above-mentioned starting material can be used.
  • a diol constituting the polyester finally obtained as a product obtained by repolymerizing the aromatic bis(hydroxyalkyl) dicarboxylate obtained by the production method of the present invention.
  • EG ethylene glycol
  • PET polyethylene terephthalate
  • C3G polytrimethylene glycol
  • C4G 1,4-butanediol
  • alkylene glycol it is also preferable to use a mixture of the above alkylene glycols depending on the purpose.
  • the effects of the present invention are noticeable only when a manganese-based catalyst is selected from a wide variety of catalysts. Note that the effects of the present invention are particularly noticeable when no other coloring substances are included than when recycled polyester containing other coloring substances is depolymerized. For example, depolymerized polyester products often show a gradual increase in discoloration due to long-term storage, but those obtained by the production method of the present invention clearly show less discoloration.
  • the amount of catalyst used is 20 to 500 mmol% based on the polyester. Further, it is preferably 30 to 300 mmol%, particularly 50 to 150 mmol%.
  • mol% indicates the ratio of the number of catalyst molecules to the structural units of polyester, and mmol% is 1000 times the ratio.
  • the method for producing bis(hydroxyalkyl) aromatic dicarboxylate of the present invention involves depolymerizing the above-mentioned polyester in the presence of a manganese-based catalyst, and the amount of catalyst used at that time being 20 to 500 mmol% based on the polyester. This is a manufacturing method that requires
  • the temperature is lowered in alkylene glycol to crystallize.
  • the temperature lowering conditions during crystallization are preferably such that the temperature is lowered from 60°C or higher to 25°C or lower, and more preferably, the temperature is lowered to 15°C or lower.
  • it is preferable to perform solid-liquid separation after crystallization and it is preferable that the alkylene glycol content in the cake after solid-liquid separation is 100% by mass or less.
  • the alkylene glycol content is 55% by mass or less, adjusted to a range of 1 to 30% by mass, and particularly 5 to 25% by mass.
  • the amount of alkylene glycol used during the initial depolymerization is preferably 2 to 20 times, more preferably 3 to 10 times, the amount of polyester as the raw material. In this way, by using a large amount of alkylene glycol during depolymerization and performing crystallization and solid-liquid separation, the production method of the present invention can further reduce the amount of depolymerization catalyst and other foreign substances mixed in. became.
  • the manganese-based catalyst used in the present invention is used in a small amount, it can be further reduced by treatment in such an alkylene glycol.
  • manganese acetate when used as a catalyst, it has high solubility in alkylene glycol, making it possible to more effectively reduce the amount of catalyst remaining in the subsequent process.
  • the cake after depolymerization is washed with water or alkylene glycol after crystallization as described above. Furthermore, it is preferable to perform the treatment using a Nutsche filter while spraying the cleaning liquid. By performing these treatments, it is possible to wash away the depolymerization catalyst dissolved in the alkylene glycol and other color-causing substances, and obtain a highly purified aromatic dicarboxylic acid bis(hydroxyalkyl). Become.
  • the solution used for cleaning preferably has a low viscosity, and from that point of view it is preferable to use water.
  • the amount of the washing liquid is preferably 1 to 100 times the weight of the cake, and more preferably 1.5 to 10 times the weight of the cake.
  • the liquid temperature during washing is preferably in the range of 0 to 40°C. If the temperature is too high, the cake itself tends to dissolve and the yield decreases. Thereafter, the aromatic dicarboxylic acid bis(hydroxyalkyl) can be obtained by drying with a vacuum dryer or the like.
  • the alkylene glycol used in the production method of the present invention is the same as the diol component of the polyester resin after repolymerization, it is also a preferable method for producing polyester to repolymerize it without drying it. .
  • the aromatic bis(hydroxyalkyl) dicarboxylate obtained by the production method of the present invention depends on the type of polyester and alkylene glycol used, but mainly polyesters using terephthalic acid as the polycarboxylic acid are used.
  • polyalkylene terephthalate polyalkylene terephthalate
  • BHAT bis(hydroxyalkyl) benzenedicarboxylate
  • BHPT bishydroxypropyl terephthalate
  • C4G C4G (1,4-butanediol
  • BHBT bishydroxybutyl terephthalate
  • polyethylene terephthalate which is mainly composed of terephthalic acid and ethylene glycol
  • BHET bishydroxyethyl terephthalate
  • aromatic bis(hydroxyalkyl) dicarboxylate obtained by the production method of the present invention can be repolymerized by a conventionally known method to become a polyester resin that is resistant to coloring and has an excellent hue.
  • another method for producing a polyester resin according to the present invention is a production method in which bis(hydroxyalkyl) aromatic dicarboxylate obtained by the above production method is repolymerized. Furthermore, a polyester resin which is another invention of the present invention is obtained by this method for producing a polyester resin.
  • catalysts such as Sb-based, Ge-based, or titanium-based catalysts can be used, and it is particularly preferable to use diantimony trioxide. It is preferable to carry out the polycondensation reaction while alkylene glycol and the like generated by the reaction during repolymerization are flowed out of the reactor.
  • the amount of the catalyst used is preferably in the range of 10 to 1000 ppm based on the weight of the aromatic dicarboxylic acid bis(hydroxyalkyl) used.
  • a conventionally known phosphorus stabilizer is preferably used after polycondensation using a catalyst.
  • the amount of the phosphorus stabilizer used is preferably in the range of 1 to 100 ppm, based on the weight of the aromatic dicarboxylic acid bis(hydroxyalkyl) used.
  • the polyester resin thus obtained is a resin with little discoloration such as yellowing, unlike the case where conventionally widely used Mg hydroxide, Na hydroxide, etc. are used as a depolymerization catalyst. This could be visually confirmed even at the stage of bis(hydroxyalkyl) aromatic dicarboxylate obtained during the process, but after repolymerization to resin, the hue L * , a * , b * values were measured with a colorimeter. When measured, it was particularly noticeable in the value of b * that the polyester produced under the conditions of the present invention had a value of -3 or less, more preferably -3.5 or less, whereas other catalysts The values for products manufactured using the same method were higher than that, and some had positive values (strong yellowish tinge).
  • manganese-based catalysts not only allow depolymerization at low concentrations and are less likely to produce colored by-products, but also produce bis(hydroxyalkyl aromatic dicarboxylate) in subsequent processes such as crystallization. It is thought that the fact that it is easily dissociated from the water and extremely unlikely to remain as an impurity is working effectively.
  • polyester resin can be suitably used for applications such as fibers, films, and resins.
  • the second invention of the present invention is a method for producing a regenerated aromatic polyester, which obtains a regenerated aromatic polyester by depolymerizing a polyester containing an aromatic polyester and then polycondensing the components obtained by the depolymerization, the method comprising: Aromatic bis(hydroxyalkyl) dicarboxylate is obtained by depolymerizing a polyester containing a group polyester in alkylene glycol, the bis(hydroxyalkyl) aromatic dicarboxylate is purified, and the purified bis(hydroxyalkyl) aromatic dicarboxylate is purified. (hydroxyalkyl) in the presence of an alkali metal and/or alkaline earth metal to obtain a recycled aromatic polyester.
  • polyester recovered from polyester excipients (hereinafter referred to as "recovered polyester") is used as a raw material polyester for obtaining recycled aromatic polyester, and the polyester contains aromatic polyester. Uses recycled polyester.
  • polyester excipients include fibers, films, sheets, and other shapes.
  • the recovered polyester when the recovered polyester is a fiber, it may be in the form of a processed fiber product. If it is a film or sheet, it may be a tray or a bag. Another example is a bottle.
  • the recovered polyester may be recovered from scraps or non-standard products generated in the process of manufacturing these polyesters.
  • These scraps and non-conforming products include, for example, raw material pellets that do not meet the required standards, unnecessary materials and cut pieces during molding and processing, generated scraps, transitional products and prototype products generated when changing brands, and defective products. Good products and cut products thereof can be exemplified.
  • polyester fiber waste is used as the recovered polyester.
  • polyester fiber waste preferably accounts for 50% by mass or more, more preferably 51% by mass or more, and even more preferably 70% by mass or more.
  • This polyester fiber waste includes those collected as offcuts during the manufacturing process, processing process, distribution, etc. before being released on the market as textile products or textile processed products, and textile products collected after being released on the market. This applies to processed textile products.
  • This fiber processed product may or may not be used. It may be discarded.
  • Polyester fiber waste may be composed of polyester fibers, and may also include natural fibers such as cotton, wool, and silk, chemical fibers derived from natural materials such as rayon, cupro, acetate, and lyocell, polyamide fibers, acrylic fibers, and urethane fibers. Synthetic fibers other than polyester fibers such as fibers may also be included.
  • the polyester fiber waste may be colored, and may be a cationically dyeable polyester fiber that can be dyed with a cationic dye that has excellent color development and brightness.
  • This cationically dyeable polyester fiber is made of an aromatic polyester copolymerized with an aromatic dicarboxylic acid having a sulfonic acid group as a substituent on an aromatic ring to which a cationic dye can be ionically bonded.
  • Aromatic polyester is a polymer obtained by polycondensing an aromatic dicarboxylic acid component and a diol component.
  • the aromatic polyester may be a homopolymer, a copolymer, or a mixture thereof.
  • Aromatic dicarboxylic acid components constituting the aromatic polyester include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, bis(p-carboxyphenyl)methane, anthracenedicarboxylic acid , 4,4'-diphenyl ether dicarboxylic acid, preferably terephthalic acid, 2,6-naphthalene dicarboxylic acid, particularly preferably terephthalic acid.
  • aromatic dicarboxylic compounds having a sulfonic acid group as a substituent on the aromatic ring such as 5-sodium sulfoisophthalic acid, 5-tetrabutylphosphonium sulfoisophthalic acid, and 5-tetrabutylammonium sulfoisophthalic acid, Dicarboxylic acid may be copolymerized.
  • an aliphatic glycol or alicyclic diol having 2 to 20 carbon atoms can be used as the diol component constituting the aromatic polyester.
  • cyclohexanediol, and dimer diol preferably ethylene glycol, 1,3-propanediol, 1,4-butanediol, and 1,4-cyclohexanedimethanol.
  • Preferred aromatic polyesters are polyalkylene terephthalates using terephthalic acid as the dicarboxylic acid component and alkylene glycol as the diol. At this time, preferred alkylene glycols are ethylene glycol, 1,3-propanediol, and 1,4-butanediol. Preferred aromatic polyesters are polyethylene terephthalate, polytrimethylene terephthalate, and polybutylene terephthalate. These aromatic polyesters may be copolymers.
  • Copolymerized aromatic polyesters containing aromatic dicarboxylic acids with sulfonic acid groups have good dyeability with cationic dyes, and for this reason, this component is often included in aromatic polyester fibers. .
  • the aromatic polyester may be a copolymerized aromatic polyester containing an isophthalic acid component having a sulfonic acid group, particularly a metal sulfonate group, as a dicarboxylic acid component.
  • an isophthalic acid having a metal sulfonate group is 5-sodium sulfoisophthalic acid.
  • the copolymerization amount of the sulfoisophthalate component in the aromatic polyester based on the total dicarboxylic acid component is 0.5 to 15 mol%, preferably 1 to 10 mol%.
  • the recycled product has high heat resistance.
  • Aromatic polyesters can be obtained.
  • a preferred example of the aromatic polyester targeted by the second invention of the present invention is one in which the main dicarboxylic acid component is terephthalic acid, the secondary dicarboxylic acid component includes 5-sodium sulfoisophthalic acid, and the diol component is ethylene glycol. It is an aromatic polyester.
  • “main” means 80 mol% or more, preferably 90 mol% or more based on the total dicarboxylic acid components.
  • aromatic polyester is depolymerized in alkylene glycol.
  • This depolymerization reaction is carried out in the presence of a catalyst, preferably a manganese-based catalyst or a zinc-based catalyst, particularly preferably a manganese-based catalyst.
  • manganese-based catalysts examples include manganese fatty acid salts, carbonates, sulfates, phosphates, oxides (manganese oxide), hydroxides, halides, and alcoholates.
  • Manganese acetate can be exemplified as a fatty acid salt of manganese.
  • manganese-based catalyst from the viewpoint of the polymer hue after repolymerization, manganese oxide, manganese acetate, and particularly preferably manganese acetate are used. These may be used alone or in combination.
  • the catalyst is dissolved or suspended in alkylene glycol in advance and used as a solution or suspension.
  • the amount of alkylene glycol used in the depolymerization reaction is preferably 2 to 20 times, more preferably 3 to 10 times the weight of the aromatic polyester. It is preferable to use alkylene glycol within this range because it is possible to reduce the amount of catalyst and other foreign substances mixed in.
  • the amount of the manganese-based catalyst used in the depolymerization reaction is preferably 20 to 500 mmol%, more preferably 30 to 300 mmol%, particularly preferably 50 to 150 mmol%, based on the total dicarboxylic acid content constituting the aromatic polyester. be. If a manganese-based catalyst is not used, sufficient depolymerization cannot be carried out with such a low concentration of catalyst added. If the amount of the catalyst used is less than 20 mmol%, the catalyst activity will be insufficient, which is not preferable, and if it exceeds 500 mmol%, the effect of suppressing discoloration will be reduced, which is not preferable.
  • the temperature of the depolymerization reaction is, for example, 180 to 250°C, preferably 185 to 210°C, and the time is, for example, 0.5 to 10 hours, preferably 1 to 4 hours.
  • the pressure may be normal pressure, for example 760 to 2000 mmHg.
  • alkylene glycol As the alkylene glycol, use the same diol component as the one constituting the aromatic polyester described above, or use the same diol component as the diol component constituting the recycled aromatic polyester obtained by the production method of the second invention of the present invention. It is preferable.
  • alkylene glycols depending on the aromatic polyester or recycled aromatic polyester.
  • aromatic polyester and/or recycled aromatic polyester is polyethylene terephthalate
  • ethylene glycol is preferably used as the alkylene glycol.
  • 1,3-propanediol is preferably used as the alkylene glycol.
  • 1,4-butanediol is preferably used as the alkylene glycol.
  • the alkylene glycol may be a mixture of alkylene glycols constituting the aromatic polyester and/or the recycled aromatic polyester.
  • the purification of the aromatic bis(hydroxyalkyl) dicarboxylate is preferably carried out by crystallization of the aromatic bis(hydroxyalkyl) dicarboxylate in an alkylene glycol solution.
  • Crystallization is preferably carried out by lowering the temperature of the solution obtained by depolymerizing aromatic polyester to a temperature of 60°C or higher and lowering the temperature to 25°C or lower, and further lowering the temperature to 15°C or lower. It is preferable to do this by:
  • the crystallized solid bis(hydroxyalkyl) aromatic dicarboxylate is separated from the liquid solution.
  • the solid crystallized bis(hydroxyalkyl) aromatic dicarboxylate is called "cake.” The cake is separated from the liquid and then subjected to a polycondensation reaction.
  • the aromatic polyester is an aromatic polyester containing an isophthalic acid component having a metal sulfonate group as a copolymerization component, that is, the main dicarboxylic acid component is terephthalic acid
  • the secondary dicarboxylic acid component is 5-sodium sulfoisophthalic acid
  • the diol component is an aromatic polyester that is ethylene glycol.
  • the main depolymerized product is bis(2-hydroxyethyl terephthalate)
  • the secondary depolymerized product is bis(2-hydroxyethyl 5-sodiosulfoisophthalate).
  • the obtained depolymerized product is a mixture containing these.
  • bis(2-hydroxyethyl) terephthalate (sometimes referred to as bis-2-hydroxyethyl terephthalate or BHET) crystallizes out as a cake, while the secondary depolymerized product 5-sodiosulfonate crystallizes out as a cake.
  • bis(2-hydroxyethyl) isophthalate (sometimes referred to as BHESI) does not crystallize and exists in a liquid state, BHET that crystallizes is obtained in solid form by solid-liquid separation, and is separated from liquid BHESI that does not crystallize. It is possible to extract only BHET with high purity.
  • the aromatic polyester contains an isophthalic acid component having a metal sulfonate group as a copolymerization component
  • the aromatic polyester is depolymerized and the copolymerization is performed.
  • the amount of the isophthalic acid component having a metal sulfonate group contained in the aromatic polyester is, for example, 2 mol% or less, preferably 0.5 mol% or less, based on the amount of the total dicarboxylic acid component of the aromatic polyester. .
  • the cake of bis(hydroxyalkyl) aromatic dicarboxylate is preferably washed. That is, it is preferable that washing is performed after crystallizing the aromatic bis(hydroxyalkyl) dicarboxylate.
  • the cake is preferably washed using water or alkylene glycol as the washing liquid. It is preferable that the cleaning liquid has a low viscosity, and from this point of view, water is preferable.
  • the washing is preferably carried out by spraying a washing liquid onto the cake while using a Nutsche filter.
  • the amount of the cleaning liquid used in the cleaning is preferably 1 to 100 times, more preferably 1.5 to 10 times the weight of the cake of bis(hydroxyalkyl) aromatic dicarboxylate.
  • the temperature of the cleaning liquid is preferably 0 to 40°C. If the temperature exceeds 40°C, the cake itself tends to dissolve, resulting in a decrease in yield, which is not preferable.
  • the cake After washing, the cake is dried to obtain highly pure aromatic bis(hydroxyalkyl) dicarboxylate having no sulfo group. Drying can be performed using, for example, a vacuum dryer.
  • alkylene glycol is used in the cleaning liquid and the alkylene glycol used is the same as the diol component of the recycled aromatic polyester, it may be subjected to polycondensation without drying.
  • a preferred embodiment is to dry the bis(hydroxyalkyl) aromatic dicarboxylate after washing and then to subject it to a polycondensation reaction.
  • Polycondensation is performed to obtain regenerated aromatic polyester from bis(hydroxyalkyl) aromatic dicarboxylate.
  • This polycondensation reaction is carried out using a polymerization catalyst and in the presence of an alkali metal and/or an alkaline earth metal.
  • the polycondensation reaction itself can be carried out using a polymerization catalyst commonly used in the art and by a method commonly used in the art.
  • the polycondensation reaction is preferably carried out while alkylene glycol generated during the polycondensation reaction is distilled out of the reaction vessel.
  • the polymerization catalyst examples include antimony-based, germanium-based, and titanium-based catalysts, and antimony-based catalysts are preferably used.
  • antimony-based catalyst for example, diantimony trioxide is used.
  • the amount of the polymerization catalyst used is preferably 10 to 1000 ppm based on the mass of the aromatic bis(hydroxyalkyl) dicarboxylate.
  • the alkylene glycol content of the purified bis(hydroxyalkyl) aromatic dicarboxylate cake when subjected to the polycondensation reaction is preferably 100% by mass or less based on the mass of the bis(hydroxyalkyl) aromatic dicarboxylate.
  • the content is more preferably 55% by mass or less, further preferably 30% by mass or less, particularly preferably 25% by mass or less.
  • the temperature of the polycondensation reaction is, for example, 230 to 330°C, preferably 250 to 310°C, and the reaction time is, for example, 240 minutes or less, preferably 180 minutes or less.
  • the pressure is reduced, for example, 100 Pa or less, preferably 50 Pa or less.
  • alkali metal and/or alkaline earth metal examples include lithium, sodium, potassium, rubidium, and cesium, and sodium and potassium are preferably used.
  • alkaline earth metals examples include calcium, barium, beryllium, and magnesium, and calcium and magnesium are preferably used.
  • a particularly preferred alkali metal and/or alkaline earth metal is sodium.
  • the amount of alkali metal and/or alkaline earth metal to be used is preferably 5 to 1000 ppm, more preferably 10 to 1000 ppm, based on the mass of the aromatic bis(hydroxyalkyl) dicarboxylate, from the viewpoint of the polymer hue after repolymerization. It is 500 ppm.
  • the alkali metal and/or alkaline earth metal are preferably used in the form of their respective salts. That is, it is preferable to use it as an alkali metal salt and/or an alkaline earth metal salt.
  • Examples of the acid component constituting the alkali metal salt and/or alkaline earth metal salt include propionic acid, acetic acid, oxalic acid, formic acid, carbonic acid, etc., and acetic acid is preferably used.
  • alkali metal salt and/or alkaline earth metal salt preferably lithium acetate, sodium acetate, potassium acetate, calcium acetate, barium acetate, magnesium acetate, and more preferably sodium acetate are used.
  • phosphorus stabilizer it is preferable to add a phosphorus stabilizer during the polycondensation reaction. Any known phosphorus stabilizer can be used, and the amount is, for example, 1 to 100 ppm based on the mass of bis(hydroxyalkyl) aromatic dicarboxylate.
  • phosphorus stabilizers include phosphorous acid, orthophosphoric acid, trimethyl phosphate, triethyl phosphate, triphenyl phosphate, diethyl benzenephosphonate, dimethyl (2-hydroxyethyl)phosphonate, and/or phenylphosphonic acid. Examples thereof include orthophosphoric acid, trimethyl phosphate, triethyl phosphate, and triphenyl phosphate.
  • mol% of the catalyst with respect to the polyester indicates the ratio of the number of catalyst molecules to the structural units of the polyester.
  • Measurement method 1 Hue (L * a * b * ) It was measured by the following method. The polymer (5 g) was pressed between two metal plates to form a plate shape, and then heated at 140° C. for 2 hours to crystallize the sample. The values of hue L * , a * , and b * of the measurement sample were measured using a measuring device ("ZE-6000" manufactured by Nippon Denshoku Kogyo Co., Ltd.) according to JIS Z8781-4:2013.
  • PET polyethylene terephthalate
  • Example 1 To 300 parts by mass of the polyester resin, 1500 parts by mass of ethylene glycol (EG) and 0.38 parts by mass of manganese acetate (100 mmol % based on the polyester) as a depolymerization catalyst were charged into a 2 L separable flask and the flask was sealed with nitrogen. At this time, manganese acetate was dissolved in EG in advance and then added.
  • the polyester resin used was an uncolored polyethylene terephthalate resin and contained 297 ppm of Sb as a polymerization catalyst.
  • the separable flask containing the sample was heated to an internal temperature of 220° C. using a mantle heater, and depolymerization treatment was performed at normal pressure for 4 hours while stirring.
  • the BHET (bis(hydroxyethyl) benzenedicarboxylate) solution after this depolymerization was clear and colorless, with no coloration observed.
  • This depolymerized solution was further filtered through a 200 ⁇ m mesh to remove the solid content remaining inside, and after being slowly cooled to 70°C, the temperature was lowered from 70°C to 40°C while stirring and cooling for an elapsed time of 0 ⁇ The temperature was lowered from 40°C to 30°C for 10 minutes in an elapsed time of 10 to 60 minutes, and the temperature was lowered from 30°C to 15°C in an elapsed time of 60 to 180 minutes, and then stirred for 60 minutes while maintaining the internal temperature at 15°C. The internal temperature was lowered to precipitate BHET crystals (4 hours in total), and a BHET/EG slurry was obtained.
  • the BHET/EG slurry was subjected to compression treatment using a filter press manufactured by Nippon Filtration Equipment Co., Ltd. to perform solid-liquid separation of BHET and EG.
  • the BHET separated at this time contained 35% by mass of EG based on the weight of the cake recovered after filter pressing.
  • the cake was washed with water using a Nutsche filter while spraying 2 times the weight of pure water at 25°C.
  • the BHET was then subjected to a drying process at 50° C. for 8 hours in a vacuum dryer to obtain dried BHET.
  • the obtained BHET was white and contained no foreign matter.
  • Example 2 The same treatment was carried out except that the depolymerization catalyst used in Example 1 was manganese oxide instead of manganese acetate, and BHET obtained by depolymerization and repolymerized polyethylene terephthalate resin were collected. At this time, the BHET solution after depolymerization was clear and colorless, with no coloration observed. The quality is also shown in Tables 2 and 3.
  • Example 3 Regarding the manganese acetate used in Example 1, the same treatment was carried out except that the amount added was changed from 0.38 parts by mass (100 mmol% to polyester) to 0.30 parts by mass (80 mmol% to polyester). did. Although some undissolved matter was confirmed in the BHET solution after depolymerization, BHET obtained by depolymerization and repolymerized polyethylene terephthalate resin could be collected. The quality is also shown in Tables 2 and 3.
  • Example 1 Regarding the manganese acetate used in Example 1, the same treatment as in Example 1 was performed, except that the amount added was further lowered to 0.038 parts by mass (10 mmol% based on polyester). Polymerization did not proceed sufficiently, and a large amount of undecomposed polyester remained in the flask. The amount of BHET obtained was so small that repolymerization could not be performed.
  • Example 1 The depolymerization catalyst used in Example 1 was replaced with manganese acetate, and calcium acetate (Comparative Example 1), magnesium acetate (Comparative Example 2), cerium acetate (Comparative Example 3), and cobalt acetate (Comparative Example 4) were used, respectively.
  • BHET obtained by depolymerization and repolymerized polyethylene terephthalate resin were collected by carrying out the same treatment except for the following.
  • calcium acetate (Comparative Example 1) and magnesium acetate (Comparative Example 2) were used, relatively many undecomposed substances after depolymerization were observed.
  • the BHET solutions obtained after depolymerization in Comparative Examples 1 to 4 were colored, unlike in the Examples.
  • Example 6 The same treatment as in Example 1 was carried out except that sodium hydroxide was used as the depolymerization catalyst instead of the manganese acetate used in Example 1. However, depolymerization did not proceed sufficiently, and a large amount of undecomposed polyester remained in the flask. Since the amount of BHET was small, repolymerization could not be carried out.
  • Example 10 The same treatment as in Example 1 was carried out except that potassium carbonate was used as the depolymerization catalyst instead of the manganese acetate used in Example 1. However, depolymerization did not proceed sufficiently, and a large amount of undecomposed polyester remained in the flask. Since the amount of BHET was small, repolymerization could not be carried out.
  • Example 21 For 300 parts by mass of the copolymerized aromatic polyester obtained in Reference Example 1, 1500 parts by mass of ethylene glycol (EG) and 0.38 parts by mass of manganese acetate (100 mmol for the total dicarboxylic acid component of the copolymerized aromatic polyester) %) was placed in a 2L separable flask.
  • EG ethylene glycol
  • manganese acetate 100 mmol for the total dicarboxylic acid component of the copolymerized aromatic polyester
  • the BHET/EG slurry was subjected to compression using a filter press manufactured by Nippon Filtration Equipment Co., Ltd., and solid-liquid separation of BHET and EG was performed to obtain a BHET cake.
  • the BHET at this time contained 34% by mass of EG based on the cake recovered after filter pressing.
  • the BHET cake subjected to this EG separation was subjected to water washing treatment using a Nutsche filter while spraying twice the mass of pure water.
  • the BHET cake after solid-liquid separation was dried in a vacuum dryer at 50° C. for 8 hours to obtain depolymerized sample 1.
  • the temperature inside the reaction vessel was set to 285°C, and the pressure was reduced stepwise under the following conditions: normal pressure for 10 minutes, 4kPa for 10 minutes, and 0.4kPa for 40 minutes to remove ethylene glycol, etc. generated in the reaction from outside the reaction vessel.
  • a polycondensation reaction was carried out while distilling the mixture off to obtain a regenerated aromatic polyester.
  • this recycled aromatic polyester had undergone depolymerization and polycondensation, it had a higher IV and melting point than the raw aromatic polyester, and was white and of high quality.
  • the quality is shown in Table 5.
  • Example 22 A depolymerization reaction was carried out in the same manner as in Example 21, except that the copolymerized aromatic polyester of Reference Example 1 used in Example 21 was replaced with the copolymerized aromatic polyester of Reference Example 2, and depolymerization sample 2 was obtained. I got it.
  • the temperature inside the reaction vessel was set to 285°C, and the pressure was reduced stepwise under the conditions of normal pressure for 10 minutes, 4kPa for 10 minutes, and 0.4kPa for 40 minutes, and the ethylene glycol generated in the reaction was removed from the reaction vessel.
  • a polycondensation reaction was carried out while distilling to the outside to obtain a regenerated aromatic polyester.
  • the obtained recycled aromatic polyester had a higher IV and melting point than the raw aromatic polyester even though it had undergone depolymerization and polycondensation, and was white and of high quality.
  • the quality is shown in Table 5.
  • the temperature inside the reaction vessel was set to 285°C, and the pressure was reduced stepwise under the conditions of normal pressure for 10 minutes, 4 kPa for 10 minutes, and 0.4 kPa for 40 minutes to remove ethylene glycol and other substances generated during the reaction.
  • a polycondensation reaction was carried out while distilling out of the container to obtain a regenerated aromatic polyester.
  • the obtained recycled aromatic polyester had a large residual content of Na sulfoisophthalate, and its IV value and melting point were inferior to those of Examples 21 and 22.
  • the quality is shown in Table 5.
  • the temperature inside the reaction vessel was set to 285°C, and the pressure was reduced stepwise under the conditions of normal pressure for 10 minutes, 4kPa for 10 minutes, and 0.4kPa for 40 minutes, and the ethylene glycol etc. generated in the reaction were removed from the reaction vessel.
  • a polycondensation reaction was carried out while distilling to the outside to obtain a regenerated aromatic polyester.
  • the aromatic dicarboxylic acid bis(hydroxyalkyl) obtained by the production method of the present invention the aromatic polyester obtained using it as at least one raw material, and the aromatic polyester component contained in polyester scraps, recycled products, etc.
  • Regenerated aromatic polyester obtained by depolymerizing and repolymerizing has less yellowness and excellent hue, and the presence of copolymer components before depolymerization can suppress deterioration of physical properties, so it can be used for example in fibers. It can be suitably used as a material for , films, and resins.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

ポリエステルを触媒存在下で解重合する芳香族ジカルボン酸ビス(ヒドロキシアルキル)の製造方法であって、触媒がマンガン系触媒であり、触媒使用量がポリエステルに対し20~500mmol%であることを特徴とする芳香族ジカルボン酸ビス(ヒドロキシアルキル)の製造方法により、ポリエステルを解重合して芳香族ジカルボン酸ビス(ヒドロキシアルキル)を製造する方法およびそれを原料として再度重合することによってポリエステルポリマーを製造する方法において、バージン品(解重合を経ずに、モノマーを重合して製造された物)並みに着色が小さいリエステルポリマーおよびその中間体の製造方法を提供する。

Description

芳香族ジカルボン酸ビス(ヒドロキシアルキル)の製造方法および再生芳香族ポリエステルの製造方法
 本発明は、ポリエステルを解重合して芳香族ジカルボン酸ビス(ヒドロキシアルキル)を製造する方法およびそれを用いた芳香族ポリエステルの製造方法に関し、詳しくは芳香族ポリエステルを含むポリエステル屑や製品回収品などに含まれる芳香族ポリエステルを解重合し、再度重合することにより再生芳香族ポリエステルを得る再生芳香族ポリエステルの製造方法に関する。
 芳香族ポリエステル、例えばポリエチレンテレフタレートは、その優れた特性により、たとえば繊維、フィルム、樹脂成形品として広く用いられている。これらの製造工程や加工工程において、未使用のポリエステル原料や、繊維状、フィルム状、その他の形状の屑や端材が出る。また、ポリエステル製品として使用された繊維、フィルム、樹脂成形品は、使用後あるいは未使用の状態で廃棄されるが、このような廃棄物が環境を悪化させるとして問題になっている。
 これらの工程屑や端材、未使用原料や製品廃棄物の再利用方法として、マテリアルリサイクルやケミカルリサイクル、サーマルリサイクルがある。ケミカルリサイクルの中でも芳香族ジカルボン酸1分子とジオール2分子とがエステル基で結合した形態のモノマー、またはそれがさらにエステル結合しているオリゴマーまで解重合した中間体を再度重合して用いるケミカルリサイクルは、直接重縮合反応により再生芳香族ポリエステルを製造することができるため、必要なエネルギーが少なく、優れた方法である。
 この方法として、例えばポリエチレンテレフタレートをエチレングリコール中で解重合して、テレフタル酸ビス(2-ヒドロキシエチル)を得て、これを重縮合して再生芳香族ポリエステルを得る方法がある。
 しかし、そのようにして得られる再生芳香族ポリエステルポリマーが、着色しているという問題があった。さらには、芳香族ポリエステルには、ポリエステル繊維の染色性改善などの目的で、スルホイソフタル酸ナトリウムなどのスルホイソフタル酸金属塩、スルホイソフタル酸テトラアルキルホスホニウム塩、スルホイソフタル酸テトラアルキルアンモニウム塩などのスルホイソフタル酸系成分がジカルボン酸成分として含まれている場合があり、この場合、単に解重合後、再重合して得られる再生芳香族ポリエステルは、着色の問題以外にも、分子量(固有粘度)や融点および結晶性が低下したり、副生物(ジエチレングリコールなど)が多くなるため、耐熱性に劣るという問題があった。
 この中、特許文献1では、着色要因物質除去工程として、着色要因物質を吸着剤に接触させる吸着処理、着色要因物質を分解剤で分解する分解処理、着色要因物質を還元剤で還元する還元処理などが試みられている。しかし、ポリマーに明らかに混入されている染料等の着色要因物質はある程度除去されるものの、通常生産ポリエステルポリマー並みに着色を抑えたポリエステルポリマーを得る製造方法は、いまだ得られていなかった。
特開2008‐88096号公報
 本発明は上記背景に鑑みなされたものである。本発明の目的は、第一に、ポリエステルを解重合して芳香族ジカルボン酸ビス(ヒドロキシアルキル)を製造する方法およびそれからポリエステルポリマーを製造する方法において、バージン品(解重合を経ずに、モノマーを重合して製造された物)並みに着色を抑えた芳香族ポリエステルポリマーおよびその中間体の製造方法を提供することにある。
 本発明の目的は、第二に、芳香族ポリエステルを含むポリエステル繊維屑やポリエステル製品回収品などに含まれる芳香族ポリエステルを解重合し、再度重合することにより再生芳香族ポリエステルを得る再生芳香族ポリエステルの製造方法でありながら、バージン品の芳香族ポリエステル並みに優れた耐熱性を有する再生芳香族ポリエステルの製造方法を提供することにある。特に、スルホイソフタル酸成分がジカルボン酸成分として芳香族ポリエステルに含まれている場合であっても、バージン品の芳香族ポリエステル並みに優れた耐熱性を有する再生芳香族ポリエステルの製造方法を提供することにある。
 すなわち本発明の第一の発明は、ポリエステルを触媒存在下で解重合する芳香族ジカルボン酸ビス(ヒドロキシアルキル)の製造方法であって、触媒がマンガン系触媒であり、触媒使用量がポリエステルに対し20~500mmol%であることを特徴とする芳香族ジカルボン酸ビス(ヒドロキシアルキル)の製造方法である。
 本発明の芳香族ジカルボン酸ビス(ヒドロキシアルキル)の製造方法は、ポリエステルを触媒存在下で解重合する芳香族ジカルボン酸ビス(ヒドロキシアルキル)の製造方法であって、触媒がマンガン系触媒であり、触媒使用量がポリエステルに対し20~500mmol%であることを特徴とする。
 さらには、ポリエステルがポリアルキレンテレフタレートを主成分とするものであることや、ポリアルキレンテレフタレートが、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、いずれか一つであることが好ましい。
 また、芳香族ジカルボン酸ビス(ヒドロキシアルキル)が、ベンゼンジカルボン酸ビス(ヒドロキシアルキル)であることや、マンガン系触媒が酢酸マンガンであることが好ましく、触媒があらかじめアルキレングリコール中に溶解された溶液として用いるものであること、解重合後にアルキレングリコール中にて降温して晶析すること、晶析後に水洗することが好ましい。
 本発明の第一の発明は、上記のいずれかの製造方法により得られた芳香族ジカルボン酸ビス(ヒドロキシアルキル)を再重合することを特徴とするポリエステル樹脂の製造方法も含む。そしてこの製造方法によって得られるポリエステル樹脂を包含する。
 本発明は、好ましい態様として、芳香族ポリエステルを含むポリエステルを解重合したあと解重合で得られた成分を重縮合して再生芳香族ポリエステルを得る再生芳香族ポリエステルの製造方法であって、前記解重合が、ポリエステルを触媒存在下で解重合して芳香族ジカルボン酸ビス(ヒドロキシアルキル)とすることで行われ、前記解重合に用いられる触媒がマンガン系触媒であり、触媒使用量がポリエステルに対し20~500mmol%であることを特徴とする、再生芳香族ポリエステルの製造方法である態様をとる。
 この好ましい態様において、さらに好ましくは、解重合の後かつ重縮合の前に、芳香族ジカルボン酸ビス(ヒドロキシアルキル)を精製する。
 そして、特に好ましくは、重縮合が、精製された芳香族ジカルボン酸ビス(ヒドロキシアルキル)を、アルカリ金属および/またはアルカリ土類金属の存在下で重縮合することで行われる。
 本発明はまた、芳香族ポリエステルを含むポリエステルを解重合したあと解重合で得られた成分を重縮合して再生芳香族ポリエステルを得る再生芳香族ポリエステルの製造方法であって、芳香族ポリエステルを含むポリエステルをアルキレングリコール中で解重合することで芳香族ジカルボン酸ビス(ヒドロキシアルキル)を得て、前記芳香族ジカルボン酸ビス(ヒドロキシアルキル)を精製し、精製された芳香族ジカルボン酸ビス(ヒドロキシアルキル)を、アルカリ金属および/またはアルカリ土類金属の存在下で重縮合して再生芳香族ポリエステルを得ることを特徴とする再生芳香族ポリエステルの製造方法である。これが本発明の第二の発明であり、後に詳しく説明する。
 本発明によれば、第一に、ポリエステルを解重合して芳香族ジカルボン酸ビス(ヒドロキシアルキル)を製造する方法およびそれからポリエステルポリマーを製造する方法において、バージン品(解重合を経ずに、モノマーを重合して製造された物)並みに着色を抑えたポリエステルポリマーおよびその中間体の製造方法を提供することができる。
 本発明によれば、第二に、芳香族ポリエステルを含むポリエステル繊維屑やポリエステル製品回収品などに含まれる芳香族ポリエステルを解重合し、再度重合することにより再生芳香族ポリエステルを得る再生芳香族ポリエステルの製造方法でありながら、バージン品の芳香族ポリエステル並みに優れた耐熱性を有する再生芳香族ポリエステルの製造方法を提供することができる。特に、スルホイソフタル酸成分がジカルボン酸成分として芳香族ポリエステルに含まれている場合であっても、バージン品の芳香族ポリエステル並みに優れた耐熱性を有する再生芳香族ポリエステルの製造方法を提供することができる。
  〔第一の発明〕
 以下、本発明の第一の発明を詳細に説明する。
 本発明は、ポリエステルを触媒存在下で解重合する芳香族ジカルボン酸ビス(ヒドロキシアルキル)の製造方法であるが、ここでポリエステルとは、多価カルボン酸と、ポリアルコールとを、脱水縮合してエステル結合を形成させることによって合成された重縮合体である。またはポリエステルとは、エステル結合を有するポリマーである。ポリエステルとして、半芳香族ポリエステルが好ましい。
 このようなポリエステルを構成する多価カルボン酸としては、ジカルボン酸またはそのエステル形成性誘導体を使用すること好ましく、具体的にはテレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、ビス(p-カルボキシフェニル)メタン、アントラセンジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、5-テトラブチルホスホニウムイソフタル酸、5-ナトリウムスルホイソフタル酸などの芳香族ジカルボン酸が挙げられる。またシュウ酸、コハク酸、アジピン酸、セバシン酸、アゼライン酸、ドデカンジオン酸、マロン酸、グルタル酸、ダイマー酸などの脂肪族ジカルボン酸や、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸などの脂環式ジカルボン酸を挙げることができる。また、上記のジカルボン酸のエステル形成性誘導体を用いることも可能である。
 中でも本発明に用いるポリエステルを構成する多価カルボン酸としては、主としてテレフタル酸や、2,6-ナフタレンジカルボン酸を用いることがより好ましい。また主としてテレフタル酸を、共重合成分としてイソフタル酸成分を用いたもの、より具体的にはイソフタル酸または5-ナトリウムスルホイソフタル酸を共重合したポリエステルである場合にも好ましく適用される。
 また、ポリエステルを構成するもう一方の成分のポリアルコールとしては、ジオールまたはそのエステル形成性誘導体を用いることが好ましく、具体的には炭素数2~20の脂肪族グリコールすなわち、エチレングリコール、1,3-プロパンジオール、プロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、デカメチレングリコール、シクロヘキサンジメタノール、シクロヘキサンジオール、ダイマージオールなどが挙げられる。
 あるいはポリアルコールとして、分子量200~100,000の長鎖グリコール、すなわちポリエチレングリコール、ポリ1,3-プロピレングリコール、ポリ1,2-プロピレングリコール、ポリテトラメチレングリコールなどを用いることができる。また、芳香族ジオキシ化合物すなわち、4,4’-ジヒドロキシビフェニル、ハイドロキノン、tert-ブチルハイドロキノン、ビスフェノールA、ビスフェノールS、ビスフェノールFなども用いることができる。また、これらのポリアルコールやジオールのエステル形成性誘導体を用いることも好ましい。
 中でも本発明に用いるポリエステルを構成するアルコールとしては、エチレングリコール(以下、EGと略記することがある)や、1,3‐プロパンジオール、1,4‐ブタンジオールを用いることが好ましい。
 上記のような多価カルボン酸とポリアルコールとを組み合わせたポリエステルを本発明では出発物質として用いることができるが、ポリエステルが半芳香族ポリエステル、さらにはポリアルキレンテレフタレートであることが好ましい。特には、そのポリアルキレンテレフタレートが、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレートのいずれか一つであることが特に好ましい。
 そして本発明の芳香族ジカルボン酸ビス(ヒドロキシアルキル)の製造方法は、上記のようなポリエステルを触媒存在下で解重合するのであるが、本発明ではここで触媒としてマンガン系の触媒を選択することが重要である。
 マンガン系触媒としては、例えばマンガン(Mn)の脂肪酸塩、炭酸塩、硫酸塩、リン酸塩、酸化物、水酸化物、ハロゲン化物、アルコラート等が例示され、1種または2種以上を組み合わせることも好ましい。本発明においては、中でも酸化マンガンや酢酸マンガンを用いることができるが、特には酢酸マンガンを用いることが好ましい。
 また、使用する触媒は、あらかじめアルキレングリコール中に溶解された溶液として用いるものであることが好ましい。アルキレングリコール(以下、AGと略記することがある)としては、上記の出発原料となるポリエステルの骨格構造を形成しているジオール成分と同じものを用いることができる。また、本発明の製造方法にて得られた芳香族ジカルボン酸ビス(ヒドロキシアルキル)を再重合して得られる、最終的に生成物として得られるポリエステルを構成するジオールを用いることも可能である。
 ポリエステルの骨格構造を形成している、または形成可能なアルキレングリコールとしては、例えば、ポリエステルがポリエチレンテレフタレート(PET)の場合にはエチレングリコール(EG)を、ポリトリメチレンテレフタレートの場合には1,3-プロパンジオール(トリメチレングリコール、C3G)を、ポリブチレンテレフタレートの場合には1,4-ブタンジオール(C4G)を例示することができる。またこのアルキレングリコールとしては、目的に応じ上記アルキレングリコールの混合物を用いることも好ましい。
 理由はさだかではないが、多種の触媒からマンガン系触媒を選択した際にのみ、本発明の効果が顕著に現れる。なお本発明の効果は、他の着色物質を含む再利用ポリエステルの解重合の際よりも、他の着色物質を含まない場合に、特に顕在化する。例えば、ポリエステルの解重合品は長時間保管等によって、徐々に変色の度合いが高くなることが多いが、本発明の製造方法にて得られたものは、明らかに変色が少ない。
 また、本発明の製造方法では、触媒使用量がポリエステルに対し20~500mmol%であることが必要である。さらには30~300mmol%、特には50~150mmol%であることが好ましい。ここでmol%は、ポリエステルの構成単位に対する触媒分子の個数の比を示し、mmol%はその1000倍である。通常の他の触媒ではこのような低添加量では十分な解重合が行われないが、マンガン系触媒を用いることによって、低使用量に抑えることが可能となった。触媒使用量がかかる範囲より少なすぎると触媒活性は十分ではなく、多すぎると変色を抑制する効果が減少する。
 本発明の芳香族ジカルボン酸ビス(ヒドロキシアルキル)の製造方法は、上記のようなポリエステルをマンガン系の触媒存在下で解重合し、その時の触媒使用量がポリエステルに対し20~500mmol%であることを必須とする製造方法である。
 さらには本発明の製造方法では、上記の触媒を用いて解重合した後に、アルキレングリコール中にて降温して晶析することが好ましい。晶析時の降温条件としては、60℃以上の温度から25℃以下に降温するものであることが、さらには15℃以下に冷却する方法であることが好ましい。さらに晶析後に固液分離することが好ましく、固液分離後のケーク中のアルキレングリコール含有量が100質量%以下であることが好ましい。さらにはアルキレングリコール含有量を55質量%以下であることや、1~30質量%の範囲に調整すること、特には5~25質量%の範囲とすることが好ましい。また、当初の解重合時に使用するアルキレングリコールの量としては原材料のポリエステルの2~20倍量、さらには3~10倍量の使用量であることが好ましい。このように解重合時のアルキレングリコールの量を多く使用し、晶析、固液分離を行うことによって、本発明の製造方法では解重合触媒、その他の異物の混入量をより下げることが可能となった。
 本発明にて用いられるマンガン系触媒は少量使用であるのでこのようなアルキレングリコール中での処理で、さらに減少させることが可能となる。また特に酢酸マンガンを触媒として用いた場合には、アルキレングリコールとの溶解性が高く、より効果的に後工程にて残存する触媒の量を減少させることが可能となった。
 さらに本発明の製造方法では、解重合後のケークを上記のような晶析後に水洗、またはアルキレングリコールにて、洗浄することが好ましい。さらには、洗浄液を噴霧しながら、ヌッチェろ過器にて処理することが好ましい。これらの処理を行うことにより、アルキレングリコール中に溶解している解重合触媒や、その他の着色原因物質等を洗い流し、より精製度の高い芳香族ジカルボン酸ビス(ヒドロキシアルキル)を得ることが可能となる。洗浄に用いる溶液としては、粘度が低いものであることが好ましく、その観点では水を用いることが好ましい。洗浄液の量としてはケークの重量に対して1~100倍量であることが好ましく、さらには1.5~10倍量であることが好ましい。洗浄時の液温としては0~40℃の範囲であることが好ましい。温度が高すぎると、ケーク自体が溶解しやすくなり、収率が低下する。その後、真空乾燥機等にて乾燥するなどして、芳香族ジカルボン酸ビス(ヒドロキシアルキル)を得ることができる。なお、本発明の製造方法にて用いられているアルキレングリコールは、再重合後のポリエステル樹脂のジオール成分と同一である場合、そのまま乾燥させずに再重合することも、好ましいポリエステルの製造方法となる。
 このような本発明の製造方法にて得られる芳香族ジカルボン酸ビス(ヒドロキシアルキル)としては、使用するポリエステルやアルキレングリコールの種類によるものであるが、主としてテレフタル酸を多価カルボン酸として用いたポリエステル(ポリアルキレンテレフタレート)を原料とする場合には、ベンゼンジカルボン酸ビス(ヒドロキシアルキル)(以下、BHAT;ビスヒドロキシアルキルテレフタレートということがある)を製造する方法であることが好ましい。より具体的には、アルキレングリコールとしてC3G(1,3‐プロパンジオール(トリメチレングリコール))を用いた場合にはBHPT(ビスヒドロキシプロピルテレフタレート)が、C4G(1,4-ブタンジオール)を用いた場合には、BHBT(ビスヒドロキシブチルテレフタレート)が製造される。特にはポリエステルを構成する成分として、主としてテレフタル酸とエチレングリコールからなるポリエチレンテレフタレートを用いた場合には、ベンゼンジカルボン酸ビス(ヒドロキシエチル)(BHET;ビスヒドロキシエチルテレフタレート)を製造することが可能となる。
 さらにこのような本発明の製造方法にて得た芳香族ジカルボン酸ビス(ヒドロキシアルキル)は、従来公知の方法にて再重合することにより、着色しにくい色相に優れたポリエステル樹脂となる。
 すなわちもう一つの本発明であるポリエステル樹脂の製造方法は、上記の製造方法により得られた芳香族ジカルボン酸ビス(ヒドロキシアルキル)を再重合する製造方法である。さらに、本発明の他の発明であるポリエステル樹脂は、このポリエステル樹脂の製造方法により得られるものである。
 ポリエステル樹脂を得るための再重合時の触媒としては、Sb系、Ge系、またはチタン系等の公知の触媒を用いることができ、特には三酸化二アンチモンを用いることが好ましい。再重合時に反応で発生するアルキレングリコール等は、反応器外に流去しながら重縮合反応を行うことが好ましい。触媒の使用量としては、使用する芳香族ジカルボン酸ビス(ヒドロキシアルキル)重量に対し10~1000ppmの範囲であることが好ましい。
 さらに本発明のポリエステル樹脂の製造方法では、触媒を用いて重縮合した後、従来公知のリン系の安定剤が好ましく使用される。リン系安定剤の使用量としては、使用する芳香族ジカルボン酸ビス(ヒドロキシアルキル)重量に対しそれぞれ1~100ppmの範囲であることが好ましい。
 このようにして得られたポリエステル樹脂は、従来汎用されていた水酸化Mgや水酸化Na等を解重合触媒に用いた場合と異なり、黄変等の変色の少ない樹脂となる。これは途中で得られる芳香族ジカルボン酸ビス(ヒドロキシアルキル)の段階でも目視確認できる程度のものであったが、樹脂に再重合した後に色相L、a、b値を測色計にて測定したところ、特にbの値に顕著であって、本発明の条件にて製造されたポリエステルが-3以下、さらに好ましくは-3.5以下に過ぎないのに対し、他の触媒にて製造された物は、それ以上の値であって、中には正の値(黄味が強い)をとっていたものもあった。その理由は定かではないが、マンガン系触媒が低濃度で解重合ができ、かつ着色性の副生成物を生じにくいばかりか、その後の晶析等の工程でも芳香族ジカルボン酸ビス(ヒドロキシアルキル)から解離されやすく、不純物として極めて残存しにくい点が、有効に働いているものと考えられる。
 さらに、得られたポリエステル樹脂は、繊維、フィルム、樹脂等の用途に好適に用いることができる。
  〔第二の発明〕
 次に、本発明の第二の発明を詳細に説明する。本発明の第二の発明は、芳香族ポリエステルを含むポリエステルを解重合したあと解重合で得られた成分を重縮合して再生芳香族ポリエステルを得る再生芳香族ポリエステルの製造方法であって、芳香族ポリエステルを含むポリエステルをアルキレングリコール中で解重合することで芳香族ジカルボン酸ビス(ヒドロキシアルキル)を得て、前記芳香族ジカルボン酸ビス(ヒドロキシアルキル)を精製し、精製された芳香族ジカルボン酸ビス(ヒドロキシアルキル)を、アルカリ金属および/またはアルカリ土類金属の存在下で重縮合して再生芳香族ポリエステルを得ることを特徴とする再生芳香族ポリエステルの製造方法である。
 以下、第二の発明およびその好ましい態様を詳しく説明する。
  〔ポリエステル〕
 本発明の第二の発明では、再生芳香族ポリエステルを得るための原料のポリエステルとして、ポリエステルの賦形品から回収されたポリエステル(以下「回収ポリエステル」という。)であって、芳香族ポリエステルを含む回収ポリエステルを用いる。ポリエステルの賦形品として、繊維、フィルム、シート、その他の形態に成形されたものを例示することができる。
 回収ポリエステルが繊維である場合、繊維加工品の形態であってもよい。フィルムやシートである場合、トレイや袋であってもよい。その他の形態としてボトルが例示される。
 回収ポリエステルは、これらを製造する工程で発生する端材や規格不適合品から回収されたものであってもよい。この端材や規格不適合品として、例えば要求水準を満足しない原料ペレット、成形時や加工時に不要になった材料や切断された断片、発生した屑、銘柄変更時に発生した移行品や試作品、不良品や、それらの裁断物を例示することができる。
 本発明の第二の発明の好ましい態様においては、回収ポリエステルとして、ポリエステル繊維屑を用いる。回収ポリエステルにおいて、ポリエステル繊維屑は、好ましくは50質量%以上、さらに好ましくは51質量%以上、さらに好ましくは70質量%以上を占める。
 このポリエステル繊維屑には、繊維製品や繊維加工品として市場に出る前に製造工程や加工工程、流通などで端材などとして回収されたものや、市場に出た後で回収された繊維製品や繊維加工品が該当する。この繊維加工品は、使用されていてもよく、使用されていなくてもよい。廃棄されたものであってもよい。
 ポリエステル繊維屑は、ポリエステル繊維を構成繊維としてればよく、他に綿、毛、絹などの天然繊維、レーヨンやキュプラ、アセテート、リヨセルなどの天然素材由来の化学繊維、ポリアミド繊維やアクリル繊維、ウレタン繊維などのポリエステル繊維以外の合成繊維が含まれていてもよい。
 ポリエステル繊維屑は着色されていてもよく、発色性や鮮明性に優れたカチオン染料で染色できる、カチオン可染ポリエステル繊維であってもよい。このカチオン可染ポリエステル繊維は、カチオン染料がイオン結合できる、芳香環上にスルホン酸塩基を置換基として持つ芳香族ジカルボン酸が共重合された芳香族ポリエステルからなる。
  〔芳香族ポリエステル〕
 芳香族ポリエステルは、芳香族ジカルボン酸成分とジオール成分とを重縮合させて得られたポリマーである。芳香族ポリエステルは、ホモポリマーであってもよく、共重合ポリマーであってもよく、これらの混合物であってもよい。
 芳香族ポリエステルを構成する芳香族ジカルボン酸成分として、テレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、ビス(p-カルボキシフェニル)メタン、アントラセンジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸を例示することができ、好ましくはテレフタル酸、2,6-ナフタレンジカルボン酸、特に好ましくはテレフタル酸である。
 上記の芳香族ジカルボン成分の他に、5-ナトリウムスルホイソフタル酸、5-テトラブチルホスホニウムスルホイソフタル酸、5-テトラブチルアンモニウムスルホイソフタル酸といった、芳香環上にスルホン酸塩基を置換基として持つ芳香族ジカルボン酸が共重合されていてもよい。
 芳香族ポリエステルを構成するジオール成分として、炭素数2~20の脂肪族グリコールまたは脂環族ジオールを用いることができる。具体的には、エチレングリコール、1,3-プロパンジオール、プロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、デカメチレングリコール、シクロヘキサンジメタノール、シクロヘキサンジオール、ダイマージオールを例示することができ、好ましくはエチレングリコール、1,3‐プロパンジオール、1,4‐ブタンジオール、1,4‐シクロヘキサンジメタノールである。
 芳香族ポリエステルとして好ましいものは、ジカルボン酸成分としてテレフタル酸を用い、ジオールとしてアルキレングリコールを用いたポリアルキレンテレフタレートである。このとき、アルキレングリコールとして、好ましいものはエチレングリコール、1,3-プロパンジオール、1,4-ブタンジオールである。芳香族ポリエステルとして好ましいものは、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレートである。これらの芳香族ポリエステルは共重合体であってもよい。
 スルホン酸塩基を有する芳香族ジカルボン酸が含まれている共重合芳香族ポリエステルはカチオン染料への染色性が良好であり、このため、この成分は繊維の芳香族ポリエステルに含まれていることが多い。
 本発明の第二の発明において、芳香族ポリエステルは、スルホン酸塩基、特に金属スルホネート基を有するイソフタル酸成分がジカルボン酸成分として含まれている共重合芳香族ポリエステルであってもよい。
金属スルホネート基を有するイソフタル酸として、5-ナトリウムスルホイソフタル酸を例示することができる。この場合、後に説明する解重合で得られる芳香族ジカルボン酸ビス(ヒドロキシアルキル)は、5-ソジオスルホイソフタル酸ビス(2-ヒドロキシエチル)となる。
 芳香族ポリエステルにおけるスルホイソフタル酸塩成分の全ジカルボン酸成分に対する共重合量は0.5~15mol%、好ましくは1~10mol%である。
 本発明の第二の発明によれば、スルホイソフタル酸塩成分の共重合された共重合芳香族ポリエステルが、解重合の原料となる芳香族ポリエステルに混入していても、高い耐熱性を備える再生芳香族ポリエステルを得ることができる。
 本発明の第二の発明が対象とする芳香族ポリエステルとして好ましい例は、主たるジカルボン酸成分がテレフタル酸であり、従たるジカルボン酸成分が5-ナトリウムスルホイソフタル酸を含み、ジオール成分がエチレングリコールである芳香族ポリエステルである。ここで「主たる」とは、全ジカルボン酸成分あたり80mol%以上、好ましくは90mol%以上をいう。
  〔解重合〕
 本発明の第二の発明では、芳香族ポリエステルをアルキレングリコール中で解重合する。この解重合反応は、触媒の存在下で行い、触媒として、好ましくはマンガン系触媒または亜鉛系触媒、特に好ましくはマンガン系触媒を用いる。
 マンガン系触媒として、マンガンの脂肪酸塩、炭酸塩、硫酸塩、リン酸塩、酸化物(酸化マンガン)、水酸化物、ハロゲン化物、アルコラートを例示することができる。マンガンの脂肪酸塩として、酢酸マンガンを例示することができる。
 マンガン系触媒として、再重合後のポリマー色相の観点から、好ましくは酸化マンガン、酢酸マンガン、特に好ましくは酢酸マンガンを用いる。これらは、単独で用いてもよく、複数を組み合わせてもよい。触媒は、予めアルキレングリコール中に溶解または懸濁させて、溶液または懸濁液として用いる。
 酢酸マンガンを触媒として用いた場合には、アルキレングリコールへの溶解性が高く、残存する触媒の量を減少させることができる。解重合反応で使用するアルキレングリコールの量は、芳香族ポリエステルの質量を基準として、好ましくは2~20倍量、さらに好ましくは3~10倍量である。この範囲でアルキレングリコールを使用することにより、触媒、その他の異物の混入量を低減することができるため好ましい。
 マンガン系触媒の解重合反応での使用量は、芳香族ポリエステルを構成する全ジカルボン酸分に対して、好ましくは20~500mmol%、さらに好ましくは30~300mmol%、特に好ましくは50~150mmol%である。マンガン系触媒を用いない場合、このような低濃度の触媒添加量で十分な解重合を行うことができない。触媒の使用量が20mmol%未満であると触媒活性が十分ではなく好ましくなく、500mmol%を超えると変色を抑制する効果が少なくなり好ましくない。
 解重合反応の温度は、例えば180~250℃、好ましくは185~210℃であり、時間は例えば0.5~10時間、好ましくは1~4時間である。圧力は常圧でもよく、例えば760~2000mmHgでもよい。
  〔アルキレングリコール〕
 アルキレングリコールとして、上記の芳香族ポリエステルを構成しているジオール成分と同じものを用いるか、本発明の第二の発明の製造方法にて得る再生芳香族ポリエステルを構成するジオール成分と同じものを用いることが好ましい。
 すなわち、芳香族ポリエステルまたは再生芳香族ポリエステルに応じて、アルキレングリコールとして、以下のものを用いることが好ましい。
 芳香族ポリエステルおよび/または再生芳香族ポリエステルがポリエチレンテレフタレートである場合には、アルキレングリコールとして好ましくはエチレングリコールを用いる。
 芳香族ポリエステルおよび/または再生芳香族ポリエステルがポリトリメチレンテレフタレートの場合には、アルキレングリコールとして好ましくは1,3-プロパンジオール(トリメチレングリコール)を用いる。
 芳香族ポリエステルおよび/または再生芳香族ポリエステルがポリブチレンテレフタレートである場合には、アルキレングリコールとして好ましくは1,4-ブタンジオールを用いる。
 いずれの場合も、アルキレングリコールは、芳香族ポリエステルおよび/または再生芳香族ポリエステルを構成するアルキレングリコールの混合物であってもよい。
  〔精製〕
 本発明の第二の発明では、芳香族ポリエステルを解重合して得た芳香族ジカルボン酸ビス(ヒドロキシアルキル)を精製することが肝要である。
 芳香族ジカルボン酸ビス(ヒドロキシアルキル)の精製は、芳香族ジカルボン酸ビス(ヒドロキシアルキル)のアルキレングリコール溶液中での晶析により行われることが好ましい。
 晶析は、芳香族ポリエステルを解重合反応して得た溶液を、60℃以上の温度を始点として、25℃以下の温度に降温することで行うことが好ましく、さらに15℃以下の温度に降温することで行うことが好ましい。
 降温することにより、晶析された芳香族ジカルボン酸ビス(ヒドロキシアルキル)の固体は、液体である溶液と分離することになる。晶析させた芳香族ジカルボン酸ビス(ヒドロキシアルキル)の固体を「ケーク」という。ケークは液体と分離してから重縮合反応に供する。
 本発明の第二の発明の態様の一つとして、芳香族ポリエステルが金属スルホネート基を有するイソフタル酸成分を共重合成分として含む芳香族ポリエステルであり、すなわち、主たるジカルボン酸成分がテレフタル酸であり、従たるジカルボン酸成分が5-ナトリウムスルホイソフタル酸であり、ジオール成分がエチレングリコールである芳香族ポリエステルである態様がある。この場合、これを解重合して得られるものは、主たる解重合物はテレフタル酸ビス(2-ヒドロキシエチル)であり、従たる解重合物は5-ソジオスルホイソフタル酸ビス(2-ヒドロキシエチル)であり、得られた解重合物はこれらを含む混合物となる。これを精製すると、テレフタル酸ビス(2-ヒドロキシエチル)(ビス-2-ヒドロキシエチルテレフタレートまたはBHETと称することがある)がケークとして晶出する一方、従たる解重合物である5-ソジオスルホイソフタル酸ビス(2-ヒドロキシエチル)(BHESIと称することがある)は晶出せず液状のまま存在するため、固液分離により晶出するBHETを固状で得、晶析しない液状のBHESIと分離をすることができ、BHETのみを高い純度で取り出すことができる。
 従って、本発明の第二の発明では、芳香族ポリエステルに、金属スルホネート基を有するイソフタル酸成分を共重合成分として含む芳香族ポリエステルが含まれていても、これを解重合して、該共重合成分を分離し、再度重縮合することで、耐熱性に優れた再生芳香族ポリエステルを製造することができる。このとき、芳香族ポリエステルに含まれる金属スルホネート基を有するイソフタル酸成分の量は、芳香族ポリエステルの全ジカルボン酸成分の量を基準といて、例えば2mol%以下、好ましくは0.5mol%以下である。
  〔洗浄〕
 芳香族ジカルボン酸ビス(ヒドロキシアルキル)のケークは、洗浄することが好ましい。すなわち、芳香族ジカルボン酸ビス(ヒドロキシアルキル)の晶析後に洗浄が行われることが好ましい。
 ケークの洗浄は、洗浄液として好ましくは水またはアルキレングリコールを用いて行う。洗浄液は、粘度が低いこと好ましく、この観点からは水が好ましい。洗浄は、洗浄液をケークに噴霧しながらヌッチェろ過器にて処理することで行うことが好ましい。
 洗浄することにより、解重合後のアルキレングリコール溶液中に溶解していた解重合触媒や、解重合に供した芳香族ポリエステルに含有されていた着色原因物質が洗い流され、純度の高い芳香族ジカルボン酸ビス(ヒドロキシアルキル)を得ることができる。
 洗浄で用いる洗浄液の量は、芳香族ジカルボン酸ビス(ヒドロキシアルキル)のケークの質量に対して、好ましくは1~100倍量、さらに好ましくは1.5 ~10倍量である。洗浄液の温度は、好ましくは0~40℃である。温度が40℃を超えるとケーク自体が溶解しやすくなり収率が低下して好ましくない。
 洗浄後、ケークを乾燥して、スルホ基を持たない高純度の芳香族ジカルボン酸ビス(ヒドロキシアルキル)を得ることができる。乾燥は、例えば真空乾燥機を用いて行うことができる。
 洗浄液にアルキレングリコールを用い、かつ用いたアルキレングリコールが再生芳香族ポリエステルのジオール成分と同一である場合には、乾燥を行わずに重縮合に供してもよい。
 芳香族ジカルボン酸ビス(ヒドロキシアルキル)の洗浄後に乾燥して、その後に重縮合反応に供さする態様は、好ましい態様である。
  〔重縮合〕
 芳香族ジカルボン酸ビス(ヒドロキシアルキル)から再生芳香族ポリエステルを得るために重縮合を行う。この重縮合反応は、重合触媒を用い、かつ、アルカリ金属および/またはアルカリ土類金属の存在下で行う。重縮合反応自体は、当業界で慣用される重合触媒を用いて、当業界で慣用される方法で行うことができる。重縮合反応は、重縮合反応時に発生するアルキレングリコールを反応容器外に溜去しながら行うことが好ましい。
 重合触媒として、アンチモン系、ゲルマニウム系、チタン系の触媒を例示することができ、好ましくはアンチモン系触媒を用いる。アンチモン系触媒として、例えば三酸化二アンチモンを用いる。重合触媒の使用量は、芳香族ジカルボン酸ビス(ヒドロキシアルキル)の質量に対して、好ましくは10~1000ppmである。
 重縮合反応に供するときの、精製された芳香族ジカルボン酸ビス(ヒドロキシアルキル)のケークのアルキレングリコール含有量は、芳香族ジカルボン酸ビス(ヒドロキシアルキル)の質量を基準として、好ましくは100質量%以下であり、さらに好ましくは55質量%以下、さらに好ましくは30質量%以下、特に好ましくは25質量%以下である。
 重縮合反応の温度は、例えば230~330℃、好ましくは250~310℃であり、反応時間は例えば240分間以下、好ましくは180分間以下である。圧力は減圧下で行い、例えば100Pa以下、好ましくは50Pa以下である。
  〔アルカリ金属および/またはアルカリ土類金属〕
 アルカリ金属として、リチウム、ナトリウム、カリウム、ルビジウム、セシウムを例示することができ、好ましくはナトリウム、カリウムを用いる。
 アルカリ土類金属として、カルシウム、バリウム、ベリリウム、マグネシウムを例示することができ、好ましくはカルシウム、マグネシウムを用いる。
 アルカリ金属および/またはアルカリ土類金属として特に好ましいものは、ナトリウムである。
 アルカリ金属および/またはアルカリ土類金属の使用量は、芳香族ジカルボン酸ビス(ヒドロキシアルキル)の質量に対して、再重合後のポリマー色相の観点から、好ましくは5~1000ppm、さらに好ましくは10~500ppmである。
 アルカリ金属および/またはアルカリ土類金属は、それぞれの塩の形態で用いることが好ましい。すなわち、アルカリ金属塩および/またはアルカリ土類金属塩として用いることが好ましい。
 アルカリ金属塩および/またはアルカリ土類金属塩を構成する酸成分として、プロピオン酸、酢酸、シュウ酸、ギ酸、炭酸などを例示することができ、好ましくは酢酸を用いる。
 アルカリ金属塩および/またはアルカリ土類金属塩として、好ましくは酢酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸カルシウム、酢酸バリウム、酢酸マグネシウム、さらに好ましくは酢酸ナトリウムを用いる。
  〔安定剤〕
 重縮合反応時、リン系安定剤を添加することが好ましい。リン系安定剤は、公知のものを用いることができ、芳香族ジカルボン酸ビス(ヒドロキシアルキル)の質量に対して、例えば1~100ppmである。リン系安定剤として、例えば、亜リン酸、正リン酸、リン酸トリメチル、リン酸トリエチル、リン酸トリフェニル、ベンゼンホスホン酸ジエチル、(2-ヒドロキシエチル)ホスホン酸ジメチルおよび/またはフェニルホスホン酸を例示することができ、好ましくは正リン酸、リン酸トリメチル、リン酸トリエチル、リン酸トリフェニルである。
 以下、実施例により本発明を更に具体的に説明する。なお、実施例中の各値は以下の測定方法により求めた。
 なお、触媒の添加量の記載において、ポリエステルに対する触媒の「mol%」は、ポリエステルの構成単位に対する触媒分子の個数の比を示す。
(1)測定方法
1)色相(L
 以下の方法で測定した。ポリマー(5g)を二枚の金属板でプレスし、プレート状にした後、140℃×2時間で加熱し、サンプルを結晶化させた。その測定用サンプルを、測定装置(日本電色工業株式会社製「ZE-6000」)を用い、JIS Z8781-4:2013に従って、色相L、a、bの値を測定した。
2)金属含有量
 ポリマー中の各種金属元素量は、ポリマーを加熱溶融して円形ディスクを作成し、用いた触媒に対応する金属の量を、それぞれ株式会社リガク製蛍光X線測定装置「ZSXPrimus II」を用いて測定した。表中、「ND」は検出限界以下(5ppm以下)を意味する。
3)極限粘度数(IV)
 ポリエステル0.6gをo-クロロフェノール50cc中に加熱溶解した後、一旦冷却させ、ウベローデ式粘度計を用いて35℃の温度条件で測定したその溶液の溶液粘度から、別途作成した検量線を用いて算出した。
4)ガラス転移点(Tg)、融点(Tm)、結晶化温度(Tc)
 サンプルを10mg切り取りアルミパンに充填し、TA Instruments-Waters LLC社製「DSC装置Q10」にて融点を測定した。測定条件としては、まず昇温速度20℃/分にて25℃から300℃まで一旦昇温後、急冷しクエンチした。そしてこのクエンチしたサンプルに対して20℃/分にて、25℃から300℃まで昇温し、結晶融点を求めた。
5)5-ナトリウムスルホイソフタル酸の含有量
 サンプルを、プレート状に成型し、株式会社リガク製蛍光X線装置「ZSXPrimus II」にて、スルホ基由来の硫黄含有量を測定し、5-ナトリウムスルホイソフタル酸の含有量を算出した。表中、「ND」は検出限界以下(5ppm以下)を意味する。
6)ジエチレングリコール(DEG)含有量
 抱水ヒドラジンを用いてポリエステルを分解し、この分解生成物中のジエチレングリコールの含有量をガスクロマトグラフィ-(ヒューレットパッカード社製「HP6850」)を用いて測定した。
(2)ポリエステル樹脂
 解重合に供するポリエステル樹脂として、一般に流通しているポリエチレンテレフタレート(PET)ペレットを入手した。このポリエステル樹脂の物性、色調は表1に記載のとおりであった。
 実施例1乃至3、および比較例1乃至12では、このポリエチレンテレフタレート(PET)ペレットを解重合に供するポリエステル樹脂として使用した。
Figure JPOXMLDOC01-appb-T000001
  〔実施例1〕
 ポリエステル樹脂300質量部に対して、エチレングリコール(EG)1500質量部、解重合触媒として、酢酸マンガン0.38質量部(ポリエステルに対し100mmol%)を2Lのセパラブルフラスコに投入し窒素封入した。この時酢酸マンガンはあらかじめEGに溶解してから投入した。なお、使用したポリエステル樹脂は、着色されていないポリエチレンテレフタレート樹脂であって、重合触媒としてSbを297ppm含んでいた。
 その後、試料が入ったセパラブルフラスコをマントルヒーターにより、内温220℃に設定し加熱し、撹拌しながら、常圧にて4時間の解重合処理を実施した。この解重合後のBHET(ベンゼンジカルボン酸ビス(ヒドロキシエチル))溶液は無色透明で、着色は見られないものであった。さらに200μmのメッシュでこの解重合後の溶液を濾過し、内部に残存している固形分を取り除き、70℃まで徐冷後、撹拌冷却しながら、70℃→40℃の降温を経過時間0→10分、40℃→30℃の降温を経過時間10→60分、30℃→15℃の降温を経過時間60→180分となるように実施し、その後内温15℃のまま60分間攪拌を実施し、内部温度を下げてBHETの結晶を析出させ(計4時間)、BHET/EGスラリーを得た。
 BHET/EGスラリーは、日本濾過装置株式会社製のフィルタープレスにて圧搾処理を実施し、BHETとEGの固液分離を行った。この時分離したBHETは、フィルタープレス後に回収したケーク重量に対して、EGを35質量%含有していた。このEG分離を実施した後のケークに対して2重量倍の25℃の純水を噴霧しながら、ヌッチェろ過器にて水洗浄処理を実施した。固液分離が完了したBHETについてその後、真空乾燥器にて50℃、8時間の乾燥処理を実施し、乾燥したBHETを得た。得られたBHETは白く、異物の混入も見られないものであった。
 その後、得られた乾燥BHET254質量部を、窒素雰囲気下の常圧の反応容器中に、リン系安定剤0.007質量部と共に、再重合触媒として三酸化二アンチモン0.07質量部を仕込んだ。次に反応器内の温度を285℃とし常圧で10分間、4kPaの圧力下で10分間、さらに0.4kPaの圧力下で40分間の条件で、それぞれ段階的に減圧し、反応で発生するエチレングリコールなどを反応器外に溜去しながら、重縮合反応を行った。
 最終的に生成したポリエチレンテレフタレートの品質を、表2および表3に示した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
  〔実施例2〕
 実施例1にて使用した解重合触媒を、酢酸マンガンに代えて酸化マンガンとすること以外は同様の処理を実施し、解重合して得たBHETおよび再重合したポリエチレンテレフタレート樹脂を採取した。この時解重合後のBHET溶液は無色透明で着色は見られなかった。品質を表2および表3に併せて示した。
  〔実施例3〕
 実施例1にて使用した酢酸マンガンについて、添加量を0.38質量部(ポリエステルに対し100mmol%)から0.30質量部(ポリエステルに対し80mmol%)に変更したこと以外は同様の処理を実施した。解重合後のBHET溶液には若干の未溶解物が確認されたものの、解重合して得たBHETおよび再重合したポリエチレンテレフタレート樹脂が採取できた。品質を表2および表3に併せて示した。
 なお、実施例1にて使用した酢酸マンガンについて、添加量をさらに下げて0.038質量部(ポリエステルに対し10mmol%)に変更したこと以外は実施例1と同様の処理を実施したところ、解重合が充分に進行せず、フラスコ内には大量の未分解ポリエステル残存していた。得られるBHETの量が少なく、再重合を行うことはできなかった。
  〔比較例1~4〕
 実施例1にて使用した解重合触媒を酢酸マンガンに代えて、それぞれ酢酸カルシウム(比較例1)、酢酸マグネシウム(比較例2)、酢酸セリウム(比較例3)、酢酸コバルト(比較例4)とすること以外は同様の処理を実施し、解重合して得たBHETおよび再重合したポリエチレンテレフタレート樹脂を採取した。酢酸カルシウム(比較例1)、酢酸マグネシウム(比較例2)使用時は解重合後の未分解物が比較的多くみられた。また比較例1~4において得られた解重合後のBHET溶液は、実施例と異なり着色が見られた。また最終的に得られたポリエステルの融点等の物性は実施例と同等であるものの、中間段階のBHET同様に着色が観察された。また、各触媒成分に由来する金属含有量は、マンガンと比べ高い残存金属量を示した。品質を表2および表3に併せて示した。
  〔比較例5〕
 実施例1にて使用した酢酸マンガンに代えて、解重合触媒をチタニウムテトラブキサイドとした。またこの触媒は重合触媒でもあるので、重合触媒である三酸化アンチモン0.07gの添加を行わないこと以外は同様の処理を実施し、解重合して得たBHETおよび再重合したポリエチレンテレフタレート樹脂を採取した。得られた解重合後のBHET溶液はかなり着色が見られた。最終的に得られたポリエステル樹脂中のアンチモン量は抑えられたものの、チタンの残存金属量はマンガンと比べ高く、BHETおよび樹脂の着色を抑制することはできなかった。品質を表2および表3に併せて示した。
  〔比較例6〕
 実施例1にて使用した酢酸マンガンに代えて、解重合触媒を水酸化ナトリウムとすること以外は同様の処理を実施した。しかし解重合が充分に進行せず、フラスコ内には大量の未分解ポリエステル残存していた。BHETの量が少なく、再重合を行うことはできなかった。
  〔比較例7~9〕
 実施例1にて使用した酢酸マンガンに代えて、解重合触媒を比較例6と同じ水酸化ナトリウム(比較例7)、炭酸ナトリウム(比較例8)、酢酸ナトリウム(比較例9)とし、さらに投入量を実施例1の0.38質量部に代えて9.0質量部すること以外は同様の処理を実施し、解重合して得たBHETおよび再重合したポリエチレンテレフタレート樹脂を採取した。得られた解重合後のBHET溶液は着色が見られた。しかし結果として再重合ポリエステルにおける残存金属分は実施例より多くなり、着色も見られるものであった。品質を表2および表3に併せて示した。
  〔比較例10〕
 実施例1にて使用した酢酸マンガンに代えて、解重合触媒を炭酸カリウムとすること以外は同様の処理を実施した。しかし解重合が充分に進行せず、フラスコ内には大量の未分解ポリエステル残存していた。BHETの量が少なく、再重合を行うことはできなかった。
  〔比較例11および12〕
 実施例1にて使用した酢酸マンガンに代えて、解重合触媒を比較例10と同じ炭酸カリウム(比較例11)、酢酸カリウム(比較例12)とし、さらに投入量を実施例1の0.38質量部に代えて9.0質量部すること以外は同様の処理を実施し、解重合して得たBHETおよび再重合したポリエチレンテレフタレート樹脂を採取した。得られた解重合後のBHET溶液は着色が見られた。しかし結果として再重合ポリエステルにおける残存金属分は実施例より多くなり、着色も見られるものであった。品質を表2および表3に併せて示した。
  〔参考例〕
 以下、実施例21、実施例22、参考例21および比較例21に用いた共重合芳香族ポリエステルおよび芳香族ポリエステルの製造について、参考例1乃至3で説明する。
  〔参考例1〕 (5-ナトリウムスルホイソフタル酸共重合芳香族ポリエステルの製造1)
 窒素雰囲気下で常圧下の反応容器に、ジメチルテレフタレート(DMT)191.3質量部、エチレングリコール(EG)124.2質量部、竹本油脂社製 ジメチル5スルホイソフタル酸ナトリウム4.4質量部を加え、触媒として酢酸マンガン0.07質量部、酢酸ナトリウム0.22質量部を加え、反応温度を240℃とし、メタノールを除去しながらエステル交換反応を実施した。
 次に、エステル交換反応が完了した反応物に対して、三酸化二アンチモン0.07質量部、正リン酸0.03質量部を仕込んだ。反応容器内の温度を285℃とし常圧で10分間、4kPaで10分間、0.4kPaで40分間の条件でそれぞれ段階的に減圧し、反応で発生するエチレングリコールなどを反応容器外に溜去しながら重縮合反応を行った。溜出部へのオリゴマー閉塞などは発生しなかった。生成した共重合芳香族ポリエステルの品質を表4に示す。
  〔参考例2〕 (5-ナトリウムスルホイソフタル酸共重合芳香族ポリエステルの製造2)
 参考例1において、ジメチルテレフタレート(DMT)を185.7質量部、5-ナトリウムスルホイソフタル酸ジメチルを13.0質量部とする以外は参考例1と同様の条件で実施して、共重合芳香族ポリエステルを得た。品質を表4に示した。
  〔参考例3〕 (芳香族ポリエステルの製造)
 窒素雰囲気下で常圧下の反応容器にジメチルテレフタレート(DMT)194.2質量部、エチレングリコール(EG)124.2質量部、酢酸マンガン 0.07質量部を加え、反応温度を240℃とし、メタノールを溜去しながらエステル交換反応を実施した。
 次にエステル交換反応が完了した反応物に対して、三酸化二アンチモン0.07質量部、正リン酸 0.03質量部を仕込んだ。反応容器内の温度を285℃とし常圧で10分間、4kPaで10分間、0.4kPaで40分間の条件でそれぞれ段階的に減圧し、反応で発生するエチレングリコールなどを反応容器外に溜去しながら重縮合反応を行った。溜出部へのオリゴマー閉塞などは発生しなかった。生成した芳香族ポリエステルの品質を表4に示した。
  〔実施例21〕
 参考例1にて得た共重合芳香族ポリエステル300質量部に対して、エチレングリコール(EG)1500質量部および酢酸マンガン0.38質量部(共重合芳香族ポリエステルの全ジカルボン酸成分に対して100mmol%)を2Lのセパラブルフラスコに投入した。
 この時、酢酸マンガンは、あらかじめEGに溶解して溶液としてから用いた。その後、窒素封入下で撹拌しながら、202℃にて4時間の解重合反応を行い、解重合サンプルを得た。
 得られた解重合サンプルを70℃まで徐冷後、15℃の恒温槽にて撹拌冷却しながら、内温を降温、ビス-2-ヒドロキシエチルテレフタレート(BHET)の結晶を析出させ、BHET/EGスラリーを得た。
 BHET/EGスラリーは、日本濾過装置株式会社製フィルタープレスにて圧搾処理を実施し、BHETとEGの固液分離を行い、BHETのケークを得た。この時のBHETは、フィルタープレス後に回収したケークに対して、EGを34質量%含有していた。
 このEG分離を実施したBHETのケークに対して、その2質量倍の純水を噴霧しながら、ヌッチェろ過器にて水洗浄処理を実施した。固液分離が完了したBHETのケークを真空乾燥器にて50℃、8時間乾燥処理を実施し、解重合サンプル1を得た。
 その後、窒素雰囲気下で常圧下の反応容器に、この解重合サンプル1を254質量部、三酸化二アンチモン0.07質量部、正リン酸0.005質量部、酢酸ナトリウム0.22質量部を仕込んだ。
 次に、反応容器内の温度を285℃とし常圧で10分間、4kPaで10分間、0.4kPaで40分間の条件でそれぞれ段階的に減圧し、反応で発生するエチレングリコールなどを反応容器外に溜去しながら重縮合反応を行い、再生芳香族ポリエステルを得た。
 この再生芳香族ポリエステルは、解重合および重縮合を経たにも関わらす、原料の芳香族ポリエステルよりもIVおよび融点が高く、また白色であって高品質の再生芳香族ポリエステルであった。その品質を表5に示す。
  〔実施例22〕
 実施例21にて使用した参考例1の共重合芳香族ポリエステルを、参考例2の共重合芳香族ポリエステルとしたこと以外は実施例21と同様にして解重合反応を実施し、解重合サンプル2を得た。
 窒素雰囲気下で常圧下の反応容器に、この解重合サンプル2を254質量部、三酸化二アンチモン0.07質量部、正リン酸0.005質量部、酢酸ナトリウム0.22質量部を仕込んだ。
 次に反応容器内の温度を285℃とし、常圧で10分間、4kPaで10分間、0.4kPaで40分間の条件で、それぞれ段階的に減圧し、反応で発生するエチレングリコールなどを反応容器外に溜去しながら重縮合反応を行い、再生芳香族ポリエステルを得た。
 得られた再生芳香族ポリエステルは、解重合および重縮合を経たにも関わらす、原料の芳香族ポリエステルよりもIVおよび融点が高く、また白色であって高品質の再生芳香族ポリエステルであった。その品質を表5に示した。
  〔参考例21〕 
 参考例1にて得た共重合芳香族ポリエステル300質量部に対して、エチレングリコール(EG)1500質量部および酢酸マンガン0.38質量部を、容量2Lのセパラブルフラスコに投入し、窒素封入下で撹拌しながら、202℃にて4時間の解重合反応を行い、解重合サンプルを得た。
 窒素雰囲気下で常圧下の反応容器に、上記で得た解重合サンプル508質量部、三酸化二アンチモン0.07質量部、正リン酸0.005質量部および酢酸ナトリウム0.22質量部を仕込んだ。
 次に、反応容器内の温度を285℃とし、常圧で10分間、4kPaで10分間、0.4kPaで40分の条件で、それぞれ段階的に減圧し、反応で発生するエチレングリコールなどを反応容器外に溜去しながら重縮合反応を行い、再生芳香族ポリエステルを得た。
 得られた再生芳香族ポリエステルは、スルホイソフタル酸Naの残存含有量が多く、IV値および融点が実施例21および22よりも劣るものであった。品質を表5に示した。
  〔比較例21〕 
 窒素雰囲気下で常圧下の反応容器に、実施例22で得た解重合サンプル2を254質量部および三酸化二アンチモン0.07質量部、正リン酸0.005質量部を仕込んだ。
 次に、反応容器内の温度を285℃とし常圧で10分間、4kPaで10分間、0.4kPaで40分間の条件で、それぞれ段階的に減圧し、反応で発生するエチレングリコールなどを反応容器外に溜去しながら重縮合反応を行い、再生芳香族ポリエステルを得た。
 得られた再生芳香族ポリエステルは、5-ナトリウムスルホイソフタル酸の含有量は少ないものの、融点は低くなった。品質を表5に示した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 本発明の製造方法で得られた芳香族ジカルボン酸ビス(ヒドロキシアルキル)と、それを少なくとも一つの原料として得られる芳香族ポリエステル、更にはポリエステル屑や製品回収品などに含まれる芳香族ポリエステル成分を解重合し、再度重合することによって得られる再生芳香族ポリエステルは、黄味が少なく色相に優れ、また、解重合前の共重合成分の存在により物性の劣化を抑制することができるため、例えば繊維、フィルム、樹脂の材料として好適に用いることができる。

Claims (22)

  1.  ポリエステルを触媒存在下で解重合する芳香族ジカルボン酸ビス(ヒドロキシアルキル)の製造方法であって、触媒がマンガン系触媒であり、触媒使用量がポリエステルに対し20~500mmol%であることを特徴とする芳香族ジカルボン酸ビス(ヒドロキシアルキル)の製造方法。
  2.  ポリエステルがポリアルキレンテレフタレートを主成分とするものである請求項1記載の芳香族ジカルボン酸ビス(ヒドロキシアルキル)の製造方法。
  3.  ポリアルキレンテレフタレートが、ポリエチレンテレフタレート、ポリトリメチレンテレフタレートおよびポリブチレンテレフタレートのいずれか一つである請求項2記載の芳香族ジカルボン酸ビス(ヒドロキシアルキル)の製造方法。
  4.  芳香族ジカルボン酸ビス(ヒドロキシアルキル)が、ベンゼンジカルボン酸ビス(ヒドロキシアルキル)である請求項1記載の芳香族ジカルボン酸ビス(ヒドロキシアルキル)の製造方法。
  5.  マンガン系触媒が、酢酸マンガンである請求項1記載の芳香族ジカルボン酸ビス(ヒドロキシアルキル)の製造方法。
  6.  触媒があらかじめアルキレングリコール中に溶解された溶液として用いるものである請求項1記載の芳香族ジカルボン酸ビス(ヒドロキシアルキル)の製造方法。
  7.  解重合後にアルキレングリコール中にて降温して晶析する請求項1記載の芳香族ジカルボン酸ビス(ヒドロキシアルキル)の製造方法。
  8.  晶析後に水洗する請求項7記載の芳香族ジカルボン酸ビス(ヒドロキシアルキル)の製造方法。
  9.  請求項1ないし8のいずれかに記載の製造方法により得られた芳香族ジカルボン酸ビス(ヒドロキシアルキル)を再重合することを特徴とするポリエステル樹脂の製造方法。
  10.  請求項9記載のポリエステル樹脂の製造方法から得られるポリエステル樹脂。
  11.  芳香族ポリエステルを含むポリエステルを解重合したあと解重合で得られた成分を重縮合して再生芳香族ポリエステルを得る再生芳香族ポリエステルの製造方法であって、
    前記解重合が、ポリエステルを触媒存在下で解重合して芳香族ジカルボン酸ビス(ヒドロキシアルキル)とすることで行われ、前記解重合に用いられる触媒がマンガン系触媒であり、触媒使用量がポリエステルに対し20~500mmol%であることを特徴とする、再生芳香族ポリエステルの製造方法。
  12.  解重合の後かつ重縮合の前に、芳香族ジカルボン酸ビス(ヒドロキシアルキル)を精製する、請求項11記載の再生芳香族ポリエステルの製造方法。
  13.  重縮合が、精製された芳香族ジカルボン酸ビス(ヒドロキシアルキル)を、アルカリ金属および/またはアルカリ土類金属の存在下で重縮合することで行われる、請求項12記載の再生芳香族ポリエステルの製造方法。
  14.  芳香族ポリエステルを含むポリエステルを解重合したあと解重合で得られた成分を重縮合して再生芳香族ポリエステルを得る再生芳香族ポリエステルの製造方法であって、芳香族ポリエステルを含むポリエステルをアルキレングリコール中で解重合することで芳香族ジカルボン酸ビス(ヒドロキシアルキル)を得て、前記芳香族ジカルボン酸ビス(ヒドロキシアルキル)を精製し、精製された芳香族ジカルボン酸ビス(ヒドロキシアルキル)を、アルカリ金属および/またはアルカリ土類金属の存在下で重縮合して再生芳香族ポリエステルを得ることを特徴とする再生芳香族ポリエステルの製造方法。
  15.  ポリエステルが回収ポリエステルである、請求項14記載の製造方法。
  16.  芳香族ジカルボン酸ビス(ヒドロキシアルキル)の精製が、芳香族ジカルボン酸ビス(ヒドロキシアルキル)のアルキレングリコール溶液中での晶析により行われる、請求項14記載の製造方法。
  17.  芳香族ジカルボン酸ビス(ヒドロキシアルキル)の晶析後に洗浄が行われる、請求項16記載の製造方法。
  18.  洗浄が水またはアルキレングリコールにより行われる、請求項17記載の製造方法。
  19.  晶析が、芳香族ポリエステルを解重合反応して得た溶液を、60℃以上の温度を始点として、25℃以下の温度に降温することで行われる、請求項16記載の製造方法。
  20.  芳香族ジカルボン酸ビス(ヒドロキシアルキル)の洗浄後に乾燥して、その後に重縮合反応に供される、請求項17記載の製造方法。
  21.  請求項14記載の製造方法から得られた再生芳香族ポリエステル。
  22.  精製された芳香族ジカルボン酸ビス(ヒドロキシアルキル)のアルキレングリコール含有量が100質量%以下であり、この状態で重縮合に供する、請求項14記載の製造方法。
PCT/JP2023/011694 2022-03-29 2023-03-24 芳香族ジカルボン酸ビス(ヒドロキシアルキル)の製造方法および再生芳香族ポリエステルの製造方法 WO2023190102A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-053234 2022-03-29
JP2022053234 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023190102A1 true WO2023190102A1 (ja) 2023-10-05

Family

ID=88202195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011694 WO2023190102A1 (ja) 2022-03-29 2023-03-24 芳香族ジカルボン酸ビス(ヒドロキシアルキル)の製造方法および再生芳香族ポリエステルの製造方法

Country Status (2)

Country Link
TW (1) TW202402912A (ja)
WO (1) WO2023190102A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208524A (ja) * 1996-01-29 1997-08-12 Teijin Ltd テレフタル酸ジメチルの回収法
JPH11228677A (ja) * 1998-02-13 1999-08-24 Toray Ind Inc ポリエチレンテレフタレート及びそれからなるフィルム
WO2001030729A1 (fr) * 1999-10-22 2001-05-03 Teijin Limited Procede de separation et de recuperation de dimethylterephthalate et d'ethylene glycol de residus de polyester
JP2002060542A (ja) * 2000-08-17 2002-02-26 Teijin Ltd ポリエステル廃棄物からの有効成分回収方法
JP2010089401A (ja) * 2008-10-09 2010-04-22 Toray Ind Inc 光学用フィルムの製造方法
JP2013057006A (ja) * 2011-09-08 2013-03-28 Daiwa Can Co Ltd 金属酸化物を触媒に用いるポリエステルの解重合方法、および当該解重合方法を用いたポリエステル原料の回収方法
JP2013185152A (ja) * 2012-03-11 2013-09-19 Kazutoshi Ikenaga 金属酸化物を触媒に用いるポリエステルの解重合方法、および当該解重合方法を用いたポリエステル原料の回収方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208524A (ja) * 1996-01-29 1997-08-12 Teijin Ltd テレフタル酸ジメチルの回収法
JPH11228677A (ja) * 1998-02-13 1999-08-24 Toray Ind Inc ポリエチレンテレフタレート及びそれからなるフィルム
WO2001030729A1 (fr) * 1999-10-22 2001-05-03 Teijin Limited Procede de separation et de recuperation de dimethylterephthalate et d'ethylene glycol de residus de polyester
JP2002060542A (ja) * 2000-08-17 2002-02-26 Teijin Ltd ポリエステル廃棄物からの有効成分回収方法
JP2010089401A (ja) * 2008-10-09 2010-04-22 Toray Ind Inc 光学用フィルムの製造方法
JP2013057006A (ja) * 2011-09-08 2013-03-28 Daiwa Can Co Ltd 金属酸化物を触媒に用いるポリエステルの解重合方法、および当該解重合方法を用いたポリエステル原料の回収方法
JP2013185152A (ja) * 2012-03-11 2013-09-19 Kazutoshi Ikenaga 金属酸化物を触媒に用いるポリエステルの解重合方法、および当該解重合方法を用いたポリエステル原料の回収方法

Also Published As

Publication number Publication date
TW202402912A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
JP3897756B2 (ja) ポリエステル製造用触媒及びそれを用いるポリエステル製造方法
JP4048373B2 (ja) ポリ(エチレン芳香族ジカルボキシレートエステル)樹脂の製造方法
JPH11507694A (ja) 触媒、方法およびそれから得られるポリマー製品
KR20220092907A (ko) 재활용된 코폴리에스터로부터 생산된 코폴리에스터
JP2014001257A (ja) バイオマス資源由来ポリエステルの製造方法およびバイオマス資源由来ポリエステル
JP2003160656A (ja) ポリエステルの製造方法及び繊維
AU738285B2 (en) A copolyester for molding a bottle
JP4342211B2 (ja) ポリエステル及びその製造方法
JP3888884B2 (ja) ポリエステルの製造方法
WO2023190102A1 (ja) 芳香族ジカルボン酸ビス(ヒドロキシアルキル)の製造方法および再生芳香族ポリエステルの製造方法
WO2023176649A1 (ja) 着色pet布帛を原料とした再生ポリエステル樹脂及び着色pet布帛からエステルモノマーを得る方法
JP5001838B2 (ja) 酸化チタンゾルおよびそれを用いたポリアルキレンテレフタレートの製造方法
JP2006016548A (ja) ポリエステルの製造方法
JP3497618B2 (ja) ポリエチレンナフタレートの製造方法
KR20220102882A (ko) 폴리에스테르의 해중합 방법
JP3652495B2 (ja) 透明性に優れたポリエステルの製造方法
JP2023146176A (ja) ポリエステル樹脂の製造方法
JP2593180B2 (ja) 芳香族ポリエステルの製造方法
US20070093637A1 (en) Polyester, production method thereof, fibers therefrom and catalyst for polymerization of polyester
TW581777B (en) Process for producing a poly(ethylene aromatic dicarboxylate ester) resin, the resin, and fibers, films and bottle-formed products produced from the resin
JP2000204145A (ja) 高分子量ポリエチレンテレフタレ―トの製造方法
JP2005105091A (ja) ポリアルキレンテレフタレート廃棄物処理体及び処理方法
JP4033824B2 (ja) ポリブチレンテレフタレートの製造方法
TW202406975A (zh) 製備包含回收之對苯二甲酸雙(2-羥基乙基)酯的聚酯樹脂及纖維的方法
TW202330758A (zh) 從由廢棄材料解聚合所形成再生二酸形成聚酯之方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780112

Country of ref document: EP

Kind code of ref document: A1