WO2023176649A1 - 着色pet布帛を原料とした再生ポリエステル樹脂及び着色pet布帛からエステルモノマーを得る方法 - Google Patents

着色pet布帛を原料とした再生ポリエステル樹脂及び着色pet布帛からエステルモノマーを得る方法 Download PDF

Info

Publication number
WO2023176649A1
WO2023176649A1 PCT/JP2023/008940 JP2023008940W WO2023176649A1 WO 2023176649 A1 WO2023176649 A1 WO 2023176649A1 JP 2023008940 W JP2023008940 W JP 2023008940W WO 2023176649 A1 WO2023176649 A1 WO 2023176649A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
polyester resin
ester monomer
pet fabric
Prior art date
Application number
PCT/JP2023/008940
Other languages
English (en)
French (fr)
Inventor
一平 渡
正孝 牧野
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2023176649A1 publication Critical patent/WO2023176649A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • C08J11/24Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing hydroxyl groups

Definitions

  • the present invention relates to a recycled polyester resin made from a colored PET fabric and a method for obtaining an ester monomer from the colored PET fabric, and mainly relates to a recycled polyester resin made from a colored PET fabric.
  • polyester fibers which are used in a wide range of applications because they are inexpensive and have excellent mechanical properties and dry feel, and various chemical recycling techniques have been proposed to date. There is.
  • Patent Document 1 describes a chemical recycling technology that uses colored polyethylene terephthalate (PET) fiber clothing to depolymerize and evaporate and purify bis(2-hydroxyethyl) terephthalate (BHET), a monomer after depolymerization. Proposed.
  • PET polyethylene terephthalate
  • BHET bis(2-hydroxyethyl) terephthalate
  • Patent Documents 2 and 3 propose a chemical recycling technology that uses a fabric made of colored polyethylene terephthalate fibers and performs dye extraction, depolymerization, and filtration purification using activated carbon.
  • Patent Documents 1 to 3 above do not sufficiently pre-extract dyes from fibers.
  • Patent Document 1 it is necessary to perform high-level purification such as the ⁇ BHET evaporation purification process> disclosed in the Examples, and in Patent Documents 2 and 3, molecular distillation in the "distillation process" disclosed in the Examples. There was an issue that there was. Furthermore, even after these high-level purifications, the color tone of the finally obtained PET resin is still inferior to that of PET resin produced from virgin raw materials.
  • the purpose of the present invention is to solve the above-mentioned problems of the prior art by fully extracting the colored components before the depolymerization process, and using simple purification processes such as activated carbon treatment, filtration, and crystallization after the depolymerization process.
  • our objective is to provide a recycled polyester resin that uses an ester monomer (BHET) with excellent color tone as a raw material and has superior heat resistance and drying properties and has the same color tone as PET resin manufactured from virgin raw materials. .
  • BHET ester monomer
  • a recycled polyester resin made from colored PET fabric which contains terephthalic acid residues of 88 mol% or more and 100 mol% or less based on the total acid components and 88 mol% or more and 100 mol% or more based on the total diol components.
  • a process of bringing heated EG into contact with a colored PET fabric to extract a colored component which consists of the following steps (a) and (b)
  • (a) A process of bringing EG vapor into contact with a colored PET fabric (b) ) Step of bringing heated EG at 185° C. or higher into contact with the colored PET fabric
  • Step of making an EG solution containing an ester monomer Purification step [6] Purifying the EG solution containing the ester monomer (BHET) obtained by depolymerization to obtain purified BHET is only the following steps (A) to (D).
  • the method for obtaining the ester monomer described in [5] above characterized in that it consists of the following.
  • the filtered solution at 85°C or higher and 100°C or lower is heated at 30°C.
  • Step [7] The above [5] or [6] characterized in that the amount of colored components in the obtained ester monomer has a peak area of 20 or less observed in the range of 450 to 800 nm using a spectrophotometer. A method for obtaining ester monomers as described in .
  • an ester monomer (BHET) with excellent color tone can be obtained by using colored PET fabric as a raw material and performing simple purification steps such as filtration and crystallization, and by polymerizing it, a virgin raw material can be obtained. It is possible to provide a recycled polyester resin that has superior heat resistance and drying properties compared to PET resin produced according to conventional methods.
  • the recycled polyester resin made from the colored PET fabric of one embodiment of the present invention has a terephthalic acid residue of 88 mol% or more and 100 mol% or less based on the total acid component and 88 mol% or more based on the total diol component.
  • the purpose of the present invention is to provide a PET fiber raw material that is inexpensive and has excellent mechanical properties and dry feel. Therefore, the recycled polyester resin must be composed of terephthalic acid residues of 88 mol% or more and 100 mol% or less based on the total acid components, and 88 mol% or more and 100 mol% or more of the total diol components. % or less of ethylene glycol residues.
  • the composition ratio of terephthalic acid residues is preferably 90 mol% or more, more preferably 95 mol% or more, even more preferably 98 mol% or more, and most preferably 99.5 mol% or more.
  • the composition ratio of ethylene glycol residues is preferably 90 mol% or more, more preferably 95 mol% or more, even more preferably 98 mol% or more, and most preferably 99.5 mol% or more.
  • the recycled polyester resin of this embodiment has a diethylene glycol content of 0.1% by mass or more and less than 0.8% by mass.
  • the content is preferably 0.3% by mass or less, more preferably 0.2% by mass or less.
  • diethylene glycol is always produced as a by-product in the process of polycondensing BHET to obtain PET resin, it is difficult to reduce the content to less than 0.1% by mass. Note that when PET resin is produced from virgin raw materials terephthalic acid and ethylene glycol according to a conventional method without going through any particular purification process, it is difficult to achieve a diethylene glycol content of less than 0.8% by mass.
  • the recycled polyester resin of this embodiment has a nitrogen atom content of 0.5 mass ppm or more and 15.0 mass ppm or less.
  • the nitrogen atom is derived from a coloring component of the fabric used as a recycled raw material, and is preferably a constituent atom of an amine structure or an azo structure.
  • the resin contains less than 0.8% by mass of diethylene glycol and 0.5% by mass or more of nitrogen atoms, it is possible to improve the slow crystallization rate, which is one of the drawbacks of PET resin.
  • the nitrogen atom content is essential to be 0.5 mass ppm or more, and from the viewpoint of further improving the crystallization rate, it is preferably 2.0 mass ppm or more, and more preferably 5.0 mass ppm or more.
  • the amount is preferably 10.0 mass ppm or less.
  • the nitrogen atom content can be measured using, for example, a trace nitrogen analyzer ND-100 manufactured by Mitsubishi Chemical.
  • the recycled polyester resin of this embodiment has a Hunter color tone: b value of -10.0 or more and less than 5.0.
  • the hunter color tone of recycled polyester resin b value of -10.0 or higher is effective.
  • the hunter color tone b value of recycled polyester resin is less than 5.0 in terms of suppressing the yellowness of the fabric from becoming stronger than the desired color tone when knitting and weaving after fiber molding and dyeing with dyes. is essential, preferably 4.5 or less, more preferably 4.0 or less, even more preferably 3.5 or less, and most preferably 3.0 or less.
  • the recycled polyester resin of this embodiment preferably has a Hunter color tone: L value of 70.0 or more and less than 85.0.
  • Hunter color tone: L value of recycled polyester resin is 70.0 in terms of suppressing the lack of brightness of the fabric compared to the desired color tone when knitting and weaving after fiber molding and dyeing to a chromatic color using dye. It is preferably at least 73.0, more preferably at least 75.0, particularly preferably at least 76.0, and most preferably at least 77.0.
  • the recycled polyester resin of this embodiment preferably has a Hunter color tone: a value of -2.0 or more and 2.0 or less.
  • Hunter color tone of recycled polyester resin A value of -2.0 or more is effective in suppressing the greenish tone of the fabric from becoming stronger than the desired color tone when it is knitted and woven after fiber molding and dyed with dye. It is preferably ⁇ 1.5 or more, and more preferably ⁇ 1.5 or more.
  • the hunter tone a value of recycled polyester resin is 2.0 or less in terms of suppressing the redness of the fabric from becoming stronger than the desired tone when knitting and weaving after fiber molding and dyeing with dyes. is preferable, and 0 or less is more preferable.
  • the Hunter color tone of recycled polyester resin L value, a value, and b value can be determined, for example, by filling pellets of recycled polyester resin into a quartz cell with a height of 20 mm and using a color difference meter SM color computer model SM-T45 manufactured by Suga Test Instruments. Can be measured in transmitted light mode.
  • the recycled polyester resin of this embodiment was kept isothermally at 280°C for 5 minutes, rapidly cooled to room temperature at a rate of 100°C/min or more, and then heated from 20°C to 280°C at 16°C/min using a differential scanning calorimeter.
  • the heating crystallization temperature observed when heating at a heating rate is 140°C or more and less than 150°C.
  • the heating crystallization temperature is preferably less than 150°C, and preferably 147°C or less.
  • the temperature is more preferably 145°C or lower.
  • the curing temperature is preferably 140°C or higher, more preferably 143°C or higher.
  • the recycled polyester resin of this embodiment has a cooling crystallization temperature higher than 190°C and lower than 205°C, which is observed when the recycled polyester resin is isothermally held at 280°C for 5 minutes and then cooled at a temperature increase rate of 16°C/min. is preferred.
  • the higher the cooling crystallization temperature the greater the amount of crystals generated when PET resin is polycondensed and the molten resin is water-cooled and solidified into strands and processed into pellets, which prevents the resin pellets from sticking to each other during drying.
  • the cooling crystallization temperature is preferably higher than 190°C, and more preferably 193°C or higher.
  • the cooling crystallization temperature is excessively high, it indicates that there is an excessive amount of foreign matter that becomes a crystal nucleating material in the resin, which increases the difficulty of high-speed spinning during fiber forming.
  • the recycled polyester resin of this embodiment was kept isothermally at 280°C for 5 minutes, rapidly cooled to room temperature at a rate of 100°C/min or more, and then heated from 20°C to 280°C at 16°C/min using a differential scanning calorimeter. It is preferable that the melting point observed when heated at a temperature increase rate is 253°C or more and 258°C or less. It is preferable from the viewpoint of heat resistance that it contains a large amount of dicarboxylic acid or diol component copolymerizable with diethylene glycol or PET, and has a melting point of 253° C. or higher. On the other hand, since it is not difficult to design high purity polyethylene terephthalate to have a melting point of 258°C or lower, the melting point is preferably 258°C or lower.
  • the recycled polyester resin of this embodiment may be a recycled polyester composition containing resin additives such as coloring pigments and antioxidants depending on the purpose of use.
  • resin additives such as coloring pigments and antioxidants depending on the purpose of use.
  • titanium oxide particles may be included as a pigment, and by including titanium oxide particles, it is possible to impart transparency when processed into clothing.
  • antioxidants include [pentaerythritol-tetrakis (3-(3,5-di-t-butyl-4-hydroxyphenol) propionate)] (IR1010 manufactured by BASF (Irganox (registered trademark) 1010), which is available at low cost. )) can be exemplified.
  • the recycled polyester resin of this embodiment is preferably used as molded products such as bottles, films, and fibers by melt molding.
  • molded products such as bottles, films, and fibers by melt molding.
  • a particularly preferred example is use as a product.
  • it is a molded product, its uses are not limited.
  • the fabric used as the recycled raw material is a colored PET (polyethylene terephthalate) fabric.
  • the coloring component in the colored PET fabric is a disperse dye, a cationic dye or a pigment, preferably a disperse dye or a cationic dye.
  • the PET component in the colored PET fabric may contain a dicarboxylic acid component other than terephthalic acid or a diol component other than ethylene glycol (EG) as a copolymerization component. good.
  • dicarboxylic acid components other than terephthalic acid include dicarboxylic acids such as isophthalic acid, naphthalenedicarboxylic acid, 4,4'-diphenyldicarboxylic acid, cyclohexanedicarboxylic acid, and 5-sulfoisophthalic acid.
  • the acid and its ester-forming derivative may be copolymerized.
  • a cationic dye can be used, a copolymer of a dicarboxylic acid of 5-sulfoisophthalic acid and its ester-forming derivative can also be preferably used.
  • the amount of copolymerization can be reduced.
  • the amount is preferably 0.06 mol % or more and 5.0 mol % or less based on the total dicarboxylic acid components.
  • the upper limit is more preferably 3.5 mol% or less, and even more preferably 2.0 mol% or less, from the viewpoint of further improving color tone.
  • the sulfur atom content in the colored PET fabric is 0.01 parts by mass or more and 0.83 parts by mass or less based on 100 parts by mass of the colored PET fabric, in order to improve the color tone of the obtained recycled polyester resin.
  • the content is preferably 0.59 parts by mass or less, and even more preferably 0.33 parts by mass or less in terms of excellent color tone.
  • the sulfur atom content in colored PET fabric can be measured using a fluorescent X-ray analyzer (model number: 3270) manufactured by Rigaku Denki Co., Ltd. after melt-forming the colored fabric into a plate shape at 260 ° C. .
  • diol components other than EG in the colored PET fabric include propylene glycol, butanediol, tetramethylene glycol, hexamethylene glycol, diethylene glycol, cyclohexanedimethanol, neopentyl glycol, and polypropylene.
  • a diol compound such as glycol, an ester-forming derivative thereof, etc. may be copolymerized.
  • EG accounts for 80 mol% or more in all diol components.
  • the method for producing the recycled polyester resin of this embodiment is a method for obtaining an ester monomer (BHET) using a colored PET fabric, since it can provide a recycled polyester resin with excellent color tone, heat resistance, and drying properties.
  • a method for obtaining an ester monomer consisting of the following steps (1) to (3) can be suitably used.
  • a process of bringing heated EG into contact with a colored PET fabric to extract a colored component which consists of steps (a) and (b) (a) A process of bringing EG vapor into contact with a colored PET fabric (b) A step of bringing the colored PET fabric into contact with heated EG at 185°C or higher (2) Depolymerizing the PET fabric after coloring component extraction with EG to obtain an EG solution containing an ester monomer (3) A step of making an EG solution containing an ester monomer Purification process to obtain ester monomer
  • the colored PET fabric is colored by bringing it into contact with heated EG, in that BHET and PET resin with excellent color tone can be obtained. It is preferable to include a step (1) of extracting the components in advance.
  • the pre-extraction step of the colored component is a step of bringing heated EG into contact with a colored PET fabric
  • the step of bringing heated EG into contact includes (a) a step of bringing EG vapor into contact with the colored PET fabric, and (b) a step of bringing the colored PET fabric into contact with EG vapor. It consists of a step of bringing heated EG at 185° C. or higher into contact with the fabric.
  • heating EG is more preferably at 187°C or higher.
  • the upper limit temperature from the viewpoint that it can be carried out under normal pressure, it is preferably 198°C or lower, and more preferably 190°C or lower.
  • (a) contacting with EG vapor and (b) contacting with heated EG at 185° C. or higher may be performed as separate steps, and (a) and (b) The above order is more preferable, but they may be carried out simultaneously.
  • a reflux method is preferred, which allows pure EG to be constantly brought into contact with the colored PET fabric and which can also reduce the amount of EG used.
  • the extraction time of the colored component of the colored PET fabric is preferably 15 minutes or more, more preferably 30 minutes or more, and even more preferably 60 minutes or more.
  • the upper limit time is preferably within 150 minutes in order to prevent the colored PET fabric from becoming brittle.
  • the time allocation is preferably such that the ratio of (a) and (b): (a)/(b) is in the range of 1/9 to 5/5.
  • the method for producing recycled polyester resin of the present embodiment includes a step (2) of depolymerizing the PET fabric after coloring component extraction with EG to obtain an EG solution containing an ester monomer.
  • the depolymerization is carried out by adding 2.0 parts by mass or more and 10.0 parts by mass or less of EG per 1 part by mass of the PET fabric, at a temperature of 190° C. or higher and 210° C. or lower under normal pressure for 1.0 hours or more, It is preferable to carry out the treatment for 6.0 hours or less.
  • an EG solution containing an ester monomer BHET
  • the amount of EG added during depolymerization is less than 2.0 parts by mass per 1 part by mass of PET fabric, the molecular weight of the resulting BHET increases. In the subsequent purification step, the yield deteriorates and the efficiency decreases.
  • the amount of EG to be added is more preferably 2.3 parts by mass or more, more preferably 2.5 parts by mass or more per 1 part by mass of the PET fabric. Further, even if more than 10.0 parts by mass of EG is added, the same effect can be obtained, which is not preferable from a cost standpoint. From the viewpoint of cost, the amount is more preferably 8.0 parts by mass or less, and more preferably 6.0 parts by mass or less.
  • the temperature during depolymerization is preferably 190°C or higher and 210°C or lower, and more preferably carried out at 200°C or higher because the depolymerization time can be shortened.
  • the EG solution containing the ester monomer (BHET) obtained by depolymerization is purified from the viewpoint of providing recycled polyester resin with excellent color tone, heat resistance, and drying properties.
  • a BEHT purification method consisting only of the following steps (A) to (D) can be suitably used.
  • Step of recovering BHET by removing EG from the depolymerized EG solution containing BHET to a range of 0 parts by mass or more and 5 parts by mass or less (B) After performing the step described in (A) Step (C) of dissolving the recovered BHET in hot water at 85°C or higher and 100°C or lower and filtering it while hot After carrying out the steps described in (B), the filtered solution at 85°C or higher and 100°C or lower is heated at 30°C.
  • activated carbon treatment or ion exchange treatment is performed in a state where the ester monomer is dissolved in hot water.
  • ion exchange treatment means exposing the target solution to an ion exchange membrane or ion exchange resin.
  • step (A)) of removing EG from BHET after depolymerization it is possible to carry out a step (step (A)) of removing EG from BHET after depolymerization until it is in the range of 0 mass% or more and 5 mass% or less. preferable. If EG in BHET is more than 5% by mass, the yield will deteriorate in the subsequent hot filtration step and crystallization step, which is not preferable.
  • the step of removing EG from BHET after depolymerization any of the following methods may be used.
  • the first is a reprecipitation process in which the EG solution of BHET obtained by depolymerization is dropped into water adjusted to below 20°C to obtain a cloudy solution, and then BHET containing impurities is recovered using a filter. It is.
  • the water temperature is preferably 15° C. or lower, more preferably 10° C. or lower in terms of increasing the yield.
  • the second step is a distillation step in which EG contained in the EG solution obtained by depolymerization is removed by distillation to increase the concentration. In view of the excellent color tone, heat resistance, and drying properties of the resulting recycled polyester resin, it is preferable to employ the reprecipitation step.
  • a hot water dissolution step is performed in order to remove impurities (metal compounds typified by titanium oxide, inorganic compounds typified by silica gel, etc.) contained in the colored PET fabric. It is preferable to employ a hot filtration step (step (B)).
  • a transparent high-temperature aqueous solution in which BHET is dissolved can be obtained by adding water dropwise to the recovered BHET obtained in the EG removal step, heating it to 85° C. or higher and 100° C. or lower, and passing it through a filter.
  • an adsorption step in which an adsorbent such as activated carbon or an ion exchange membrane or ion exchange resin is added to the transparent high temperature aqueous solution after the filtration step to remove impurities in the aqueous solution. It is preferable to have. That is, it is preferable to have a step (step (D)) of performing activated carbon treatment or ion exchange treatment in a state where the ester monomer is dissolved in hot water.
  • step (D)) of performing activated carbon treatment or ion exchange treatment in a state where the ester monomer is dissolved in hot water.
  • An activated carbon treatment step is more preferable since adsorption is possible regardless of the structure of the coloring component.
  • ion exchange treatment can also be suitably employed.
  • the passing time is preferably 10 minutes or more, preferably 30 minutes or more, and most preferably 60 minutes or more in order to improve the removal rate of impurities.
  • the liquid passage time is preferably within 180 minutes, more preferably within 120 minutes, and most preferably within 90 minutes.
  • the amount added is preferably in the range of 1% by mass or more and 65% by mass or less based on BHET.
  • the amount of activated carbon etc. added is more preferably 3% by mass or more, further preferably 5% by mass or more, and most preferably 10% by mass or more.
  • the amount of activated carbon etc. added is more preferably 40% by mass or less, further preferably 30% by mass or less, and most preferably 20% by mass or less.
  • a clear high-temperature aqueous solution from which impurities and adsorbents such as activated carbon have been removed can be obtained by passing the solution through a filter, but this is not essential depending on the type of adsorbent.
  • the method for producing the recycled polyester resin of the present embodiment preferably includes a crystallization step in which the transparent high-temperature aqueous solution after adsorption treatment is cooled, and the solid content of the ester monomer is precipitated for solid-liquid separation. Specifically, it is preferable to have a step (step (C)) of cooling the filtered solution at 85° C. or higher and 100° C. or lower to 30° C. or lower to crystallize and recover the ester monomer.
  • the method for producing the recycled polyester resin of the present embodiment preferably includes a step (step (D)) of subjecting the transparent high-temperature aqueous solution to the activated carbon treatment or ion exchange treatment before the crystallization step.
  • step (D) is preferably carried out within either the filtration step (step (B)) or the crystallization step (step (C)). .
  • BHET high-quality ester monomer
  • the absorption intensity as the amount of colored components in the ester monomer obtained by the method for producing recycled polyester resin of this embodiment can be evaluated using a spectrophotometer, and can be observed in the wavelength range of 450 to 800 nm.
  • the peak area obtained can be set to 20 or less. It is more preferably 15 or less, more preferably 10 or less, particularly preferably 5 or less, and most preferably 0.5 or less, since high-quality BHET and PET resins with low light absorption can be obtained. Note that the detection lower limit value is 0.1.
  • evaluation of absorption intensity using a spectrophotometer is performed as follows. To prepare the sample used for evaluation, first prepare a mixed solvent of water and hexafluoroisopropanol (1:4), then use this mixed solvent to prepare a solution containing 10% by mass of BHET, and use a spectrophotometer, such as Hitachi High-Tech Science Co., Ltd. Using a spectrophotometer U3010 (manufactured by Kogyo Co., Ltd.), calculate the integral value of the absorption intensity from 450 to 800 nm in wavelength scan mode.
  • the present invention also provides a polyethylene terephthalate molded product using the recycled polyester resin of this embodiment.
  • a polyethylene terephthalate molded product using the recycled polyester resin of this embodiment.
  • melt-molding the recycled polyester resin of this embodiment into fibers it is possible to provide a polyethylene terephthalate molded product that can be suitably used for general clothing, sports clothing, bedding, and interior decoration.
  • a mixed solvent (1:4) of water and hexafluoroisopropanol (HFIP) was prepared, and the mixed solvent was adjusted to give a sample concentration of 10% by weight.
  • HFIP hexafluoroisopropanol
  • water was added after dissolving it in HFIP before preparing a mixed solvent.
  • the absorbance was measured at 450 to 800 nm in wavelength scan mode using a spectrophotometer U3010 manufactured by Hitachi High-Tech Science Co., Ltd., and the integral value (peak area) of the absorbance intensity was calculated.
  • S content sulfur atom content in colored fabric
  • the sulfur atom content in colored fabric was determined by melt-forming the colored fabric into a plate shape at 260°C, and then using a fluorescent X-ray analyzer manufactured by Rigaku Denki Co., Ltd. ( Model number: 3270).
  • Nitrogen atom content (N atomic weight) analysis The nitrogen atom content in the recycled polyester resin was measured using a trace nitrogen analyzer ND-100 manufactured by Mitsubishi Chemical. A sample is introduced into the device, thermally analyzed and oxidized, and the produced nitrogen monoxide is measured using chemiluminescence. Electric furnace temperature: 800°C (thermal decomposition part)/900°C (catalyst part), main oxygen flow rate: 300 mL/min, sub oxygen flow rate: 300 mL/min, argon flow rate: 400 mL/min, and created using pyridine standard solution. Quantification was performed based on the calculated calibration curve.
  • the drying property of pellets with a calculated value of 35% by weight or more and 100% by weight or less is "S”
  • the drying property of pellets with a calculated value of 30% by weight or more and less than 35% by weight is "A”
  • 0% by weight or more and 30% by weight The drying properties of pellets less than % were rated "B”.
  • composition analysis of copolymerized polyester The composition of the polyester composition (types of dicarboxylic/diol components and amount of copolymerization) was analyzed using "AL-400" manufactured by JEOL Ltd. as a nuclear magnetic resonance apparatus (NMR), and using 1 as a heavy solvent. , 1,1,3,3,3-hexafluoro-2-propanol-D2 (deuterated HFIP), the analysis can be performed by performing the analysis 128 times at a sample concentration of 50 mg of measurement sample per 1 mL of heavy solvent. .
  • polyesters obtained in the examples described in the present invention have terephthalic acid residues of 95 mol% or more and 100 mol% or less based on the total acid components and 95 mol% or more and 100 mol% based on the total diol components. It was confirmed that it is composed of the following ethylene glycol residues.
  • Example 1 A PET fabric containing 0.3 parts by weight of titanium oxide was dyed using TERASIL BLACK WW-KSN at a concentration of 6% owf (130°C, 45 minutes), and the resulting black PET fabric was cut into 1 cm squares. I cut it. 1000 g of EG was placed in a 2 L four-necked flask, and a glass tube containing 15 g of cut black PET fabric was connected to the flask. Furthermore, a Dimroth cooling tube was connected to the top of the connected glass tube. Heating was started with the EG set temperature at 210° C., EG was refluxed for 30 minutes, and the dye was extracted. The temperature of liquid EG refluxed in the Dimroth condenser was 185°C.
  • the PET fabric after the dye extraction was washed with water, dried, and placed in a 1 L three-necked flask in an amount of 10 g.Furthermore, 55 g of EG was added thereto, stirred, and depolymerized at an EG temperature of 200°C for 5.5 hours.
  • the depolymerization solution decreased to 100° C. or lower, it was added dropwise to 500 mL of water adjusted to 10° C. or lower to obtain a cloudy white solution.
  • the resulting cloudy white solution was filtered through a 4 ⁇ filter to obtain BHET containing impurities as solid content.
  • the obtained impurity-containing BHET was placed in hot water at 95° C., and filtered again using a 1.6 ⁇ filter.
  • Example 2 Using a PET fabric copolymerized with sodium sulfoisophthalate (SSIA) containing 0.83 parts by weight of sulfur atomic weight and 0.3 parts by weight of titanium oxide, dye: Nichilon Black TR 200% was used at a concentration of 4% owf. The procedure was the same as in Example 1 except that dyeing was carried out (120° C., 60 minutes) and the dye extraction time was 150 minutes.
  • SSIA sodium sulfoisophthalate
  • Example 3 The same procedure as in Example 1 was carried out except that 4.5 g of EG was additionally added in order to increase the melting rate at 250° C. when polymerizing purified BHET in Example 1.
  • Example 1 was carried out in the same manner as in Example 1, except that the dye extraction conditions in the decolorization step and the adsorption treatment during BHET purification were changed as shown in Table 1.
  • Example 7 It was carried out in the same manner as in Example 1, except that the dyeing density described in Example 1 was reduced to obtain a gray fabric, and the dye extraction conditions in the decolorization step were changed as shown in Table 1.
  • Example 8 The same procedure as in Example 1 was carried out except that a PET fabric copolymerized with sodium sulfoisophthalate containing 0.01 part by weight of sulfur atomic weight and 0.3 part by weight of titanium oxide was used.
  • Example 9 A PET fabric copolymerized with sodium sulfoisophthalate containing 0.83 parts by weight of sulfur atomic weight and 0.3 parts by weight of titanium oxide was dyed at a concentration of 4% owf (120 The procedure was the same as in Example 1, except that the dye extraction time was 150 minutes, and the adsorbent used during the purification treatment was changed from activated carbon to ion exchange resin AMBERLITE IR120BH manufactured by Organo Co., Ltd.
  • Example 1 was carried out in the same manner as in Example 1, except that dye extraction before depolymerization was not carried out in Example 1, and treatment with an adsorbent such as activated carbon was not carried out during the BHET purification treatment.
  • the Hunter color b value of the polymer was 5 or more, and the color was unsuitable for textile use.
  • Example 1 was carried out in the same manner as in Example 1, except that the PET fabric was used as it was without being dyed and the BHET purification treatment was not treated with an adsorbent such as activated carbon. Comparative Example 2 had a nitrogen atom content of less than 0.5 mass ppm, and had poor drying properties.
  • Example 3 Example 2 was carried out in the same manner as in Example 2, except that dye extraction before depolymerization was not carried out and treatment with an adsorbent such as activated carbon was not carried out during the BHET purification process.
  • the Hunter color b value of the polymer was 5 or more, and the color was unsuitable for textile use.
  • Example 2 was carried out in the same manner as in Example 2, except that the PET fabric was used as it was without being dyed, and the BHET purification treatment was not treated with an adsorbent such as activated carbon. Comparative Example 4 had a nitrogen atom content of less than 0.5 mass ppm, and had poor drying properties.
  • Comparative example 5 In the dye extraction step before depolymerization in Example 1, the cut black PET fabric was placed in a 3-necked flask, decolorized in EG heated at 180°C, and treated with an adsorbent such as activated carbon during BHET purification treatment. The same procedure as in Example 1 was carried out except that no treatment was carried out. In Comparative Example 5, the color tone of the polymer deteriorated due to a change in the decolorization method.
  • Comparative example 6 In the dye extraction step before depolymerization in Example 1, a distillation tube was connected to the glass tube containing the colored PET fabric instead of a Dimroth, and the EG vapor was refluxed into the flask from the Dimroth connected to another part of the four-necked flask. The same procedure as in Example 1 was carried out except that the treatment with an adsorbent such as activated carbon was not performed during the BHET purification treatment. In Comparative Example 6, the color tone of the polymer deteriorated due to changing the decolorization method.
  • Example 1 was carried out in the same manner as in Example 1, except that the dye extraction conditions of Example 1 were changed as shown in Table 2, and the treatment with an adsorbent such as activated carbon was not performed during the purification treatment.
  • the Hunter color b value of the polymer was 5 or more, and the color was unsuitable for textile use.
  • Example 9 The same procedure as in Example 8 was carried out except that the purification treatment in Example 8 was not performed with an adsorbent such as activated carbon.
  • the Hunter color b value of the polymer was 5 or more, and the color was unsuitable for textile use.
  • Comparative example 10 The same procedure as in Example 2 was carried out except that the purification treatment in Example 2 was not performed with an adsorbent such as activated carbon.
  • the Hunter color b value of the polymer was 5 or more, and the color was unsuitable for textile use.
  • Comparative Example 11 The polymerization of purified BHET in Example 1 was carried out in the same manner as in Example 1, except that 9.0 g of EG was additionally added to increase the melting rate at 250°C. Comparative Example 11 had a diethylene glycol content higher than 0.8% by weight, and was inferior in heat resistance and drying properties.
  • Comparative example 12 Using terephthalic acid and ethylene glycol derived from petroleum (naphtha), PET with an intrinsic viscosity (IV) of 0.65 was polymerized through an esterification reaction and a polycondensation reaction using a known method. The additives used during the polymerization were cobalt acetate tetrahydrate and phosphoric acid each at 0.005% by weight, antimony trioxide at 0.03% by weight, and titanium oxide particles at 0.3% by weight. In Comparative Example 12, PET was synthesized from terephthalic acid and ethylene glycol through an esterification reaction, so the diethylene glycol content was higher than 0.8% by weight, resulting in poor heat resistance and drying properties.
  • a recycled polyester resin with excellent color tone made from recovered PET fabric as a raw material, and a PET resin with excellent heat resistance and drying properties compared to PET resin produced from virgin raw materials according to a conventional method, is obtained.
  • melt-molding it into fibers it can be suitably used for general clothing, sports clothing, bedding, and interior decoration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Detergent Compositions (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

着色PET布帛を原料とした再生ポリエステル樹脂であって、全酸成分に対して88モル%以上、100モル%以下のテレフタル酸残基と全ジオール成分に対して88モル%以上、100モル%以下のエチレングリコール残基から構成され、(1)ジエチレングリコール含有率が0.1質量%以上、0.8質量%未満、(2)窒素原子含有率が0.5質量ppm以上、15.0質量ppm以下、(3)ハンター色調:b値が-10.0以上、5.0未満のポリエチレンテレフタレート樹脂である、再生ポリエステル樹脂。

Description

着色PET布帛を原料とした再生ポリエステル樹脂及び着色PET布帛からエステルモノマーを得る方法
 本発明は、着色PET布帛を原料とした再生ポリエステル樹脂及び着色PET布帛からエステルモノマーを得る方法に関し、主に着色PET布帛を原料とした再生ポリエステル樹脂に関する。
 これまでは、大量生産、大量消費、大量廃棄型の社会システムが維持されてきたが、天然資源の枯渇や資源採取に伴う自然破壊等の環境に対する様々な悪影響が確認されてきた。そのため、限りある資源を効率良く利用し、持続ある成長を続けていくために、廃棄物の発生を極力抑え、発生した廃棄物は環境に負荷を与えないように、再利用や再資源化する循環型の社会システムの構築が必要不可欠となってきている。
 このような循環型の社会システムの実現のためには、サーマルリサイクルやマテリアルリサイクル、ケミカルリサイクルといったリサイクルシステムの構築が必要である。中でも、廃棄物プラスチックを原料モノマー単位まで再生し、得られた再生モノマーから品質が同等なプラスチック材料へ再生させることができるケミカルリサイクル技術に注目が集まっている。
 安価であり、機械的特性やドライ感に優れているため、幅広い用途において用いられているポリエステル繊維についてもリサイクルの必要性が高まっており、ケミカルリサイクル技術としてこれまでに種々の方法が提案されている。
 例えば、特許文献1では、着色したポリエチレンテレフタレート(PET)繊維の衣料を用い、解重合および解重合後のモノマーであるビス(2-ヒドロキシエチル)テレフタラート(BHET)の蒸発精製を行うケミカルリサイクル技術が提案されている。
 特許文献2、3では、着色ポリエチレンテレフタレート繊維からなる布地を用い、染料抽出、解重合、そして活性炭を用いたろ過精製を行うケミカルリサイクル技術が提案されている。
日本国特開2020-176258号公報 日本国特開2005-330444号公報 日本国特開2005-255963号公報
 しかしながら、上記特許文献1~3のケミカルリサイクル技術では繊維中の染料の事前抽出が十分ではない。例えば、特許文献1であれば実施例に開示された<BHET蒸発精製工程>、特許文献2、3であれば実施例に開示された「蒸留処理」における分子蒸留といった、高度な精製を行う必要があるという課題があった。さらに、これらの高度な精製を行ってもなお、最終的に得られるPET樹脂の色調はバージン原料から製造したPET樹脂に劣るという課題があった。
 本発明の目的は、上記従来技術の問題点を解決すべく、解重合工程の前に着色成分の抽出を十分実施し、解重合後に活性炭処理や濾過、晶析といった簡易的な精製工程を用いながらも、得られる色調に優れたエステルモノマー(BHET)を原料として、バージン原料から製造したPET樹脂と比較して耐熱性、乾燥性に優れ色調は同等となる再生ポリエステル樹脂を提供することにある。
 上記課題は、以下[1]~[9]によって解決される。
[1]着色PET布帛を原料とした再生ポリエステル樹脂であって、全酸成分に対して88モル%以上、100モル%以下のテレフタル酸残基と全ジオール成分に対して88モル%以上、100モル%以下のエチレングリコール残基から構成された、以下(1)~(3)の特徴を有するポリエチレンテレフタレート樹脂である、再生ポリエステル樹脂。
(1)ジエチレングリコール含有率が0.1質量%以上、0.8質量%未満
(2)窒素原子含有率が0.5質量ppm以上、15.0質量ppm以下
(3)ハンター色調:b値が-10.0以上、5.0未満
[2]以下(4)及び(5)の特徴を有する上記[1]に記載の再生ポリエステル樹脂。
(4)ハンター色調:L値が70.0以上、85.0未満
(5)ハンター色調:a値が-2.0以上、2.0以下
[3]以下(6)及び(7)の特徴を有する上記[1]に記載の再生ポリエステル樹脂。
(6)280℃で5分間等温保持し、100℃/分以上の速度で室温まで急冷した後、示差走査熱量計を用い、20℃から280℃まで16℃/分の昇温速度で加熱した際に観察される昇温結晶化温度が140℃以上、150℃未満
(7)280℃で5分間等温保持した後、16℃/分の昇温速度で冷却した際に観察される降温結晶化温度が190℃より高く205℃以下
[4]上記[1]または[3]に記載の再生ポリエステル樹脂を用いてなるポリエチレンテレフタレート成型品。
[5]着色PET布帛を用いてエステルモノマーを得る方法であって、以下の工程(1)~(3)からなるエステルモノマーを得る方法。
(1)着色PET布帛に加熱EGを接触させ、着色成分を抽出する工程であって、以下(a)及び(b)の工程からなる
 (a)着色PET布帛にEG蒸気を接触させる工程
 (b)着色PET布帛に185℃以上の加熱EGを接触させる工程
(2)着色成分抽出後のPET布帛をEGにより解重合し、エステルモノマーを含むEG溶液とする工程
(3)エステルモノマーを含むEG溶液を精製してエステルモノマーを得る精製工程
[6]解重合で得られたエステルモノマー(BHET)を含むEG溶液を精製して精製BHETを得る工程が、以下の工程(A)~(D)のみからなることを特徴とする、上記[5]に記載のエステルモノマーを得る方法。
(A)解重合後のBHETを含むEG溶液からEGを0質量%以上、5質量%以下の範囲となるまで除去してBHETを回収する工程
(B)(A)に記載の工程を実施後、回収BHETを85℃以上、100℃以下の熱水に溶解させ、熱時濾過する工程
(C)(B)に記載の工程を実施後、85℃以上、100℃以下の濾過溶液を30℃以下まで冷却してエステルモノマーを晶析させ回収する工程
(D)(B)及び(C)いずれかの工程内にて、エステルモノマーが熱水へ溶解した状態において活性炭処理またはイオン交換処理を行う工程
[7]得られたエステルモノマー中の着色成分量として、分光光度計で450~800nmの範囲に観測されるピーク面積が20以下である、ことを特徴とする上記[5]または[6]に記載のエステルモノマーを得る方法。
[8]着色成分抽出後のPET布帛をPET布帛1質量部に対して2.0質量部以上10.0質量部以下のEGにより解重合することを特徴とする上記[5]または[6]に記載のエステルモノマーを得る方法。
[9]着色PET布帛100質量部に含まれる硫黄原子量が0.01質量部以上0.83質量部以下であることを特徴とする上記[5]または[6]に記載のエステルモノマーを得る方法。
 本発明によれば、着色PET布帛を原料として、濾過や晶析といった簡易的な精製工程を実施するのみで、色調に優れたエステルモノマー(BHET)が得られ、それを重合することでバージン原料から常法に従って製造したPET樹脂と比較して耐熱性、乾燥性に優れた再生ポリエステル樹脂を提供できる。
 以下、本発明を詳細に説明する。
 なお、本明細書において、「重量」と「質量」、「重量%」と「質量%」、「重量部」と「質量部」は、それぞれ同義語として扱う。
 また、本明細書において、「室温」とは25℃を意味する。
 本発明の一実施形態の着色PET布帛を原料とした再生ポリエステル樹脂は、全酸成分に対して88モル%以上、100モル%以下のテレフタル酸残基と全ジオール成分に対して88モル%以上、100モル%以下のエチレングリコール残基から構成されたポリエチレンテレフタレート樹脂である、再生ポリエステル樹脂であり、(1)ジエチレングリコール含有率が0.1質量%以上、0.8質量%未満、(2)窒素原子含有率が0.5質量ppm以上、15.0質量ppm以下、(3)ハンター色調:b値が-10.0以上、5.0未満であることを特徴とする。
 本発明では、安価で機械的特性やドライ感に優れたPET繊維原料を提供することを目的としている。そのため、再生ポリエステル樹脂は、全酸成分に対して88モル%以上、100モル%以下、のテレフタル酸残基から構成されていること、及び、全ジオール成分に対して88モル%以上、100モル%以下のエチレングリコール残基から構成されていることが必須である。
 より純度の高いPET繊維である点から、テレフタル酸残基の構成割合は90モル%以上が好ましく、95モル%以上がより好ましく、98モル%以上がさらに好ましく、99.5モル%以上が最も好ましい。同様に、エチレングリコール残基の構成割合は90モル%以上が好ましく、95モル%以上がより好ましく、98モル%以上がさらに好ましく、99.5モル%以上が最も好ましい。
 本実施形態の再生ポリエステル樹脂は、ジエチレングリコール含有率が0.1質量%以上、0.8質量%未満である。ジエチレングリコール含有率が低いほどPET樹脂は高軟化点、高融点となり耐熱性に優れることから、ジエチレングリコール含有率0.8質量%未満が必須である。更に耐熱性を向上させる点から0.3質量%以下であることが好ましく、0.2質量%以下であることがより好ましい。また、ジエチレングリコールはBHETを重縮合させてPET樹脂を得る過程において必ず副生することから、含有率を0.1質量%未満とすることは困難である。
 なお、バージン原料のテレフタル酸とエチレングリコールから常法に従って特に精製工程を経ることなくPET樹脂を製造した場合、ジエチレングリコール含有率0.8質量%未満とすることは困難である。
 本実施形態の再生ポリエステル樹脂は、窒素原子含有率が0.5質量ppm以上、15.0質量ppm以下である。窒素原子はリサイクル原料として用いる布帛の着色成分に由来したものであり、アミン構造やアゾ構造の構成原子であることが好ましい。特にジエチレングリコールを0.8質量%未満かつ窒素原子を0.5質量ppm以上含む場合、PET樹脂の欠点の一つである結晶化速度の遅さを改善できることを今回明らかにした。そのため、窒素原子含有率は0.5質量ppm以上が必須であり、さらに結晶化速度を向上させる点から2.0質量ppm以上が好ましく、5.0質量ppm以上がより好ましい。一方、窒素原子含有率が過剰となるとPET樹脂の色調が悪化するほか、繊維成形時に欠点となり高速紡糸の難度が高くなることから窒素原子含有率は15.0質量ppm以下が必須であり、更なる色調改善の点から10.0質量ppm以下が好ましい。
 上記窒素原子含有率は、例えば三菱化学製微量窒素分析装置ND-100型を用いて測定できる。
 本実施形態の再生ポリエステル樹脂は、ハンター色調:b値が-10.0以上、5.0未満である。繊維成形後に編織加工し染料を用いて染色した際に、目的の色調よりも布帛の青味が強くなることを抑制する点において、再生ポリエステル樹脂のハンター色調:b値は-10.0以上が必須である。また、繊維成形後に編織加工し染料を用いて染色した際に、目的の色調よりも布帛の黄味が強くなることを抑制する点において、再生ポリエステル樹脂のハンター色調:b値は5.0未満が必須であり、4.5以下が好ましく、4.0以下がより好ましく、3.5以下がさらに好ましく、3.0以下が最も好ましい。特に繊維製品において、黄色系統以外の色に染色した製品が黄味を呈することは忌避されることから、ハンター色調:b値を0に近づけることは黄色を呈しやすい再生ポリエステルにおいては特に重要である。
 本実施形態の再生ポリエステル樹脂は、ハンター色調:L値が70.0以上、85.0未満であることが好ましい。繊維成形後に編織加工し染料を用いて有彩色へ染色した際に、目的の色調よりも布帛の鮮やかさが不足することを抑制する点において、再生ポリエステル樹脂のハンター色調:L値は70.0以上が好ましく、73.0以上がより好ましく、75.0以上がさらに好ましく、76.0以上が特に好ましく、77.0以上が最も好ましい。また、再生ポリエステル樹脂のハンター色調:L値を85.0未満にすることは特に蛍光増白材等を添加しない場合でも可能であることから、再生ポリエステル樹脂のハンター色調:L値は85.0未満が好ましい。
 本実施形態の再生ポリエステル樹脂は、ハンター色調:a値が-2.0以上、2.0以下であることが好ましい。繊維成形後に編織加工し染料を用いて染色した際に、目的の色調よりも布帛の緑味が強くなることを抑制する点において、再生ポリエステル樹脂のハンター色調:a値は-2.0以上が好ましく、-1.5以上がより好ましい。また、繊維成形後に編織加工し染料を用いて染色した際に、目的の色調よりも布帛の赤味が強くなることを抑制する点において、再生ポリエステル樹脂のハンター色調:a値は2.0以下が好ましく、0以下がより好ましい。
 再生ポリエステル樹脂のハンター色調:L値、a値、b値は、例えば、再生ポリエステル樹脂のペレットを高さ20mmの石英セルに充填し、スガ試験機製色差計SMカラーコンピュータ型式SM-T45を用いて透過光モードにて測定できる。
 本実施形態の再生ポリエステル樹脂は、280℃で5分間等温保持し、100℃/分以上の速度で室温まで急冷した後、示差走査熱量計を用い、20℃から280℃まで16℃/分の昇温速度で加熱した際に観察される昇温結晶化温度が140℃以上、150℃未満であることが好ましい。結晶化温度が低いほど、乾燥処理時の結晶化が速やかに進行し樹脂ペレット同士の固着を抑制できる点から昇温結晶化温度は150℃未満であることが好ましく、147℃以下であることがより好ましく、145℃以下であることがさらに好ましい。一方、昇温結晶化温度が過剰に低温であることは、樹脂中に結晶核材となる異物が過剰量存在することを示し、繊維成形時に高速紡糸の難度が高くなることから、昇温結晶化温度は140℃以上が好ましく、143℃以上がより好ましい。
 本実施形態の再生ポリエステル樹脂は、280℃で5分間等温保持した後、16℃/分の昇温速度で冷却した際に観察される降温結晶化温度が190℃より高く205℃以下であることが好ましい。降温結晶化温度が高いほど、PET樹脂を重縮合させたのち溶融状態の樹脂をストランド状に水冷固化させペレットに加工する際に生じる結晶量が多くなり、乾燥処理時の樹脂ペレット同士の固着を抑制できる点から、降温結晶化温度は190℃より高いことが好ましく、193℃以上であることがより好ましい。一方、降温結晶化温度が過剰に高温であることは、樹脂中に結晶核材となる異物が過剰量存在することを示し、繊維成形時に高速紡糸の難度が高くなることから、降温結晶化温度は205℃以下が好ましく、203℃以下がより好ましく、200℃以下がさらに好ましい。
 本実施形態の再生ポリエステル樹脂は、280℃で5分間等温保持し、100℃/分以上の速度で室温まで急冷した後、示差走査熱量計を用い、20℃から280℃まで16℃/分の昇温速度で加熱した際に観察される融点が253℃以上、258℃以下であることが好ましい。ジエチレングリコールやPETと共重合可能なジカルボン酸またはジオール成分を多量に含み、融点が253℃以上となることは耐熱性の観点から好ましい。一方、高純度ポリエチレンテレフタレートにおいて融点を258℃以下に設計することは困難ではないため、融点は258℃以下であることが好ましい。
 本実施形態の再生ポリエステル樹脂は、使用目的に応じて着色用の顔料や酸化防止剤等の樹脂添加剤を含有させた再生ポリエステル組成物としてもよい。例えば、顔料として酸化チタン粒子を含んでいてもよく、酸化チタン粒子を含むことによって衣料品に加工した際、防透性を付与することができる。酸化防止剤としては、例えば安価に入手できる[ペンタエリスリトール-テトラキス(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェノール)プロピオネート)](BASF製IR1010(イルガノックス(登録商標)1010))を例示することができる。
 本実施形態の再生ポリエステル樹脂は、溶融成形によってボトルやフィルム、繊維等の成形加工品として利用することが好ましい。特に、回収したPET布帛を再び繊維製品に加工し、消費者において使用されたのち再び回収することで、ポリエステル繊維製造における石油使用量の低減や廃衣料の焼却における環境負荷を低減できることから、繊維製品としての利用が特に好ましく例示される。ただし、成形加工品であれば用途が限定されることはない。
 本実施形態の再生ポリエステル樹脂を製造するにおいて、リサイクル原料として用いる布帛は着色PET(ポリエチレンテレフタレート)布帛である。着色PET布帛中の着色成分は、分散染料、カチオン染料または顔料であり、分散染料またはカチオン染料であることが好ましい。
 本実施形態の再生ポリエステル樹脂を製造するにおいて、着色PET布帛中のPET成分としては、共重合成分として、テレフタル酸以外のジカルボン酸成分や、エチレングリコール(EG)以外のジオール成分を含んでいてもよい。
 本実施形態の再生ポリエステル樹脂を製造するにおいて、テレフタル酸以外のジカルボン酸成分としては、イソフタル酸、ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、シクロヘキサンジカルボン酸、5-スルホイソフタル酸等のジカルボン酸およびそのエステル形成性誘導体が共重合されていてもよい。カチオン染料を用いることができるという点で、5-スルホイソフタル酸のジカルボン酸およびそのエステル形成性誘導体が共重合されたものも好ましく用いることができる。
 本実施形態の再生ポリエステル樹脂を製造するにおいて、着色PET布帛中のPET成分として、5-スルホイソフタル酸のジカルボン酸およびそのエステル形成性誘導体を共重合している場合は、その共重合量は得られる再生ポリエステル樹脂の色調に優れる点から全ジカルボン酸成分に対して、0.06モル%以上、5.0モル%以下であることが好ましい。上限値としては、さらに色調に優れるという点で、3.5モル%以下がより好ましく、2.0モル%以下がさらに好ましい。
 本実施形態において、着色PET布帛中の硫黄原子含有量は、得られる再生ポリエステル樹脂の色調に優れる点から、着色PET布帛100質量部に対して0.01質量部以上、0.83質量部以下であることが好ましく、さらに色調に優れるという点で、0.59質量部以下がより好ましく、0.33質量部以下がさらに好ましい。着色PET布帛中の硫黄原子含有量は、着色布帛を260℃にてプレート状に溶融成形した後、理学電気(株)製蛍光X線分析装置(型番:3270)を用いて測定することができる。
 本実施形態の再生ポリエステル樹脂を製造するにおいて、着色PET布帛中のEG以外のジオール成分としては、プロピレングリコール、ブタンジオール、テトラメチレングリコール、ヘキサメチレングリコール、ジエチレングリコール、シクロヘキサンジメタノール、ネオペンチルグリコール、ポリプロピレングリコール等のジオール化合物及びそのエステル形成性誘導体等を共重合していてもよい。好ましくは全ジオール成分中に占めるEGが80モル%以上である。
 本実施形態の再生ポリエステル樹脂を製造する方法としては、色調、耐熱性、乾燥性に優れた再生ポリエステル樹脂を提供できる点から、着色PET布帛を用いてエステルモノマー(BHET)を得る方法であって、以下の工程(1)~(3)からなるエステルモノマーを得る方法を好適に用いることができる。
(1)着色PET布帛に加熱EGを接触させ、着色成分を抽出する工程であって、(a)および(b)の工程からなる
 (a)着色PET布帛にEG蒸気を接触させる工程
 (b)着色PET布帛に185℃以上の加熱EGを接触させる工程
(2)着色成分抽出後のPET布帛をEGにより解重合し、エステルモノマーを含むEG溶液とする工程
(3)エステルモノマーを含むEG溶液を精製してエステルモノマーを得る精製工程
 本実施形態の再生ポリエステル樹脂を製造する方法においては、着色PET布帛を解重合してエステルモノマーを得る前に、色調に優れるBHETおよびPET樹脂を得られるという点で、加熱EGを接触させて着色成分を事前に抽出する工程(1)を有することが好ましい。
 着色成分の事前抽出工程としては、着色PET布帛に加熱EGを接触させる工程であり、加熱EGを接触させる工程は、(a)着色PET布帛にEG蒸気を接触させる工程、および(b)着色PET布帛に185℃以上の加熱EGを接触させる工程からなる。EG蒸気と接触させることで着色PET布帛のPET繊維構造が緩和し、着色成分の抽出が容易になる。さらに185℃以上の加熱EGと接触させることで緩和したPET繊維中から着色成分が抽出される。
 着色成分の抽出しやすさの点から、加熱EGは187℃以上がさらに好ましい。上限温度の規定はないが、常圧下で実施できるという観点から、198℃以下が好ましく190℃以下がより好ましい。この抽出工程を適用することによって、再生ポリエステル樹脂中の窒素原子含有率を0.5質量ppm以上、15.0質量ppm以下の範囲に容易に制御することが可能となるほか、再生ポリエステル樹脂中のハンター色調:b値を-10.0以上、5.0未満の範囲に容易に制御することが可能となる。
 本実施形態の再生ポリエステル樹脂を製造する方法において、(a)EG蒸気の接触と(b)185℃以上の加熱EGとの接触を別々の工程として実施してよく、(a)そして(b)の順序がより好ましいが、同時に実施しても良い。同時に行う方法としては、着色PET布帛に、常に純粋なEGを接触でき、EG使用量も削減可能な還流方法が好適である。
 本実施形態の再生ポリエステル樹脂を製造する方法において、着色PET布帛の着色成分の抽出時間は、15分以上が好ましく、30分以上がより好ましく、60分以上がさらに好ましい。上限時間は、着色PET布帛の脆化を防げるという点から150分以内が好ましい。(a)と(b)を同時に行わない場合の時間配分は、(a)と(b)の比率:(a)/(b)が1/9~5/5の範囲であることが好ましい。
 本実施形態の再生ポリエステル樹脂を製造する方法においては、着色成分抽出後のPET布帛をEGにより解重合し、エステルモノマーを含むEG溶液とする工程(2)を有する。解重合は、PET布帛1質量部に対して2.0質量部以上、10.0質量部以下のEGを添加して、常圧下、190℃以上、210℃以下にて1.0時間以上、6.0時間以下行うことが好ましい。解重合を行うことで、エステルモノマー(BHET)を含むEG溶液を得ることができる。
 本実施形態の再生ポリエステル樹脂を製造する方法において、解重合時に添加するEGの量を、PET布帛1質量部に対して2.0質量部未満とすると、得られるBHETの分子量が大きくなるため、この後に実施する精製工程における収率悪化となり、効率が低下する。添加するEGの量は、PET布帛1質量部に対して2.3質量部以上がさらに好ましく、2.5質量部以上がより好ましい。また、10.0質量部より多くEGを添加しても得られる効果は同等であるため、コスト面から好ましくない。コストの観点から、8.0質量部以下がさらに好ましく、6.0質量部以下がより好ましい。
 本実施形態の再生ポリエステル樹脂を製造する方法において、解重合における温度は、190℃以上、210℃以下が好ましく、200℃以上で実施することが解重合時間を短縮できる点でより好ましい。また、効率的に解重合を行えるという点から、BHET100質量%に対して水酸化ナトリウム、または炭酸ナトリウムを0.5質量%以上、2.0質量%以下の範囲で添加して行うことが好ましい。
 本実施形態の再生ポリエステル樹脂を製造する方法においては、色調、耐熱性、乾燥性に優れた再生ポリエステル樹脂を提供できる点から、解重合で得られたエステルモノマー(BHET)を含むEG溶液を精製して精製BHETを得る工程が、以下の工程(A)~(D)のみからなるBEHT精製法を好適に用いることができる。
(A)解重合後のBHETを含むEG溶液からEGを0質量部以上、5質量部以下の範囲となるまで除去してBHETを回収する工程
(B)(A)に記載の工程を実施後、回収BHETを85℃以上、100℃以下の熱水に溶解させ、熱時濾過する工程
(C)(B)に記載の工程を実施後、85℃以上、100℃以下の濾過溶液を30℃以下まで冷却してエステルモノマーを晶析させ回収する工程
(D)(B)および(C)いずれかの工程内にて、エステルモノマーが熱水へ溶解した状態において活性炭処理またはイオン交換処理を行う工程
 なお、イオン交換処理とはイオン交換膜あるいはイオン交換樹脂に対象溶液を晒すことを意味する。
 本実施形態の再生ポリエステル樹脂を製造する方法においては、解重合後のBHETからEGを0質量%以上、5質量%以下の範囲となるまで除去する工程(工程(A))を実施することが好ましい。BHET中のEGが5質量%よりも多いと、この後に実施する熱時濾過工程および晶析工程において収率が悪化するため好ましくない。
 解重合後のBHETからEGを除去する工程としては、以下のいずれの方法を用いてもよい。
 一つ目は、解重合で得られたBHETのEG溶液を、20℃以下に調整した水に滴下し、白濁溶液を得たのちに、フィルターを用いて不純物を含むBHETを回収する再沈殿工程である。水温は、収率が高くなるという点で15℃以下が好ましく、10℃以下がさらに好ましい。
 二つ目は、解重合で得られたEG溶液に含まれるEGを留出除去させ、高濃度化させる留去工程である。
 得られる再生ポリエステル樹脂の色調、耐熱性、乾燥性に優れる点からは、再沈殿工程を採用することが好ましい。
 本実施形態の再生ポリエステル樹脂を製造する方法において、着色PET布帛中に含まれる不純物(酸化チタンに代表される金属化合物やシリカゲルに代表される無機化合物等)の除去を行うため、熱水溶解工程および熱時濾過工程(工程(B))を採用することが好ましい。EG除去工程で得た回収BHETに水を滴下して85℃以上、100℃以下に加熱し、フィルターを通過させることで、BHETが溶解している透明な高温水溶液を得ることができる。
 本実施形態の再生ポリエステル樹脂を製造する方法において、濾過工程後の透明な高温水溶液に活性炭またはイオン交換膜・イオン交換樹脂等の吸着材を添加し、水溶液中の不純物の除去を実施する吸着工程を有することが好ましい。すなわち、エステルモノマーが熱水へ溶解した状態において活性炭処理またはイオン交換処理を行う工程(工程(D))を有することが好ましい。着色成分の構造によらず吸着が可能である点から、活性炭処理工程であることがより好ましい。また、着色成分の大部分がカチオン染料に由来することが明らかである場合は、イオン交換処理好適を好適に採用することもできる。
 活性炭等に晒す際には、活性炭等が充填されたカラムに通液させるか、あるいは溶液に直接活性炭等を添加する方法が好適に用いられる。カラムを用いる際、例えば2.5%BHET水溶液を通液させる場合は、不純物の除去率を向上させる点から通液時間は10分以上が好ましく、30分以上が好ましく、60分以上が最も好ましい。一方、BHET収率を悪化させない点から、通液時間は180分以内が好ましく、120分以内がより好ましく、90分以内が最も好ましい。
 また、活性炭等を溶液に直接添加し、60分から90分間吸着処理を行う場合、添加量はBHETに対して1質量%以上、65質量%以下の範囲で添加することが好ましい。不純物の除去率を向上させる点から、活性炭等の添加量は3質量%以上がより好ましく、5質量%以上がさらに好ましく、10質量%以上が最も好ましい。また、活性炭へのBHET付着量を抑制し収率を向上させる点から、活性炭等の添加量は40質量%以下がより好ましく、30質量%以下がさらに好ましく、20質量%以下が最も好ましい。吸着処理を実施後、フィルターを通過させることで、不純物と活性炭等の吸着材を除去した透明な高温水溶液を得ることができるが、吸着材の種類によっては必須ではない。
 本実施形態の再生ポリエステル樹脂を製造する方法において、吸着処理後の透明な高温水溶液を冷却し、エステルモノマーの固形分を析出させ固液分離する晶析工程を有することが好ましい。具体的には、85℃以上、100℃以下の濾過溶液を30℃以下まで冷却してエステルモノマーを晶析させ回収する工程(工程(C))を有することが好ましい。
 本実施形態の再生ポリエステル樹脂を製造する方法において、上記晶析工程前の透明な高温水溶液に上記活性炭処理またはイオン交換処理を行う工程(工程(D))を有することが好ましい。
 なお、上記活性炭処理またはイオン交換処理を行う工程(工程(D))は、上記濾過工程(工程(B))および晶析工程(工程(C))いずれかの工程内にて行うのが好ましい。
 本実施形態の再生ポリエステル樹脂を製造する方法において、上述の精製工程を実施することで、色調に優れる高品位なエステルモノマー(BHET)を得ることができる。得られた高品位なエステルモノマーを、公知のPET重合法に従い、重合触媒の存在下、重合することで色調、耐熱性、乾燥性に優れる高品位なPETを製造することができる。
 本実施形態の再生ポリエステル樹脂を製造する方法によって得られたエステルモノマー中の着色成分量としての吸光強度は、分光光度計を用いて評価することが可能であり、450~800nmの波長領域で観測されるピーク面積を20以下とすることができる。吸光量が少なく、高品位なBHETおよびPET樹脂が得られるという点で、15以下がさらに好ましく、10以下がより好ましく、5以下が特に好ましく、0.5以下が最も好ましい。なお、検出下限値は0.1である。
 本発明の再生ポリエステル樹脂を製造する方法において、分光光度計を用いた吸光強度評価は、次のようにして行う。評価に用いるサンプル調整は、水とヘキサフルオロイソプロパノールの混合溶媒(1:4)を作成後、この混合溶媒でBHETが10質量%となる溶液を作成し、分光光度計、例えば株式会社日立ハイテクサイエンス製分光光度計U3010を用い、波長スキャンモードにて450~800nmの吸光強度の積分値を算出する。
 本発明は、本実施形態の再生ポリエステル樹脂を用いてなるポリエチレンテレフタレート成型品も提供する。例えば、本実施形態の再生ポリエステル樹脂を溶融成形して繊維にすることで、一般衣料用途、スポーツ衣料用途、寝具用途、インテリア用途に好適に用いることができるポリエチレンテレフタレート成型品を提供できる。
 以下に実施例および比較例を示し、本発明をさらに具体的に説明する。なお、本発明は、何ら実施例および比較例に限定されない。
 A.布帛およびBHETの色調分析
 ミノルタ製分光測色計CM-3700d型にて黒色校正板をバックに試料を設置し、色調L*値およびa*値、b*値を測定した。
 B.着色成分含有量
 水とヘキサフルオロイソプロパノール(HFIP)の混合溶媒(1:4)を作成し、この混合溶媒によりサンプル濃度:10重量%の溶液となるように調整した。サンプルが溶解し難いときは、混合溶媒作成する前にHFIPに溶解させたのち水を添加した。
 サンプル溶液を作成後、株式会社日立ハイテクサイエンス製分光光度計U3010を用い、波長スキャンモードにて450~800nmの吸光光度を測定し、吸光強度の積分値(ピーク面積)を算出した。
 C.着色布帛中の硫黄原子含有量(S量)分析
 着色布帛中の硫黄原子含有量は、着色布帛を260℃にてプレート状に溶融成形したのち、理学電気(株)製蛍光X線分析装置(型番:3270)を用いて測定した。
 D.ポリエステル樹脂ペレットの色調分析
 ペレットを高さ20mmの石英セルに充填し、スガ試験機製色差計SMカラーコンピュータ型式SM-T45を用いて透過光モードにてハンター色調:L値およびa値、b値を測定した。
 E.窒素原子含有量(N原子量)分析
 再生ポリエステル樹脂中の窒素原子含有量は、三菱化学製微量窒素分析装置ND-100型を用いて測定した。試料を装置内に導入して熱分析・酸化させ、生成した一酸化窒素を化学発光法により測定するものである。電気炉温度:800℃(熱分解部分)/900℃(触媒部分)、メイン酸素流量:300mL/分、サブ酸素流量:300mL/分、アルゴン流量:400mL/分とし、ピリジン標準液を用いて作成した検量線を基に定量を行った。
 F.ジエチレングリコール(DEG)量分析
 再生ポリエステル樹脂中を、2-アミノエタノールを溶媒とし、内部標準物質である1,6-ヘキサンジオールを加えて260℃で分解した。冷却後、メタノールを加えたのち酸で中和し、析出物をろ過した。ろ液を島津製作所社製ガスクロマトグラフィGC-14Bにて測定した。
 G.カルボキシル末端基量分析
 再生ポリエステル樹脂0.5gを精秤し、オルトクレゾール40mlを加えて90℃で溶解し、0.04N水酸化カリウムエタノール溶液を用いて滴定することで単位をeq/tonとして算出した。同じ操作を5回繰返し、その単純平均した値の小数点第1位を四捨五入した値とした。
 H.固有粘度(IV)分析
 再生ポリエステル樹脂を、o-クロロフェノール溶媒に溶解し、0.5g/dL、0.2g/dL、0.1g/dLの濃度の溶液を調整した。その後、得られた濃度Cの溶液の25℃における相対粘度(ηr)を、ウベローデ粘度計により測定し、(ηr-1)/CをCに対してプロットした。得られた結果を濃度0に外挿することにより、固有粘度を求めた。
 I.結晶化温度、融点分析
 再生ポリエステル樹脂約5mgを秤量し、TAインスツルメント製示差走査熱量計(DSC)Q2000型を用いて、昇温結晶化温度、降温結晶化温度、融点を測定した。測定は1試料につき3回行い、その平均値を測定値とした。
 なお、昇温結晶化温度は、280℃で5分間等温保持し、直後に室温に冷却した鉄板上にサンプルを取り出すことで100℃/分以上の速度で室温まで急冷した後、上記示差走査熱量計を用い、20℃から280℃まで16℃/分の昇温速度で加熱した際に観察される温度を測定して得た。
 また、降温結晶化温度は、280℃で5分間等温保持した後、16℃/分の昇温速度で冷却した際に観察される温度を測定して得た。
 J.乾燥性評価
 ポリエステル樹脂を溶融状態から直径0.7mm以上、2.0mm以下のストランド状に急冷固化させ、高さ2.0mm以上、4.0mm以下にカットした円柱状の再生ポリエステル樹脂ペレット1.5gを内径14mmの試験管に投入した。その状態で、空気下170℃で30分間結晶化処理を実施した後、ペレットを室温まで冷却した。冷却後、試験管にゴム栓をして上下に激しく5回振り混ぜてからペレットを取り出し、互いに接着していない未融着ペレットの重量を計量し、全重量に対する未融着ペレットの重量%を算出した。算出された値が35重量%以上、100重量%以下のペレットの乾燥性を「S」、30重量%以上、35重量%未満のペレットの乾燥性を「A」、0重量%以上、30重量%未満のペレットの乾燥性を「B」とした。
 K.共重合ポリエステルの組成分析
 ポリエステル組成物の組成(ジカルボン/ジオール成分の種類・共重合量)分析は核磁気共鳴装置(NMR)として日本電子株式会社製「AL-400」を用い、重溶媒として1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール-D2(重水素化HFIP)を用い、重溶媒1mLに対し測定サンプル50mgのサンプル濃度で積算回数128回として行うことで分析できる。本発明に記載の実施例で得られたポリエステルは全て、全酸成分に対して95モル%以上、100モル%以下のテレフタル酸残基と全ジオール成分に対して95モル%以上、100モル%以下のエチレングリコール残基から構成されていることを確認した。
 (実施例1)
 酸化チタンを0.3重量部含むPET布帛を染料:TERASIL BLACK WW-KSNを用いて、6%owf濃度にて染色(130℃、45分)し、得られた黒色のPET布帛を1cm角に裁断した。2Lの4口フラスコにEGを1000g入れ、裁断した黒色のPET布帛を15g入れたガラス管を接続した。さらに、接続したガラス管の上部にジムロート冷却管を接続した。EGの設定温度を210℃として加熱を開始し、EG還流を30分行い、染料の抽出を実施した。ジムロート冷却管にて還流される液体EGの温度は185℃であった。
 染料抽出後のPET布帛を水洗後に乾燥し、1Lの3口フラスコに10g入れ、さらにEGを55g添加し、撹拌を行い、EG温度200℃にて、5.5時間、解重合を実施した。
 解重合溶液が100℃以下に低下したら、10℃以下に調整した500mLの水に滴下し、白濁溶液を得た。得られた白濁溶液を4μフィルターで濾過し、固形分として不純物を含むBHETを得た。
 得られた不純物含有BHETを95℃の熱水に入れ、再度、1.6μフィルターを用いて濾過を実施した。得られた透明な濾液に、不純物BHETに対して大阪ガスケミカルズの活性炭を10重量%添加し、加熱しながら撹拌し、1時間後に1.0μフィルターを用いて活性炭を除去した。得られた透明な濾液を20℃以下に冷却し、BHETを晶析し、固液分離を行い、固形分として精製BHETを得た。
 上記操作を複数回行って得られた精製BHET100gを原料とし、250℃で溶融後に酢酸コバルト四水和物とリン酸をそれぞれ0.005重量%、三酸化アンチモンを0.03重量%、酸化チタン粒子を0.3重量%添加し、290℃で加熱攪拌しながらEGを減圧留去することで固有粘度(IV)が0.65のPETを重合した。
 (実施例2)
 硫黄原子量が0.83重量部、酸化チタンを0.3重量部含むスルホイソフタル酸ナトリウム(SSIA)を共重合したPET布帛を用い、染料:Nichilon Black TR200%を用いて、4%owf濃度にて染色(120℃、60分)し、染料抽出時間を150分としたこと以外は実施例1と同様に実施した。
 (実施例3)
 実施例1で精製BHETを重合するに際して、250℃での溶融速度を高めるためにEGを4.5g追加で加えたこと以外は実施例1と同様に実施した。
 (実施例4~6)
 実施例1の脱色工程における染料抽出条件とBHET精製時の吸着処理を表1に記載のとおり変更したこと以外は、実施例1と同様に実施した。
 (実施例7)
 実施例1に記載の染色濃度を低減してグレー生地とし、脱色工程における染料抽出条件を表1に記載のとおり変更したこと以外は、実施例1と同様に実施した。
 (実施例8)
 硫黄原子量が0.01重量部、酸化チタンを0.3重量部含むスルホイソフタル酸ナトリウムを共重合したPET布帛を用いたこと以外は実施例1と同様に実施した。
 (実施例9)
 硫黄原子量が0.83重量部、酸化チタンを0.3重量部含むスルホイソフタル酸ナトリウムを共重合したPET布帛を用い、染料:Nichilon Black TR200%を用いて、4%owf濃度にて染色(120℃、60分)し、染料抽出時間を150分とし、精製処理の際に用いる吸着材を活性炭からオルガノ株式会社製イオン交換樹脂AMBERLITE IR120BHに変更した以外は実施例1と同様に実施した。
 (比較例1)
 実施例1で解重合前の染料抽出を実施せず、BHET精製処理の際に活性炭等の吸着材による処理も実施しなかったこと以外は実施例1と同様に実施した。
 比較例1はポリマーのハンター色調b値が5以上を示し色味が繊維用途として不適であった。
 (比較例2)
 実施例1でPET布帛を染色せずにそのまま使用し、BHET精製処理の際に活性炭等の吸着材による処理を実施しなかったこと以外は実施例1と同様に実施した。
 比較例2は窒素原子含有率が0.5質量ppm未満となり乾燥性に劣るものであった。
 (比較例3)
 実施例2で解重合前の染料抽出を実施せず、BHET精製処理の際に活性炭等の吸着材による処理も実施しなかったこと以外は実施例2と同様に実施した。
 比較例3はポリマーのハンター色調b値が5以上を示し色味が繊維用途として不適であった。
 (比較例4)
 実施例2でPET布帛を染色せずにそのまま使用し、BHET精製処理の際に活性炭等の吸着材による処理を実施しなかったこと以外は実施例2と同様に実施した。
 比較例4は窒素原子含有率が0.5質量ppm未満となり乾燥性に劣るものであった。
 (比較例5)
 実施例1の解重合前の染料抽出工程において、裁断した黒色のPET布帛を3口フラスコに入れ、180℃の加熱されたEG中で脱色し、BHET精製処理の際に活性炭等の吸着材による処理を実施しなかった以外は実施例1と同様に実施した。
 比較例5は脱色方法を変更したことによって、ポリマー色調が悪化した。
 (比較例6)
 実施例1の解重合前の染料抽出工程において、着色PET布帛入れたガラス管にジムロートではなく、留出管を接続し、EG蒸気を4口フラスコの別の部分に接続したジムロートからフラスコに還流するようにし、BHET精製処理の際に活性炭等の吸着材による処理を実施しなかった以外は実施例1と同様に実施した。
 比較例6は脱色方法を変更したことによって、ポリマー色調が悪化した。
 (比較例7、8)
 実施例1の染料抽出条件を表2に記載のとおり変更し、精製処理の際に活性炭等の吸着材による処理を行わなかったこと以外は、実施例1と同様に実施した。
 比較例7、8はポリマーのハンター色調b値が5以上を示し色味が繊維用途として不適であった。
 (比較例9)
 実施例8の精製処理の際に活性炭等の吸着材による処理を行わなかったこと以外は、実施例8と同様に実施した。
 比較例9はポリマーのハンター色調b値が5以上を示し色味が繊維用途として不適であった。
 (比較例10)
 実施例2の精製処理の際に活性炭等の吸着材による処理を行わなかったこと以外は、実施例2と同様に実施した。
 比較例10はポリマーのハンター色調b値が5以上を示し色味が繊維用途として不適であった。
 (比較例11)
 実施例1で精製BHETを重合するに際して、250℃での溶融速度を高めるためにEGを9.0g追加で加えたこと以外は実施例1と同様に実施した。
 比較例11はジエチレングリコール含有率が0.8重量%よりも高く、耐熱性、乾燥性に劣るものであった。
 (比較例12)
 石油(ナフサ)を起源とするテレフタル酸とエチレングリコールを用い、公知の方法にてエステル化反応および重縮合反応を経て固有粘度(IV)0.65のPETを重合した。重合に際して用いた添加物としては酢酸コバルト四水和物とリン酸がそれぞれ0.005重量%、三酸化アンチモンが0.03重量%、酸化チタン粒子が0.3重量%である。
 比較例12ではテレフタル酸とエチレングリコールからエステル化反応を経てPETを合成したため、ジエチレングリコール含有率が0.8重量%よりも高く、耐熱性、乾燥性に劣るものであった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 なお、本出願は、2022年3月15日出願の日本特許出願(特願2022-039894)に基づくものであり、その内容は本出願の中に参照として援用される。
 本発明では、回収したPET布帛を原料とした色調に優れる再生ポリエステル樹脂であって、バージン原料から常法に従って製造したPET樹脂と比較して耐熱性、乾燥性に優れたPET樹脂が得られ、溶融成形して繊維にすることで一般衣料用途、スポーツ衣料用途、寝具用途、インテリア用途に好適に用いることができる。

Claims (9)

  1.  着色PET布帛を原料とした再生ポリエステル樹脂であって、
     全酸成分に対して88モル%以上、100モル%以下のテレフタル酸残基と全ジオール成分に対して88モル%以上、100モル%以下のエチレングリコール残基から構成された、以下(1)~(3)の特徴を有するポリエチレンテレフタレート樹脂である、再生ポリエステル樹脂。
    (1)ジエチレングリコール含有率が0.1質量%以上、0.8質量%未満
    (2)窒素原子含有率が0.5質量ppm以上、15.0質量ppm以下
    (3)ハンター色調:b値が-10.0以上、5.0未満
  2.  以下(4)及び(5)の特徴を有する請求項1に記載の再生ポリエステル樹脂。
    (4)ハンター色調:L値が70.0以上、85.0未満
    (5)ハンター色調:a値が-2.0以上、2.0以下
  3.  以下(6)及び(7)の特徴を有する請求項1に記載の再生ポリエステル樹脂。
    (6)280℃で5分間等温保持し、100℃/分以上の速度で室温まで急冷した後、示差走査熱量計を用い、20℃から280℃まで16℃/分の昇温速度で加熱した際に観察される昇温結晶化温度が140℃以上、150℃未満
    (7)280℃で5分間等温保持した後、16℃/分の昇温速度で冷却した際に観察される降温結晶化温度が190℃より高く205℃以下
  4.  請求項1または3に記載の再生ポリエステル樹脂を用いてなるポリエチレンテレフタレート成型品。
  5.  着色PET布帛を用いてエステルモノマーを得る方法であって、以下の工程(1)~(3)からなるエステルモノマーを得る方法。
    (1)着色PET布帛に加熱EGを接触させ、着色成分を抽出する工程であって、以下(a)及び(b)の工程からなる
     (a)着色PET布帛にEG蒸気を接触させる工程
     (b)着色PET布帛に185℃以上の加熱EGを接触させる工程
    (2)着色成分抽出後のPET布帛をEGにより解重合し、エステルモノマーを含むEG溶液とする工程
    (3)エステルモノマーを含むEG溶液を精製してエステルモノマーを得る精製工程
  6.  解重合で得られたエステルモノマー(BHET)を含むEG溶液を精製して精製BHETを得る工程が、以下の工程(A)~(D)のみからなることを特徴とする、請求項5に記載のエステルモノマーを得る方法。
    (A)解重合後のBHETを含むEG溶液からEGを0質量%以上、5質量%以下の範囲となるまで除去してBHETを回収する工程
    (B)(A)に記載の工程を実施後、回収BHETを85℃以上、100℃以下の熱水に溶解させ、熱時濾過する工程
    (C)(B)に記載の工程を実施後、85℃以上、100℃以下の濾過溶液を30℃以下まで冷却してエステルモノマーを晶析させ回収する工程
    (D)(B)及び(C)いずれかの工程内にて、エステルモノマーが熱水へ溶解した状態において活性炭処理またはイオン交換処理を行う工程
  7.  得られたエステルモノマー中の着色成分量として、分光光度計で450~800nmの範囲に観測されるピーク面積が20以下である、ことを特徴とする請求項5または6に記載のエステルモノマーを得る方法。
  8.  着色成分抽出後のPET布帛をPET布帛1質量部に対して2.0質量部以上10.0質量部以下のEGにより解重合することを特徴とする請求項5または6に記載のエステルモノマーを得る方法。
  9.  着色PET布帛100質量部に含まれる硫黄原子量が0.01質量部以上0.83質量部以下であることを特徴とする請求項5または6に記載のエステルモノマーを得る方法。
PCT/JP2023/008940 2022-03-15 2023-03-08 着色pet布帛を原料とした再生ポリエステル樹脂及び着色pet布帛からエステルモノマーを得る方法 WO2023176649A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-039894 2022-03-15
JP2022039894 2022-03-15

Publications (1)

Publication Number Publication Date
WO2023176649A1 true WO2023176649A1 (ja) 2023-09-21

Family

ID=88023197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008940 WO2023176649A1 (ja) 2022-03-15 2023-03-08 着色pet布帛を原料とした再生ポリエステル樹脂及び着色pet布帛からエステルモノマーを得る方法

Country Status (2)

Country Link
TW (1) TW202402871A (ja)
WO (1) WO2023176649A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255963A (ja) * 2004-02-12 2005-09-22 Is:Kk 繊維状ポリエステルからエステルモノマーを回収する方法
JP2007045874A (ja) * 2005-08-08 2007-02-22 Teijin Fibers Ltd 染着ポリエステル繊維からの有効成分回収方法
JP2008088096A (ja) * 2006-09-29 2008-04-17 Nisuko:Kk ビス−(2−ヒドロキシエチル)テレフタレートの製造方法およびポリエチレンテレフタレートの製造方法
JP2020176258A (ja) * 2020-02-06 2020-10-29 株式会社シンテック 色素付きポリエステルおよび再生ポリエチレンテレフテレートの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255963A (ja) * 2004-02-12 2005-09-22 Is:Kk 繊維状ポリエステルからエステルモノマーを回収する方法
JP2007045874A (ja) * 2005-08-08 2007-02-22 Teijin Fibers Ltd 染着ポリエステル繊維からの有効成分回収方法
JP2008088096A (ja) * 2006-09-29 2008-04-17 Nisuko:Kk ビス−(2−ヒドロキシエチル)テレフタレートの製造方法およびポリエチレンテレフタレートの製造方法
JP2020176258A (ja) * 2020-02-06 2020-10-29 株式会社シンテック 色素付きポリエステルおよび再生ポリエチレンテレフテレートの製造方法

Also Published As

Publication number Publication date
TW202402871A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
US7048978B2 (en) Polyester resin, polyester resin composition, and sheet, film and hollow molded container obtained therefrom
US7799836B2 (en) Process for making polybutylene terephthalate (PBT) from polyethylene terephthalate (PET)
US5869543A (en) Process for the synthesis of polyethylene carboxylate from polyethylene carboxylate waste
JP3897756B2 (ja) ポリエステル製造用触媒及びそれを用いるポリエステル製造方法
CA2646576C (en) Manufacturing method of polyethylene terephthalate
KR20200061948A (ko) 비스-2-하이드록시 에틸 테레프탈레이트 정제 방법 및 이를 이용한 폴리에스터 제조 방법
WO2022003990A1 (ja) 高純度ビス-(2-ヒドロキシエチル)テレフタレートの製造方法、再生ポリエチレンテレフタレート、脱色溶媒およびビス-(2-ヒドロキシエチル)テレフタレートの精製方法
CN114031756B (zh) 一种具有典型绿色低碳特点的闭环回收废旧聚酯制备再生聚酯的方法
KR101551638B1 (ko) 화학 재생 공정을 이용한 난연성 공중합 폴리에스테르 수지 및 그 제조 방법
WO2023176649A1 (ja) 着色pet布帛を原料とした再生ポリエステル樹脂及び着色pet布帛からエステルモノマーを得る方法
JP4342211B2 (ja) ポリエステル及びその製造方法
JP5001838B2 (ja) 酸化チタンゾルおよびそれを用いたポリアルキレンテレフタレートの製造方法
JP6960709B1 (ja) 高純度ビス−(2−ヒドロキシエチル)テレフタレートの製造方法、再生ポリエチレンテレフタレート、脱色溶媒およびビス−(2−ヒドロキシエチル)テレフタレートの精製方法
KR101430108B1 (ko) 폐폴리에스테르를 이용한 생분해성 폴리에스테르 제조방법
JP2010059572A (ja) 常圧カチオン可染性ポリエステル複合繊維
KR100625562B1 (ko) 산화티탄 또는 벵갈라를 함유하는 폴리에스테르의에틸렌글리콜 첨가에 의한 분해생성물로부터의 산화티탄또는 벵갈라의 제거방법
JP2002121173A (ja) 粗ビス−β−ヒドロキシエチルテレフタレート精製方法および精製ビス−β−ヒドロキシエチルテレフタレート
WO2023203980A1 (ja) ビス-(2-ヒドロキシエチル)テレフタレートの製造方法および再生ポリエチレンテレフタレートの製造方法
WO2023190102A1 (ja) 芳香族ジカルボン酸ビス(ヒドロキシアルキル)の製造方法および再生芳香族ポリエステルの製造方法
JP2010111764A (ja) 常圧カチオン可染性ポリエステル樹脂組成物およびその繊維
CN115304478A (zh) 一种再生有色涤纶泡料提纯bhet粒子工艺
KR20210058574A (ko) 폐 폴리에틸렌 테레프탈레이트를 이용한 투명성 및 내화학성이 향상된 폴리에스테르의 제조방법
JP2002097263A (ja) ポリエステルの製造方法
CN116368121A (zh) 用于纯化对苯二甲酸双-2-羟乙酯的方法及包含该对苯二甲酸双-2-羟乙酯的聚酯树脂
JP2023146176A (ja) ポリエステル樹脂の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023517349

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770605

Country of ref document: EP

Kind code of ref document: A1