WO2023189552A1 - レンズ装置、制御方法、および撮影システム - Google Patents

レンズ装置、制御方法、および撮影システム Download PDF

Info

Publication number
WO2023189552A1
WO2023189552A1 PCT/JP2023/009879 JP2023009879W WO2023189552A1 WO 2023189552 A1 WO2023189552 A1 WO 2023189552A1 JP 2023009879 W JP2023009879 W JP 2023009879W WO 2023189552 A1 WO2023189552 A1 WO 2023189552A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
zoom
trajectory
zoom lens
start timing
Prior art date
Application number
PCT/JP2023/009879
Other languages
English (en)
French (fr)
Inventor
康平 宮本
遊生 水野
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2023189552A1 publication Critical patent/WO2023189552A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Definitions

  • the present technology relates to a lens device, a control method, and a photographing system, and particularly relates to a lens device, a control method, and a photographing system that can improve zoom tracking accuracy.
  • Some interchangeable lenses for cameras are equipped with an electric zoom function that allows the zoom to be adjusted electrically.
  • zoom tracking processing is performed to drive the focus lens to follow the zoom lens in order to maintain a focused state.
  • Patent Document 1 discloses a technique for predicting the position of a zoom lens and driving a focus lens based on the predicted position of the zoom lens.
  • errors may occur in predicting the position of the zoom lens.
  • errors occur in predictions when the zoom lens starts moving or stops. Errors also occur when the driving speed of the zoom lens is not constant. If an error occurs in predicting the position of the zoom lens, the focus lens cannot be driven to the optimal position, resulting in out-of-focus.
  • the present technology was developed in view of this situation, and is intended to improve the accuracy of zoom tracking.
  • a lens device includes a control unit that calculates a target position at each time of a zoom lens controlled by a first actuator, and a control unit that calculates a target position of a zoom lens at each time after a start timing of a control cycle of the zoom lens.
  • An instruction trajectory which is a position trajectory, is calculated based on the target position indicated by the instruction value taken in from the control unit before the start timing, and when the start timing comes, the first actuator is driven.
  • an arithmetic unit that controls the controller based on the instruction trajectory.
  • the control unit performs calculation of zoom tracking processing after the start timing based on the predicted position of the zoom lens determined from the instruction trajectory.
  • the instruction trajectory which is the trajectory of the position of the zoom lens at each time after the start timing of the control cycle of the zoom lens, is the instruction trajectory indicated by the instruction value taken in from the control unit before the start timing. It is calculated based on the target position, and when the start timing is reached, the drive of the first actuator is controlled based on the instruction trajectory. Further, calculation of the zoom tracking process after the start timing is performed based on the predicted position of the zoom lens determined from the instruction trajectory.
  • FIG. 1 is a block diagram illustrating a configuration example of a photographing system according to an embodiment of the present technology.
  • FIG. 2 is a block diagram showing a configuration example of a lens device. It is a figure showing an example of lens composition.
  • FIG. 3 is a diagram showing an example of general zoom control.
  • FIG. 3 is a diagram illustrating an example of timing of focus control.
  • FIG. 3 is a diagram showing an example of zoom control.
  • FIG. 3 is a diagram showing an example of focus control. It is a figure showing an example of the amount of advance.
  • 3 is a flowchart illustrating a series of processing by a lens microcomputer.
  • FIG. 3 is a block diagram showing another example of the configuration of the imaging system.
  • FIG. 1 is a block diagram illustrating a configuration example of a photographing system according to an embodiment of the present technology.
  • the photographing system 1 in FIG. 1 is composed of a photographing device 11 and a lens device 12.
  • the photographing device 11 is a camera body with interchangeable lenses.
  • a lens device 12 can be attached to and detached from the photographing device 11.
  • the photographing device 11 receives light from a subject guided by a lens device 12, and performs photographing.
  • the lens device 12 is an interchangeable lens that has optical members such as a zoom lens and a focus lens in a lens barrel.
  • the lens device 12 is equipped with an electric zoom function.
  • the lens device 12 is also provided with members such as actuators that drive the zoom lens and focus lens.
  • the lens device 12 takes in light from a subject and makes it enter an image sensor provided in the photographing device 11 .
  • the photographing device 11 and the lens device 12 are electrically connected via terminals provided on the mount portions of their respective casings. As shown by the bidirectional arrows in FIG. 1, various types of information are transmitted and received between the photographing device 11 and the lens device 12. For example, information indicating the control details of the zoom lens and information indicating the control details of the focus lens are transmitted from the photographing device 11 to the lens device 12.
  • FIG. 2 is a block diagram showing a configuration example of the lens device 12.
  • the lens device 12 is provided with a zoom lens LZ and a focus lens LF .
  • the lens device 12 also includes an operation section 21, a CPU section 22, a high-speed calculation section 23, motor drivers 24-1 and 24-2, motors 25-1 and 25-2, and position detection sensors 26-1 and 26-2. is provided. Information output from the photographing device 11 is input to the CPU section 22 .
  • the operating section 21 is an input device composed of a ring member, a lever member, and the like.
  • the operation unit 21 outputs information indicating the content of the user's operation to the CPU unit 22.
  • the CPU unit 22 controls the zoom lens LZ and the focus lens LF based on information supplied from the photographing device 11 or based on information supplied from the operation unit 21 in response to an operation performed by the user. control the drive of the The CPU section 22 functions as a control section that controls the driving of the zoom lens LZ and the focus lens LF .
  • the CPU unit 22 outputs information on a drive instruction for the zoom lens LZ and a drive instruction for the focus lens LF to the high-speed calculation unit 23.
  • the drive instruction information includes information indicating the target position of the lens to be driven.
  • a linear actuator having high speed, quietness, and high followability is used as an actuator for driving the zoom lens LZ .
  • a linear actuator is a device that converts power generated by a motor into linear power.
  • the CPU unit 22 instructs the zoom lens LZ to drive by specifying a position.
  • the CPU section 22 performs zoom tracking processing when driving the zoom lens LZ .
  • the zoom tracking process is a process in which the focus lens LF is driven to follow the zoom lens LZ in order to maintain a focused state even when the zoom lens LZ is driven.
  • the CPU unit 22 calculates the drive direction, drive amount, etc. of the focus lens LF , and outputs drive instruction information to the high-speed calculation unit 23.
  • the CPU section 22 instructs the focus lens LF to be driven by specifying a position.
  • the high-speed calculation unit 23 is a calculation unit that performs servo calculation using a feedback mechanism at high speed.
  • the high-speed calculation unit 23 performs zoom control and focus control.
  • Zoom control is a process of controlling the drive of the zoom lens LZ based on an instruction value from the CPU section 22.
  • Focus control is a process of controlling the drive of the focus lens LF based on an instruction value from the CPU section 22.
  • the high-speed calculation section 23 adjusts the voltage of the signal to the motor driver 24-1 based on information supplied from the CPU section 22, and drives the zoom lens LZ .
  • the high-speed calculation unit 23 calculates the position of the zoom lens LZ at each time based on drive instruction information from the CPU unit 22, and causes the zoom lens LZ to follow the locus of the calculated position at each time.
  • the signal to the motor driver 24-1 is controlled so as to
  • the high-speed calculation section 23 adjusts the voltage of the signal to the motor driver 24-2 based on information supplied from the CPU section 22, and drives the focus lens LF .
  • the CPU section 22 and the high-speed calculation section 23 are realized, for example, in a one-chip microcomputer.
  • the CPU section 22 and the high-speed calculation section 23 may be implemented in microcomputers of different chips.
  • the motor driver 24-1 drives a motor 25-1, which is a motor (linear motor) constituting a linear actuator, in response to a signal supplied from the high-speed calculation section 23.
  • a motor 25-1 which is a motor (linear motor) constituting a linear actuator, in response to a signal supplied from the high-speed calculation section 23.
  • the motor 25-1 is composed of a coil I and a magnet M.
  • the motor 25-1 is driven based on a signal supplied from the motor driver 24-1.
  • the position detection sensor 26-1 detects the position of the zoom lens LZ and outputs a signal representing the detection result.
  • the signal output from the position detection sensor 26-1 is supplied to the CPU section 22 and the high-speed calculation section 23.
  • the motor driver 24-2 drives the motor 25-2 according to the signal supplied from the high-speed calculation section 23. By driving the motor 25-2, the position of the focus lens LF is adjusted to an arbitrary position.
  • the motor 25-2 is composed of a coil I and a magnet M.
  • the motor 25-2 is driven based on a signal supplied from the motor driver 24-2.
  • the position detection sensor 26-2 detects the position of the focus lens LF and outputs a signal representing the detection result.
  • the signal output from the position detection sensor 26-2 is supplied to the CPU section 22 and the high-speed calculation section 23.
  • FIG. 3 is a diagram showing an example of a lens configuration.
  • a focus lens L F is provided between the zoom lenses L Z1 and L Z2 .
  • the left side of FIG. 3 is the front end side of the lens device 12, and the right side is the image plane side.
  • the dashed line L represents the optical axis.
  • the zoom lenses L Z1 , L Z2 and the focus lens L F are each configured as a lens group including a plurality of lenses.
  • a plurality of focus lens groups may be provided.
  • a linear actuator is used as an actuator for driving each of the zoom lenses L Z1 and L Z2 .
  • a linear actuator may be used as the actuator for driving the focus lens LF .
  • a linear actuator instead of a linear actuator, another actuator such as a linear drive type ultrasonic motor that has high followability and can control the lens position is an actuator that drives the zoom lenses L Z1 , L Z2 and focus lens L F. It may also be used as
  • FIG. 4 is a diagram showing an example of general zoom control.
  • the horizontal axis in FIG. 4 represents time, and the vertical axis represents the position of the zoom lens LZ . Each time will be explained using the numbers shown at the top of FIG. The same applies to FIGS. 5 to 8.
  • the entire servo period (V) for one period defined by a predetermined frequency such as 60 Hz or 120 Hz is divided into 32 sections, and the timing of time t31 is indicated as the start timing of the servo period. has been done.
  • the start timing of the servo cycle is defined, for example, by a vertical synchronization signal supplied from a synchronization control section (not shown) to the CPU section 22 and the high-speed calculation section 23. Transmission and reception of information between the CPU section 22 and the high-speed calculation section 23 is performed appropriately at each time point.
  • the instruction value of the zoom lens LZ is latched every servo cycle.
  • the instruction value for the zoom lens LZ is a value that indicates the target position of the zoom lens LZ at each time.
  • the drive instruction from the CPU unit 22 to the high-speed calculation unit 23 includes an instruction value for the zoom lens LZ .
  • the servo cycle is a cycle (zoom control cycle) in which the high-speed calculation unit 23 latches the instruction value calculated by the CPU unit 22 and controls the drive of the zoom lens LZ according to the instruction trajectory determined based on the instruction value. .
  • Drive control of the zoom lens LZ is performed so that the position of the zoom lens LZ at each time follows the position indicated by the instruction trajectory.
  • FIG. 4 shows an example in which the CPU section 22 calculates the instruction value at time t23 in a state where the position P0 is specified as the target position of the zoom lens LZ .
  • the instruction value is calculated when a zoom operation or the like is performed and information indicating the details of the operation is input to the CPU section 22. Note that in FIG. 4, the position on the vertical axis of the rectangle R indicating the timing of calculation of the instruction value does not indicate the position of the calculation result.
  • the instruction value information resulting from the calculation is calculated by the high-speed calculation unit 23 at time t31, which is the start timing of the servo cycle, as indicated by the arrow A1. It is latched (captured) and the indicated trajectory is determined.
  • the calculation of the instruction trajectory is performed, for example, by applying filter processing according to the characteristics of the actuator, etc. to the target time positions represented by the instruction values.
  • the instruction locus is a locus of positions at each time that the zoom lens LZ is actually followed.
  • a dotted line L1 in FIG. 4 indicates a target position trajectory that is a trajectory of the target position at each time.
  • a trajectory of moving the zoom lens LZ in the plus direction with reference to the position P0 is shown as a target position trajectory.
  • the solid line L2 indicates the instruction trajectory. In this way, the instruction trajectory is a trajectory that deviates from the target position trajectory.
  • FIG. 5 is a diagram showing an example of focus control timing.
  • Rectangles R1 to R8 arranged at the bottom of FIG. 5 indicate the timing of zoom tracking processing (Zoom Tracking).
  • the zoom tracking process is performed by the CPU section 22 at a cycle shorter than the servo cycle, such as a 1/8 V cycle. In the example of FIG. 5, zoom tracking processing is performed eight times during one servo period.
  • General zoom tracking processing is performed by the CPU unit 22, for example, calculating the position of the focus lens LF based on the position of the zoom lens LZ detected by the position detection sensor 26-1.
  • the first zoom tracking process is performed by the CPU section 22 at a timing around time t0 to t1 indicated by rectangle R1.
  • the calculation based on the position of the zoom lens LZ detected by the position detection sensor 26-1 is performed by the CPU unit 22, and the drive control of the focus lens LF is performed by the high-speed calculation unit 23 based on the calculation result by the CPU unit 22. It will be done.
  • the drive control of the focus lens LF is performed after the zoom tracking process by the CPU section 22 and before the timing of the second zoom tracking process, for example.
  • the second and subsequent zoom tracking processes are also performed at the respective timings shown after rectangle R2.
  • the high-speed calculation section 23 latches the instruction value of the CPU section 22 at the start timing of the servo cycle, and drives the zoom lens LZ according to the instruction trajectory determined based on the instruction value. It is done by
  • general focus control is performed by the high-speed calculation unit 23 driving the focus lens LF based on calculation results by the CPU unit 22 using the position detected by the position detection sensor 26-1.
  • FIG. 6 is a diagram illustrating an example of zoom control according to an embodiment of the present technology. Descriptions that overlap with those described above will be omitted as appropriate.
  • the instruction value indicating the target position at each time is calculated by the high-speed calculation unit at time t24, as shown at the tip of arrow A2 in FIG. 23. That is, the instruction value is latched in advance without waiting for the start timing of the servo cycle.
  • FIG. 6 shows a case where the instruction value is latched at the start timing of the servo cycle.
  • the amount by which the latch of the instruction value is advanced is a period longer than the 1/8 ⁇ V cycle, which is the period of one cycle of focus control (zoom tracking processing).
  • the instruction value is latched in advance by a period of seven hours, which is longer than a period of four hours, which is a period of 1/8 ⁇ V cycle. In this way, the instruction value is latched at a timing that is 1/8 ⁇ V cycle or more earlier than the start timing of the servo cycle.
  • the instruction trajectory is calculated by the high-speed calculation unit 23.
  • the calculation of the indicated trajectory is performed by applying a filter according to the characteristics of the actuator to the target position at each time represented by the indicated value, in the same way as when the indicated value is latched at the start timing of the servo cycle. This is done by applying processing.
  • an instruction trajectory for one servo cycle is obtained.
  • a dashed-dotted line L11 in FIG. 6 indicates an advanced target position trajectory that is a target position trajectory represented by an instruction value that is advanced and latched.
  • a broken line L12 indicates an advanced instruction trajectory, which is an instruction trajectory obtained based on the instruction value that was moved forward and latched.
  • Information on the forward movement instruction trajectory obtained in this way is supplied from the high-speed calculation section 23 to the CPU section 22 and used for zoom tracking processing.
  • the position of the zoom lens LZ is predicted based on the forward movement instruction trajectory, and zoom tracking processing is performed using the predicted position of the zoom lens LZ .
  • the actual driving of the zoom lens LZ in zoom control starts at the start timing of the servo cycle so as to follow the instruction trajectory (solid line L2), so the advance instruction trajectory is used for predicting the position of the zoom lens LZ . You will be asked for it.
  • FIG. 7 is a diagram illustrating an example of focus control according to an embodiment of the present technology.
  • the current zoom tracking process is the second process shown at the end of the white arrow A3.
  • the second zoom tracking process is performed at a timing around time t4 to t5, which is 1/8 ⁇ V period after the first zoom tracking process.
  • the first zoom tracking process is also performed in the same manner as the second zoom tracking process.
  • the CPU unit 22 refers to the forward movement instruction trajectory (broken line L12) and performs calculations for the second zoom tracking process using position P12, which is the position on the movement forward instruction trajectory at time t4.
  • the position P12 which is the predicted position of the zoom lens LZ , is used for calculation of the zoom tracking process, without using the position of the zoom lens LZ detected by the position detection sensor 26-1.
  • the position P12 used in the calculation of the zoom tracking process corresponds to a position obtained by moving the position P11 of the zoom lens LZ in the next period forward by 7 times corresponding to the amount of movement forward.
  • Drive control of the focus lens LF is performed by the high-speed calculation unit 23 based on the calculation result using such predicted position of the zoom lens LZ .
  • the drive control of the focus lens LF is performed after the zoom tracking process by the CPU section 22 and before the timing of the third zoom tracking process, for example.
  • the CPU section 22 predicts the position of the zoom lens LZ by referring to the advanced instruction trajectory that is brought forward from the instruction trajectory that the zoom lens LZ actually follows. Further, calculations for zoom tracking processing are performed using the predicted position of the zoom lens LZ .
  • a linear actuator is used to drive the zoom lens LZ .
  • Faster and quieter zoom control is possible than when using a DC motor or the like.
  • FIG. 8 is a diagram showing an example of the amount of advance.
  • focus control based on the instruction value obtained by the calculation of the second zoom tracking process is performed before the timing of the third zoom tracking process, which is the next zoom tracking process. be exposed. In the example of FIG. 8, focus control is performed until the timing of the end of the third zoom tracking process.
  • the amount by which the instruction value is latched and the instruction trajectory is advanced relative to the instruction trajectory is set as a period longer than the 1/8 ⁇ V cycle that is the focus control cycle.
  • the amount of advance is shorter than the 1/8 V cycle as shown by the dashed line L21, only the position of the zoom lens LZ within the current zoom tracking processing cycle can be predicted, as shown as the position P21. It turns out.
  • the advance amount is set to a period longer than the 1/8 ⁇ V cycle, it becomes possible to predict the position of the zoom lens LZ in the next cycle.
  • step S1 the CPU unit 22 calculates the target position of the zoom lens LZ and issues a driving instruction to the high-speed calculation unit 23.
  • step S2 the high-speed calculation unit 23 latches the instruction value of the target position at a timing before the start timing of the servo cycle.
  • step S3 the high-speed calculation unit 23 calculates an advance instruction trajectory based on the advance target position trajectory represented by the instruction value latched in advance.
  • step S4 the high-speed calculation unit 23 drives the zoom lens LZ so as to follow the instruction trajectory. Drive control of the zoom lens LZ continues during the servo period.
  • step S5 the CPU section 22 determines whether or not it is the timing for zoom tracking processing, and waits until it is determined that it is the timing for zoom tracking processing.
  • step S6 the CPU unit 22 refers to the advance instruction trajectory obtained by the high-speed calculation unit 23 and determines the predicted position of the zoom lens LZ in the next cycle. get.
  • step S7 the CPU section 22 instructs the focus lens LF to be driven based on the predicted position of the zoom lens LZ in the next cycle.
  • step S8 the high-speed calculation unit 23 drives the focus lens LF .
  • step S9 the CPU section 22 determines whether or not the zoom tracking process has ended, and if it is determined that the zoom tracking process has not ended, the process returns to step S5 and repeats the above-described process.
  • step S9 if it is determined in step S9 that the zoom tracking process has ended because the zoom tracking process has been performed eight times, the processing of the lens microcomputer ends. The above process is repeated, for example, every servo cycle.
  • zoom control is performed so as to follow an instruction trajectory that is a different trajectory from the trajectory of the target position.
  • the high-speed calculation unit 23 can use arbitrary filter processing (digital filter) for calculation of the instruction trajectory and calculation of the advanced instruction trajectory. Further, the high-speed calculation unit 23 can robustly follow the actuator to the target position by using non-linear control (VSS or switching control) as zoom control based on the instruction trajectory.
  • VSS non-linear control
  • a steady-state deviation may occur depending on the servo algorithm, or the locus of the drive instruction may differ from the actual trajectory. Although it may not happen, it is possible to prevent such things from happening.
  • FIG. 10 is a block diagram showing another example of the configuration of the imaging system 1.
  • the functions of the CPU section 22 and the high-speed calculation section 23 may be realized in the body-side microcomputer 11A, which is the microcomputer on the photographing device 11 side.
  • the drive control for the actuator in the lens device 12 is performed by the high-speed calculation unit 23 of the body-side microcomputer 11A, and the above-described zoom control and focus control are realized.
  • the photographing system 1 is assumed to be a camera with interchangeable lenses, the zoom control and focus control described above can also be applied to a camera with an integrated lens.
  • the lens device 12 may appropriately use non-linear trajectories to control the drive of the zoom lens LZ . It will be done.
  • a system means a collection of multiple components (devices, modules (components), etc.), regardless of whether all the components are in the same casing. Therefore, multiple devices housed in separate casings and connected via a network, and a single device with multiple modules housed in one casing are both systems. .
  • a control unit that calculates the target position of the zoom lens controlled by the first actuator at each time;
  • An instruction trajectory which is a trajectory of the position of the zoom lens at each time after the start timing of the control cycle of the zoom lens, is based on the target position indicated by the instruction value taken in from the control unit before the start timing.
  • a calculation unit that controls the drive of the first actuator based on the instruction trajectory when the start timing is reached, The control unit performs calculation of zoom tracking processing after the start timing based on a predicted position of the zoom lens determined from the instruction trajectory.
  • the lens device (2) The lens device according to (1), wherein the calculation unit drives a second actuator that controls the focus lens based on the calculation result of the zoom tracking process, and controls tracking of the focus lens with respect to the zoom lens.
  • the arithmetic unit is Drive control of the first actuator is performed in a first cycle, The lens device according to (2) above, wherein drive control of the second actuator is performed in a second period shorter than the first period.
  • the calculation unit takes in the instruction value from the control unit at a timing that is at least a period of the second cycle before the start timing.
  • the control unit calculates the zoom tracking process based on the predicted position indicating the position of the zoom lens at the time of the zoom tracking process in the next cycle.
  • the lens device according to (2) further comprising: the second actuator.
  • a control method wherein calculation of zoom tracking processing after the start timing is performed in the control unit based on a predicted position of the zoom lens determined from the instruction trajectory.
  • zoom lens and a first actuator that controls the zoom lens zoom lens and a second actuator that controls the focus lens; a first control unit that calculates a target position of the zoom lens at each time;
  • An instruction trajectory that is a trajectory of the position of the zoom lens at each time after the start timing of the control cycle of the zoom lens is set to the target position indicated by an instruction value taken in from the first control unit before the start timing.
  • a photographing system comprising: a photographing device comprising a second control section that communicates with the first control section.

Abstract

本技術は、ズームトラッキングの精度を向上させることができるようにするレンズ装置、制御方法、および撮影システムに関する。 本技術の一側面のレンズ装置は、ズームレンズの制御周期の開始タイミング(t31)以降の各時刻のズームレンズの位置の軌跡である指示軌跡(L2,L12)を、開始タイミングの前に取り込んだ指示値により示される目標位置(L1,L11)に基づいて計算し、開始タイミングになった場合、第1のアクチュエータの駆動を指示軌跡に基づいて制御する。制御部は、開始タイミングの後のズームトラッキング処理の計算を、指示軌跡から求められるズームレンズの予測位置(P11,P12)に基づいて行う。本技術は、レンズ交換式カメラのレンズ装置に適用することができる。

Description

レンズ装置、制御方法、および撮影システム
 本技術は、レンズ装置、制御方法、および撮影システムに関し、特に、ズームトラッキングの精度を向上させることができるようにしたレンズ装置、制御方法、および撮影システムに関する。
 カメラ用の交換レンズの中には、ズームの調整を電動で行うことが可能な電動ズームの機能を搭載したものがある。電動ズームによるズームレンズの駆動時、ピントがあった状態を保つために、ズームレンズに追従するようにフォーカスレンズを駆動させるズームトラッキング処理が行われる。
 特許文献1には、ズームレンズの位置を予測し、ズームレンズの予測位置に基づいてフォーカスレンズを駆動させる技術が開示されている。
特開2020-148841号公報
 DCモータ駆動の電動ズームにおいては、ズームレンズの位置の予測に誤差が生じることがある。特に、ズームレンズの動き出し時や停止時の予測に誤差が生じる。また、ズームレンズの駆動速度が一定でない場合などにも誤差が生じる。ズームレンズの位置の予測に誤差が生じた場合、フォーカスレンズを最適な位置に駆動させることができず、ピントずれが発生してしまう。
 本技術はこのような状況に鑑みてなされたものであり、ズームトラッキングの精度を向上させることができるようにするものである。
 本技術の一側面のレンズ装置は、第1のアクチュエータが制御するズームレンズの各時刻の目標位置を計算する制御部と、前記ズームレンズの制御周期の開始タイミング以降の各時刻の前記ズームレンズの位置の軌跡である指示軌跡を、前記開始タイミングの前に前記制御部から取り込んだ指示値により示される前記目標位置に基づいて計算し、前記開始タイミングになった場合、前記第1のアクチュエータの駆動を前記指示軌跡に基づいて制御する演算部とを備える。前記制御部は、前記開始タイミングの後のズームトラッキング処理の計算を、前記指示軌跡から求められる前記ズームレンズの予測位置に基づいて行う。
 本技術においては、前記ズームレンズの制御周期の開始タイミング以降の各時刻の前記ズームレンズの位置の軌跡である指示軌跡が、前記開始タイミングの前に前記制御部から取り込んだ指示値により示される前記目標位置に基づいて計算され、前記開始タイミングになった場合、前記第1のアクチュエータの駆動が前記指示軌跡に基づいて制御される。また、前記開始タイミングの後のズームトラッキング処理の計算が、前記指示軌跡から求められる前記ズームレンズの予測位置に基づいて行われる。
本技術の一実施形態に係る撮影システムの構成例を示すブロック図である。 レンズ装置の構成例を示すブロック図である。 レンズ構成の例を示す図である。 一般的なズーム制御の例を示す図である。 フォーカス制御のタイミングの例を示す図である。 ズーム制御の例を示す図である。 フォーカス制御の例を示す図である。 前倒し量の例を示す図である。 レンズマイコンの一連の処理について説明するフローチャートである。 撮影システムの他の構成例を示すブロック図である。
 以下、本技術を実施するための形態について説明する。説明は以下の順序で行う。
 1.撮影システムの構成
 2.ズーム制御/フォーカス制御の例
 3.レンズ装置12の動作
 4.その他
<撮影システムの構成>
 図1は、本技術の一実施形態に係る撮影システムの構成例を示すブロック図である。
 図1の撮影システム1は、撮影装置11とレンズ装置12により構成される。
 撮影装置11は、レンズ交換式のカメラのボディである。撮影装置11に対しては、レンズ装置12の着脱が可能とされる。撮影装置11は、レンズ装置12によって導かれた被写体からの光を受光し、撮影を行う。
 レンズ装置12は、ズームレンズ、フォーカスレンズなどの光学部材を鏡筒内に有する交換レンズである。レンズ装置12には電動ズームの機能が搭載される。レンズ装置12には、ズームレンズとフォーカスレンズを駆動させるアクチュエータなどの部材も設けられる。レンズ装置12は、被写体からの光を取り込み、撮影装置11に設けられた撮像素子に入射させる。
 撮影装置11とレンズ装置12は、それぞれの筐体のマウント部に設けられた端子を介して電気的に接続される。図1の双方向の矢印で示すように、撮影装置11とレンズ装置12との間では各種の情報の送受信が行われる。撮影装置11からレンズ装置12に対しては、例えば、ズームレンズの制御内容を示す情報、フォーカスレンズの制御内容を示す情報が送信される。
 図2は、レンズ装置12の構成例を示すブロック図である。
 図2の右側に示すように、レンズ装置12には、ズームレンズLとフォーカスレンズLが設けられる。また、レンズ装置12には、操作部21、CPU部22、高速演算部23、モータドライバ24-1,24-2、モータ25-1,25-2、位置検出センサ26-1,26-2が設けられる。CPU部22に対しては、撮影装置11から出力された情報が入力される。
 操作部21は、リング部材、レバー部材などにより構成される入力装置である。操作部21は、ズーム操作などがユーザにより行われた場合、ユーザの操作の内容を示す情報をCPU部22に出力する。
 CPU部22は、撮影装置11から供給された情報に基づいて、または、ユーザによる操作が行われることに応じて操作部21から供給された情報に基づいて、ズームレンズLとフォーカスレンズLの駆動を制御する。CPU部22は、ズームレンズLとフォーカスレンズLの駆動を制御する制御部として機能する。
 例えば、CPU部22は、ズームレンズLの駆動指示やフォーカスレンズLの駆動指示の情報を高速演算部23に出力する。駆動指示の情報には、駆動対象となるレンズの目標となる位置を示す情報が含まれる。
 レンズ装置12においては、ズームレンズLを駆動させるアクチュエータとして、高速性、静粛性、高追従性を有するリニアアクチュエータが用いられる。リニアアクチュエータは、モータが発生した動力を直線方向の動力に変換するデバイスである。CPU部22によるズームレンズLの駆動指示は、位置を指定することによって行われる。
 また、CPU部22は、ズームレンズLの駆動時、ズームトラッキング処理を行う。ズームトラッキング処理は、ズームレンズLの駆動時においてもピントがあった状態を保つために、ズームレンズLに追従するようにフォーカスレンズLを駆動させる処理である。
 ズームトラッキング処理時、CPU部22は、フォーカスレンズLの駆動方向、駆動量などを計算し、駆動指示の情報を高速演算部23に出力する。フォーカスレンズLを駆動させるアクチュエータとしてリニアアクチュエータが用いられる場合、CPU部22によるフォーカスレンズLの駆動指示は位置を指定することによって行われる。
 高速演算部23は、フィードバック機構を用いたサーボ演算を高速に行う演算部である。高速演算部23は、ズーム制御とフォーカス制御を行う。
 ズーム制御は、CPU部22からの指示値に基づいて、ズームレンズLの駆動を制御する処理である。フォーカス制御は、CPU部22からの指示値に基づいて、フォーカスレンズLの駆動を制御する処理である。
 高速演算部23は、ズーム制御時、モータドライバ24-1に対する信号の電圧をCPU部22から供給された情報に基づいて調整し、ズームレンズLを駆動させる。例えば、高速演算部23は、ズームレンズLの各時刻の位置をCPU部22からの駆動指示の情報に基づいて計算し、計算により求めた各時刻の位置の軌跡にズームレンズLを追従させるように、モータドライバ24-1に対する信号を制御する。
 高速演算部23は、フォーカス制御時、モータドライバ24-2に対する信号の電圧をCPU部22から供給された情報に基づいて調整し、フォーカスレンズLを駆動させる。
 なお、CPU部22と高速演算部23は、例えば1チップのマイコン(マイクロコンピュータ)において実現される。CPU部22と高速演算部23がそれぞれ異なるチップのマイコンにおいて実現されるようにしてもよい。
 モータドライバ24-1は、高速演算部23から供給された信号に応じて、リニアアクチュエータを構成するモータ(リニアモータ)であるモータ25-1を駆動させる。モータ25-1を駆動させることによって、ズームレンズLの位置が任意の位置に調整される。
 モータ25-1は、コイルIとマグネットMにより構成される。モータ25-1は、モータドライバ24-1から供給された信号に基づいて駆動する。
 位置検出センサ26-1は、ズームレンズLの位置を検出し、検出結果を表す信号を出力する。位置検出センサ26-1から出力された信号は、CPU部22と高速演算部23に供給される。ズームレンズLの駆動制御が位置検出センサ26-1の検出結果に基づいて行われることにより、ズームレンズLの位置を任意の位置に制御できるフィードバック機構が実現される。
 モータドライバ24-2は、高速演算部23から供給された信号に応じてモータ25-2を駆動させる。モータ25-2を駆動させることによって、フォーカスレンズLの位置が任意の位置に調整される。
 モータ25-2は、コイルIとマグネットMにより構成される。モータ25-2は、モータドライバ24-2から供給された信号に基づいて駆動する。
 位置検出センサ26-2は、フォーカスレンズLの位置を検出し、検出結果を表す信号を出力する。位置検出センサ26-2から出力された信号は、CPU部22と高速演算部23に供給される。フォーカスレンズLの駆動制御が位置検出センサ26-2の検出結果に基づいて行われることにより、フォーカスレンズLの位置を任意の位置に制御できるフィードバック機構が実現される。
 図3は、レンズ構成の例を示す図である。
 図3に示すように、ズームレンズLZ1,LZ2の間にフォーカスレンズLが設けられる。例えば、図3の左側がレンズ装置12の先端側であり、右側が像面側である。一点鎖線Lは光軸を表す。
 ズームレンズLZ1,LZ2、フォーカスレンズLは、それぞれ、複数枚のレンズであるレンズ群として構成される。フォーカスレンズ群が複数設けられるようにしてもよい。
 ズームレンズLZ1,LZ2のそれぞれを駆動させるアクチュエータとしてリニアアクチュエータが用いられる。フォーカスレンズLを駆動させるアクチュエータとしてリニアアクチュエータが用いられるようにしてもよい。
 リニアアクチュエータではなく、高追従性を有し、レンズの位置の制御が可能な直動駆動型の超音波モータなどの他のアクチュエータがズームレンズLZ1,LZ2、フォーカスレンズLを駆動させるアクチュエータとして用いられるようにしてもよい。
<ズーム制御/フォーカス制御の例>
・一般的な制御の例
 図4は、一般的なズーム制御の例を示す図である。
 図4の横軸は時刻を表し、縦軸はズームレンズLの位置を表す。各時刻を、図4の上方に示す数字を用いて説明する。図5乃至図8においても同様である。
 図4の例においては、60Hz、120Hzなどの所定の周波数で規定される1周期分のサーボ周期(V)全体が32の区間に分割され、時刻t31のタイミングが、サーボ周期の開始タイミングとして示されている。
 サーボ周期の開始タイミングは、例えば、図示せぬ同期制御部からCPU部22と高速演算部23に対して供給される垂直同期信号により規定される。CPU部22と高速演算部23の間の情報の送受信は、各時刻のタイミングで適宜行われる。
 ズームレンズLの指示値のラッチがサーボ周期毎に行われる。ズームレンズLの指示値は、ズームレンズLの目標となる各時刻の位置を指示する値である。CPU部22から高速演算部23に対する駆動指示にズームレンズLの指示値が含まれる。
 サーボ周期は、CPU部22が計算した指示値を高速演算部23がラッチし、指示値に基づいて求めた指示軌跡に従って、ズームレンズLの駆動を制御する周期(ズーム制御の周期)である。ズームレンズLの駆動制御は、各時刻のズームレンズLの位置を、指示軌跡が示す位置に追従させるようにして行われる。
 図4は、ズームレンズLの目標位置として位置P0が指示されている状態において、指示値の計算が時刻t23のタイミングでCPU部22により行われた場合の例を示している。指示値の計算は、ズーム操作などが行われ、操作内容を示す情報がCPU部22に対して入力されたときに行われる。なお、図4において、指示値の計算のタイミングを示す矩形Rの縦軸上の位置は、計算結果の位置を示すものではない。
 指示値の計算が時刻t23のタイミングで行われた場合、計算結果の指示値の情報は、矢印A1の先に示すように、サーボ周期の開始タイミングである時刻t31のタイミングで高速演算部23によりラッチされ(取り込まれ)、指示軌跡が求められる。
 指示軌跡の計算は、例えば、指示値により表される目標となる各時刻の位置に対して、アクチュエータの特性などに応じたフィルタ処理を施すようにして行われる。指示軌跡は、ズームレンズLを実際に追従させる各時刻の位置の軌跡である。高追従性を有するリニアアクチュエータがズームレンズLの駆動に用いられることにより、指示軌跡と略同じ軌跡でズームレンズLの位置が調整されることになる。
 図4の点線L1は、目標となる各時刻の位置の軌跡である目標位置軌跡を示す。図4には、位置P0を基準として、ズームレンズLをプラス方向に移動させる軌跡が目標位置軌跡として示されている。一方、実線L2は指示軌跡を示す。このように、指示軌跡は、目標位置軌跡からずれた軌跡になる。
 図5は、フォーカス制御のタイミングの例を示す図である。
 図5の下方に並ぶ矩形R1乃至R8は、ズームトラッキング処理(Zoom Tracking)のタイミングを示す。ズームトラッキング処理は、1/8・V周期といったような、サーボ周期より短い周期でCPU部22により行われる。図5の例においては、1サーボ周期の間に8回のズームトラッキング処理が行われる。
 一般的なズームトラッキング処理は、CPU部22が、例えば、位置検出センサ26-1により検出されたズームレンズLの位置に基づいてフォーカスレンズLの位置を計算するようにして行われる。
 例えば、矩形R1で示す時刻t0~t1付近のタイミングで、1回目のズームトラッキング処理がCPU部22により行われる。位置検出センサ26-1により検出されたズームレンズLの位置に基づく計算がCPU部22により行われ、CPU部22による計算結果に基づいて、フォーカスレンズLの駆動制御が高速演算部23により行われる。フォーカスレンズLの駆動制御は、CPU部22によるズームトラッキング処理の後、例えば2回目のズームトラッキング処理のタイミングまでの間に行われる。
 2回目以降のズームトラッキング処理も、矩形R2以降に示すそれぞれのタイミングで行われる。
 このように、一般的なズーム制御は、CPU部22の指示値をサーボ周期の開始タイミングで高速演算部23がラッチし、指示値に基づいて求められた指示軌跡に従ってズームレンズLを駆動させることによって行われる。
 また、一般的なフォーカス制御は、位置検出センサ26-1により検出された位置を用いたCPU部22による計算結果に基づいて、フォーカスレンズLを高速演算部23が駆動させることによって行われる。
・本技術の一実施形態に係る制御の例
 図6は、本技術の一実施形態に係るズーム制御の例を示す図である。上述した説明と重複する説明については適宜省略する。
 指示値の計算が時刻t23のタイミングでCPU部22により行われた場合、各時刻の目標位置を示す指示値は、図6の矢印A2の先に示すように、時刻t24のタイミングで高速演算部23によりラッチされる。すなわち、サーボ周期の開始タイミングを待たずに、指示値のラッチが前倒しで行われる。比較のために、サーボ周期の開始タイミングで指示値のラッチが行われる場合の様子が図6に示されている。
 指示値のラッチの前倒し量は、フォーカス制御(ズームトラッキング処理)の1周期分の期間である1/8・V周期より長い期間となる。図6の例においては、1/8・V周期分の期間である4時刻分の期間より長い、7時刻分の期間だけ前倒して指示値のラッチが行われている。このように、指示値のラッチは、サーボ周期の開始タイミングを基準として、1/8・V周期の期間以上前のタイミングで行われる。
 指示値のラッチが前倒して行われた後、指示軌跡の計算が高速演算部23により行われる。指示軌跡の計算は、サーボ周期の開始タイミングで指示値のラッチが行われた場合と同様に、指示値により表される目標となる各時刻の位置に対して、アクチュエータの特性などに応じたフィルタ処理を施すようにして行われる。サーボ周期の開始タイミングで指示値のラッチが行われた場合と同様に、例えば、1サーボ周期分の指示軌跡が求められる。
 図6の一点鎖線L11は、前倒してラッチされた指示値により表される目標位置軌跡である前倒し目標位置軌跡を示す。一方、破線L12は、前倒してラッチされた指示値に基づいて求められた指示軌跡である前倒し指示軌跡を示す。
 このようにして求められた前倒し指示軌跡の情報が高速演算部23からCPU部22に対して供給され、ズームトラッキング処理に用いられる。
 CPU部22においては、前倒し指示軌跡に基づいてズームレンズLの位置が予測され、予測されたズームレンズLの位置を用いてズームトラッキング処理が行われる。ズーム制御におけるズームレンズLの実際の駆動は指示軌跡(実線L2)に追従させるようにしてサーボ周期の開始タイミングで開始されるから、前倒し指示軌跡は、ズームレンズLの位置の予測用に求められることになる。
 図7は、本技術の一実施形態に係るフォーカス制御の例を示す図である。
 現在のズームトラッキング処理が、白抜き矢印A3の先に示す2回目の処理である場合について説明する。2回目のズームトラッキング処理は、1回目のズームトラッキング処理の1/8・V周期の後の時刻t4~t5付近のタイミングで行われる。1回目のズームトラッキング処理も、2回目のズームトラッキング処理と同様にして行われている。
 CPU部22においては、前倒し指示軌跡(破線L12)を参照し、時刻t4における前倒し指示軌跡上の位置である位置P12を用いて2回目のズームトラッキング処理の計算が行われる。
 すなわち、位置検出センサ26-1により検出されたズームレンズLの位置を用いずに、ズームレンズLの予測位置である位置P12がズームトラッキング処理の計算に用いられる。ズームトラッキング処理の計算に用いられる位置P12は、次の周期のズームレンズLの位置P11を、前倒し量に相当する7時刻分だけ前倒した位置に相当する。
 このようなズームレンズLの予測位置を用いた計算結果に基づいて、フォーカスレンズLの駆動制御が高速演算部23により行われる。フォーカスレンズLの駆動制御は、CPU部22によるズームトラッキング処理の後、例えば3回目のズームトラッキング処理のタイミングまでの間に行われる。
 このように、CPU部22においては、ズームレンズLが実際に追従する指示軌跡を前倒した前倒し指示軌跡を参照することによってズームレンズLの位置が予測される。また、ズームレンズLの予測位置を用いてズームトラッキング処理の計算が行われる。
 CPU部22による計算結果に基づいてフォーカス制御が行われることにより、ズームレンズLの実際の位置に追従するようにフォーカスレンズLを駆動させることが可能となる。ズームレンズLの駆動速度が一定でない場合であっても、精度の高いズームトラッキング処理が可能となる。
 また、レンズ装置12においては、ズームレンズLの駆動にリニアアクチュエータが用いられる。DCモータなどを用いる場合に較べて、高速、かつ静粛なズーム制御が可能となる。
 図8は、前倒し量の例を示す図である。
 図8の矢印A11に示すように、2回目のズームトラッキング処理の計算によって求められた指示値に基づくフォーカス制御は、次のズームトラッキング処理である3回目のズームトラッキング処理のタイミングまでの間に行われる。図8の例においては、3回目のズームトラッキング処理の終わりのタイミングまでの間にフォーカス制御が行われている。
 上述したように、指示値のラッチと、指示軌跡に対する前倒し指示軌跡の前倒し量は、フォーカス制御の周期である1/8・V周期より長い期間として設定される。前倒し量を1/8・V周期より長い期間とすることにより、次の周期のズームトラッキング処理時のズームレンズLの位置を予測し、ズームトラッキング処理の計算に用いることが可能となる。
 仮に、一点鎖線L21で示すように前倒し量が1/8・V周期より短い期間である場合、位置P21として示すように、現在のズームトラッキング処理の周期内のズームレンズLの位置しか予測できないことになる。前倒し量を1/8・V周期より長い期間とすることにより、次の周期のズームレンズLの位置を予測することが可能となる。
<レンズ装置12の動作>
 図9のフローチャートを参照して、レンズマイコン(CPU部22、高速演算部23)の一連の処理について説明する。図9の処理は、例えば、ズーム操作がユーザにより行われ、ユーザの操作の内容を示す情報がCPU部22に入力されたときに開始される。
 ステップS1において、CPU部22は、ズームレンズLの目標位置を計算し、高速演算部23に対する駆動指示を行う。
 ステップS2において、高速演算部23は、目標位置の指示値を、サーボ周期の開始タイミングより前のタイミングでラッチする。
 ステップS3において、高速演算部23は、前倒してラッチした指示値により表される前倒し目標位置軌跡に基づいて前倒し指示軌跡を計算する。
 サーボ同期の開始タイミングになった場合、ステップS4において、高速演算部23は、指示軌跡に追従するようにズームレンズLを駆動させる。ズームレンズLの駆動制御は、サーボ周期の間続けられる。
 ステップS5において、CPU部22は、ズームトラッキング処理のタイミングであるか否かを判定し、ズームトラッキング処理のタイミングであると判定するまで待機する。
 ズームトラッキング処理のタイミングであるとステップS5において判定した場合、ステップS6において、CPU部22は、高速演算部23により求められた前倒し指示軌跡を参照し、次の周期のズームレンズLの予測位置を取得する。
 ステップS7において、CPU部22は、次の周期のズームレンズLの予測位置に基づいてフォーカスレンズLの駆動指示を行う。
 ステップS8において、高速演算部23は、フォーカスレンズLを駆動させる。
 ステップS9において、CPU部22は、ズームトラッキング処理が終了であるか否かを判定し、ズームトラッキング処理が終了ではないと判定した場合、ステップS5に戻り、上述した処理を繰り返す。
 例えば8回のズームトラッキング処理が行われたことから、ズームトラッキング処理が終了であるとステップS9において判定された場合、レンズマイコンの処理は終了となる。以上の処理が例えばサーボ周期毎に繰り返される。
 以上のように、レンズ装置12においては、目標位置の軌跡とは異なる軌跡となる指示軌跡に追従するようにしてズーム制御が行われる。高速演算部23は、指示軌跡の計算と前倒し指示軌跡の計算に任意のフィルタ処理(デジタルフィルタ)を用いることが可能となる。また、高速演算部23は、指示軌跡に基づくズーム制御として非線形の制御(VSSや切替制御)を用いることで、目標位置に対してロバストにアクチュエータを追従させることができる。
 また、ズームレンズLの駆動にリニアアクチュエータを用いることにより、高速、かつ静粛なズーム制御が可能となる。
 DCモータ駆動の電動ズームにおいては、駆動時のギアの噛み合わせなどによって駆動音が生じることから、高速で駆動させるのにも限度がある。また、機械的に接続された機構をモータで回転させることになるため、ワイド方向の駆動の場合は時計回りの方向、テレ方向の駆動の場合は反時計回りの方向といったように、レンズ鏡筒に設けられたズームリングの回転方向が一定の方向に固定される。ズームレンズLの駆動にリニアアクチュエータを用いることにより、そのようなことも防ぐことが可能となる。
 前倒し指示軌跡に基づくズームレンズLの予測位置を用いてズームトラッキング処理の計算を行うことにより、速度が一定でない、ズームレンズLの任意の駆動軌跡に対するズームトラッキングの精度を向上させることが可能となる。
 例えば、ズームレンズの駆動指示の位置をそのまま次の周期のズームレンズの位置として予測する手法を用いた場合、サーボアルゴリズムによっては定常偏差が生じたり、駆動指示の軌跡と実際に追従する軌跡が一致しなかったりするが、そのようなことを防ぐことが可能となる。
<その他>
 図10は、撮影システム1の他の構成例を示すブロック図である。
 図10に示すように、CPU部22と高速演算部23の機能が、撮影装置11側のマイコンであるボディ側マイコン11Aにおいて実現されるようにしてもよい。この場合、レンズ装置12内のアクチュエータに対する駆動制御がボディ側マイコン11Aの高速演算部23によって行われ、上述したズーム制御とフォーカス制御が実現される。
 撮影システム1がレンズ交換式のカメラであるものとしたが、レンズ一体型のカメラにおいても、上述したズーム制御とフォーカス制御は適用可能である。
 目標位置軌跡と指示軌跡がズームレンズLの位置を線形的に制御する軌跡であるものとしたが、レンズ装置12においては、適宜、非線形の軌跡を用いて、ズームレンズLの駆動制御が行われる。
 本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
 本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
 本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
・構成の組み合わせ例
 本技術は、以下のような構成をとることもできる。
(1)
 第1のアクチュエータが制御するズームレンズの各時刻の目標位置を計算する制御部と、
 前記ズームレンズの制御周期の開始タイミング以降の各時刻の前記ズームレンズの位置の軌跡である指示軌跡を、前記開始タイミングの前に前記制御部から取り込んだ指示値により示される前記目標位置に基づいて計算し、前記開始タイミングになった場合、前記第1のアクチュエータの駆動を前記指示軌跡に基づいて制御する演算部と
 を備え、
 前記制御部は、前記開始タイミングの後のズームトラッキング処理の計算を、前記指示軌跡から求められる前記ズームレンズの予測位置に基づいて行う
 レンズ装置。
(2)
 前記演算部は、フォーカスレンズを制御する第2のアクチュエータを前記ズームトラッキング処理の計算結果に基づいて駆動させ、前記ズームレンズに対する前記フォーカスレンズのトラッキングを制御する
 前記(1)に記載のレンズ装置。
(3)
 前記演算部は、
 前記第1のアクチュエータの駆動制御を第1の周期で行い、
 前記第2のアクチュエータの駆動制御を、前記第1の周期より短い第2の周期で行う
 前記(2)に記載のレンズ装置。
(4)
 前記演算部は、前記開始タイミングを基準として前記第2の周期の期間以上前のタイミングで、前記制御部から前記指示値を取り込む
 前記(3)に記載のレンズ装置。
(5)
 前記制御部は、次の周期の前記ズームトラッキング処理のときの前記ズームレンズの位置を示す前記予測位置に基づいて前記ズームトラッキング処理の計算を行う
 前記(3)に記載のレンズ装置。
(6)
 前記演算部は、前記指示値を前記開始タイミングで取り込んだときと同じフィルタ処理を含む計算を行い、前記指示軌跡を求める
 前記(1)乃至(5)のいずれかに記載のレンズ装置。
(7)
 前記ズームレンズと、
 前記第1のアクチュエータと、
 前記フォーカスレンズと、
 前記第2のアクチュエータと
 をさらに備える前記(2)に記載のレンズ装置。
(8)
 前記第1のアクチュエータはリニアアクチュエータである
 前記(7)に記載のレンズ装置。
(9)
 前記制御部と前記演算部を有するマイクロコンピュータをさらに備える
 前記(1)乃至(5)のいずれかに記載のレンズ装置。
(10)
 レンズ装置が、
 第1のアクチュエータが制御するズームレンズの各時刻の目標位置を制御部において計算し、
 前記ズームレンズの制御周期の開始タイミング以降の各時刻の前記ズームレンズの位置の軌跡である指示軌跡を、前記開始タイミングの前に前記制御部から取り込んだ指示値により示される前記目標位置に基づいて演算部において計算し、
 前記開始タイミングになった場合、前記第1のアクチュエータの駆動を前記指示軌跡に基づいて前記演算部に制御させ、
 前記開始タイミングの後のズームトラッキング処理の計算を、前記指示軌跡から求められる前記ズームレンズの予測位置に基づいて前記制御部において行う
 制御方法。
(11)
 ズームレンズと、
 前記ズームレンズを制御する第1のアクチュエータと、
 フォーカスレンズと、
 前記フォーカスレンズを制御する第2のアクチュエータと、
 前記ズームレンズの各時刻の目標位置を計算する第1の制御部と、
 前記ズームレンズの制御周期の開始タイミング以降の各時刻の前記ズームレンズの位置の軌跡である指示軌跡を、前記開始タイミングの前に前記第1の制御部から取り込んだ指示値により示される前記目標位置に基づいて計算し、前記開始タイミングになった場合、前記第1のアクチュエータの駆動を前記指示軌跡に基づいて制御する演算部と
 を備え、
 前記第1の制御部は、前記開始タイミングの後のズームトラッキング処理の計算を、前記指示軌跡から求められる前記ズームレンズの予測位置に基づいて行う
 レンズ装置と、
 前記第1の制御部との間で通信を行う第2の制御部を備える
 撮影装置と
 を含む撮影システム。
 1 撮影システム, 11 撮影装置, 12 レンズ装置, 22 CPU部, 23 高速演算部, 24-1,24-2 モータドライバ, 25-1,25-2 モータ, 26-1,26-2 位置検出センサ

Claims (11)

  1.  第1のアクチュエータが制御するズームレンズの各時刻の目標位置を計算する制御部と、
     前記ズームレンズの制御周期の開始タイミング以降の各時刻の前記ズームレンズの位置の軌跡である指示軌跡を、前記開始タイミングの前に前記制御部から取り込んだ指示値により示される前記目標位置に基づいて計算し、前記開始タイミングになった場合、前記第1のアクチュエータの駆動を前記指示軌跡に基づいて制御する演算部と
     を備え、
     前記制御部は、前記開始タイミングの後のズームトラッキング処理の計算を、前記指示軌跡から求められる前記ズームレンズの予測位置に基づいて行う
     レンズ装置。
  2.  前記演算部は、フォーカスレンズを制御する第2のアクチュエータを前記ズームトラッキング処理の計算結果に基づいて駆動させ、前記ズームレンズに対する前記フォーカスレンズのトラッキングを制御する
     請求項1に記載のレンズ装置。
  3.  前記演算部は、
     前記第1のアクチュエータの駆動制御を第1の周期で行い、
     前記第2のアクチュエータの駆動制御を、前記第1の周期より短い第2の周期で行う
     請求項2に記載のレンズ装置。
  4.  前記演算部は、前記開始タイミングを基準として前記第2の周期の期間以上前のタイミングで、前記制御部から前記指示値を取り込む
     請求項3に記載のレンズ装置。
  5.  前記制御部は、次の周期の前記ズームトラッキング処理のときの前記ズームレンズの位置を示す前記予測位置に基づいて前記ズームトラッキング処理の計算を行う
     請求項3に記載のレンズ装置。
  6.  前記演算部は、前記指示値を前記開始タイミングで取り込んだときと同じフィルタ処理を含む計算を行い、前記指示軌跡を求める
     請求項1に記載のレンズ装置。
  7.  前記ズームレンズと、
     前記第1のアクチュエータと、
     前記フォーカスレンズと、
     前記第2のアクチュエータと
     をさらに備える請求項2に記載のレンズ装置。
  8.  前記第1のアクチュエータはリニアアクチュエータである
     請求項7に記載のレンズ装置。
  9.  前記制御部と前記演算部を有するマイクロコンピュータをさらに備える
     請求項1に記載のレンズ装置。
  10.  レンズ装置が、
     第1のアクチュエータが制御するズームレンズの各時刻の目標位置を制御部において計算し、
     前記ズームレンズの制御周期の開始タイミング以降の各時刻の前記ズームレンズの位置の軌跡である指示軌跡を、前記開始タイミングの前に前記制御部から取り込んだ指示値により示される前記目標位置に基づいて演算部において計算し、
     前記開始タイミングになった場合、前記第1のアクチュエータの駆動を前記指示軌跡に基づいて前記演算部に制御させ、
     前記開始タイミングの後のズームトラッキング処理の計算を、前記指示軌跡から求められる前記ズームレンズの予測位置に基づいて前記制御部において行う
     制御方法。
  11.  ズームレンズと、
     前記ズームレンズを制御する第1のアクチュエータと、
     フォーカスレンズと、
     前記フォーカスレンズを制御する第2のアクチュエータと、
     前記ズームレンズの各時刻の目標位置を計算する第1の制御部と、
     前記ズームレンズの制御周期の開始タイミング以降の各時刻の前記ズームレンズの位置の軌跡である指示軌跡を、前記開始タイミングの前に前記第1の制御部から取り込んだ指示値により示される前記目標位置に基づいて計算し、前記開始タイミングになった場合、前記第1のアクチュエータの駆動を前記指示軌跡に基づいて制御する演算部と
     を備え、
     前記第1の制御部は、前記開始タイミングの後のズームトラッキング処理の計算を、前記指示軌跡から求められる前記ズームレンズの予測位置に基づいて行う
     レンズ装置と、
     前記第1の制御部との間で通信を行う第2の制御部を備える
     撮影装置と
     を含む撮影システム。
PCT/JP2023/009879 2022-03-31 2023-03-14 レンズ装置、制御方法、および撮影システム WO2023189552A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022060690 2022-03-31
JP2022-060690 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023189552A1 true WO2023189552A1 (ja) 2023-10-05

Family

ID=88201573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009879 WO2023189552A1 (ja) 2022-03-31 2023-03-14 レンズ装置、制御方法、および撮影システム

Country Status (1)

Country Link
WO (1) WO2023189552A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009042475A (ja) * 2007-08-08 2009-02-26 Canon Inc 撮像装置及び撮像装置の制御方法、並びにプログラム及び記憶媒体
WO2010029686A1 (ja) * 2008-09-10 2010-03-18 パナソニック株式会社 レンズ鏡筒および撮像装置
JP2011257699A (ja) * 2010-06-11 2011-12-22 Canon Inc 撮像装置
JP2016224096A (ja) * 2015-05-27 2016-12-28 キヤノン株式会社 レンズ装置およびそれを有する撮像装置
JP2017147720A (ja) * 2016-02-15 2017-08-24 パナソニックIpマネジメント株式会社 ズーム機構を備えた撮像装置及び交換レンズ
JP2021047296A (ja) * 2019-09-19 2021-03-25 キヤノン株式会社 レンズ装置、撮像装置、レンズ装置の制御方法、およびプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009042475A (ja) * 2007-08-08 2009-02-26 Canon Inc 撮像装置及び撮像装置の制御方法、並びにプログラム及び記憶媒体
WO2010029686A1 (ja) * 2008-09-10 2010-03-18 パナソニック株式会社 レンズ鏡筒および撮像装置
JP2011257699A (ja) * 2010-06-11 2011-12-22 Canon Inc 撮像装置
JP2016224096A (ja) * 2015-05-27 2016-12-28 キヤノン株式会社 レンズ装置およびそれを有する撮像装置
JP2017147720A (ja) * 2016-02-15 2017-08-24 パナソニックIpマネジメント株式会社 ズーム機構を備えた撮像装置及び交換レンズ
JP2021047296A (ja) * 2019-09-19 2021-03-25 キヤノン株式会社 レンズ装置、撮像装置、レンズ装置の制御方法、およびプログラム

Similar Documents

Publication Publication Date Title
JP2015023703A (ja) ステッピングモータの制御装置、光学機器、ステッピングモータの制御方法、及びプログラム
JP5178186B2 (ja) レンズ位置制御装置、およびその制御方法
JP2008107556A (ja) ステップモータ駆動装置、レンズ駆動装置及びカメラ
US8654452B2 (en) Image pickup apparatus that drives plural lens units using motors different from each other and drive control method of lens
US5742435A (en) Video-camera imaging-system zoom lens barrel
WO2023189552A1 (ja) レンズ装置、制御方法、および撮影システム
JP2013231820A (ja) レンズ装置及びそれを有する撮像装置
JP5264394B2 (ja) 光学機器
JP6932541B2 (ja) 制御装置、レンズ装置、および撮像装置
JP2007316354A (ja) 撮影レンズ駆動制御装置および撮像装置
US6798989B2 (en) Motor control apparatus, lens apparatus, camera system and camera
JPH0777648A (ja) レンズ制御装置
JPH10325971A (ja) レンズ駆動制御装置及び駆動制御装置を備えた機器
JP3915104B2 (ja) レンズの制御方法
JP5602534B2 (ja) レンズ制御装置及びその制御方法
JP5508125B2 (ja) レンズ装置及びカメラ
WO2023234057A1 (ja) レンズ装置、レンズ装置における処理方法、プログラムおよび撮像装置
JP4069336B2 (ja) レンズ駆動装置
JP2021196541A (ja) 光学機器、及びこれを備える撮像システム
JP2001069793A (ja) ステッピングモータを用いた駆動装置およびこれを備えた装置、光量調節装置、光学機器
JP7175677B2 (ja) 光学機器
JP2023129030A (ja) 制御装置、撮像装置、制御方法、およびプログラム
JP2020170144A (ja) レンズ装置及びそれを有する撮像装置
JP6700756B2 (ja) レンズ装置および撮像装置
JP3981971B2 (ja) レンズ制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779570

Country of ref document: EP

Kind code of ref document: A1