WO2023189115A1 - 発泡粒子の製造方法及び発泡粒子 - Google Patents

発泡粒子の製造方法及び発泡粒子 Download PDF

Info

Publication number
WO2023189115A1
WO2023189115A1 PCT/JP2023/007330 JP2023007330W WO2023189115A1 WO 2023189115 A1 WO2023189115 A1 WO 2023189115A1 JP 2023007330 W JP2023007330 W JP 2023007330W WO 2023189115 A1 WO2023189115 A1 WO 2023189115A1
Authority
WO
WIPO (PCT)
Prior art keywords
density polyethylene
linear low
less
particles
expanded particles
Prior art date
Application number
PCT/JP2023/007330
Other languages
English (en)
French (fr)
Inventor
泰三 北原
Original Assignee
株式会社ジェイエスピー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022056618A external-priority patent/JP2023148536A/ja
Priority claimed from JP2022056623A external-priority patent/JP2023148537A/ja
Priority claimed from JP2022071800A external-priority patent/JP7311672B1/ja
Priority claimed from JP2022088917A external-priority patent/JP2023176570A/ja
Application filed by 株式会社ジェイエスピー filed Critical 株式会社ジェイエスピー
Publication of WO2023189115A1 publication Critical patent/WO2023189115A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • B29C44/44Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles

Definitions

  • the present invention relates to a method for producing expanded particles and expanded particles.
  • a polyethylene resin expanded bead molded product obtained by molding expanded polyethylene resin beads in a mold has excellent chemical resistance, cushioning properties, etc., and is also excellent in recyclability.
  • polyethylene resin foam particle moldings are used as shock absorbers, heat insulating materials, and various packaging materials, including packaging and cushioning materials for electrical and electronic parts, packaging and cushioning materials for automobile parts, and from other precision parts to foods. It is widely used as a variety of packaging materials.
  • biomass plastics have been developed in response to environmental issues such as concerns about the depletion of fossil resources such as petroleum and the desire to reduce carbon dioxide emissions, and attempts are being made to replace conventional petroleum-based resins.
  • Patent Document 1 discloses expanded polyethylene resin particles containing a plant-derived polyethylene resin with a vegetable content of 80% or more as measured by ASTM D 6866, and whose vegetable content is 1% or more.
  • An object of the present invention is to provide a method for producing expanded particles that can produce a polyethylene-based resin expanded particle molded article with excellent in-mold moldability and a high degree of biomass over a wide range of densities.
  • one aspect of the present invention is the method for manufacturing expanded beads described in [1] to [7] below, and the expanded beads described in [8] and [9].
  • the mixed resin includes linear low density polyethylene A and linear low density polyethylene B having a biomass degree of 50% or more as measured by ASTM D 6866,
  • the melt flow rate MFR A of the linear low density polyethylene A measured at a temperature of 190° C. and a load of 2.16 kg is 0.1 g/10 minutes or more and 3 g/10 minutes or less, Difference between the melt flow rate MFR A of the linear low density polyethylene A and the melt flow rate MFR B of the linear low density polyethylene B measured at a temperature of 190° C.
  • the mass ratio (A/B) of the linear low density polyethylene A and the linear low density polyethylene B in the mixed resin is 5/95 to 95/5
  • the biomass degree of the mixed resin measured according to ASTM D 6866 is 5% or more, In the DSC curve obtained by heating the expanded particles from 23°C to 200°C at a heating rate of 10°C/min, there is a melting peak (specific peak) specific to linear low-density polyethylene, and a melting peak (specific peak) at a temperature higher than the specific peak.
  • the difference between the heat of fusion ⁇ H B of the linear low-density polyethylene B and the heat of fusion ⁇ H A of the linear low-density polyethylene A ( ⁇ H B ⁇ H A ) is 3 J/g or more, and the mixing The method for producing expanded particles according to any one of [1] to [3], wherein the resin has a total heat of fusion of 70 J/g or more and 120 J/g or less.
  • the total heat of fusion of the foamed particles is 70 J/g or more and 105 J/g or less, and the ratio of the heat of fusion of the high temperature peak to the total heat of fusion of the foamed particles is 0.2 or more and 0.7 or less.
  • the total heat of fusion of the foamed particles is 70 J/g or more and 105 J/g or less, and the ratio of the heat of fusion of the high temperature peak to the total heat of fusion of the foamed particles is 0.2 or more and 0.7 or less. Expanded particles according to [8].
  • the method for producing expanded particles of the present invention is to foam resin particles whose base resin is a mixed resin of at least two types of linear low-density polyethylene. Below, the mixed resin and the linear low density polyethylene will be explained.
  • the resin particles used in the method for producing expanded particles of the present invention use a mixed resin of at least two types of linear low-density polyethylene as a base resin.
  • the base resin is a mixed resin of at least two types of linear low-density polyethylene
  • the resin particles are mainly composed of a mixed resin of at least two types of linear low-density polyethylene. It means that it is made of resin.
  • the mixed resin includes linear low density polyethylene A and linear low density polyethylene B having a biomass degree of 50% or more as measured by ASTM D 6866. Furthermore, the melt flow rate MFR A of the linear low density polyethylene A measured at a temperature of 190° C.
  • the DSC curve obtained by heating the expanded particles from 23°C to 200°C at a heating rate of 10°C/min there is a melting peak (specific peak) specific to linear low-density polyethylene, and a melting peak (specific peak) that is higher than the specific peak. It has a crystal structure in which one or more melting peaks (high temperature peaks) appear on the high temperature side, and the heat of fusion of the high temperature peaks is 10 J/g or more and 50 J/g or less.
  • the linear low density polyethylene A and the linear low density polyethylene B contained in the mixed resin will be explained.
  • Linear low density polyethylene A The linear low density polyethylene A has a biomass degree of 50% or more as measured by ASTM D 6866. Further, the melt flow rate MFR A measured at a temperature of 190° C. and a load of 2.16 kg is 0.1 g/10 minutes or more and 3 g/10 minutes or less.
  • the biomass degree BC A of the linear low density polyethylene A measured according to ASTM D 6866 is 50% or more, preferably 60% or more, more preferably 70% or more, More preferably, it is 80% or more. Further, there is no upper limit on the upper limit, and the biomass degree BC A of the linear low density polyethylene A measured according to ASTM D 6866 may be 100% or less, but it is sufficient that the biomass degree BC A of the linear low density polyethylene A is 100% or less.
  • the melt flow rate MFR A of the linear low density polyethylene A measured at a temperature of 190° C. and a load of 2.16 kg is 0.1 g/10 minutes or more and 3 g/10 minutes or less.
  • the melt flow rate MFR A of the linear low density polyethylene A is preferably 0.3 g/10 minutes or more, more preferably 0.5 g/10 minutes or more, and even more preferably 0.7 g/10 minutes or more. It is.
  • the melt flow rate MFR A of the linear low density polyethylene A is preferably 2.0 g/10 minutes or less, more preferably 1.8 g/10 minutes or less, and even more preferably 1.5 g/10 minutes. minutes or less, and even more preferably 1.4 g/10 minutes or less.
  • the melt flow rate MFR A of linear low density polyethylene A is a value measured at a temperature of 190° C. and a load of 2.16 kg. More specifically, it can be measured by the method described in Examples in accordance with JIS K 7210-1:2014.
  • the density ⁇ A of the linear low density polyethylene A is preferably 910 kg/m 3 or more and 940 kg/m 3 or less, and more preferably 910 kg/m 3 from the viewpoint of making it easier to obtain expanded particles having desired physical properties. 3 or more and 935 kg/m 3 or less, more preferably 910 kg/m 3 or more and 928 kg/m 3 or less, even more preferably 912 kg/m 3 or more and 925 kg/m 3 or less, particularly preferably 914 kg/m 3
  • the weight is 922 kg/m 3 or less.
  • the density ⁇ A of linear low density polyethylene A is measured by method A (substitution method in water) described in JIS K7112:1999.
  • the melting point TmA of the linear low density polyethylene A is preferably 100°C or more and 130°C or less from the viewpoint of improving the mechanical properties of the obtained molded product.
  • the melting point TmA of the linear low density polyethylene A is more preferably 110°C or higher, still more preferably 120°C or higher, even more preferably 122°C or higher.
  • the melting point TmA of the linear low-density polyethylene A is preferably 128°C or lower, more preferably 126°C or lower, from the viewpoint of improving the in-mold moldability of expanded particles under low molding pressure conditions. be.
  • the melting point Tm A of linear low density polyethylene A is measured based on JIS K 7121:2012 using linear low density polyethylene as a test piece. Specifically, it can be measured by the method described in Examples.
  • the heat of fusion ⁇ HA of the linear low-density polyethylene A is a DSC curve obtained by performing differential scanning calorimetry (DSC) in accordance with JIS K 7122:2012 using the linear low-density polyethylene A as a test piece. It can be found from Specifically, it can be measured by the method described in Examples.
  • the linear low density polyethylene A is a copolymer of ethylene and ⁇ -olefin having a density of 910 kg/m 3 to 940 kg/m 3 and a linear structure.
  • the ⁇ -olefin is preferably an ⁇ -olefin having 3 to 20 carbon atoms, more preferably an ⁇ -olefin having 3 to 10 carbon atoms, and even more preferably an ⁇ -olefin having 3 to 6 carbon atoms. .
  • ⁇ -olefins include propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 4-methyl-1-butene, 3,3-dimethyl-1-butene, 4-methyl-1 -pentene, 4,4-dimethyl-1-pentene, 1-octene and the like.
  • ⁇ -olefins are preferably those from the group consisting of 1-butene, 1-hexene, and 4-methyl-1-pentene, from the viewpoint of stably obtaining expanded particles with excellent in-mold moldability. At least one selected from the following.
  • the linear low-density polyethylene A is preferably a linear low-density polyethylene A1 containing a butene component and a hexene component as a copolymerization component (comonomer) or a linear low-density polyethylene A1 containing a butene component as a copolymerization component (comonomer). It is a linear low density polyethylene A2, and more preferably a linear low density polyethylene A1 containing a butene component and a hexene component as copolymerization components. Note that components derived from hexene in linear low-density polyethylene containing a butene component and a hexene component as copolymerization components include 1-hexene and 4-methyl-1-pentene.
  • linear low density polyethylene A2 containing a butene component when used as the linear low density polyethylene A, the linear low density
  • the content of the butene component in polyethylene A2 is preferably 2 mol% or more and 7 mol% or less, more preferably 3 mol% or more and 6 mol% or less.
  • the butene component in the linear low density polyethylene A1 is The content is preferably 0.5 mol% or more and 6 mol% or less, more preferably 1 mol% or more and 5 mol% or less, and even more preferably 2 mol% or more and 4 mol% or less. Further, when using linear low density polyethylene A1 containing a butene component and a hexene component, the content of the hexene component in linear low density polyethylene A1 is preferably 0.2 mol% or more and 5 mol% or less.
  • linear low-density polyethylene A may contain a component derived from propylene as an ⁇ -olefin (copolymer component, comonomer) as long as the object of the present invention can be achieved and the effects of the present invention are not impaired. You can stay there.
  • linear low-density polyethylene A contains a component derived from propylene as a copolymerization component
  • linear low-density polyethylene has a low density, a relatively high melting point, and a gradual change in physical properties when softened. Tend.
  • linear low density polyethylene A contains a component derived from propylene
  • the content of the component derived from propylene in linear low density polyethylene A is preferably 0.3 mol% or more and 5 mol% or less, and 0. It is more preferably .5 mol% or more and 4 mol% or less, even more preferably 0.8 mol% or more and 3 mol% or less, and particularly preferably 1 mol% or more and 2 mol% or less.
  • the linear low density polyethylene A contains a component derived from propylene
  • the linear low density polyethylene A contains a component derived from an ⁇ -olefin (for example, butene and/or hexene) other than propylene.
  • the ratio of the content of components derived from propylene to the amount [propylene component content (mol%)/ ⁇ -olefin component content other than propylene (mol%)] is preferably 0.1 or more and 2 or less, It is more preferably 0.2 or more and 1 or less, and even more preferably 0.3 or more and 0.7 or less.
  • Linear low density polyethylene B has a melt flow rate MFR A of linear low-density polyethylene A and a melt flow rate of linear low-density polyethylene B measured at a temperature of 190°C and a load of 2.16 kg. It is a linear low density polyethylene in which the difference in MFR B
  • linear low-density polyethylene When forming a mixed resin by mixing linear low-density polyethylene A and linear low-density polyethylene B, which has physical properties different from those of linear low-density polyethylene A, as described below, linear low-density polyethylene
  • linear low-density polyethylene B which has a small difference in melt flow rate from low-density polyethylene A, the effect of one linear low-density polyethylene being included in the mixed resin can be expressed, while the in-mold Expanded particles with excellent moldability can be obtained.
  • is preferably 1.8 g/10 minutes or less, more preferably 1.5 g/10 minutes or less, and even more preferably 1.4 g/10 minutes or less. There is no limit to the lower limit, and it may be 0 g/10 minutes.
  • the density ⁇ B of the linear low-density polyethylene B is preferably 910 kg/m 3 or more and 940 kg/m 3 or less, and more preferably 912 kg/m 3 from the viewpoint of making it easier to obtain expanded particles having desired physical properties. 3 or more and 935 kg/m 3 or less, more preferably 914 kg/m 3 or more and 928 kg/m 3 or less, even more preferably 920 kg/m 3 or more and 928 kg/m 3 or less, particularly preferably 922 kg/m 3 It is 928 kg/m 3 or less.
  • the density ⁇ B of the linear low density polyethylene B is measured by method A (substitution method in water) described in JIS K7112:1999.
  • (absolute value) is preferably 3 kg/m 3 or more. .
  • foamed particles with a mixed resin of linear low-density polyethylene with different densities it is possible to obtain foamed particles with a desired degree of biomass while, for example, forming one linear low-density polyethylene with a relatively low density.
  • expanded beads can be stably obtained that have excellent in-mold moldability and can be molded into molded bodies with excellent compressive strength.
  • is preferably 4 kg/m 3 or more, more preferably 5 kg/m 3 or more, and still more preferably 6 kg/m 3 or more. Although there is no upper limit on the upper limit, it is preferably 20 kg/m 3 or less, more preferably 15 kg/m 3 or less. Further, it is preferable that the density ⁇ B of the linear low-density polyethylene B is larger than the density ⁇ A of the linear low-density polyethylene A, and the density ⁇ B of the linear low-density polyethylene B and the linear The difference ( ⁇ B ⁇ A ) (relative value) from the density ⁇ A of low density polyethylene A is preferably 3 kg/m 3 or more.
  • the above ( ⁇ B ⁇ A ) is preferably 4 kg/m 3 or more, more preferably 5 kg/m 3 or more, and still more preferably 6 kg/m 3 or more. Although there is no upper limit on the upper limit, it is preferably 20 kg/m 3 or less, more preferably 15 kg/m 3 or less.
  • the melting point TmB of the linear low-density polyethylene B is preferably 100°C or more and 130°C or less from the viewpoint of improving the mechanical properties of the obtained molded product.
  • the melting point TmB of the linear low density polyethylene B is more preferably 110°C or higher, still more preferably 116°C or higher, even more preferably 120°C or higher.
  • the melting point TmB of the linear low-density polyethylene B is preferably 128°C or lower, more preferably 126°C or lower, from the viewpoint of improving the in-mold moldability of expanded particles under low molding pressure conditions.
  • the temperature is more preferably 124°C or lower.
  • the melting point Tm B of linear low density polyethylene B is measured based on JIS K 7121:2012 using linear low density polyethylene as a test piece. Specifically, it can be measured by the method described in Examples.
  • (absolute value) is preferably 0°C or more and 4°C or less. be.
  • is preferably 3°C or less, more preferably 2°C or less. There is no limit to the lower limit, and it may be 0°C.
  • the heat of fusion ⁇ HB of the linear low-density polyethylene B is preferably 60 J/g or more and 120 J/g or less.
  • the heat of fusion ⁇ H B of the linear low-density polyethylene B is preferably 70 J/g or more. It is more preferably 80 J/g or more, still more preferably 90 J/g or more, even more preferably 100 J/g or more, particularly preferably 105 J/g or more.
  • the heat of fusion ⁇ H B of the linear low density polyethylene B is preferably 118 J/g or less, more preferably 115 J/g or less.
  • the heat of fusion ⁇ H B of the linear low-density polyethylene B is determined by the DSC curve obtained by performing differential scanning calorimetry (DSC) in accordance with JIS K 7122:2012 using the linear low-density polyethylene B as a test piece. It can be found from Specifically, it can be measured by the method described in Examples.
  • (absolute value) is preferably 3 J/g. or more, more preferably 5 J/g or more, still more preferably 10 J/g or more and 40 J/g or less.
  • the heat of fusion ⁇ H B of the linear low-density polyethylene B is larger than the heat of fusion ⁇ H A of the linear low-density polyethylene A, and the heat of fusion ⁇ H B of the linear low-density polyethylene B and the The difference ( ⁇ H B ⁇ H A ) (relative value) from the heat of fusion ⁇ H A of linear low-density polyethylene A is preferably 5 J/g or more, more preferably 10 J/g or more and 40 J/g or less. . In this case, it is possible to stably obtain expanded particles that have a desired degree of biomass, have excellent in-mold moldability, and can be molded into a molded article with excellent compressive strength.
  • the above ( ⁇ H B ⁇ H A ) is more preferably 15 J/g or more, even more preferably 20 J/g or more, and particularly preferably 25 J/g or more. Further, the above ( ⁇ H B ⁇ H A ) is more preferably 38 J/g or less, even more preferably 35 J/g or less.
  • the linear low-density polyethylene B may be a petroleum-derived linear low-density polyethylene, or may be a linear low-density polyethylene containing a biomass-derived component. Therefore, there is no limit to the biomass degree BCB measured by ASTM D 6866 of the linear low-density polyethylene B, but the linear low-density polyethylene B contains biomass-derived components. In this case, the biomass degree BCB may be 10% or more, 20% or more, 30% or more, 50% or more, 70% or more. It's okay. Note that the upper limit of the biomass degree BCB is 100%.
  • the biomass degree BC B of the linear low-density polyethylene B measured according to ASTM D 6866 may be 0%.
  • the biomass degree BCB of the linear low density polyethylene B is preferably 20% or less, and preferably 10% or less. More preferred.
  • the linear low-density polyethylene B is a petroleum-derived linear low-density polyethylene.
  • is: Preferably it is 5% or more. In this case, it is possible to stably obtain expanded particles that have a desired degree of biomass and have excellent in-mold moldability. Further, it is preferable that the biomass degree BC A of the linear low density polyethylene A is larger than the biomass degree BC B of the linear low density polyethylene B. From the viewpoint of easily increasing the in-mold moldability of the expanded particles,
  • the upper limit is preferably 95% or less. , more preferably 90% or less.
  • the difference (BC A - BC B ) (relative value) between the biomass degree BC A of linear low density polyethylene A and the biomass degree BC B of the linear low density polyethylene B measured according to ASTM D 6866 is: From the above viewpoint, it is preferably 5% or more, preferably 10% or more, more preferably 20% or more, even more preferably 30% or more, even more preferably 50% or more, and especially Preferably it is 70% or more. There is no upper limit on the upper limit, and it may be 100% or less, but from the viewpoint of stably improving the in-mold moldability of the expanded particles, the above (BC A - BC B ) is preferably 95% or less. , more preferably 90% or less.
  • the linear low-density polyethylene B is a copolymer of ethylene and ⁇ -olefin having a density of 910 kg/m 3 to 940 kg/m 3 and a linear structure.
  • the ⁇ -olefin is preferably an ⁇ -olefin having 3 to 20 carbon atoms, more preferably an ⁇ -olefin having 3 to 10 carbon atoms, and even more preferably an ⁇ -olefin having 3 to 6 carbon atoms. .
  • the linear low-density polyethylene B is preferably linear low-density polyethylene B1 containing an octene component as a copolymerization component (comonomer) or linear low-density polyethylene B1 containing a hexene component as a copolymerization component (comonomer).
  • B2 more preferably linear low density polyethylene B1 containing an octene component.
  • components derived from octene in linear low-density polyethylene containing an octene component as a copolymerization component include 1-octene, 2-methylheptene, 3-ethylhexene, etc., and 1-octene is often used. preferable.
  • components derived from hexene in linear low-density polyethylene containing hexene components include 1-hexene and 4-methyl-1-pentene, and 4-methyl-1-pentene is most likely the component derived from hexene. preferable.
  • linear low density polyethylene B2 containing a hexene component when linear low density polyethylene B2 containing a hexene component is used as the linear low density polyethylene B, the linear low density polyethylene B2 containing a hexene component is used.
  • the content of the hexene component in polyethylene B2 is preferably 0.5 mol% or more and 5 mol% or less, more preferably 1 mol% or more and 3 mol% or less.
  • linear low density polyethylene B1 containing an octene component when linear low density polyethylene B1 containing an octene component is used as the linear low density polyethylene B, the content of the octene component in the linear low density polyethylene B1 is 0.
  • the above content is the content when the total of the component derived from ethylene and the component derived from ⁇ -olefin is 100% by mass. Further, the content of the component derived from ⁇ -olefin in the linear low density polyethylene B is preferably 10 mol% or less, more preferably 8 mol% or less, and even more preferably 5 mol% or less. It is preferably 3 mol% or less, and even more preferably 3 mol% or less.
  • the content of the component derived from ⁇ -olefin in linear low density polyethylene B is preferably 0.5 mol% or more, more preferably 1 mol% or more.
  • the content of components derived from each ⁇ -olefin in the linear low-density polyethylene B can be determined by carbon-13 nuclear magnetic resonance ( 13 C-NMR) measurement, etc. as described in Examples.
  • the linear low-density polyethylene that is the base resin of the resin particles is a mixture of at least two types of linear low-density polyethylene, including the linear low-density polyethylene A and the linear low-density polyethylene B. It is resin.
  • the mixed resin is obtained by kneading the linear low density polyethylene A and the linear low density polyethylene B, for example.
  • the melting characteristic of linear low-density polyethylene is It has a crystal structure in which a peak (unique peak) and one or more melting peaks (high temperature peak) appear on the higher temperature side than the intrinsic peak, and the heat of fusion of the high temperature peak is 10 J/g or more and 50 J/g or less.
  • the mass ratio of the linear low density polyethylene A to the linear low density polyethylene B in the mixed resin is 5/95 to 95/5.
  • a mixed resin by mixing linear low-density polyethylene A and linear low-density polyethylene B, which has physical properties different from those of linear low-density polyethylene A, as described above,
  • foam particles By configuring foam particles with a mixed resin in which linear low-density polyethylene B, which has a small difference in melt flow rate from low-density polyethylene A, is mixed at a specific mass ratio, one linear low-density polyethylene is mixed in the mixed resin. It is possible to obtain foamed particles that exhibit excellent in-mold moldability while exhibiting the effects of containing polyethylene.
  • the mass ratio of the linear low-density polyethylene A to the linear low-density polyethylene B (the mass of the linear low-density polyethylene A to the linear low-density polyethylene B) Ratio) (A/B) is 5/95 or more (1/19 or less), preferably 10/90 or more (1/9 or more), more preferably 20/80 or more (1/4 or more) and more preferably 30/70 or more (3/7 or more).
  • the mass ratio of the linear low density polyethylene A to the linear low density polyethylene B (linear low density polyethylene B to linear low density polyethylene
  • the mass ratio of polyethylene A) (A/B) is 95/5 or less (19 or less), preferably 90/10 or less (9 or less), more preferably 80/20 or less (4 or less). , more preferably 70/30 or less (7/3 or less), even more preferably 60/40 or less (3/2 or less).
  • the mass ratio of linear low density polyethylene B is preferably 25/75 or more (1/3 or more) 90/10 or less (9 or less).
  • the mixed resin of the present invention may contain polymers such as resins and elastomers other than the linear low-density polyethylene, within a range that does not impede the effects of the present invention.
  • the content of polymers other than the linear low-density polyethylene A and the linear low-density polyethylene B in the mixed resin is the same as that of the linear low-density polyethylene A and the linear low-density polyethylene B.
  • the amount is preferably 40 parts by mass or less, more preferably 30 parts by mass or less, even more preferably 20 parts by mass or less, even more preferably 10 parts by mass or less, and particularly preferably 5 parts by mass or less.
  • the content of the polymer other than the linear low density polyethylene in the mixed resin is determined by adjusting the content of the polymer other than the linear low density polyethylene (linear low density polyethylene A or linear low density polyethylene A), which has a small content in the mixed resin.
  • the amount is preferably 80 parts by mass or less, more preferably 50 parts by mass or less, even more preferably 30 parts by mass or less, even more preferably 20 parts by mass or less, and particularly preferably 10 parts by mass or less.
  • the biomass degree of the mixed resin as measured by ASTM D 6866 is 5% or more.
  • the biomass degree of the mixed resin is within the above range, it is possible to suppress the use of fossil resources during the production of the molded body and reduce the amount of carbon dioxide emitted during the life cycle of the molded body.
  • the biomass degree of the mixed resin measured according to ASTM D 6866 is 5% or more, preferably 10% or more, more preferably 20% or more, and still more preferably 30% or more. Yes, and even more preferably 40% or more. Further, there is no upper limit on the upper limit, and the biomass degree of the mixed resin measured according to ASTM D 6866 may be 100% or less.
  • the biomass degree of the resin as measured by ASTM D 6866 is preferably 90% or less, more preferably 80% or less, still more preferably 70% or less, even more preferably 60% or less.
  • the biomass degree is measured according to ASTM D 6866, and means the proportion of naturally derived components contained in the mixed resin.
  • the biomass degree can be determined by measuring the concentration of radioactive carbon C14 on resin particles or foam particles, or by determining the biomass degree of the biomass-derived resin used to produce the resin particles or foam particles, and the biomass degree of the resin particles or foam particles. It can be calculated from the content ratio of the biomass-derived resin in the expanded particles.
  • the DSC curve is a DSC curve obtained by differential scanning calorimetry (DSC) based on JIS K7122:2012. Specifically, the DSC curve can be obtained by heating 1 to 3 mg of the mixed resin (expanded particles) from 23° C. to 200° C. at a heating rate of 10° C./min using a differential scanning calorimeter. As mentioned above, in the DSC curve measured for the expanded particles, there is a melting peak (specific peak) specific to linear low density polyethylene, and one or more melting peaks (high temperature peak) on the higher temperature side than the specific peak. ) appears.
  • DSC differential scanning calorimetry
  • the DSC curve means a DSC curve obtained by heating expanded particles by the measurement method (DSC curve in the first heating).
  • the melting peak (unique peak) specific to linear low-density polyethylene is a melting peak that appears due to melting of crystals that linear low-density polyethylene that constitutes the mixed resin usually has.
  • the melting peak on the higher temperature side than the characteristic peak (high temperature peak) is the melting peak that appears on the higher temperature side than the characteristic peak in the DSC curve in the first heating. When this high temperature peak appears, it is presumed that secondary crystals exist in the resin.
  • the expanded particles were heated from 23°C to 200°C at a heating rate of 10°C/min, then cooled from 200°C to 23°C at a cooling rate of 10°C/min, and then at a heating rate of 10°C/min.
  • the expanded particles exhibit only a melting peak (unique peak) specific to linear low-density polyethylene in the DSC curve obtained during the second heating when heated from 23° C. to 200° C.
  • the total heat of fusion of the expanded particles is the sum of the heat of fusion of all melting peaks (endothermic peaks) appearing on the DSC curve.
  • the total heat of fusion of the expanded particles is preferably 70 J/g or more and 120 J/g or less, more preferably 70 J/g or more and 105 J/g or less.
  • the total heat of fusion of the expanded particles is preferably 75 J/g or more, more preferably 80 J/g or more, and still more preferably 85 J/g or more, from the viewpoint of improving the strength of the obtained molded product. Particularly preferably, it is 90 J/g or more. Further, the total heat of fusion of the expanded beads is preferably 105 J/g or less, more preferably 102 J/g or less, and even more preferably is 100 J/g or less, and even more preferably 98 J/g or less.
  • the total heat of fusion of the expanded particles can be determined from a DSC curve obtained by performing differential scanning calorimetry (DSC) in accordance with JIS K 7122:2012 using the expanded particles as a test piece.
  • the heat of fusion of the expanded particles at a high temperature peak is 10 J/g or more and 50 J/g or less.
  • the heat of fusion at the high temperature peak of the expanded particles is within the above range, even if the expanded particles have a low bulk density, the in-mold moldability of the expanded particles can be improved, and the molding pressure at which in-mold molding is possible can be improved.
  • a wide range of expanded particles can be obtained. Thereby, good molded bodies can be obtained over a wide density range.
  • the heat of fusion at the high-temperature peak of the foamed beads improves the fusion properties of the foamed beads under low molding pressure conditions, improves the in-mold moldability of the foamed beads, and when the foamed beads are expanded in two stages.
  • it is 50 J/g or less, preferably 45 J/g or less, and more preferably 40 J/g or less.
  • the heat of fusion at the high temperature peak can be determined by heat flux differential scanning calorimetry in accordance with JIS K7122:2012 using expanded particles as a test piece.
  • the foamed particles (mixed resin constituting the foamed particles) having a crystal structure in which a unique peak and a high temperature peak appear are, for example, linear with the linear low density polyethylene A. It can be obtained by performing a holding step described below on resin particles obtained by kneading chain low density polyethylene B.
  • the ratio of the heat of fusion of the high temperature peak to the total heat of fusion of the expanded particles is preferably 0.2 or more and 0.7 or less, and 0.25 or more and 0.65 or less. It is more preferable that When each of the heats of fusion described above is within the above range and the ratio is within the above range, it is possible to obtain expanded particles that have excellent in-mold formability and can be formed over a wide density range and over a wide molding pressure range. can. Moreover, expanded particles with good two-stage foamability can be obtained.
  • the ratio of the heat of fusion of the high temperature peak to the total heat of fusion of the foamed particles is determined from the viewpoint of improving the fusion properties of the foamed particles under low molding pressure conditions, increasing the in-mold moldability of the foamed particles, and From the viewpoint of making it easier to obtain foamed particles with a lower bulk density when performing stage foaming, it is preferably 0.65 or less, more preferably 0.60 or less, and still more preferably 0.55 or less, Particularly preferably, it is 0.50 or less. Note that the ratio of the heat of fusion of the high temperature peak to the total heat of fusion can be calculated from the total heat of fusion and the heat of fusion of the high temperature peak.
  • the melt flow rate of the mixed resin measured at a temperature of 190° C. and a load of 2.16 kg is 0.1 g/10 minutes or more and 3 g/10 minutes or less.
  • the melt flow rate of the mixed resin is preferably 0.3 g/10 minutes or more, more preferably 0.5 g/10 minutes or more, and still more preferably 0.7 g/10 minutes or more.
  • the melt flow rate of the mixed resin is preferably 2.0 g/10 minutes or less, more preferably 1.8 g/10 minutes or less, still more preferably 1.5 g/10 minutes or less, and more preferably More preferably, it is 1.4 g/10 minutes or less.
  • the melt flow rate of the mixed resin is a value measured at a temperature of 190° C. and a load of 2.16 kg. More specifically, it can be measured by the method described in Examples in accordance with JIS K 7210-1:2014.
  • the density of the mixed resin is preferably 910 kg/m 3 or more and 940 kg/m 3 or less, and more preferably 910 kg/m 3 or more and 928 kg/m 3 or less from the viewpoint of making it easier to obtain expanded particles having desired physical properties. It is more preferably 912 kg/m 3 or more and 926 kg/m 3 or less, even more preferably 914 kg/m 3 or more and 925 kg/m 3 or less, particularly preferably 916 kg/m 3 or more and 924 kg/m 3 or less. be.
  • the density of the mixed resin is measured by method A (underwater displacement method) described in JIS K7112:1999.
  • the resin particles used in the method for producing expanded particles of the present invention are prepared by mixing the linear low-density polyethylene A, the linear low-density polyethylene B, and a cell regulator, etc., blended as necessary, in an extruder. After supplying, heating, and kneading to form a resin melt that is a mixed resin, the resin melt can be extruded from an extruder and pelletized by a strand cut method, hot cut method, underwater cut method, etc. can.
  • the average mass per resin particle is preferably adjusted to 0.1 to 20 mg, more preferably 0.2 to 10 mg, still more preferably 0.3 to 5 mg, and more preferably More preferably, it is 0.4 to 2 mg.
  • the external shape of the particles is not particularly limited as long as it can achieve the intended purpose of the present invention, but is preferably cylindrical.
  • the particle diameter (length in the extrusion direction) of the resin particles is preferably 0.1 to 3.0 mm, more preferably 0.3 to 1.5 mm. be.
  • the ratio (length/diameter ratio) between the length of the resin particles in the extrusion direction and the length of the resin particles in the direction perpendicular to the extrusion direction (diameter of the resin particles) is preferably 0.5 to 5. .0, more preferably 1.0 to 3.0.
  • the particle diameter, length/diameter ratio, and average mass of the resin particles depend on the extrusion speed when extruding the resin melt, the strand take-up speed, and the speed when cutting the strand. It can be adjusted by pelletizing by changing the cutter speed etc. as appropriate.
  • the resin particles may contain additives as appropriate within a range that does not impede the effects of the present invention.
  • additives include antioxidants, ultraviolet absorbers, antistatic agents, flame retardants, pigments, dyes, and bubble control agents. These additives can be contained in the expanded particles by, for example, being added to the resin particles in the process of manufacturing the resin particles.
  • the bubble control agent for example, inorganic powder or organic powder can be used.
  • the inorganic powder include boric acid metal salts such as zinc borate and magnesium borate
  • examples of the organic powder include fluororesin powder such as polytetrafluoroethylene (PTFE).
  • PTFE polytetrafluoroethylene
  • the amount of the cell regulator in the resin particles should be 50 mass ppm or more and 5000 mass ppm or less. is preferable, more preferably 100 mass ppm or more and 2000 mass ppm or less, and even more preferably 150 mass ppm or more and 1500 mass ppm or less.
  • the arithmetic mean particle size based on the number of particles is preferably 0.5 ⁇ m or more and 10 ⁇ m or less, more preferably 1 ⁇ m or more and 8 ⁇ m or less.
  • the number-based arithmetic mean particle diameter of zinc borate is calculated by converting it into a number-based particle size distribution assuming that the shape of the particles is spherical, based on the volume-based particle size distribution measured by laser diffraction scattering method.
  • a preferred method for producing expanded particles of the present invention is a method of producing expanded particles by foaming the resin particles, wherein the resin particles containing a foaming agent, which are dispersed in an aqueous medium in a container, are
  • the resin particles are foamed by being discharged from the container together with a medium into a pressure atmosphere lower than the pressure inside the container.
  • the dispersion step involves dispersing resin particles whose base resin is a mixed resin of at least two types of linear low-density polyethylene in an aqueous medium in a container, and a blowing agent is added to the resin particles in the container.
  • a foaming step in which the resin particles containing the foaming agent are discharged from the container together with an aqueous medium into a pressure atmosphere lower than the pressure inside the container to foam the resin particles.
  • a preferred method for producing expanded particles of the present invention includes a dispersion step of dispersing the resin particles in an aqueous medium in a container, a blowing agent impregnation step of impregnating the resin particles with a blowing agent in the container, and a blowing agent. It includes a foaming step of foaming the resin particles by releasing the resin particles together with an aqueous medium from the container into a pressure atmosphere lower than the pressure inside the container, but it is preferable that these steps are performed in this order. It is more preferable that the steps are performed as a series of steps. Note that the method of foaming through this series of steps is also referred to as a dispersion medium release foaming method.
  • an aqueous dispersion medium is preferably used as a dispersion medium for dispersing the resin particles obtained as described above in a closed container.
  • the aqueous dispersion medium is a dispersion medium containing water as a main component.
  • the proportion of water in the aqueous dispersion medium is preferably 70% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, and may be 100% by mass.
  • Examples of the dispersion medium other than water in the aqueous dispersion medium include ethylene glycol, glycerin, methanol, and ethanol.
  • a dispersant to the dispersion medium so that the resin particles heated in the container do not fuse together in the container.
  • Any dispersant may be used as long as it prevents the resin particles from fusing together in the container, but inorganic dispersants are preferably used.
  • inorganic dispersants include natural or synthetic clay minerals such as kaolin, mica, and clay, aluminum oxide, titanium oxide, basic magnesium carbonate, basic zinc carbonate, calcium carbonate, iron oxide, etc. One of them may be used, or two or more of them may be used in combination. Among these, natural or synthetic clay minerals are preferred.
  • the amount of the dispersant added is preferably 0.001 to 5 parts by weight per 100 parts by weight of the resin particles.
  • an anionic surfactant such as sodium dodecylbenzenesulfonate, sodium alkylsulfonate, or sodium oleate
  • the dispersion aid is preferably added in an amount of about 0.001 to 1 part by mass per 100 parts by mass of the resin particles.
  • a physical foaming agent as the foaming agent for foaming the resin particles.
  • the physical blowing agent include inorganic physical blowing agents and organic physical blowing agents.
  • the inorganic physical blowing agent include carbon dioxide, air, nitrogen, helium, and argon.
  • organic physical blowing agents examples include aliphatic hydrocarbons such as propane, n-butane, isobutane, n-pentane, isopentane, and hexane; cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane; ethyl chloride; , 3,3-tetrafluoropropene, trans-1,3,3,3-tetrafluoropropene, trans-1-chloro-3,3,3-trifluoropropene, and other halogenated hydrocarbons.
  • the said physical foaming agent may be used individually, and 2 or more types may be used.
  • an inorganic physical foaming agent and an organic physical foaming agent may be used together.
  • the blowing agent used in this production method is preferably an inorganic physical blowing agent, more preferably carbon dioxide, from the viewpoint of ease of producing desired expanded particles.
  • the amount of the blowing agent added is determined by considering the bulk density of the desired foamed particles, the type of blowing agent, etc.; The amount is preferably 0.1 to 30 parts by weight, more preferably 0.5 to 15 parts by weight.
  • the pressure (internal pressure) inside the closed container during foaming is preferably 0.5 MPa (G) or higher, more preferably 0.8 MPa (G) or higher.
  • the upper limit is preferably 4 MPa (G) or less, more preferably 3 MPa (G) or less.
  • desired expanded particles can be safely produced without fear of damage to the closed container or explosion.
  • the temperature is preferably raised to 100 to 200°C, more preferably 130 to 160°C, and after being maintained at that temperature for about 5 to 30 minutes, the resin particles containing the foaming agent are removed from the airtight container under pressure inside the airtight container. It is preferable to discharge the foam into an atmosphere at a lower pressure (for example, atmospheric pressure).
  • expanded particles having a crystal structure in which a unique peak and a high temperature peak appear in the first DSC curve can be produced, for example, as follows. First, resin particles dispersed in a dispersion medium in a closed container are mixed from (melting point of linear low-density polyethylene constituting the resin particles -15°C) to (melting point of linear low-density polyethylene constituting the resin particles). +10° C.) and held at this temperature for a sufficient time, preferably about 10 to 60 minutes (holding step). Next, by foaming the resin particles that have undergone this holding step, expanded particles exhibiting the above-mentioned melting peak can be obtained.
  • expanded particles may be obtained by preparing in advance resin particles that have undergone the holding step and foaming the resin particles that have undergone this holding step. Further, for example, as part of the dispersion step or the blowing agent impregnation step, the holding step may be performed on the resin particles, and the resin particles that have undergone the holding step may be foamed to obtain expanded particles. . From the perspective of increasing the productivity of foamed particles, the resin particles dispersed in a dispersion medium in a sealed container are heated in the presence of a foaming agent to perform the above holding step, and then the contents of the sealed container are sealed. It is preferable to obtain expanded particles exhibiting the above-mentioned melting peak by ejecting from the inside of the container into a pressure atmosphere lower than the pressure inside the closed container and foaming the resin particles that have undergone the above-mentioned holding step.
  • foamed particles obtained as described above can be foamed in multiple stages to obtain foamed particles with a higher expansion ratio (lower bulk density).
  • foamed particles are pressurized with air or the like to increase the pressure (internal pressure) inside the cells of the foamed particles, and then heated with steam or the like to further foam (two-stage foaming), resulting in a higher expansion ratio (bulk).
  • two-stage foaming two-stage foaming.
  • the expanded particles produced by the expanded particle manufacturing method of the present invention have a bulk density of 10 kg/m 3 or more and 240 kg/m 3 or less.
  • the expanded particles produced by the method for producing expanded particles of the present invention are preferably the expanded particles described in the section [Expanded particles] below, and the more preferable expanded particles are also the same.
  • the foamed particles described in the above section (Characteristics of mixed resin and foamed particles) are preferable, and the same is true for more preferable expanded particles.
  • the foamed particles have a bulk density of 10 kg/m 3 or more and 240 kg/m 3 or less.
  • the bulk density of the expanded particles is 10 kg/m 3 or more, preferably 13 kg/m 3 or more, and more preferably 15 kg/m 3 or more, from the viewpoint of improving the mechanical properties of the resulting molded product.
  • the bulk density of the expanded particles is 240 kg/m 3 or less, preferably 200 kg/m 3 or less, and more preferably 100 kg/m 3 or less, from the viewpoint of obtaining a molded product with a low apparent density. , more preferably 80 kg/m 3 or less, even more preferably 60 kg/m 3 or less.
  • the obtained expanded particles are subjected to pressure treatment and then heated with steam etc. to further foam them, resulting in two-stage foaming, which results in foaming with a higher expansion ratio (lower bulk density). particles can be obtained. From the viewpoint of obtaining a molded article with a low apparent density, it is preferable to carry out two-stage foaming.
  • the bulk density of the foamed particles after the first-stage foaming (before the second-stage foaming) is preferably 60 kg/m 3 from the viewpoint of stably obtaining foamed particles having the desired cell structure. or more, more preferably 70 kg/m 3 or more, still more preferably 80 kg/m 3 or more.
  • the bulk density of the expanded particles after the first-stage foaming is preferably 240 kg/m 3 from the viewpoint of stably obtaining foamed particles with a low apparent density. or less, preferably 200 kg/m 3 or less, more preferably 180 kg/m 3 or less, still more preferably 160 kg/m 3 or less. Note that the bulk density can be measured by the method described in Examples.
  • the expanded beads of the present invention are preferably manufactured by the above-described method for manufacturing expanded beads, and the method for manufacturing expanded beads of the present invention is preferably the method for manufacturing expanded beads described above.
  • the mixed resin of at least two types of linear low-density polyethylene which is the base resin of the foamed particles of the present invention, is one of the ⁇ linear low-density polyethylene (mixed resin)> described in the above-mentioned method for producing expanded particles. It is preferable to use the mixed resin described in the section. Therefore, the mixed resin contains at least two types of linear low-density polyethylene A and linear low-density polyethylene B having a biomass degree of 50% or more as measured by ASTM D 6866. A mixed resin of density polyethylene is preferred.
  • the at least two types of linear low-density polyethylene are copolymerized components (comonomers). It is preferable that the linear low density polyethylene A1 contains a butene component and a hexene component as a comonomer, and the linear low density polyethylene B1 contains an octene component as a comonomer.
  • the density of the mixed resin is preferably 910 kg/m 3 or more and 928 kg/m 3 or less, and more preferably 912 kg/m 3 or more and 926 kg/m 3 or less from the viewpoint of making it easier to obtain expanded particles having desired physical properties. It is more preferably 914 kg/m 3 or more and 925 kg/m 3 or less, even more preferably 916 kg/m 3 or more and 924 kg/m 3 or less. Further, from the viewpoint of enabling in-mold molding under lower molding pressure conditions, the density of the mixed resin is preferably 917 kg/m 3 or more and 923 kg/m 3 or less.
  • the density of the mixed resin is measured by method A (underwater displacement method) described in JIS K7112:1999. Note that when measuring the density of the mixed resin from expanded particles, the density of the mixed resin can be measured by performing the above density measurement using the defoamed expanded particles as a measurement sample. Specifically, it can be measured by the method described in Examples.
  • the particles preferably have the following properties.
  • the foamed particles have a bulk density of 10 kg/m 3 or more and 240 kg/m 3 or less.
  • the bulk density of the expanded particles is 10 kg/m 3 or more, preferably 13 kg/m 3 or more, and more preferably 15 kg/m 3 or more, from the viewpoint of improving the mechanical properties of the molded product obtained.
  • the bulk density of the expanded particles is 240 kg/m 3 or less, preferably 200 kg/m 3 or less, and more preferably 100 kg/m 3 or less, from the viewpoint of obtaining a molded product with a low apparent density. , more preferably 80 kg/m 3 or less, even more preferably 60 kg/m 3 or less.
  • the obtained expanded particles are subjected to pressure treatment and then heated with steam etc. to further foam them, resulting in two-stage foaming, resulting in foaming with a higher expansion ratio (lower bulk density). particles can be obtained. From the viewpoint of obtaining a molded article with a low apparent density, it is preferable to carry out two-stage foaming.
  • the bulk density of the foamed particles after the first-stage foaming (before the second-stage foaming) is preferably 60 kg/m 3 from the viewpoint of stably obtaining foamed particles having the desired cell structure. or more, more preferably 70 kg/m 3 or more, still more preferably 80 kg/m 3 or more.
  • the bulk density of the expanded particles after the first-stage foaming is preferably 240 kg/m 3 from the viewpoint of stably obtaining foamed particles with a low apparent density. or less, preferably 200 kg/m 3 or less, more preferably 180 kg/m 3 or less, still more preferably 160 kg/m 3 or less. Note that the bulk density can be measured by the method described in Examples.
  • the degree of biomass of the particles as measured by ASTM D 6866 is preferably 90% or less, more preferably 80% or less, even more preferably 70% or less, even more preferably 60% or less.
  • the biomass degree is measured according to ASTM D 6866, and means the proportion of naturally derived components contained in the expanded particles.
  • the biomass degree can be determined by measuring the concentration of radioactive carbon C14 in linear low-density polyethylene, or by determining the biomass degree of the biomass-derived resin used to manufacture the expanded particles and the biomass in the expanded particles. It can be calculated from the content ratio of the derived resin.
  • the melt flow rate of the expanded particles is preferably 2.0 g/10 minutes or less, more preferably 1.8 g/10 minutes or less, still more preferably 1.5 g/10 minutes or less, and more preferably More preferably, it is 1.4 g/10 minutes or less.
  • the melt flow rate of the expanded particles is a value measured at a temperature of 190° C. and a load of 2.16 kg. More specifically, it can be measured by the method described in Examples in accordance with JIS K 7210-1:2014. Note that the melt flow rate may be measured using foamed particles that have been subjected to defoaming treatment as a measurement sample.
  • the expanded particles of the present invention have a melting peak (unique peak) specific to linear low-density polyethylene and a unique peak. Also has a crystal structure in which one or more melting peaks (high temperature peaks) appear on the high temperature side, and the heat of fusion of the high temperature peaks is 10 J/g or more and 50 J/g or less.
  • the DSC curve is a DSC curve obtained by differential scanning calorimetry (DSC) based on JIS K7122:2012.
  • DSC differential scanning calorimetry
  • the DSC curve can be obtained by heating 1 to 3 mg of the expanded particles of the present invention from 23° C. to 200° C. at a heating rate of 10° C./min using a differential scanning calorimeter.
  • the expanded particles of the present invention have a melting peak (unique peak) specific to linear low-density polyethylene and a melting peak (unique peak) on the higher temperature side than the intrinsic peak in the DSC curve measured for the expanded beads. The above melting peak (high temperature peak) appears.
  • the melting point of the expanded particles is preferably 100° C. or more and 130° C. or less from the viewpoint of improving the mechanical properties of the molded product obtained.
  • the melting point of the expanded particles is more preferably 110°C or higher, still more preferably 115°C or higher, even more preferably 118°C or higher.
  • the melting point of the expanded particles is preferably 128° C. or lower, more preferably 126° C. or lower, from the viewpoint of improving in-mold moldability of the expanded beads under low molding pressure conditions.
  • the melting point of the expanded particles is measured based on JIS K 7121:2012 using the expanded particles as a test piece. Specifically, it can be measured by the method described in Examples.
  • the closed cell ratio of the expanded particles of the present invention is preferably 80% or more. When the closed cell ratio of the expanded beads is within the above range, the in-mold moldability of the expanded beads can be further improved.
  • the closed cell ratio of the expanded particles of the present invention is preferably 85% or more, more preferably 88% or more, and still more preferably 90% or more. Further, there is no upper limit to the closed cell ratio of the expanded particles of the present invention, but it is preferably 99% or less, more preferably 98% or less, and still more preferably 97% or less. Note that the closed cell ratio can be measured by the method described in Examples.
  • the average cell diameter of the expanded particles of the present invention is preferably 60 ⁇ m or more and 200 ⁇ m or less. When the average cell diameter of the expanded particles is within the above range, the in-mold moldability of the expanded particles can be stably improved.
  • the average cell diameter of the expanded particles of the present invention is preferably 70 ⁇ m or more, more preferably 80 ⁇ m or more, and still more preferably 100 ⁇ m or more. Further, the average cell diameter of the expanded particles of the present invention is preferably 180 ⁇ m or less, more preferably 160 ⁇ m or less, and still more preferably 140 ⁇ m or less.
  • the average cell diameter of the expanded particles after the first-stage foaming (before the second-stage foaming) is preferably 50 ⁇ m or more, more preferably 60 ⁇ m or more, and still more preferably 70 ⁇ m or more. Further, in the case of performing two-stage foaming, the average cell diameter of the expanded particles after the first-stage foaming (before the second-stage foaming) is preferably 120 ⁇ m or less, more preferably 110 ⁇ m or less, and still more preferably 100 ⁇ m or less.
  • the average cell diameter is calculated by drawing multiple line segments from the outermost surface of the expanded particle through the center to the opposite outermost surface on an enlarged photograph of the cross section of the expanded particle divided into two, and then calculating the number of bubbles that intersect with each line segment. can be measured by dividing by the total length of the line segments. Specifically, it can be measured by the method described in Examples.
  • the average cell diameter of the foamed particles can be adjusted to the desired value by adjusting the type and amount of the cell regulator added to the resin particles, and by adjusting the foaming temperature and pressure in the pressure container during foaming of the resin particles. It can be a range.
  • the expanded particles are non-crosslinked.
  • Non-crosslinking makes it easier to recycle the foamed particles, making it easier to reduce environmental impact.
  • the term "non-crosslinked" as used herein means that the proportion of insoluble matter in the expanded particles as determined by the hot xylene extraction method of the expanded particles is 5% by mass or less. From the viewpoint of easier recycling of the expanded particles, the proportion of insoluble matter in the expanded particles obtained by hot xylene extraction is preferably 3% by mass or less, and most preferably 0% by mass.
  • the xylene-insoluble content of expanded particles obtained by hot xylene extraction can be measured as follows.
  • the average mass per foamed particle of the present invention (the arithmetic average value per one obtained by measuring the mass of 100 randomly selected particles) is preferably 0.1 to 20 mg, more preferably 0.1 to 20 mg.
  • the amount is 2 to 10 mg, more preferably 0.3 to 5 mg, even more preferably 0.4 to 2 mg.
  • the average mass per foamed particle can be calculated by measuring the mass of 100 randomly selected foamed particles and taking the arithmetic average of these masses.
  • the expanded particles of the present invention may contain appropriate additives within a range that does not impede the effects of the present invention.
  • additives include antioxidants, ultraviolet absorbers, antistatic agents, flame retardants, pigments, dyes, and bubble control agents. These additives can be contained in the expanded particles by, for example, being added during the process of manufacturing the resin particles.
  • the additives contained in the expanded particles of the present invention are the same as the additives contained in the resin particles described in ⁇ Manufacture of expanded particles> above.
  • the expanded particles of the present invention may contain polymers such as resins and elastomers other than the linear low-density polyethylene, within a range that does not impede the effects of the present invention.
  • the content of polymers other than the linear low-density polyethylene A and the linear low-density polyethylene B in the expanded particles is the same as that of the linear low-density polyethylene A and the linear low-density polyethylene B.
  • the amount is preferably 40 parts by weight or less, more preferably 30 parts by weight or less, even more preferably 20 parts by weight or less, even more preferably 10 parts by weight or less, and particularly preferably 5 parts by weight or less.
  • the content of the polymer other than the linear low-density polyethylene in the foamed particles is determined by adjusting the content of the polymer other than the linear low-density polyethylene (linear low-density polyethylene A or linear low-density polyethylene A), which has a small content in the mixed resin.
  • the amount is preferably 80 parts by mass or less, more preferably 50 parts by mass or less, even more preferably 30 parts by mass or less, even more preferably 20 parts by mass or less, and particularly preferably 10 parts by mass or less.
  • the foamed particles of the present invention can have a fusion layer on the surface thereof to enhance the fusion properties of the foamed particles during in-mold molding.
  • the adhesive layer may be present on the entire surface of the foamed particles, or may be present on a part of the surface.
  • the resin constituting the adhesive layer may include a crystalline polyolefin resin having a melting point lower than the melting point of the mixed resin constituting the expanded particles, or an amorphous polyolefin resin having a softening point lower than the melting point of the mixed resin constituting the expanded particles. Examples include polyolefin resins.
  • the method of forming the fusion layer on the surface of the foamed particles is not particularly limited, and examples include a method of foaming resin particles having a fusion layer on the surface, or a method of forming the fusion layer on the surface of the foamed particles after obtaining the foamed particles. An example of how to do this can be given.
  • foamed particles are obtained by foaming resin particles having a fused layer on the surface, an extrusion device capable of co-extrusion is used to melt the resin to form the resin particle body. It is preferable to adopt a method of laminating a fusion layer on the surface of the resin particles by co-extruding the material and a resin melt for forming the fusion layer.
  • the expanded particles of the present invention can be suitably used as expanded particles for in-mold molding.
  • the foamed particles of the present invention satisfy a specific heat of fusion relationship, making them foamed particles with excellent foaming properties during two-stage foaming, and are therefore suitable as foamed particles for two-stage foaming. They are foam particles.
  • the foamed particles of the present invention have appropriate flexibility and restorability by satisfying a specific heat of fusion relationship. Therefore, the expanded particles of the present invention can also be suitably used, for example, as stuffing beads for cushioning materials.
  • Stuffing beads are particulate stuffing that is used to fill a bag to form a cushioning material, and the foamed particles of the present invention can be particularly suitably used as stuffing beads for beaded cushions.
  • Polyethylene resin foam particle molded product By molding the expanded beads of the present invention or the expanded beads obtained by the method for producing expanded beads of the present invention in a mold, a polyethylene resin expanded particle molded article can be obtained. That is, a polyethylene resin foamed particle molded article (hereinafter also simply referred to as a foamed particle molded article) is formed by molding the expanded particles in a mold.
  • the foamed particle molded article can be produced by filling the foamed particles into a mold and heat-molding using a heating medium such as steam. Specifically, after filling the foamed particles into a mold, a heating medium such as steam is introduced into the mold to heat and expand the foamed particles (secondary foaming), and at the same time fuse them together. In this way, it is possible to obtain a foamed particle molded article in which the shape of the molding space is shaped. Furthermore, in-mold molding in the present invention is performed by pressurizing the foamed particles in advance with a pressurized gas such as air to increase the pressure inside the cells of the foamed particles, so that the pressure inside the foamed particles is 0.01 higher than atmospheric pressure.
  • a heating medium such as steam
  • the foamed particles are filled into a mold under atmospheric pressure or reduced pressure, and then a heating medium such as steam is supplied into the mold to heat and fuse the foamed particles.
  • Molding can also be performed by a pressure molding method (for example, Japanese Patent Publication No. 51-22951).
  • a heating medium such as steam is supplied into the cavity to heat the foamed particles.
  • Molding can also be performed by a compression filling molding method (Japanese Patent Publication No. 4-46217) in which heat-fusion is performed.
  • foamed particles with high secondary foaming power obtained under special conditions are filled into the cavity of a mold under atmospheric pressure or reduced pressure, and then heated by supplying a heating medium such as steam. Molding can also be carried out by a normal pressure filling molding method (Japanese Patent Publication No. 6-49795) in which foamed particles are heated and fused, or a method combining the above methods (Japanese Patent Publication No. 6-22919).
  • the ratio of compressive stress at 50% strain of the foamed particle molded product to the density of the foamed particle molded product is 4 kPa/[kg/m 3 ] or more. It is preferably 12 kPa/[kg/m 3 ] or less, and more preferably 5 kPa/[kg/m 3 ] or more and 10 kPa/[kg/m 3 ] or less.
  • the ratio of the compressive stress at 50% strain of the foamed bead molded product to the density of the foamed bead molded product is determined by using the foamed bead molded product as a test piece of length 5 cm x width 5 cm x height 2.5 cm at a compression speed of 10 mm/min. It is calculated by dividing the stress at 50% strain measured by compression by the density, and can be measured and calculated by the method described in Examples.
  • the polyethylene resin expanded particle molded product is lightweight and has excellent mechanical properties, so it can be used as shock absorbers, heat insulators, various packaging materials, etc., food transportation containers, packaging and cushioning materials for electrical and electronic parts. It can be used for applications such as vehicle parts such as automobile bumpers, building parts such as residential insulation materials, and miscellaneous goods.
  • biomass degree of foamed particles The biomass degree of the polyethylene (linear low-density polyethylene, low-density polyethylene, or high-density polyethylene) used in Examples and Comparative Examples was determined by measuring the concentration of radioactive carbon C14 in accordance with ASTM D 6866. This is the value. Further, the biomass degree of the expanded particles (mixed resin) was calculated from the biomass degree of the biomass-derived resin used to produce the expanded particles and the content ratio of the biomass-derived resin in the expanded particles. In Table 1, LL1 is "SLH118" manufactured by Braskem, LL2 is “SLL118" manufactured by Braskem, and LL3 is “SLH218" manufactured by Braskem.
  • LL1 to LL3 are polyethylenes listed in the positive list of biomass plastics by the Japan Biomass Plastics Association.
  • LL1 and LL3 contain a butene component as a copolymerization component, which is represented by the chemical structural formula of [(C 2 H 4 ) n (C 4 H 8 ) m (C 6 H 12 ) o ].
  • LL2 is described as a linear low-density polyethylene containing a hexene component, and LL2 is a copolymer component represented by the chemical structural formula [(C 2 H 4 ) n (C 4 H 8 ) m ]. It is described as a linear low density polyethylene containing a butene component.
  • ⁇ Density of polyethylene, density of mixed resin> The density of the polyethylene (linear low density polyethylene, low density polyethylene or high density polyethylene) used in the examples and comparative examples and the density of the mixed resin were based on JIS K 7112:1999 method A (substitution method in water). It was measured. In addition, in measuring the density of the mixed resin, first, the foamed particles are defoamed by heat pressing them for 3 minutes on a heated press plate whose temperature is adjusted to 160°C, and the mixed resin constituting the foamed particles is removed. A resin sheet consisting of The density was measured using a pellet-like sample obtained by cutting this resin sheet.
  • ⁇ Content of components derived from ⁇ -olefin in linear low density polyethylene was determined by carbon-13 nuclear magnetic resonance ( 13 C-NMR) as described below.
  • a solution for measuring % was prepared.
  • NMR ( 13 C-NMR) spectrum measurement of the measurement solution using 13 C as the measurement nucleus was performed using a nuclear magnetic resonance apparatus "ECZ-400S model manufactured by JEOL Ltd.”. Based on the chemical shift information in the obtained NMR spectrum, the component derived from the ⁇ -olefin contained in the linear low density polyethylene was identified, and its content (mol%) was calculated.
  • melt flow rate (MFR) of polyethylene and expanded particles (mixed resin) was measured in accordance with JIS K7210-1:2014 at a temperature of 190° C. and a load of 2.16 kg.
  • melt flow rate of the foamed particles first, the foamed particles are degassed by heat-pressing them for 3 minutes on a heated press plate whose temperature is adjusted to 160 ° C., and the foamed particles are formed. A resin sheet made of mixed resin was produced. The melt flow rate was measured using a pellet-like sample obtained by cutting this resin sheet.
  • the melting points of the polyethylene (linear low-density polyethylene, low-density polyethylene, or high-density polyethylene) used in the Examples and Comparative Examples and the melting points of the expanded particles were determined by heat flux differential scanning calorimetry based on JIS K7121:2012. It was measured.
  • a highly sensitive differential scanning calorimeter "EXSTAR DSC7020" (manufactured by SII Nanotechnology) was used.
  • conditioning of the test piece "(2) Measurement of melting temperature after a certain heat treatment” was adopted.
  • each melting peak based on the temperature in the valley of the DSC curve located between the peak temperatures of each melting peak and comparing the area (heat of fusion) of each melting peak, it is possible to find the largest area. Melting peaks can be determined.
  • the temperature in the valley of the DSC curve corresponds to the temperature at which the value on the vertical axis of the differential curve of the DSC curve (DDSC) becomes 0, so it can also be determined from the differential curve of the DSC curve.
  • Heat of fusion of expanded particles at high temperature peak of the expanded particles was measured by heat flux differential scanning calorimetry in accordance with JIS K7122:2012. Specifically, approximately 2 mg of expanded particles were collected as a test piece and heated from 23°C to 200°C at a heating rate of 10°C/min using a differential scanning calorimeter (EXSTAR DSC7020) to detect two or more melting peaks. A DSC curve (DSC curve at the first heating) was obtained.
  • ⁇ Bulk density of expanded particles About 500 cm 3 of foamed particles were filled into a measuring cylinder, and the filling height of the foamed particles in the measuring cylinder was stabilized by lightly tapping the floor several times with the bottom of the measuring cylinder.
  • the bulk volume of the expanded particle group indicated by the graduated cylinder scale was read, and this was defined as V1 (L).
  • V1 (L) The bulk volume of the expanded particle group indicated by the graduated cylinder scale was read, and this was defined as V1 (L).
  • W1 [g] The bulk density of the foamed particles was determined by dividing the mass W1 [g] of the foamed particles by the volume V1 (W1/V1) and converting the unit to [kg/m 3 ].
  • the closed cell ratio of the expanded particles was measured as follows.
  • the apparent volume Va of the foamed particles was measured by immersing the foamed particles having a bulk volume of about 20 cm 3 in ethanol.
  • the true volume of the expanded particle group was measured.
  • Vx the sum of the volume of the resin and the total volume of the closed cells in the expanded particles
  • an air comparison hydrometer "930" manufactured by Toshiba Beckman Corporation was used.
  • the closed cell ratio was calculated using the following formula (1), and the arithmetic mean value of the results of five measurements using different expanded particle groups was determined.
  • Closed cell ratio (%) (Vx-W/ ⁇ ) x 100/(Va-W/ ⁇ )...(1)
  • Vx True volume of expanded particle group measured by the above method (cm 3 )
  • Va Apparent volume of foamed particles (cm 3 ) measured from the rise in water level when the foamed particles are submerged in ethanol in a measuring cylinder
  • W Mass of foamed particle group (g)
  • Density of resin constituting expanded particles (g/cm 3 )
  • the average cell diameter of the expanded particles was measured as follows. Thirty foam particles were randomly selected from the foam particle group. The foamed particles were cut into two parts by cutting through the center thereof, and an enlarged photograph of one cross section was taken. In each cross-sectional photograph, four line segments were drawn from the outermost surface of the expanded particle through the center to the opposite outermost surface so that the angles formed by two adjacent line segments were equal. Measure the number of bubbles that intersect with each line segment, divide the total length of the four line segments by the total number of bubbles that intersect with the line segment, calculate the average bubble diameter of each foam particle, and calculate these values. The average cell diameter of the foamed particles was determined by taking the arithmetic mean of the values.
  • ⁇ Ratio of bulk density of single-stage expanded particles to bulk density of second-stage expanded particles The bulk density of the single-stage expanded particles and the bulk density of the second-stage expanded particles were measured using the bulk density measurement method described above.
  • the ratio of the bulk density of the first-stage foamed particles to the bulk density of the second-stage foamed particles was calculated.
  • the larger the value of the ratio the more excellent the two-stage foamability is because it is possible to obtain two-stage expanded particles with a lower bulk density.
  • the expanded particle molded product was bent and fractured, and the number of expanded particles present on the fracture surface (C1) and the number of broken expanded particles (C2) were determined. The ratio of the number of broken foam particles to the number of foam particles (C2/C1 ⁇ 100) was calculated as the material destruction rate. The above measurement was carried out five times using different test pieces, and the material destruction rate for each was determined.
  • ⁇ Density of expanded particle molded body The expanded particle molded product was left for 2 days under the conditions of 50% relative humidity, 23° C., and 1 atm. Next, its mass was measured, and this was defined as W [g]. Next, the volume V [cm 3 ] of the expanded bead molded body was measured based on the dimensions of the expanded bead molded body. The density of the expanded bead molded body was determined by dividing the mass W [g] of the expanded bead molded body by the volume V (W/V) and converting the unit to [kg/m 3 ].
  • the ratio is 4 kPa/[kg/m 3 ] or more and 12 kPa/[kg/m 3 ] or less. Further, a pressure of 5 kPa/[kg/m 3 ] or more and 10 kPa/[kg/m 3 ] or less is more preferable because the balance between strength and flexibility is better.
  • polyethylene Tables 1 and 2 show the polyethylenes (linear low density polyethylene, low density polyethylene or high density polyethylene) used in the Examples and Comparative Examples.
  • a 5L sealed container 500g of the resin particles, 3.5L of water as a dispersion medium, 3g of kaolin as a dispersant, and sodium dodecylbenzenesulfonate (trade name: Neogen, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) as a surfactant. 0.2g was charged. Next, carbon dioxide was pressurized as a blowing agent into the closed container, and the pressure was increased until the equilibrium vapor pressure shown in Table 3 was reached. Next, the contents of the closed container were heated to the foaming temperature shown in Table 3 at a heating rate of 2° C./min while stirring. Furthermore, it was held at the same temperature for 15 minutes (holding step).
  • the heat of fusion of the high temperature peak obtained from the endothermic curve determined by DSC measurement
  • the contents of the sealed container were released under atmospheric pressure to obtain expanded particles (single-stage expanded particles).
  • the foamed particles obtained as described above were left for 24 hours in an environment of 23° C. temperature, 50% relative humidity, and 1 atm for curing.
  • the foamed particles after curing were filled into a pressurizable airtight container, and the pressure inside the airtight container was increased from normal pressure to pressurize the foamed particles.
  • the foamed particles were kept under pressure for 24 hours to allow air to be impregnated into the cells of the foamed particles.
  • the foamed particles were taken out from the closed container to obtain foamed particles in which the internal pressure of the bubbles in the foamed particles was 0.5 MPa (G). Thereafter, the foamed particles were fed to a two-stage foaming device. Steam was supplied into the apparatus to cause two-stage foaming of the foamed particles to obtain foamed particles (two-stage foamed particles). The foamed particles after two-stage foaming were used for the above-mentioned measurements and production of foamed particle molded bodies.
  • Example 2 to 8 and 11 Expanded beads and expanded bead molded articles were obtained in the same manner as in Example 1, except that the polyethylene, its proportion, foaming temperature, and equilibrium vapor pressure were changed to the conditions shown in Table 3.
  • Table 3 shows the measurement results of the physical properties of the obtained expanded particles and the evaluation results of the expanded particle molded product.
  • Example 9 (Examples 9 and 10)
  • the foaming temperature and equilibrium vapor pressure were changed to the conditions shown in Table 3, and in-mold molding was performed using the obtained single-stage expanded particles, but in the same manner as in Example 1.
  • Expanded particles and expanded particle molded bodies were obtained.
  • Table 3 shows the measurement results of the physical properties of the obtained expanded particles and the evaluation results of the expanded particle molded product.
  • Example 1 was carried out in the same manner as in Example 1, except that the polyethylene, its proportion, and foaming temperature were changed to the conditions shown in Table 4, and in-mold molding was performed using the obtained single-stage expanded particles. , foamed particles and foamed particle molded bodies were obtained. Table 4 shows the measurement results of the physical properties of the obtained expanded particles and the evaluation results of the expanded particle molded product.
  • the expanded particles of Examples have a high degree of biomass and excellent in-mold moldability. Furthermore, it can be seen that the expanded particles of Examples can be molded in a mold under low molding pressure conditions, and that a good product can be obtained over a wide molding range. Furthermore, it can be seen that by using the expanded particles of Examples, a polyethylene resin foamed particle molded article having a low apparent density can be obtained satisfactorily. Furthermore, it can be seen that the polyethylene-based resin expanded particle molded articles produced using the expanded particles of Examples have a high compressive stress and an excellent balance between strength and flexibility, despite having a low apparent density.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

少なくとも2種の直鎖状低密度ポリエチレンの混合樹脂を基材樹脂とする樹脂粒子を発泡させる嵩密度10~240kg/m3の発泡粒子(Expanded beads)の製造方法。前記混合樹脂が、バイオマス度50%以上でメルトフローレイト(MFR)が0.1~3g/10分のポリエチレンAと、ポリエチレンBとを含む。AのMFRとBのMFRの差が0~2g/10分、AとBの質量比が5/95~95/5、混合樹脂のバイオマス度が5%以上で、DSC曲線中、直鎖状低密度ポリエチレンに固有の融解ピークと高温側に高温ピークが現れる結晶構造を有し、高温ピークの融解熱量が10~50J/gである。

Description

発泡粒子の製造方法及び発泡粒子
 本発明は、発泡粒子の製造方法及び発泡粒子に関する。
 ポリエチレン系樹脂発泡粒子(Expanded beads)を型内成形してなるポリエチレン系樹脂発泡粒子成形体は、耐薬品性、緩衝性等に優れ、リサイクル性にも優れている。このため、ポリエチレン系樹脂発泡粒子成形体は、衝撃吸収材、断熱材及び各種包装材等として、電気・電子部品の包装・緩衝材、自動車部品の包装・緩衝材、その他精密部品から食品に至るまで様々な包装材として広く利用されている。
 近年では、石油など化石資源の枯渇の懸念、二酸化炭素排出量の削減の要望といった環境問題に対応すべく、バイオマスプラスチックが開発され、これまでの石油由来の樹脂を置き換える試みがなされている。
 たとえば、特許文献1には、ASTM D 6866により測定された植物度が80%以上の植物由来ポリエチレン系樹脂を含み、植物度が1%以上であるポリエチレン系樹脂発泡粒子が開示されている。
特開2013-060514号公報
 しかしながら、特許文献1で開示された技術では、得られる発泡粒子の型内成形性が低く、幅広い密度範囲にわたって、良好な発泡粒子成形体を得ることが困難であった。
 本発明は、型内成形性に優れ、幅広い密度範囲にわたって、バイオマス度が高いポリエチレン系樹脂発泡粒子成形体を製造することができる発泡粒子の製造方法を提供することを課題とする。
 本発明者らは、鋭意検討した結果、少なくとも特定の2種類の直鎖状低密度ポリエチレンを含む混合樹脂を基材樹脂とする樹脂粒子を発泡させる方法による発泡粒子の製造方法が、前記課題を解決することを見出した。
 すなわち、本発明の一態様は、以下の[1]~[7]に記載の発泡粒子の製造方法、及び[8]、[9]に記載の発泡粒子である。
[1]少なくとも2種の直鎖状低密度ポリエチレンの混合樹脂を基材樹脂とする樹脂粒子を発泡させて、嵩密度10kg/m3以上240kg/m3以下の発泡粒子を製造する方法であって、
 前記混合樹脂が、ASTM D 6866により測定されるバイオマス度が50%以上である直鎖状低密度ポリエチレンAと、直鎖状低密度ポリエチレンBとを含み、
 温度190℃、荷重2.16kgの条件で測定される前記直鎖状低密度ポリエチレンAのメルトフローレイトMFRが0.1g/10分以上3g/10分以下であり、
 前記直鎖状低密度ポリエチレンAのメルトフローレイトMFRと、温度190℃、荷重2.16kgの条件で測定される前記直鎖状低密度ポリエチレンBのメルトフローレイトMFRとの差|MFR-MFR|が0g/10分以上2g/10分以下であり、
 前記混合樹脂中の前記直鎖状低密度ポリエチレンAと前記直鎖状低密度ポリエチレンBとの質量比(A/B)が5/95~95/5であり、
 ASTM D 6866により測定される前記混合樹脂のバイオマス度が5%以上であり、
 前記発泡粒子が、10℃/分の加熱速度で23℃から200℃まで加熱して得られるDSC曲線において、直鎖状低密度ポリエチレンに固有の融解ピーク(固有ピーク)と、固有ピークよりも高温側に1以上の融解ピーク(高温ピーク)とが現れる結晶構造を有し、
 前記高温ピークの融解熱量が10J/g以上50J/g以下である、発泡粒子の製造方法。
[2]ASTM D 6866により測定される前記直鎖状低密度ポリエチレンBのバイオマス度が20%以下である、[1]に記載の発泡粒子の製造方法。
[3]前記直鎖状低密度ポリエチレンBの密度ρと前記直鎖状低密度ポリエチレンAの密度ρとの差(ρ-ρ)が3kg/m3以上であり、前記混合樹脂の密度が910kg/m3以上928kg/m3以下である、[1]又は[2]に記載の発泡粒子の製造方法。
[4]前記直鎖状低密度ポリエチレンBの融解熱量ΔHと前記直鎖状低密度ポリエチレンAの融解熱量ΔHとの差(ΔH-ΔH)が3J/g以上であり、前記混合樹脂の全融解熱量が70J/g以上120J/g以下である、[1]~[3]のいずれか一項に記載の発泡粒子の製造方法。
[5]前記発泡粒子の全融解熱量が70J/g以上105J/g以下であり、前記発泡粒子の全融解熱量に対する前記高温ピークの融解熱量の比が0.2以上0.7以下である、[1]~[4]のいずれか一項に記載の発泡粒子の製造方法。
[6]温度190℃、荷重2.16kgの条件で測定される前記混合樹脂のメルトフローレイトが0.1g/10分以上3g/10分以下である、[1]~[5]のいずれか一項に記載の発泡粒子の製造方法。
[7]前記直鎖状低密度ポリエチレンAは、共重合成分としてブテン成分とヘキセン成分とを含む、[1]~[6]のいずれか一項に記載の発泡粒子の製造方法。
[8]少なくとも2種の直鎖状低密度ポリエチレンの混合樹脂を基材樹脂とする、嵩密度10kg/m3以上240kg/m3以下の発泡粒子であり、
 前記混合樹脂の密度が910kg/m3以上928kg/m3以下であり、
 ASTM D 6866により測定される前記発泡粒子のバイオマス度が5%以上であり、
 温度190℃、荷重2.16kgの条件で測定される前記発泡粒子のメルトフローレイトが0.1g/10分以上3g/10分以下であり、
 前記発泡粒子が、10℃/分の加熱速度で23℃から200℃まで加熱して得られるDSC曲線において、直鎖状低密度ポリエチレンに固有の融解ピーク(固有ピーク)と、固有ピークよりも高温側に1以上の融解ピーク(高温ピーク)とが現れる結晶構造を有し、
 前記高温ピークの融解熱量が10J/g以上50J/g以下である、発泡粒子。
[9]前記発泡粒子の全融解熱量が70J/g以上105J/g以下であり、前記発泡粒子の全融解熱量に対する前記高温ピークの融解熱量の比が0.2以上0.7以下である、[8]に記載の発泡粒子。
 本発明によれば、型内成形性に優れ、幅広い密度範囲にわたって、バイオマス度が高いポリエチレン系樹脂発泡粒子成形体を製造することができる発泡粒子の製造方法を提供することができる。
[発泡粒子の製造方法]
 本発明の発泡粒子の製造方法は、少なくとも2種の直鎖状低密度ポリエチレンの混合樹脂を基材樹脂とする樹脂粒子を発泡させて、嵩密度10kg/m3以上240kg/m3以下の発泡粒子を製造する方法であって、
 前記混合樹脂が、ASTM D 6866により測定されるバイオマス度が50%以上である直鎖状低密度ポリエチレンAと、直鎖状低密度ポリエチレンBとを含み、
 温度190℃、荷重2.16kgの条件で測定される前記直鎖状低密度ポリエチレンAのメルトフローレイトMFRが0.1g/10分以上3g/10分以下であり、
 前記直鎖状低密度ポリエチレンAのメルトフローレイトMFRと、温度190℃、荷重2.16kgの条件で測定される前記直鎖状低密度ポリエチレンBのメルトフローレイトMFRとの差|MFR-MFR|が0g/10分以上2g/10分以下であり、
 前記混合樹脂中の前記直鎖状低密度ポリエチレンAと前記直鎖状低密度ポリエチレンBの質量比が5/95~95/5であり、
 ASTM D 6866により測定される前記混合樹脂のバイオマス度が5%以上であり、
 前記発泡粒子が、10℃/分の加熱速度で23℃から200℃まで加熱して得られるDSC曲線において、直鎖状低密度ポリエチレンに固有の融解ピーク(固有ピーク)と、固有ピークよりも高温側に1以上の融解ピーク(高温ピーク)とが現れる結晶構造を有し、
 前記高温ピークの融解熱量が10J/g以上50J/g以下である、発泡粒子の製造方法である。
<樹脂粒子>
 本発明の発泡粒子の製造方法は、少なくとも2種の直鎖状低密度ポリエチレンの混合樹脂を基材樹脂とする樹脂粒子を発泡させるものである。以下に、前記混合樹脂及び前記直鎖状低密度ポリエチレンについて説明する。
<混合樹脂>
 本発明の発泡粒子の製造方法に用いられる樹脂粒子は、少なくとも2種の直鎖状低密度ポリエチレンの混合樹脂を基材樹脂とする。本明細書において、「少なくとも2種の直鎖状低密度ポリエチレンの混合樹脂を基材樹脂とする」とは、樹脂粒子が少なくとも2種の直鎖状低密度ポリエチレンの混合樹脂を主成分とする樹脂から構成されていることを意味する。
 また、前記混合樹脂は、ASTM D 6866により測定されるバイオマス度が50%以上である直鎖状低密度ポリエチレンAと、直鎖状低密度ポリエチレンBとを含む。
 更に、温度190℃、荷重2.16kgの条件で測定される前記直鎖状低密度ポリエチレンAのメルトフローレイトMFRが0.1g/10分以上3g/10分以下であり、前記直鎖状低密度ポリエチレンAのメルトフローレイトMFRと、温度190℃、荷重2.16kgの条件で測定される前記直鎖状低密度ポリエチレンBのメルトフローレイトMFRとの差|MFR-MFR|が0g/10分以上2g/10分以下であり、前記混合樹脂中の前記直鎖状低密度ポリエチレンAと前記直鎖状低密度ポリエチレンBとの質量比(A/B)が5/95~95/5であり、ASTM D 6866により測定される前記混合樹脂のバイオマス度が5%以上である。更に前記発泡粒子が、10℃/分の加熱速度で23℃から200℃まで加熱して得られるDSC曲線において、直鎖状低密度ポリエチレンに固有の融解ピーク(固有ピーク)と、固有ピークよりも高温側に1以上の融解ピーク(高温ピーク)とが現れる結晶構造を有し、前記高温ピークの融解熱量が10J/g以上50J/g以下である。
 次に前記混合樹脂に含まれる直鎖状低密度ポリエチレンAと、直鎖状低密度ポリエチレンBについて説明する。
(直鎖状低密度ポリエチレンA)
 直鎖状低密度ポリエチレンAは、ASTM D 6866により測定されるバイオマス度が50%以上である。また、温度190℃、荷重2.16kgの条件で測定されるメルトフローレイトMFRが0.1g/10分以上3g/10分以下である。
 前記直鎖状低密度ポリエチレンAのバイオマス度が前記範囲にあることで、成形体の製造に際し、化石資源の使用を抑制し、成形体のライフサイクルにおいて排出される二酸化炭素の量も削減することができる。
 前記観点からは、前記直鎖状低密度ポリエチレンAのASTM D 6866により測定されるバイオマス度BCは、50%以上であり、好ましくは60%以上であり、より好ましくは70%以上であり、更に好ましくは80%以上である。また、上限値には制限はなく、前記直鎖状低密度ポリエチレンAのASTM D 6866により測定されるバイオマス度BCは、100%以下であればよいが、発泡粒子の型内成形性を高める観点からは、前記直鎖状低密度ポリエチレンAのASTM D 6866により測定されるバイオマス度BCは、好ましくは95%以下であり、より好ましくは90%以下である。前記バイオマス度は、ASTM D 6866により測定されるものであり、直鎖状低密度ポリエチレンA中に含まれる天然由来成分の割合を意味する。また、前記バイオマス度は、直鎖状低密度ポリエチレンに対して放射性炭素C14の濃度を測定することにより求められる値である。
 温度190℃、荷重2.16kgの条件で測定される直鎖状低密度ポリエチレンAのメルトフローレイトMFRは、0.1g/10分以上3g/10分以下である。直鎖状低密度ポリエチレンAのメルトフローレイトMFRが前記範囲であると、発泡粒子の型内成形性をより高めることができる。
 直鎖状低密度ポリエチレンAのメルトフローレイトMFRは、好ましくは0.3g/10分以上であり、より好ましくは0.5g/10分以上であり、更に好ましくは0.7g/10分以上である。また、直鎖状低密度ポリエチレンAのメルトフローレイトMFRは、好ましくは2.0g/10分以下であり、より好ましくは1.8g/10分以下であり、更に好ましくは1.5g/10分以下であり、より更に好ましくは1.4g/10分以下である。
 なお、直鎖状低密度ポリエチレンAのメルトフローレイトMFRは、温度190℃、荷重2.16kgの条件で測定される値である。より具体的には、JIS K 7210-1:2014に準拠し、実施例に記載の方法によって測定することができる。
 前記直鎖状低密度ポリエチレンAの密度ρは、好ましくは910kg/m以上940kg/m以下であり、所望とする物性を有する発泡粒子を得やすくなる観点から、より好ましくは910kg/m以上935kg/m3以下であり、更に好ましくは910kg/m以上928kg/m3以下であり、より更に好ましくは912kg/m以上925kg/m3以下であり、特に好ましくは914kg/m以上922kg/m3以下である。
 直鎖状低密度ポリエチレンAの密度ρは、JIS K7112:1999に記載のA法(水中置換法)により測定される。
 前記直鎖状低密度ポリエチレンAの融点Tmは、得られる成形体の機械的物性を高める観点から、好ましくは100℃以上130℃以下である。前記直鎖状低密度ポリエチレンAの融点Tmは、より好ましくは110℃以上であり、更に好ましくは120℃以上であり、より更に好ましくは122℃以上である。一方、前記直鎖状低密度ポリエチレンAの融点Tmは、成形圧力が低い条件における発泡粒子の型内成形性を高める観点からは、好ましくは128℃以下であり、より好ましくは126℃以下である。
 直鎖状低密度ポリエチレンAの融点Tmは、直鎖状低密度ポリエチレンを試験片として、JIS K 7121:2012に基づいて測定される。具体的には、実施例に記載の方法によって測定することができる。
 所望とする物性を有する発泡粒子を得やすくなる観点から、前記直鎖状低密度ポリエチレンAの融解熱量ΔHは、好ましくは60J/g以上であり、より好ましくは70J/g以上であり、更に好ましくは75J/g以上である。また、同様の観点から、前記直鎖状低密度ポリエチレンAの融解熱量ΔHは、好ましくは120J/g以下であり、より好ましくは110J/g以下であり、更に好ましくは100J/g以下であり、特に好ましくは90J/g以下である。
 前記直鎖状低密度ポリエチレンAの融解熱量ΔHは、直鎖状低密度ポリエチレンAを試験片として、JIS K 7122:2012に準拠した示差走査熱量測定(DSC)を行うことにより得られるDSC曲線から求めることができる。具体的には、実施例に記載の方法によって測定することができる。
 前記直鎖状低密度ポリエチレンAは、密度が910kg/m以上940kg/m3以下であり、直鎖構造を有する、エチレンとα-オレフィンとの共重合体である。
 前記α-オレフィンとしては、好ましくは炭素数3~20のα-オレフィンであり、より好ましくは炭素数3~10のα-オレフィンであり、更に好ましくは炭素数3~6のα-オレフィンである。
 α-オレフィンの具体例としては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、4-メチル-1-ブテン、3,3-ジメチル-1-ブテン、4-メチル-1-ペンテン、4,4-ジメチル-1-ペンテン、1-オクテン等が挙げられる。これらのなかでも、型内成形性に優れる発泡粒子を安定して得ることができる観点からは、α-オレフィンは、好ましくは1-ブテン、1-ヘキセン及び4-メチル-1-ペンテンからなる群より選ばれる少なくとも1つを含む。
 したがって、前記直鎖状低密度ポリエチレンAは、好ましくは共重合成分(コモノマー)としてブテン成分とヘキセン成分とを含む直鎖状低密度ポリエチレンA1または共重合成分(コモノマー)としてブテン成分を含む直鎖状低密度ポリエチレンA2であり、より好ましくは共重合成分としてブテン成分とヘキセン成分とを含む直鎖状低密度ポリエチレンA1である。
 なお、共重合成分としてブテン成分とヘキセン成分とを含む直鎖状低密度ポリエチレン中のヘキセンに由来する成分には、1-ヘキセンと、4-メチル-1-ペンテンとが含まれる。
 型内成形性に優れる発泡粒子を安定して得ることができる観点から、前記直鎖状低密度ポリエチレンAとして、ブテン成分を含む直鎖状低密度ポリエチレンA2を用いる場合、該直鎖状低密度ポリエチレンA2中のブテン成分の含有量は2mol%以上7mol%以下であることが好ましく、3mol%以上6mol%以下であることがより好ましい。
 また、同様の観点から、前記直鎖状低密度ポリエチレンAとして、ブテン成分とヘキセン成分とを含む直鎖状低密度ポリエチレンA1を用いる場合、該直鎖状低密度ポリエチレンA1中の、ブテン成分の含有量は0.5mol%以上6mol%以下であることが好ましく、1mol%以上5mol%以下であることがより好ましく、2mol%以上4mol%以下であることがさらに好ましい。また、ブテン成分とヘキセン成分とを含む直鎖状低密度ポリエチレンA1を用いる場合、直鎖状低密度ポリエチレンA1中の、ヘキセン成分の含有量は0.2mol%以上5mol%以下であることが好ましく、0.5mol%以上4mol%以下であることがより好ましく、0.8mol%以上3mol%以下であることがさらに好ましい。
 また、本発明の目的を達成でき、本発明の効果を損なわない範囲において、前記直鎖状低密度ポリエチレンAは、α-オレフィン(共重合成分、コモノマー)として、プロピレンに由来する成分を含んでいてもよい。直鎖状低密度ポリエチレンAが共重合成分としてプロピレンに由来する成分を含む場合、低い密度を有する一方で、融点が比較的高く、軟化時の物性変化が緩やかな直鎖状低密度ポリエチレンとなる傾向がある。これにより、樹脂粒子の発泡時において発泡直後の発泡粒子が過度に収縮することが抑制される。更に、発泡粒子の型内成形時において成形直後の成形体が過度にヒケることが抑制される。このように、型内成形性に優れる発泡粒子が得られる。直鎖状低密度ポリエチレンAがプロピレンに由来する成分を含む場合、直鎖状低密度ポリエチレンAにおけるプロピレンに由来する成分の含有量は、0.3mol%以上5mol%以下であることが好ましく、0.5mol%以上4mol%以下であることがより好ましく、0.8mol%以上3mol%以下であることがさらに好ましく、1mol%以上2mol%以下であることが特に好ましい。
 なお、上記含有量は、エチレンに由来する成分と、α-オレフィンに由来する成分との合計を100質量%としたときの含有量である。また、直鎖状低密度ポリエチレンAにおける、α-オレフィンに由来する成分の含有量は、10mol%以下であることが好ましく、8mol%以下であることがより好ましい。また、直鎖状低密度ポリエチレンAにおける、α-オレフィンに由来する成分の含有量は、0.5mol%以上であることが好ましく、1mol%以上であることがより好ましい。
 直鎖状低密度ポリエチレンA中における各α-オレフィンに由来する成分の含有量は、実施例で説明する炭素13核磁気共鳴(13C-NMR)による測定等により求めることができる。
 また、同様の観点から、前記直鎖状低密度ポリエチレンAとして、ブテン成分とヘキセン成分とを含む直鎖状低密度ポリエチレンA1を用いる場合、該直鎖状低密度ポリエチレンA1におけるブテン成分の含有量に対するヘキセン成分の含有量の比[ヘキセン成分含有量(mol%)/ブテン成分含有量(mol%)]は、0.1以上2以下であることが好ましく、0.2以上1以下であることがより好ましく、0.3以上0.8以下であることが更に好ましい。
 また、直鎖状低密度ポリエチレンAがプロピレンに由来する成分を含む場合、該直鎖状低密度ポリエチレンAにおける、プロピレン以外のα-オレフィン(例えば、ブテン及び/又はヘキセン)に由来する成分の含有量に対するプロピレンに由来する成分の含有量の比[プロピレン成分含有量(mol%)/プロピレン以外のα-オレフィン成分含有量(mol%)]は、0.1以上2以下であることが好ましく、0.2以上1以下であることがより好ましく、0.3以上0.7以下であることがさらに好ましい。
(直鎖状低密度ポリエチレンB)
 直鎖状低密度ポリエチレンBは、前記直鎖状低密度ポリエチレンAのメルトフローレイトMFRと、温度190℃、荷重2.16kgの条件で測定される直鎖状低密度ポリエチレンBのメルトフローレイトMFRの差|MFR-MFR|(絶対値)が0g/10分以上2g/10分以下である直鎖状低密度ポリエチレンである。
 直鎖状低密度ポリエチレンAと、後述するような、直鎖状低密度ポリエチレンAとは異なる物性を有する直鎖状低密度ポリエチレンBとを混合して混合樹脂を形成する際に、直鎖状低密度ポリエチレンAとのメルトフローレイトの差が小さい直鎖状低密度ポリエチレンBを用いることで、混合樹脂中に一方の直鎖状低密度ポリエチレンが含まれることによる効果を発現させつつ、型内成形性に優れる発泡粒子を得ることができる。
 前記|MFR-MFR|は、好ましくは1.8g/10分以下であり、より好ましくは1.5g/10分以下であり、更に好ましくは1.4g/10分以下である。下限値には制限はなく、0g/10分であってもよい。
 温度190℃、荷重2.16kgの条件で測定される直鎖状低密度ポリエチレンBのメルトフローレイトMFRは、好ましくは0.1g/10分以上2g/10分以下である。直鎖状低密度ポリエチレンBのメルトフローレイトMFRが前記範囲であると、発泡粒子の型内成形性をより高めることができる。
 直鎖状低密度ポリエチレンBのメルトフローレイトMFRは、より好ましくは0.3g/10分以上であり、更に好ましくは0.5g/10分以上であり、より更に好ましくは0.7g/10分以上である。また、直鎖状低密度ポリエチレンBのメルトフローレイトMFRは、より好ましくは1.8g/10分以下であり、更に好ましくは1.5g/10分以下であり、より更に好ましくは1.4g/10分以下である。
 なお、直鎖状低密度ポリエチレンBのメルトフローレイトMFRは、温度190℃、荷重2.16kgの条件で測定される値である。より具体的には、JIS K 7210-1:2014に準拠し、実施例に記載の方法によって測定することができる。
 前記直鎖状低密度ポリエチレンBの密度ρは、好ましくは910kg/m以上940kg/m以下であり、所望とする物性を有する発泡粒子を得やすくなる観点から、より好ましくは912kg/m以上935kg/m3以下であり、更に好ましくは914kg/m以上928kg/m3以下であり、より更に好ましくは920kg/m以上928kg/m3以下であり、特に好ましくは922kg/m以上928kg/m3以下である。
 直鎖状低密度ポリエチレンBの密度ρは、JIS K7112:1999に記載のA法(水中置換法)により測定される。
 前記直鎖状低密度ポリエチレンAの密度ρと前記直鎖状低密度ポリエチレンBの密度ρとの差|ρ-ρ|(絶対値)は、好ましくは3kg/m3以上である。密度が異なる直鎖状低密度ポリエチレンを混合した混合樹脂により発泡粒子を構成することで、所望とするバイオマス度を有する発泡粒子としつつ、例えば、相対的に密度の低い一方の直鎖状低密度ポリエチレンを単独で用いて発泡粒子を製造する場合に比べて、型内成形性に優れると共に、圧縮強度に優れる成形体を成形可能な発泡粒子を安定して得ることができる。前記|ρ-ρ|は、好ましくは4kg/m3以上であり、より好ましくは5kg/m3以上であり、更に好ましくは6kg/m3以上である。上限値には制限はないが、好ましくは20kg/m3以下であり、より好ましくは15kg/m3以下である。
 また、前記直鎖状低密度ポリエチレンBの密度ρが前記直鎖状低密度ポリエチレンAの密度ρより大きいことが好ましく、前記直鎖状低密度ポリエチレンBの密度ρと前記直鎖状低密度ポリエチレンAの密度ρとの差(ρ-ρ)(相対値)は、好ましくは3kg/m3以上である。この場合には、所望のバイオマス度を有しつつ、型内成形性に優れる発泡粒子を安定して得ることができる。前記(ρ-ρ)は、好ましくは4kg/m3以上であり、より好ましくは5kg/m3以上であり、更に好ましくは6kg/m3以上である。上限値には制限はないが、好ましくは20kg/m3以下であり、より好ましくは15kg/m3以下である。
 前記直鎖状低密度ポリエチレンBの融点Tmは、得られる成形体の機械的物性を高める観点から、好ましくは100℃以上130℃以下である。前記直鎖状低密度ポリエチレンBの融点Tmは、より好ましくは110℃以上であり、更に好ましくは116℃以上であり、より更に好ましくは120℃以上である。一方、前記直鎖状低密度ポリエチレンBの融点Tmは、成形圧力が低い条件における発泡粒子の型内成形性を高める観点からは、好ましくは128℃以下であり、より好ましくは126℃以下であり、さらに好ましくは124℃以下である。
 直鎖状低密度ポリエチレンBの融点Tmは、直鎖状低密度ポリエチレンを試験片として、JIS K 7121:2012に基づいて測定される。具体的には、実施例に記載の方法によって測定することができる。
 前記直鎖状低密度ポリエチレンAの融点Tmと、前記直鎖状低密度ポリエチレンBの融点Tmの差|Tm-Tm|(絶対値)は、好ましくは0℃以上4℃以下である。融点の差が小さい直鎖状低密度ポリエチレンを混合した混合樹脂により発泡粒子を構成することで、所望とするバイオマス度を有すると共に、型内成形性に優れる発泡粒子を安定して得ることができる。前記|Tm-Tm|は、好ましくは3℃以下であり、より好ましくは2℃以下である。下限値には制限はなく、0℃であってもよい。
 所望とする物性を有する発泡粒子を得やすくなる観点から、前記直鎖状低密度ポリエチレンBの融解熱量ΔHは、好ましくは60J/g以上120J/g以下である。
 また、所望とするバイオマス度を有する発泡粒子としつつ、発泡粒子の型内成形性を高めることができる観点からは、直鎖状低密度ポリエチレンBの融解熱量ΔHは、好ましくは70J/g以上であり、より好ましくは80J/g以上であり、更に好ましくは90J/g以上であり、より更に好ましくは100J/g以上であり、特に好ましくは105J/g以上である。また、同様の観点から、前記直鎖状低密度ポリエチレンBの融解熱量ΔHは、好ましくは118J/g以下であり、より好ましくは115J/g以下である。
 前記直鎖状低密度ポリエチレンBの融解熱量ΔHは、直鎖状低密度ポリエチレンBを試験片として、JIS K 7122:2012に準拠した示差走査熱量測定(DSC)を行うことにより得られるDSC曲線から求めることができる。具体的には、実施例に記載の方法によって測定することができる。
 また、前記直鎖状低密度ポリエチレンBの融解熱量ΔHと前記直鎖状低密度ポリエチレンAの融解熱量ΔHとの差|ΔH-ΔH|(絶対値)は、好ましくは3J/g以上であり、より好ましくは5J/g以上であり、更に好ましくは10J/g以上40J/g以下である。融解熱量が異なる直鎖状低密度ポリエチレンを混合した混合樹脂により発泡粒子を構成することで、所望とするバイオマス度を有する発泡粒子としつつ、例えば、相対的に融解熱量の小さい一方の直鎖状低密度ポリエチレンを単独で用いて発泡粒子を製造する場合に比べて、型内成形性に優れると共に、圧縮強度に優れる成形体を成形可能な発泡粒子を安定して得ることができる。前記|ΔH-ΔH|は、更に好ましくは15J/g以上であり、より更に好ましくは20J/g以上であり、特に好ましくは25J/g以上である。また、前記|ΔH-ΔH|は、更に好ましくは38J/g以下であり、より更に好ましくは35J/g以下である。
 また、前記直鎖状低密度ポリエチレンBの融解熱量ΔHが前記直鎖状低密度ポリエチレンAの融解熱量ΔHより大きいことが好ましく、前記直鎖状低密度ポリエチレンBの融解熱量ΔHと前記直鎖状低密度ポリエチレンAの融解熱量ΔHとの差(ΔH-ΔH)(相対値)は、好ましくは5J/g以上であり、より好ましくは10J/g以上40J/g以下である。この場合には、所望とするバイオマス度を有する発泡粒子としつつ、型内成形性に優れると共に、圧縮強度に優れる成形体を成形可能な発泡粒子を安定して得ることができる。前記(ΔH-ΔH)は、更に好ましくは15J/g以上であり、より更に好ましくは20J/g以上であり、特に好ましくは25J/g以上である。また、前記(ΔH-ΔH)は、更に好ましくは38J/g以下であり、より更に好ましくは35J/g以下である。
 前記直鎖状低密度ポリエチレンBは、石油由来の直鎖状低密度ポリエチレンであってもよく、バイオマス由来の成分を含む直鎖状低密度ポリエチレンであってもよい。そのため、前記直鎖状低密度ポリエチレンBのASTM D 6866により測定されるバイオマス度BCには制限はないが、前記直鎖状低密度ポリエチレンBがバイオマス由来の成分を含む直鎖状低密度ポリエチレンの場合、バイオマス度BCは、10%以上であってもよく、20%以上であってもよく、30%以上であってもよく、50%以上であってもよく、70%以上であってもよい。なお、バイオマス度BCの上限値は、100%である。また、前記直鎖状低密度ポリエチレンBが石油由来の直鎖状低密度ポリエチレンの場合、前記直鎖状低密度ポリエチレンBのASTM D 6866により測定されるバイオマス度BCは0%であってよい。
 発泡粒子の型内成形性を安定して高めることができる観点からは、前記直鎖状低密度ポリエチレンBのバイオマス度BCは、20%以下であることが好ましく、10%以下であることがより好ましい。また、前記直鎖状低密度ポリエチレンBは石油由来の直鎖状低密度ポリエチレンであることがさらに好ましい。
 直鎖状低密度ポリエチレンAのバイオマス度BCと、ASTM D 6866により測定される前記直鎖状低密度ポリエチレンBのバイオマス度BCとの差|BC-BC|(絶対値)は、好ましくは5%以上である。この場合、所望とするバイオマス度を有する発泡粒子としつつ、型内成形性に優れる発泡粒子を安定して得ることができる。また、直鎖状低密度ポリエチレンAのバイオマス度BCが直鎖状低密度ポリエチレンBのバイオマス度BCよりも大きいことが好ましい。
 発泡粒子の型内成形性をより高めやすくなる観点からは、前記|BC-BC|は、好ましくは10%以上であり、より好ましくは20%以上であり、更に好ましくは30%以上であり、より更に好ましくは50%以上であり、特に好ましくは70%以上である。上限値には制限はなく、100%以下であればよいが、発泡粒子の型内成形性を安定して高める観点からは、前記|BC-BC|は、好ましくは95%以下であり、より好ましくは90%以下である。
 直鎖状低密度ポリエチレンAのバイオマス度BCと、ASTM D 6866により測定される前記直鎖状低密度ポリエチレンBのバイオマス度BCとの差(BC-BC)(相対値)は、上記の観点から、好ましくは5%以上であり、好ましくは10%以上であり、より好ましくは20%以上であり、更に好ましくは30%以上であり、より更に好ましくは50%以上であり、特に好ましくは70%以上である。上限値には制限はなく、100%以下であればよいが、発泡粒子の型内成形性を安定して高める観点からは、前記(BC-BC)は、好ましくは95%以下であり、より好ましくは90%以下である。
 前記直鎖状低密度ポリエチレンBは、密度が910kg/m以上940kg/m3以下であり、直鎖構造を有する、エチレンとα-オレフィンとの共重合体である。
 前記α-オレフィンとしては、好ましくは炭素数3~20のα-オレフィンであり、より好ましくは炭素数3~10のα-オレフィンであり、更に好ましくは炭素数3~6のα-オレフィンである。
 α-オレフィンの具体例としては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、4-メチル-1-ブテン、3,3-ジメチル-1-ブテン、4-メチル-1-ペンテン、4,4-ジメチル-1-ペンテン、2-メチルヘプテン、3-エチルヘキセン等が挙げられる。これらのなかでも、型内成形性に優れる発泡粒子を安定して得ることができる観点からは、α-オレフィンは、好ましくは1-オクテン、1-ヘキセン及び4-メチル-1-ペンテンからなる群より選ばれる少なくとも1つを含む。
 したがって、前記直鎖状低密度ポリエチレンBは、好ましくは共重合成分(コモノマー)としてオクテン成分を含む直鎖状低密度ポリエチレンB1または共重合成分(コモノマー)としてヘキセン成分を含む直鎖状低密度ポリエチレンB2であり、より好ましくはオクテン成分とを含む直鎖状低密度ポリエチレンB1である。
 なお、共重合成分としてオクテン成分を含む直鎖状低密度ポリエチレン中のオクテンに由来する成分には、1-オクテン、2-メチルヘプテン、3-エチルヘキセン等が含まれ、1-オクテンであることが好ましい。また、ヘキセン成分を含む直鎖状低密度ポリエチレン中のヘキセンに由来する成分には、1-ヘキセンと、4-メチル-1-ペンテンとが含まれ、4-メチル-1-ペンテンであることが好ましい。
 型内成形性に優れる発泡粒子を安定して得ることができる観点から、前記直鎖状低密度ポリエチレンBとして、ヘキセン成分を含む直鎖状低密度ポリエチレンB2を用いる場合、該直鎖状低密度ポリエチレンB2中のヘキセン成分の含有量は0.5mol%以上5mol%以下であることが好ましく、1mol%以上3mol%以下であることがより好ましい。
 また、同様の観点から、前記直鎖状低密度ポリエチレンBとして、オクテン成分を含む直鎖状低密度ポリエチレンB1を用いる場合、該直鎖状低密度ポリエチレンB1中の、オクテン成分の含有量は0.5mol%以上5mol%以下であることが好ましく、1mol%以上3mol%以下であることがより好ましい。
 なお、上記含有量は、エチレンに由来する成分と、α-オレフィンに由来する成分との合計を100質量%としたときの含有量である。また、直鎖状低密度ポリエチレンBにおける、α-オレフィンに由来する成分の含有量は、10mol%以下であることが好ましく、8mol%以下であることがより好ましく、5mol%以下であることが更に好ましく、3mol%以下であることがより更に好ましい。また、直鎖状低密度ポリエチレンBにおける、α-オレフィンに由来する成分の含有量は、0.5mol%以上であることが好ましく、1mol%以上であることがより好ましい。
 直鎖状低密度ポリエチレンB中における各α-オレフィンに由来する成分の含有量は、実施例で説明する炭素13核磁気共鳴(13C-NMR)による測定等により求めることができる。
(混合樹脂及び発泡粒子の特性)
 樹脂粒子の基材樹脂である直鎖状低密度ポリエチレンは、前記直鎖状低密度ポリエチレンAと、前記直鎖状低密度ポリエチレンBとを含む、少なくとも2種の直鎖状低密度ポリエチレンの混合樹脂である。前記混合樹脂は、例えば、前記直鎖状低密度ポリエチレンAと直鎖状低密度ポリエチレンBとを混練してなる。型内成形性に優れ、良品を得られる成形範囲が広い発泡粒子を安定して得ることができる観点からは、前記直鎖状低密度ポリエチレンAが前記直鎖状低密度ポリエチレンA1であり、前記直鎖状低密度ポリエチレンBが前記直鎖状低密度ポリエチレンB1であることが好ましい。
 また、混合樹脂中の前記直鎖状低密度ポリエチレンAと直鎖状低密度ポリエチレンBとの質量比が5/95~95/5であり、ASTM D 6866により測定される前記混合樹脂のバイオマス度が5%以上であり、前記発泡粒子を構成する混合樹脂が、10℃/分の加熱速度で23℃から200℃まで加熱して得られるDSC曲線において、直鎖状低密度ポリエチレンに固有の融解ピーク(固有ピーク)と、固有ピークよりも高温側に1以上の融解ピーク(高温ピーク)とが現れる結晶構造を有し、前記高温ピークの融解熱量が10J/g以上50J/g以下である。
 混合樹脂中の前記直鎖状低密度ポリエチレンAと直鎖状低密度ポリエチレンBとの質量比は5/95~95/5である。
 直鎖状低密度ポリエチレンAと、上述したような、直鎖状低密度ポリエチレンAとは異なる物性を有する直鎖状低密度ポリエチレンBとを混合して混合樹脂を形成する際に、直鎖状低密度ポリエチレンAとのメルトフローレイトの差が小さい直鎖状低密度ポリエチレンBを特定の質量比で混合した混合樹脂により発泡粒子を構成することで、混合樹脂中に一方の直鎖状低密度ポリエチレンが含まれることによる効果を発現させつつ、型内成形性に優れる発泡粒子とすることができる。
 発泡粒子のバイオマス度を高めやすくなる観点からは、前記直鎖状低密度ポリエチレンAと直鎖状低密度ポリエチレンBの質量比(直鎖状低密度ポリエチレンBに対する直鎖状低密度ポリエチレンAの質量比)(A/B)は、5/95以上(1/19以下)であり、好ましくは10/90以上(1/9以上)であり、より好ましくは20/80以上(1/4以上)であり、更に好ましくは30/70以上(3/7以上)である。また、発泡粒子の型内成形性を高めやすくなる観点からは、前記直鎖状低密度ポリエチレンAと直鎖状低密度ポリエチレンBの質量比(直鎖状低密度ポリエチレンBに対する直鎖状低密度ポリエチレンAの質量比)(A/B)は、95/5以下(19以下)であり、好ましくは90/10以下(9以下)であり、より好ましくは80/20以下(4以下)であり、更に好ましくは70/30以下(7/3以下)であり、より更に好ましくは60/40以下(3/2以下)である。
 また、低い成形圧力条件での型内成形が可能であると共に、良品を得られる成形範囲の広い発泡粒子を安定して得ることができる観点からは、前記直鎖状低密度ポリエチレンAと直鎖状低密度ポリエチレンBの質量比(直鎖状低密度ポリエチレンBに対する直鎖状低密度ポリエチレンAの質量比)(A/B)は、好ましくは25/75以上(1/3以上)90/10以下(9以下)である。
 なお、本発明の混合樹脂は、本発明の効果を阻害しない範囲内で、前記直鎖状低密度ポリエチレン以外の樹脂やエラストマー等の重合体を含んでいてもよい。この場合、前記混合樹脂中の前記直鎖状低密度ポリエチレンA及び前記直鎖状低密度ポリエチレンB以外の重合体の含有量は、直鎖状低密度ポリエチレンAと直鎖状低密度ポリエチレンBとの合計100質量部に対して、40質量部以下が好ましく、30質量部以下がより好ましく、20質量部以下が更に好ましく、10質量部以下がより更に好ましく、5質量部以下が特に好ましい。また、前記混合樹脂中の前記直鎖状低密度ポリエチレン以外の重合体の含有量は、混合樹脂における含有量が少ない直鎖状低密度ポリエチレン(直鎖状低密度ポリエチレンAあるいは直鎖状低密度ポリエチレンB)100質量部に対して、80質量部以下が好ましく、50質量部以下がより好ましく、30質量部以下が更に好ましく、20質量部以下がより更に好ましく、10質量部以下が特に好ましい。
 ASTM D 6866により測定される前記混合樹脂のバイオマス度は、5%以上である。
 前記混合樹脂のバイオマス度が前記範囲にあることで、成形体の製造に際し、化石資源の使用を抑制し、成形体のライフサイクルにおいて排出される二酸化炭素の量も削減することができる。
 前記観点からは、前記混合樹脂のASTM D 6866により測定されるバイオマス度は、5%以上であり、好ましくは10%以上であり、より好ましくは20%以上であり、更に好ましくは30%以上であり、より更に好ましくは40%以上である。また、上限値には制限はなく、前記混合樹脂のASTM D 6866により測定されるバイオマス度は、100%以下であればよいが、発泡粒子の型内成形性を高めやすい観点からは、前記混合樹脂のASTM D 6866により測定されるバイオマス度は、好ましくは90%以下であり、より好ましくは80%以下であり、更に好ましくは70%以下であり、より更に好ましくは60%以下である。前記バイオマス度は、ASTM D 6866により測定されるものであり、混合樹脂中に含まれる天然由来成分の割合を意味する。また、前記バイオマス度は、樹脂粒子あるいは発泡粒子に対して放射性炭素C14の濃度を測定することや、樹脂粒子あるいは発泡粒子を製造するために用いたバイオマス由来樹脂のバイオマス度と、樹脂粒子あるいは発泡粒子中のバイオマス由来樹脂の含有割合とから算出することができる。
 前記発泡粒子(発泡粒子を構成する混合樹脂)は、10℃/分の加熱速度で23℃から200℃まで加熱して得られるDSC曲線において、直鎖状低密度ポリエチレンに固有の融解ピーク(固有ピーク)と、固有ピークよりも高温側に1以上の融解ピーク(高温ピーク)とが現れる結晶構造を有し、前記高温ピークの融解熱量が10J/g以上50J/g以下である。
 前記DSC曲線は、JIS K7122:2012に準拠した示差走査熱量測定(DSC)によるDSC曲線である。具体的には、示差走査熱量計によって、前記混合樹脂(発泡粒子)1~3mgを23℃から200℃まで10℃/分の加熱速度で加熱することによって前記DSC曲線を得ることができる。
 前記のとおり、前記発泡粒子に対して測定された前記DSC曲線において、直鎖状低密度ポリエチレンに固有の融解ピーク(固有ピーク)と、固有ピークよりも高温側に1以上の融解ピーク(高温ピーク)とが現れる。
 次により詳細に説明する。
 前記DSC曲線は、前記測定方法により、発泡粒子を加熱することにより得られるDSC曲線(第1回目の加熱におけるDSC曲線)を意味する。また、直鎖状低密度ポリエチレンに固有の融解ピーク(固有ピーク)とは、混合樹脂を構成する直鎖状低密度ポリエチレンが通常有する結晶の融解により現れる融解ピークである。
 一方、固有ピークよりも高温側の融解ピーク(高温ピーク)とは、第1回目の加熱におけるDSC曲線で前記固有ピークよりも高温側に現れる融解ピークである。この高温ピークが現れる場合、樹脂中に二次結晶が存在するものと推定される。なお、発泡粒子を10℃/分の加熱速度で23℃から200℃まで加熱(第1回目の加熱)した後、10℃/分の冷却速度で200℃から23℃まで冷却し、その後再び10℃/分の加熱速度で23℃から200℃まで加熱(第2回目の加熱)したときに得られるDSC曲線(第2回目の加熱におけるDSC曲線)においては、混合樹脂を構成する直鎖状低密度ポリエチレンが通常有する結晶の融解による融解ピークのみが現れる。この固有ピークは前記第1回目の加熱におけるDSC曲線にも第2回目の加熱におけるDSC曲線にも現れ、ピーク頂点の温度は第1回目と第2回目とで多少異なる場合があるが、通常、その差は5℃未満である。これによって、いずれのピークが固有ピークであるかを確認することができる。
 なお、前記発泡粒子は、10℃/分の加熱速度で23℃から200℃まで加熱し、次いで10℃/分の冷却速度で200℃から23℃まで冷却し、次いで10℃/分の加熱速度で23℃から200℃まで加熱したときに得られる第2回目の加熱におけるDSC曲線において、好ましくは、直鎖状低密度ポリエチレンに固有の融解ピーク(固有ピーク)のみが現れる発泡粒子である。
 前記発泡粒子(混合樹脂)の全融解熱量は、DSC曲線に現れる全ての融解ピーク(吸熱ピーク)の融解熱量の合計である。前記発泡粒子の全融解熱量は、好ましくは70J/g以上120J/g以下であり、より好ましくは70J/g以上105J/g以下である。発泡粒子の全融解熱量が前記範囲であると、二段発泡性や、型内成形性に優れる発泡粒子を得ることができ、また強度に優れる成形体を得ることができる。
 前記発泡粒子の全融解熱量は、得られる成形体の強度を向上させる観点から、好ましくは75J/g以上であり、より好ましくは80J/g以上であり、更に好ましくは85J/g以上であり、特に好ましくは90J/g以上である。また、前記発泡粒子の全融解熱量は、発泡粒子の二段発泡性や、型内成形性を高める観点から、好ましくは105J/g以下であり、より好ましくは102J/g以下であり、更に好ましくは100J/g以下であり、より更に好ましくは98J/g以下である。
 発泡粒子の全融解熱量は、発泡粒子を試験片として、JIS K 7122:2012に準拠した示差走査熱量測定(DSC)を行うことにより得られるDSC曲線から求めることができる。具体的には、まず、試験片の状態調節としては「(2)一定の熱処理を行なった後、融解温度を測定する場合」を採用し、試験片を、10℃/分の加熱速度で23℃から200℃まで加熱し、200℃に達した後、200℃から23℃まで10℃/分の速度で降温した後、再度23℃から200℃まで10℃/分の速度で2回目の加熱をすることによりDSC曲線(2回目加熱時のDSC曲線)を取得する。得られた2回目加熱時のDSC曲線上の温度80℃での点をαとし、融解終了温度に相当するDSC曲線上の点をβとする。点αと点βの区間におけるDSC曲線と、線分(α-β)とによって囲まれる部分の面積を測定し、この面積から発泡粒子を構成する混合樹脂の全融解熱量を算出することができる。
 前記発泡粒子の高温ピークの融解熱量は、10J/g以上50J/g以下である。発泡粒子の高温ピークの融解熱量が前記範囲であると、嵩密度が低い発泡粒子とした場合であっても、発泡粒子の型内成形性を高めることができ、型内成形が可能な成形圧力範囲の広い発泡粒子を得ることができる。これにより、広い密度範囲にわたって、良好な成形体を得ることができる。
 前記発泡粒子の高温ピークの融解熱量は、成形直後の成形体のヒケを抑制し、発泡粒子の型内成形性を高める観点や、発泡粒子を二段発泡させた際の、二段発泡粒子の収縮を安定して抑制する観点から、好ましくは15J/g以上であり、より好ましくは20J/g以上であり、更に好ましくは30J/g以上であり、より更に好ましくは32J/g以上である。また、前記発泡粒子の高温ピークの融解熱量は、低い成形圧力条件における発泡粒子の融着性を向上させ、発泡粒子の型内成形性を高める観点や、発泡粒子を二段発泡させた際に、より嵩密度の低い発泡粒子を得やすくなる観点から、50J/g以下であり、好ましくは45J/g以下であり、より好ましくは40J/g以下である。
 高温ピークの融解熱量は、発泡粒子を試験片として、JIS K7122:2012に準拠した熱流束示差走査熱量測定により求めることができる。具体的には、発泡粒子を10℃/分の加熱速度で23℃から200℃まで加熱することにより得られるDSC曲線(第1回目の加熱におけるDSC曲線)から求めることができ、より具体的には、実施例に記載の方法によって測定することができる。
 なお、前記第1回目の前記DSC曲線において、固有ピークと、高温ピークとが現れる結晶構造を有する発泡粒子(発泡粒子を構成する混合樹脂)は、例えば、前記直鎖状低密度ポリエチレンAと直鎖状低密度ポリエチレンBとを混練してなる樹脂粒子に対して、後述する保持工程を行うことで得ることができる。
 前記発泡粒子の全融解熱量に対する高温ピークの融解熱量の比[高温ピークの融解熱量/全融解熱量]は、0.2以上0.7以下であることが好ましく、0.25以上0.65以下であることがより好ましい。前述した各融解熱量が前記範囲であると共に、前記比が前記範囲であると、型内成形性に優れ、広い密度範囲にわたって、型内成形が可能な成形圧力範囲の広い発泡粒子を得ることができる。また、二段発泡性が良好な発泡粒子を得ることができる。
 前記発泡粒子の全融解熱量に対する高温ピークの融解熱量の比は、成形直後の成形体のヒケを抑制し、発泡粒子の型内成形性を高める観点や、発泡粒子を二段発泡させた際の、二段発泡粒子の収縮を安定して抑制する観点から、好ましくは0.25以上であり、より好ましくは0.28以上であり、更に好ましくは0.30以上である。また、前記発泡粒子の全融解熱量に対する高温ピークの融解熱量の比は、低い成形圧力条件における発泡粒子の融着性を向上させ、発泡粒子の型内成形性を高める観点や、発泡粒子を二段発泡させた際に、より嵩密度の低い発泡粒子を得やすくなる観点から、好ましくは0.65以下であり、より好ましくは0.60以下であり、更に好ましくは0.55以下であり、特に好ましくは0.50以下である。
 なお、全融解熱量に対する高温ピークの融解熱量の比は、前記全融解熱量と前記高温ピークの融解熱量から算出することができる。
 温度190℃、荷重2.16kgの条件で測定される前記混合樹脂のメルトフローレイトは、0.1g/10分以上3g/10分以下である。前記混合樹脂のメルトフローレイトが前記範囲であると、発泡粒子の型内成形性をより高めることができる。
 前記混合樹脂のメルトフローレイトは、好ましくは0.3g/10分以上であり、より好ましくは0.5g/10分以上であり、更に好ましくは0.7g/10分以上である。また、前記混合樹脂のメルトフローレイトは、好ましくは2.0g/10分以下であり、より好ましくは1.8g/10分以下であり、更に好ましくは1.5g/10分以下であり、より更に好ましくは1.4g/10分以下である。
 なお、前記混合樹脂のメルトフローレイトは、温度190℃、荷重2.16kgの条件で測定される値である。より具体的には、JIS K 7210-1:2014に準拠し、実施例に記載の方法によって測定することができる。
 前記混合樹脂の密度は、好ましくは910kg/m以上940kg/m以下であり、所望とする物性を有する発泡粒子を得やすくなる観点から、より好ましくは910kg/m以上928kg/m3以下であり、更に好ましくは912kg/m以上926kg/m3以下であり、より更に好ましくは914kg/m以上925kg/m3以下であり、特に好ましくは916kg/m以上924kg/m3以下である。
 前記混合樹脂の密度は、JIS K7112:1999に記載のA法(水中置換法)により測定される。
(樹脂粒子の製造)
 本発明の発泡粒子の製造方法に用いられる前記樹脂粒子は、押出機内に前記直鎖状低密度ポリエチレンAと、前記直鎖状低密度ポリエチレンB、必要に応じて配合される気泡調整剤等を供給し、加熱、混練して混合樹脂である樹脂溶融物とした後、該樹脂溶融物を押出機から押し出すとともに、ストランドカット方式、ホットカット方式、水中カット方式等によりペレタイズすることにより得ることができる。
 前記樹脂粒子1個当たりの平均質量は、0.1~20mgとなるように調整されることが好ましく、より好ましくは0.2~10mgであり、更に好ましくは0.3~5mgであり、より更に好ましくは0.4~2mgである。また、上記粒子の外形形状は、本発明の所期の目的を達成できる範囲であれば特に限定されないが、好ましくは円柱状である。
 樹脂粒子の外形形状が円柱状である場合、前記樹脂粒子の粒子径(押出方向における長さ)は、好ましくは0.1~3.0mmであり、より好ましくは0.3~1.5mmである。また、前記樹脂粒子の押出方向における長さと、前記樹脂粒子の押出方向と直交する方向における長さ(樹脂粒子の直径)との比(長さ/直径比)は、好ましくは0.5~5.0であり、より好ましくは1.0~3.0である。
 なお、ストランドカット法によりペレタイズを行う場合、樹脂粒子の粒子径、長さ/直径比や平均質量は、樹脂溶融物を押出す際における押出速度や、ストランドの引き取り速度、ストランドを切断する際のカッタースピードなどを適宜変えてペレタイズを行うことにより調整することができる。
 また、樹脂粒子には、本発明の効果を阻害しない範囲内で、添加剤が適宜含有されていてもよい。添加剤としては、例えば、酸化防止剤、紫外線吸収剤、帯電防止剤、難燃剤、顔料、染料及び気泡調整剤などを挙げることができる。これらの添加剤は、例えば、樹脂粒子を製造する工程で樹脂粒子に添加することで発泡粒子中に含有させることができる。
 気泡調整剤としては、例えば、無機粉体や有機粉体を用いることができる。無機粉体としては、ホウ酸亜鉛やホウ酸マグネシウム等のホウ酸金属塩等が挙げられ、有機粉末としては、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂粉末等が挙げられる。
 所望とする嵩密度を有すると共に、気泡径のばらつきが少ない発泡粒子を安定して得られる観点からは、樹脂粒子中の気泡調整剤の配合量は、50質量ppm以上5000質量ppm以下であることが好ましく、100質量ppm以上2000質量ppm以下であることがより好ましく、150質量ppm以上1500質量ppm以下であることがさらに好ましい。
 また、発泡粒子の平均気泡径を所望とする範囲に調整しやすい観点からは、気泡調整剤として、ホウ酸金属塩を用いることが好ましく、ホウ酸亜鉛を用いることがより好ましい。また、ホウ酸亜鉛を用いる場合、その個数基準の算術平均粒子径は、0.5μm以上10μm以下であることが好ましく、1μm以上8μm以下であることがより好ましい。
 ホウ酸亜鉛の個数基準の算術平均粒子径は、レーザー回折散乱法によって測定される体積基準の粒度分布をもとに、粒子の形状を球として仮定して個数基準の粒度分布に換算することにより、個数基準の粒度分布を得、この個数基準の粒度分布に基づく粒子径を算術平均することにより求めることができる。なお、上記粒子径は、粒子と同体積を有する仮想球の直径を意味する。
<発泡粒子の製造>
 本発明の発泡粒子の製造方法は、混合樹脂を基材樹脂とする上述の樹脂粒子を発泡させて、嵩密度10kg/m3以上240kg/m3以下の発泡粒子を製造する方法であればよい。本発明の発泡粒子の製造方法は、例えば、少なくとも2種の直鎖状低密度ポリエチレンの混合樹脂を基材樹脂とする樹脂粒子に発泡剤を含浸させ、発泡剤を含有する樹脂粒子を発泡させる方法である。樹脂粒子の発泡方法としては、発泡剤を含有する樹脂粒子をスチーム等の加熱媒体により加熱する方法や、所定の温度・圧力雰囲気下で保持された発泡剤を含む樹脂粒子を、前記圧力雰囲気よりも低い圧力雰囲気下に開放する方法等を採用することができる。以下に好適な製造方法の一例を示す。
 本発明の発泡粒子の好ましい製造方法は、前記樹脂粒子を発泡させて発泡粒子を製造する方法であって、容器内の水性媒体中に分散させた、発泡剤を含む前記樹脂粒子を、前記水性媒体と共に、前記容器から前記容器内の圧力よりも低い圧力雰囲気下に放出して前記樹脂粒子を発泡させる、製造方法である。
より具体的には、容器内の水性媒体中に、少なくとも2種の直鎖状低密度ポリエチレンの混合樹脂を基材樹脂とする樹脂粒子を分散させる分散工程、容器内で前記樹脂粒子に発泡剤を含浸させる発泡剤含浸工程、及び発泡剤を含む前記樹脂粒子を水性媒体と共に容器から容器内の圧力よりも低い圧力雰囲気下に放出して樹脂粒子を発泡させる発泡工程を含む。
 本発明の発泡粒子の好ましい製造方法は、容器内の水性媒体中に、前記樹脂粒子を分散させる分散工程、容器内で前記樹脂粒子に発泡剤を含浸させる発泡剤含浸工程、及び発泡剤を含む前記樹脂粒子を水性媒体と共に容器から容器内の圧力よりも低い圧力雰囲気下に放出して樹脂粒子を発泡させる発泡工程を含むが、これらの工程がこの順で行われることが好ましく、これらの工程が一連の工程として行われることがより好ましい。なお、この一連の工程により発泡を行う方法を、分散媒放出発泡方法ともいう。
 前記分散工程においては、前記のようにして得られた樹脂粒子を密閉容器内で分散させるための分散媒として、水性分散媒が好ましく用いられる。該水性分散媒は、水を主成分とする分散媒である。水性分散媒における水の割合は、好ましくは70質量%以上であり、より好ましくは80質量%以上であり、更に好ましくは90質量%以上であり、100質量%であってもよい。水性分散媒中の水以外の分散媒としては、エチレングリコール、グリセリン、メタノール、エタノール等が挙げられる。
 本発明で好適に用いられる分散媒放出発泡方法においては、容器内で加熱された樹脂粒子同士が容器内で互いに融着しないように、分散媒体中に分散剤を添加することが好ましい。分散剤としては、樹脂粒子の容器内での融着を防止するものであればよいが、無機分散剤を好ましく用いることができる。無機分散剤としては、例えば、カオリン、マイカ、クレー等の天然又は合成粘土鉱物や、酸化アルミニウム、酸化チタン、塩基性炭酸マグネシウム、塩基性炭酸亜鉛、炭酸カルシウム、酸化鉄等が挙げられ、これらの内の1種を使用してもよく、2種以上を組み合わせて使用してもよい。これらのなかでも天然又は合成粘土鉱物が好ましい。前記分散剤の添加量は、好ましくは前記樹脂粒子100質量部あたり0.001~5質量部である。
 なお、分散剤を使用する場合、分散助剤としてドデシルベンゼンスルホン酸ナトリウム、アルキルスルホン酸ナトリウム、オレイン酸ナトリウム等のアニオン系界面活性剤を併用することが好ましい。前記分散助剤は、前記樹脂粒子100質量部当たり、0.001~1質量部程度添加することが好ましい。
 前記発泡剤含浸工程において、前記樹脂粒子を発泡させるための発泡剤としては、物理発泡剤を用いることが好ましい。該物理発泡剤としては、無機物理発泡剤と有機物理発泡剤が挙げられる。無機物理発泡剤としては、二酸化炭素、空気、窒素、ヘリウム、アルゴン等が挙げられる。また、有機物理発泡剤としては、プロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタン、ヘキサン等の脂肪族炭化水素、シクロペンタン、シクロヘキサン等の環式脂肪族炭化水素、エチルクロライド、2,3,3,3-テトラフルオロプロペン、トランス-1,3,3,3-テトラフルオロプロペン、トランス-1-クロロ-3,3,3-トリフルオロプロペン等のハロゲン化炭化水素等が挙げられる。なお、前記物理発泡剤は単独で用いられてもよく、二種以上が用いられてもよい。また、無機物理発泡剤と有機物理発泡剤とを併用してもよい。本製造方法に用いられる発泡剤は、所望とする発泡粒子を製造しやすいという観点から、好ましくは無機物理発泡剤であり、より好ましくは二酸化炭素である。
 発泡剤の添加量は、所望とする発泡粒子の嵩密度や発泡剤の種類等を考慮して決定されるが、例えば、物理発泡剤を用いる場合、樹脂粒子100質量部に対する物理発泡剤の添加量は、好ましくは0.1~30質量部であり、より好ましくは0.5~15質量部である。
 発泡粒子製造工程において、樹脂粒子に発泡剤を含浸させる方法としては、例えば、樹脂粒子を密閉容器内の水性分散媒中に分散させると共に、密閉容器内に発泡剤を圧入し、密閉容器を加熱及び加圧して、保持することで、樹脂粒子に発泡剤を含浸させる方法が好ましく用いられる。
 前記発泡工程において、発泡時の密閉容器内の圧力(内圧)は、好ましくは0.5MPa(G)以上であり、より好ましくは0.8MPa(G)以上である。また、上限は好ましくは4MPa(G)以下であり、より好ましくは3MPa(G)以下である。上記範囲内であれば、密閉容器の破損や爆発等のおそれがなく安全に所望とする発泡粒子を製造することができる。また、好ましくは100~200℃、より好ましくは130~160℃に昇温し、その温度で5~30分程度保持してから発泡剤を含む樹脂粒子を密閉容器内から、密閉容器内の圧力よりも低い圧力の雰囲気下(例えば、大気圧下)に放出して発泡させることが好ましい。
 また、前記第1回目の前記DSC曲線において、固有ピークと、高温ピークとが現れる結晶構造を有する発泡粒子は、例えば、次のようにして製造することができる。
 まず、密閉容器内の分散媒中に分散させた樹脂粒子を、(樹脂粒子を構成する直鎖状低密度ポリエチレンの融点-15℃)から(樹脂粒子を構成する直鎖状低密度ポリエチレンの融点+10℃)の温度に加熱すると共に、この温度で十分な時間、好ましくは10~60分間程度保持する(保持工程)。次いで、この保持工程を経た樹脂粒子を発泡させることで、上述の融解ピークを示す発泡粒子を得ることができる。
 発泡粒子の製造においては、前記保持工程を経た樹脂粒子を予め準備し、この保持工程を経た樹脂粒子を発泡させることで、発泡粒子を得てもよい。また、例えば、前記分散工程や、前記発泡剤含浸工程の一部として、前記保持工程を樹脂粒子に対して行い、この保持工程を経た樹脂粒子を発泡させることで、発泡粒子を得てもよい。
 発泡粒子の生産性を高める観点からは、発泡剤の存在下で、密閉容器内の分散媒中に分散させた樹脂粒子を加熱して上記保持工程を行った後、密閉容器の内容物を密閉容器内から密閉容器内の圧力よりも低い圧力雰囲気下に放出して、上記保持工程を経た樹脂粒子を発泡させることにより、上述の融解ピークを示す発泡粒子を得ることが好ましい。
 なお、上記のようにして得られる発泡粒子を多段的に発泡させて、より発泡倍率の高い(嵩密度の低い)発泡粒子を得ることができる。例えば、発泡粒子を空気等により加圧処理して発泡粒子の気泡内の圧力(内圧)を高めた後、スチーム等で加熱してさらに発泡させ(二段発泡)、より発泡倍率の高い(嵩密度の低い)発泡粒子とすることができる。見掛け密度の低い成形体を得る観点からは、二段発泡を行うことが好ましい。
<前記製造方法で製造される発泡粒子>
 本発明の発泡粒子の製造方法で製造される発泡粒子は、嵩密度が10kg/m3以上240kg/m3以下である。
 本発明の発泡粒子の製造方法で製造される発泡粒子は、後述の[発泡粒子]の項で説明する発泡粒子であることが好ましく、より好ましい発泡粒子も同様である。また、上述の(混合樹脂及び発泡粒子の特性)の項で説明した発泡粒子であることが好ましく、より好ましい発泡粒子も同様である。
 前記発泡粒子は、嵩密度10kg/m3以上240kg/m3以下の発泡粒子である。前記発泡粒子の嵩密度は、得られる成形体の機械的物性を高める観点から、10kg/m3以上であり、好ましくは13kg/m3以上であり、より好ましくは15kg/m3以上である。一方、前記発泡粒子の嵩密度は、見掛け密度の低い成形体を得る観点からは、240kg/m3以下であり、好ましくは200kg/m3以下であり、より好ましくは100kg/m3以下であり、更に好ましくは80kg/m3以下であり、より更に好ましくは60kg/m3以下である。
 後述のとおり、本発明においては、得られた発泡粒子に加圧処理を行った後、スチーム等で加熱してさらに発泡させる二段発泡を行い、より発泡倍率が高い(嵩密度の低い)発泡粒子を得ることができる。見掛け密度の低い成形体を得る観点からは、二段発泡を行うことが好ましい。
 二段発泡を行う場合の一段発泡後(二段発泡前)の発泡粒子の嵩密度は、所望とする気泡構造を有する発泡粒子を安定して得ることができる観点から、好ましくは60kg/m3以上であり、より好ましくは70kg/m3以上であり、更に好ましくは80kg/m3以上である。一方、二段発泡を行う場合の一段発泡後(二段発泡前)の発泡粒子の嵩密度は、見掛け密度の低い発泡粒子を安定して得ることができる観点からは、好ましくは240kg/m3以下であり、好ましくは200kg/m3以下であり、より好ましくは180kg/m3以下であり、更に好ましくは160kg/m3以下である。
 なお、嵩密度は、実施例に記載の方法によって測定することができる。
[発泡粒子]
 本発明の発泡粒子は、少なくとも2種の直鎖状低密度ポリエチレンの混合樹脂を基材樹脂とする、嵩密度10kg/m3以上240kg/m3以下の発泡粒子であり、前記混合樹脂の密度が910kg/m3以上928kg/m3以下であり、ASTM D 6866により測定される前記発泡粒子のバイオマス度が5%以上であり、前記発泡粒子のメルトフローレイトが0.1g/10分以上3g/10分以下であり、前記発泡粒子が、10℃/分の加熱速度で23℃から200℃まで加熱して得られるDSC曲線において、直鎖状低密度ポリエチレンに固有の融解ピーク(固有ピーク)と、固有ピークよりも高温側に1以上の融解ピーク(高温ピーク)とが現れる結晶構造を有し、前記高温ピークの融解熱量が10J/g以上50J/g以下である、発泡粒子である。
 本発明の発泡粒子は、上述の発泡粒子の製造方法によって製造されるものであることが好ましく、本発明の発泡粒子を製造する方法は、上述の発泡粒子の製造方法であることが好ましい。
(混合樹脂)
 前記発泡粒子は、少なくとも2種の直鎖状低密度ポリエチレンの混合樹脂を基材樹脂とする。本明細書において、「少なくとも2種の直鎖状低密度ポリエチレンの混合樹脂を基材樹脂とする」とは、発泡粒子が少なくとも2種の直鎖状低密度ポリエチレンの混合樹脂を主成分とする樹脂から構成されていることを意味する。
 本発明の発泡粒子の基材樹脂である少なくとも2種の直鎖状低密度ポリエチレンの混合樹脂は、上述の発泡粒子の製造方法で説明した前記<直鎖状低密度ポリエチレン(混合樹脂)>の項に記載した混合樹脂であることが好ましい。したがって、前記混合樹脂は、ASTM D 6866により測定されるバイオマス度が50%以上である直鎖状低密度ポリエチレンAと、直鎖状低密度ポリエチレンBとを含む、少なくとも2種の直鎖状低密度ポリエチレンの混合樹脂であることが好ましい。
 また、型内成形性に優れ、良品を得られる成形範囲が広い発泡粒子を安定して得ることができる観点からは、前記少なくとも2種の直鎖状低密度ポリエチレンが、共重合成分(コモノマー)としてブテン成分とヘキセン成分とを含む前記直鎖状低密度ポリエチレンA1と、共重合成分(コモノマー)としてオクテン成分を含む前記直鎖状低密度ポリエチレンB1とであることが好ましい。
 前記混合樹脂の密度は、好ましくは910kg/m以上928kg/m以下であり、所望とする物性を有する発泡粒子を得やすくなる観点から、より好ましくは912kg/m以上926kg/m3以下であり、更に好ましくは914kg/m以上925kg/m3以下であり、より更に好ましくは916kg/m以上924kg/m3以下である。また、より低い成形圧力条件での型内成形が可能となる観点からは、前記混合樹脂の密度は917kg/m以上923kg/m3以下であることが好ましい。
 前記混合樹脂の密度は、JIS K7112:1999に記載のA法(水中置換法)により測定される。なお、発泡粒子から混合樹脂の密度を測定する場合、脱泡処理を行った発泡粒子を測定サンプルとして、上記密度の測定を行うことで、混合樹脂の密度を測定することができる。具体的には実施例に記載の方法によって測定することができる。
<発泡粒子の特性・組成>
 本発明の発泡粒子は、前記のとおり、少なくとも2種の直鎖状低密度ポリエチレンの混合樹脂を基材樹脂とする、嵩密度10kg/m3以上240kg/m3以下の発泡粒子であり、前記混合樹脂の密度が910kg/m3以上928kg/m3以下であり、ASTM D 6866により測定される前記発泡粒子のバイオマス度が5%以上であり、前記発泡粒子のメルトフローレイトが0.1g/10分以上3g/10分以下であり、前記発泡粒子が、10℃/分の加熱速度で23℃から200℃まで加熱して得られるDSC曲線において、直鎖状低密度ポリエチレンに固有の融解ピーク(固有ピーク)と、固有ピークよりも高温側に1以上の融解ピーク(高温ピーク)とが現れる結晶構造を有し、前記高温ピークの融解熱量が10J/g以上50J/g以下である、発泡粒子であるが、好ましくは以下の特性を有する。
 前記発泡粒子は、嵩密度10kg/m3以上240kg/m3以下の発泡粒子である。前記発泡粒子の嵩密度は、得られる成形体の機械的物性を高める観点から、10kg/m3以上であり、好ましくは13kg/m3以上であり、より好ましくは15kg/m3以上である。一方、前記発泡粒子の嵩密度は、見掛け密度の低い成形体を得る観点からは、240kg/m3以下であり、好ましくは200kg/m3以下であり、より好ましくは100kg/m3以下であり、更に好ましくは80kg/m3以下であり、より更に好ましくは60kg/m3以下である。
 後述のとおり、本発明においては、得られた発泡粒子に加圧処理を行った後、スチーム等で加熱してさらに発泡させる二段発泡を行い、より発泡倍率が高い(嵩密度の低い)発泡粒子を得ることができる。見掛け密度の低い成形体を得る観点からは、二段発泡を行うことが好ましい。
 二段発泡を行う場合の一段発泡後(二段発泡前)の発泡粒子の嵩密度は、所望とする気泡構造を有する発泡粒子を安定して得ることができる観点から、好ましくは60kg/m3以上であり、より好ましくは70kg/m3以上であり、更に好ましくは80kg/m3以上である。一方、二段発泡を行う場合の一段発泡後(二段発泡前)の発泡粒子の嵩密度は、見掛け密度の低い発泡粒子を安定して得ることができる観点からは、好ましくは240kg/m3以下であり、好ましくは200kg/m3以下であり、より好ましくは180kg/m3以下であり、更に好ましくは160kg/m3以下である。
 なお、嵩密度は、実施例に記載の方法によって測定することができる。
 ASTM D 6866により測定される前記発泡粒子のバイオマス度は、5%以上である。
 前記発泡粒子のバイオマス度が前記範囲にあることで、成形体の製造に際し、化石資源の使用を抑制し、成形体のライフサイクルにおいて排出される二酸化炭素の量も削減することができる。
 前記観点からは、前記発泡粒子のASTM D 6866により測定されるバイオマス度は、5%以上であり、好ましくは10%以上であり、より好ましくは20%以上であり、更に好ましくは30%以上であり、より更に好ましくは40%以上である。また、上限値には制限はなく、前記発泡粒子のASTM D 6866により測定されるバイオマス度は、100%以下であればよいが、発泡粒子の型内成形性を高めやすい観点からは、前記発泡粒子のASTM D 6866により測定されるバイオマス度は、好ましくは90%以下であり、より好ましくは80%以下であり、更に好ましくは70%以下であり、より更に好ましくは60%以下である。前記バイオマス度は、ASTM D 6866により測定されるものであり、発泡粒子中に含まれる天然由来成分の割合を意味する。また、前記バイオマス度は、直鎖状低密度ポリエチレンに対して放射性炭素C14の濃度を測定することや、発泡粒子を製造するために用いたバイオマス由来樹脂のバイオマス度と、発泡粒子中のバイオマス由来樹脂の含有割合とから算出することができる。
 温度190℃、荷重2.16kgの条件で測定される前記発泡粒子(発泡粒子を構成する混合樹脂)のメルトフローレイトは、0.1g/10分以上3g/10分以下である。前記発泡粒子のメルトフローレイトが前記範囲であると、発泡粒子の型内成形性をより高めることができる。
 前記発泡粒子のメルトフローレイトは、好ましくは0.3g/10分以上であり、より好ましくは0.5g/10分以上であり、更に好ましくは0.7g/10分以上である。また、前記発泡粒子のメルトフローレイトは、好ましくは2.0g/10分以下であり、より好ましくは1.8g/10分以下であり、更に好ましくは1.5g/10分以下であり、より更に好ましくは1.4g/10分以下である。
 なお、前記発泡粒子のメルトフローレイトは、温度190℃、荷重2.16kgの条件で測定される値である。より具体的には、JIS K 7210-1:2014に準拠し、実施例に記載の方法によって測定することができる。なお、脱泡処理を行った発泡粒子を測定サンプルとして、上記メルトフローレイトの測定を行ってもよい。
 本発明の発泡粒子は、10℃/分の加熱速度で23℃から200℃まで加熱して得られるDSC曲線において、直鎖状低密度ポリエチレンに固有の融解ピーク(固有ピーク)と、固有ピークよりも高温側に1以上の融解ピーク(高温ピーク)とが現れる結晶構造を有し、前記高温ピークの融解熱量が10J/g以上50J/g以下である。
 前記DSC曲線は、JIS K7122:2012に準拠した示差走査熱量測定(DSC)によるDSC曲線である。具体的には、示差走査熱量計によって、本発明の発泡粒子1~3mgを23℃から200℃まで10℃/分の加熱速度で加熱することによって前記DSC曲線を得ることができる。
 本発明の発泡粒子は、前記のとおり、前記発泡粒子に対して測定された前記DSC曲線において、直鎖状低密度ポリエチレンに固有の融解ピーク(固有ピーク)と、固有ピークよりも高温側に1以上の融解ピーク(高温ピーク)とが現れる。
 本発明の[発泡粒子]の項で説明する発泡粒子は、前述した発泡粒子の製造方法で製造される発泡粒子の、全融解熱量の範囲、高温ピークの融解熱量の範囲及び全融解熱量に対する高温ピークの融解熱量の比の範囲を有することが好ましく、より好ましい発泡粒子も同様である。
 前記発泡粒子の融点は、得られる成形体の機械的物性を高める観点から、好ましくは100℃以上130℃以下である。前記発泡粒子の融点は、より好ましくは110℃以上であり、更に好ましくは115℃以上であり、より更に好ましくは118℃以上である。一方、前記発泡粒子の融点は、成形圧力が低い条件における発泡粒子の型内成形性を高める観点からは、好ましくは128℃以下であり、より好ましくは126℃以下である。
 発泡粒子の融点は、発泡粒子を試験片として、JIS K 7121:2012に基づいて測定される。具体的には、実施例に記載の方法によって測定することができる。
 本発明の発泡粒子の独立気泡率は、好ましくは80%以上である。発泡粒子の独立気泡率が前記範囲であると、発泡粒子の型内成形性をより高めることができる。本発明の発泡粒子の独立気泡率は、好ましくは85%以上であり、より好ましくは88%以上であり、更に好ましくは90%以上である。また、本発明の発泡粒子の独立気泡率の上限には制限はないが、好ましくは99%以下であり、より好ましくは98%以下であり、更に好ましくは97%以下である。
 なお、独立気泡率は、実施例に記載の方法によって測定することができる。
 本発明の発泡粒子の平均気泡径は、好ましくは60μm以上200μm以下である。発泡粒子の平均気泡径が前記範囲であると、発泡粒子の型内成形性を安定して高めることができる。本発明の発泡粒子の平均気泡径は、好ましくは70μm以上であり、より好ましくは80μm以上であり、更に好ましくは100μm以上である。また、本発明の発泡粒子の平均気泡径は、好ましくは180μm以下であり、より好ましくは160μm以下であり、更に好ましくは140μm以下である。
 また、二段発泡を行う場合の一段発泡後(二段発泡前)の発泡粒子の平均気泡径は、好ましくは50μm以上であり、より好ましくは60μm以上であり、更に好ましくは70μm以上である。また、二段発泡を行う場合の一段発泡後(二段発泡前)の発泡粒子の平均気泡径は、好ましくは120μm以下であり、より好ましくは110μm以下であり、更に好ましくは100μm以下である。
 なお、平均気泡径は、2分割した発泡粒子の断面の拡大写真において、発泡粒子の最表面から中心部を通って反対側の最表面まで線分を複数本引き、各線分と交差する気泡数を、線分の合計長さで除することで測定することができる。具体的には、実施例に記載の方法によって測定することができる。
 発泡粒子の平均気泡径は、樹脂粒子に添加する気泡調整剤の種類及び添加量を調整することや、樹脂粒子の発泡時における、発泡温度や耐圧容器内の圧力を調整すること等により所望の範囲にすることができる。
 また、発泡粒子は無架橋であることが好ましい。無架橋であることで、発泡粒子のリサイクルが容易となり、環境負荷を低減しやすくなる。
 本明細書でいう無架橋とは、発泡粒子中の、発泡粒子の熱キシレン抽出法による不溶分の割合が5質量%以下であることをいう。発泡粒子のリサイクルがより容易になる観点から、発泡粒子の熱キシレン抽出法による不溶分の割合は、3質量%以下が好ましく、0質量%であることが最も好ましい。
 発泡粒子の熱キシレン抽出法によるキシレン不溶分は、次のようにして測定できる。まず、精秤した発泡粒子約1g(その正確な質量をM(g)とする)を150mLの丸底フラスコに入れ、100mLのキシレンを加え、マントルヒーターで加熱して6時間還流させる。その後、溶け残った残渣(不溶分)を100メッシュの金網で濾過して分離し、80℃の減圧乾燥器で8時間以上乾燥させる。残渣を乾燥させることにより得られた乾燥物の質量m(g)を測定し、Mに対するmの割合を百分率で表すことで、発泡粒子中のキシレン不溶分の割合を求めることができる。
 本発明の発泡粒子1個当たりの平均質量(無作為に選んだ100個の質量を測定した1個当たりの相加平均値)は、好ましくは0.1~20mgであり、より好ましくは0.2~10mgであり、更に好ましくは0.3~5mgであり、より更に好ましくは0.4~2mgである。発泡粒子1個当たりの平均質量は、無作為に選んだ100個の発泡粒子の質量をそれぞれ測定し、これらの質量を算術平均することにより算出することができる。
 また、本発明の発泡粒子には、本発明の効果を阻害しない範囲内で、添加剤が適宜含有されていてもよい。添加剤としては、例えば、酸化防止剤、紫外線吸収剤、帯電防止剤、難燃剤、顔料、染料及び気泡調整剤などを挙げることができる。これらの添加剤は、例えば、樹脂粒子を製造する工程で添加することで発泡粒子中に含有させることができる。本発明の発泡粒子に含有される添加剤は、前述の<発泡粒子の製造>で記載した樹脂粒子に含有される添加剤と同様である。
 本発明の発泡粒子は、本発明の効果を阻害しない範囲内で、前記直鎖状低密度ポリエチレン以外の樹脂やエラストマー等の重合体を含んでいてもよい。この場合、前記発泡粒子中の前記直鎖状低密度ポリエチレンA及び直鎖状低密度ポリエチレンB以外の重合体の含有量は、直鎖状低密度ポリエチレンAと直鎖状低密度ポリエチレンBとの合計100質量部に対して、40質量部以下が好ましく、30質量部以下がより好ましく、20質量部以下が更に好ましく、10質量部以下がより更に好ましく、5質量部以下が特に好ましい。また、前記発泡粒子中の前記直鎖状低密度ポリエチレン以外の重合体の含有量は、混合樹脂における含有量が少ない直鎖状低密度ポリエチレン(直鎖状低密度ポリエチレンAあるいは直鎖状低密度ポリエチレンB)100質量部に対して、80質量部以下が好ましく、50質量部以下がより好ましく、30質量部以下が更に好ましく、20質量部以下がより更に好ましく、10質量部以下が特に好ましい。
 本発明の発泡粒子は、その表面に、型内成形時の発泡粒子同士の融着性を高めるための融着層を有することができる。融着層は、発泡粒子の表面全体に存在していても、表面の一部に存在していてもよい。融着層を構成する樹脂としては、発泡粒子を構成する混合樹脂の融点よりも低い融点を有する結晶性ポリオレフィン系樹脂、発泡粒子を構成する混合樹脂の融点よりも低い軟化点を有する非晶性ポリオレフィン系樹脂などが例示される。
 発泡粒子表面に融着層を形成する方法は特に限定されず、例えば、表面に融着層を有する樹脂粒子を発泡させる方法や、発泡粒子を得てから発泡粒子の表面に融着層を付着させる方法等を例示できる。表面に融着層を有する樹脂粒子を発泡させて発泡粒子を得る場合には、樹脂粒子を製造する際に、共押出が可能な押出装置を用いて、樹脂粒子本体を形成するための樹脂溶融物と、融着層を形成するための樹脂溶融物とを共押出することで、樹脂粒子の表面に融着層を積層する方法を採用することが好ましい。
 上述のとおり、本発明の発泡粒子は、型内成形用の発泡粒子として好適に用いることができる。また、本発明の発泡粒子は、特定の融解熱量の関係を満たすことにより、二段発泡時の発泡性に優れた発泡粒子となっているため、二段発泡用の発泡粒子としても、好適な発泡粒子である。
 一方、本発明の発泡粒子は、特定の融解熱量の関係を満たすことにより、適度な柔軟性と復元性とを有する発泡粒子となっている。そのため、本発明の発泡粒子は、例えば、クッション材用の詰め物ビーズとしても、好適に用いることができる。詰め物ビーズは、袋体に充填されて、クッション材を形成するために用いられる粒子状の詰め物であり、本発明の発泡粒子は、特に、ビーズクッション用の詰め物ビーズとして好適に用いることができる。
[ポリエチレン系樹脂発泡粒子成形体]
 本発明の発泡粒子、又は本発明の発泡粒子の製造方法で得られた発泡粒子を型内成形することで、ポリエチレン系樹脂発泡粒子成形体を得ることができる。
 つまり、ポリエチレン系樹脂発泡粒子成形体(以下、単に発泡粒子成形体ともいう)は、前記発泡粒子を型内成形してなる。
 前記発泡粒子成形体は、前記発泡粒子を成形型内に充填し、スチーム等の加熱媒体を用いて加熱成形することにより行うことができる。具体的には、発泡粒子を成形型内に充填した後、成形型内にスチーム等の加熱媒体を導入することにより、発泡粒子を加熱して膨張(二次発泡)させると共に、相互に融着させて成形空間の形状が賦形された発泡粒子成形体を得ることができる。また、本発明における型内成形は、発泡粒子を空気等の加圧気体により予め加圧処理して発泡粒子の気泡内の圧力を高めて、発泡粒子内の圧力を大気圧よりも0.01~0.3MPa高い圧力に調整した後、大気圧下又は減圧下で該発泡粒子を成形型内に充填し、次いで型内にスチーム等の加熱媒体を供給して発泡粒子を加熱融着させる加圧成形法(例えば、特公昭51-22951号公報)により成形することもできる。また、圧縮ガスにより大気圧以上に加圧した成形型内に、当該圧力以上に加圧した発泡粒子を充填した後、キャビティ内にスチーム等の加熱媒体を供給して加熱を行い、発泡粒子を加熱融着させる圧縮充填成形法(特公平4-46217号公報)により成形することもできる。その他に、特殊な条件にて得られる二次発泡力の高い発泡粒子を、大気圧下又は減圧下で成形型のキャビティ内に充填した後、次いでスチーム等の加熱媒体を供給して加熱を行い、発泡粒子を加熱融着させる常圧充填成形法(特公平6-49795号公報)又は上記の方法を組み合わせた方法(特公平6-22919号公報)などによっても成形することができる。
 機械的物性を高める観点からは、前記発泡粒子成形体の密度は、好ましくは10kg/m3以上であり、より好ましくは13kg/m3以上であり、更に好ましくは15kg/m3以上である。また、軽量な成形体となる観点からは、発泡粒子成形体の密度は、好ましくは240kg/m3以下であり、より好ましくは200kg/m3以下であり、更に好ましくは100kg/m3以下であり、より更に好ましくは80kg/m3以下であり、特に好ましくは60kg/m3以下である。
 なお、発泡粒子成形体の密度は、発泡粒子成形体の質量を、発泡粒子成形体の寸法に基づいて算出される体積で除することにより算出され、実施例に記載の方法によって測定することができる。
 強度と柔軟性とが良好に発現する成形体となる観点からは、前記発泡粒子成形体の密度に対する発泡粒子成形体の50%歪時圧縮応力の比は、4kPa/[kg/m]以上12kPa/[kg/m]以下であることが好ましく、5kPa/[kg/m]以上10kPa/[kg/m]以下であることがより好ましい。
 なお、発泡粒子成形体の密度に対する発泡粒子成形体の50%歪時圧縮応力の比は、前記発泡粒子成形体を縦5cm×横5cm×高さ2.5cmの試験片として圧縮速度10mm/分で圧縮して測定された50%歪時の応力を、前記密度で除することにより算出され、実施例に記載の方法によって測定、算出することができる。
 前記ポリエチレン系樹脂発泡粒子成形体は、軽量であると共に、機械的物性に優れることから、衝撃吸収材、断熱材及び各種包装材等として、食品の運搬容器、電気・電子部品の包装・緩衝材、自動車用バンパー等の車両用部材、住宅用断熱材等の建築部材、雑貨等の用途に用いることができる。
 次に、実施例により、本発明を更に詳細に説明するが、これらの例によって本発明はなんら限定されるものではない。
[測定及び評価]
 実施例、比較例に使用した樹脂、発泡粒子、発泡粒子成形体について、以下の測定及び評価を実施した。前記測定及び評価の結果と製造条件を示した表3及び表4は、それぞれ表3-1、表3-2と、表4-1、表4-2に分割して記載した。なお、発泡粒子又は発泡粒子成形体の評価は、これらを相対湿度50%、23℃、1atmの条件にて2日放置して状態調節した後に行った。
<ポリエチレンのバイオマス度、発泡粒子(混合樹脂)のバイオマス度>
 実施例、比較例において使用したポリエチレン(直鎖状低密度ポリエチレン、低密度ポリエチレン又は高密度ポリエチレン)のバイオマス度は、ASTM D 6866に準拠して、放射性炭素C14の濃度を測定して求められた値である。また、発泡粒子(混合樹脂)のバイオマス度は、発泡粒子を製造するために用いたバイオマス由来樹脂のバイオマス度と、発泡粒子中のバイオマス由来樹脂の含有割合とから算出した。
 なお、表1中、LL1はBraskem社製「SLH118」であり、LL2はBraskem社製「SLL118」であり、LL3はBraskem社製「SLH218」である。また、LL1~LL3は、日本バイオマスプラスチック協会におけるバイオマスプラスチックのポジティブリストに記載されたポリエチレンである。また、当該ポジティブリストにおいて、LL1及びLL3は、[(C(C(C12]の化学構造式で表される、共重合成分としてブテン成分とヘキセン成分とを含む直鎖状低密度ポリエチレンとして記載されており、LL2は、[(C(C]の化学構造式で表される、共重合成分としてブテン成分を含む直鎖状低密度ポリエチレンとして記載されている。
<ポリエチレンの密度、混合樹脂の密度>
 実施例、比較例において使用したポリエチレン(直鎖状低密度ポリエチレン、低密度ポリエチレン又は高密度ポリエチレン)の密度及び混合樹脂の密度は、JIS K 7112:1999のA法(水中置換法)に基づいて測定した。
 なお、混合樹脂の密度の測定においては、まず、160℃に温度調節した加熱プレス盤で発泡粒子を3分間熱プレスすることにより、発泡粒子の脱泡処理を行い、発泡粒子を構成する混合樹脂からなる樹脂シートを作製した。この樹脂シートを切断することで得られたペレット状の試料を用いて、密度の測定を行った。
<直鎖状低密度ポリエチレン中のα-オレフィンに由来する成分の含有量>
 直鎖状低密度ポリエチレン中の各α-オレフィンに由来する成分の含有量を、以下の炭素13核磁気共鳴(13C-NMR)により求めた。
 まず、直鎖状低密度ポリエチレンを、o-ジクロロベンゼン-d(ODCB):ベンゼン-d(C)=4:1の混合溶媒中(130℃)に溶解させ、10wt/vol%の測定用溶液を調製した。核磁気共鳴装置として「日本電子製:ECZ-400S型」を用い、13Cを測定核とする測定用溶液のNMR(13C-NMR)スペクトル測定を行った。得られたNMRスペクトルにおける化学シフトの情報を基にして、直鎖状低密度ポリエチレンに含まれるα-オレフィンに由来する成分を特定すると共に、その含有量(mol%)を算出した。
<ポリエチレン及び発泡粒子(混合樹脂)のメルトフローレイト(MFR)>
 実施例、比較例において使用したポリエチレン(直鎖状低密度ポリエチレン、低密度ポリエチレン又は高密度ポリエチレン)のメルトフローレイト(MFR)及び実施例、比較例の発泡粒子(混合樹脂)のメルトフローレイト(MFR)を、JIS K7210-1:2014に準拠して、温度190℃、荷重2.16kgの条件で測定した。なお、発泡粒子のメルトフローレイトの測定においては、まず、160℃に温度調節した加熱プレス盤で発泡粒子を3分間熱プレスすることにより、発泡粒子の脱泡処理を行い、発泡粒子を構成する混合樹脂からなる樹脂シートを作製した。この樹脂シートを切断することで得られたペレット状の試料を用いてメルトフローレイトの測定を行った。
<ポリエチレンの融点、発泡粒子(混合樹脂)の融点>
 実施例、比較例において使用したポリエチレン(直鎖状低密度ポリエチレン、低密度ポリエチレン又は高密度ポリエチレン)の融点及び発泡粒子の融点は、JIS K7121:2012に基づき、熱流束示差走査熱量測定法により、測定した。測定装置としては、高感度型示差走査熱量計「EXSTAR DSC7020」(エスアイアイ・ナノテクノロジー社製)を使用した。試験片の状態調節としては「(2)一定の熱処理を行なった後、融解温度を測定する場合」を採用した。ポリエチレン約2mgあるいは発泡粒子約2mgを試験片として採取し、試験片を窒素流入量30mL/分の条件下で、10℃/分の加熱速度で23℃から200℃まで加熱してから、次いでその温度にて10分間保った後、10℃/分の冷却速度で23℃まで冷却し、再度、加熱速度10℃/分で200℃まで加熱して、DSC曲線(2回目加熱時のDSC曲線)を得た。該DSC曲線における融解ピークの頂点温度を求め、この値を融点とした。
 なお、DSC曲線に複数の融解ピークが現れる場合は、最も大きな面積を有する融解ピークの頂点温度を融点として採用する。この際、各融解ピークの頂点温度の間に位置するDSC曲線の谷間の温度を境にして各融解ピークを区別して各融解ピークの面積(融解熱量)を比較することで、最も大きな面積を有する融解ピークを判断することができる。DSC曲線の谷間の温度は、DSC曲線の微分曲線(DDSC)の縦軸の値が0となる温度と対応するため、DSCの微分曲線から判断することもできる。
<ポリエチレンの融解熱量及び発泡粒子(混合樹脂)の全融解熱量>
 実施例、比較例において使用したポリエチレン(直鎖状低密度ポリエチレン、低密度ポリエチレン又は高密度ポリエチレン)の融解熱量及び発泡粒子(混合樹脂)の全融解熱量は、JIS K7122:2012に準拠して測定した。
 まず、ポリエチレンまたは発泡粒子を試験片として、前述したポリエチレンの融点の測定と同じ方法で、2回目加熱時のDSC曲線を得た。得られた2回目加熱時のDSC曲線上の温度80℃での点をαとし、融解終了温度に相当するDSC曲線上の点をβとした。点αと点βの区間におけるDSC曲線と、線分(α-β)とによって囲まれる部分の面積を測定し、この面積からポリエチレンの融解熱量または発泡粒子の全融解熱量を算出した。
<発泡粒子の高温ピークの融解熱量>
 JIS K7122:2012に準拠した熱流束示差走査熱量測定により、発泡粒子の高温ピークの融解熱量を測定した。具体的には、発泡粒子約2mgを試験片として採取し、示差走査熱量計(EXSTAR DSC7020)によって、10℃/分の加熱速度で23℃から200℃まで加熱し、2つ以上の融解ピークを有するDSC曲線(第1回目の加熱におけるDSC曲線)を得た。次の説明におけるポリエチレン(直鎖状低密度ポリエチレン、低密度ポリエチレン又は高密度ポリエチレン)の固有ピークをA、それより高温側に現れる高温ピークをBとする。
 該DSC曲線上の80℃に相当する点αと、試験片の融解終了温度Tに相当するDSC曲線上の点βとを結ぶ直線(α-β)を引いた。なお、上記融解終了温度Tとは、高温ピークBにおける高温側の端点であり、高温ピークと、高温側ベースラインとの交点をいう。次に上記の固有ピークAと高温ピークBとの間の谷部に当たるDSC曲線上の点γからグラフの縦軸と平行な直線を引き、前記直線(α-β)と交わる点をδとした。
 DSC曲線の高温ピークB部分の曲線と、線分(δ-β)と、線分(γ-δ)とによって囲まれる部分の面積を求め、この面積から各々の高温ピークの融解熱量を算出した。異なる3つの試験片に対して、上記高温ピークの融解熱量の測定を行い、得られた値の算術平均値を発泡粒子の高温ピークの融解熱量とした。
<発泡粒子の嵩密度>
 約500cm3の発泡粒子群をメスシリンダー内に充填し、メスシリンダー底面で床面を数度、軽く叩くことにより、メスシリンダー内の発泡粒子群の充填高さを安定させた。メスシリンダーの目盛りが指す発泡粒子群のかさ容積を読み取り、これをV1(L)とした。次に発泡粒子群の質量を測定し、これをW1[g]とした。
 発泡粒子の質量W1[g]を容積V1で割り算し(W1/V1)、単位を[kg/m3]に換算することにより、発泡粒子の嵩密度を求めた。
<発泡粒子の独立気泡率>
 発泡粒子の独立気泡率は、次のように測定した。
 嵩体積約20cmの発泡粒子群をエタノールに浸漬することにより、発泡粒子群の見掛けの体積Vaを測定した。次に、見掛けの体積Vaを測定した発泡粒子群を十分に乾燥させた後、ASTM-D2856-70に記載されている手順Cに準じて、発泡粒子群の真の体積(発泡粒子を構成する樹脂の容積と、発泡粒子内の独立気泡部分の気泡全容積との和)の値Vxを測定した。この真の体積Vxの測定には、東芝・ベックマン(株)製の空気比較式比重計「930」を用いた。次いで、下記の式(1)により独立気泡率を算出し、異なる発泡粒子群を用いた5回の測定結果の算術平均値を求めた。
 独立気泡率(%)=(Vx-W/ρ)×100/(Va-W/ρ)・・・(1)
  Vx:上記方法で測定される発泡粒子群の真の体積(cm3
  Va:発泡粒子群をメスシリンダー中のエタノールに沈めた際の水位上昇分から測定される、発泡粒子群の見掛けの体積(cm3
  W:発泡粒子群の質量(g)
  ρ:発泡粒子を構成する樹脂の密度(g/cm3
<発泡粒子の平均気泡径>
 発泡粒子の平均気泡径は、次のように測定した。
 発泡粒子群から無作為に30個の発泡粒子を選択した。発泡粒子をその中心部を通るように切断して2分割し、一方の断面の拡大写真をそれぞれ撮影した。各断面写真において、発泡粒子の最表面から中心部を通って反対側の最表面まで、隣接する2線分の成す角が等角度となるように4本の線分を引いた。各線分と交差する気泡数をそれぞれ計測し、4本の線分の合計長さを、線分と交差する全気泡数で除することで、各発泡粒子の平均気泡径を求め、これらの値を算術平均することにより、発泡粒子の平均気泡径を求めた。
<二段発泡粒子の嵩密度に対する一段発泡粒子の嵩密度の比>
 上記嵩密度の測定方法により、一段発泡粒子の嵩密度及び二段発泡粒子の嵩密度を測定した。一段発泡粒子の嵩密度を、二段発泡粒子の嵩密度で除することで、二段発泡粒子の嵩密度に対する一段発泡粒子の嵩密度の比(嵩密度1段発泡/嵩密度2段発泡)を算出した。なお、該比の値が大きいほど、嵩密度が低い二段発泡粒子を得ることができるため、二段発泡性に優れることを意味する。
<二段発泡粒子の状態>
 二段発泡粒子の表面状態を目視にて観察した。発泡粒子に明確なシワが存在せず、発泡粒子の収縮がほとんど確認されなかった場合を「〇(良好)」と評価し、発泡粒子に明確なシワが確認され、発泡粒子の収縮が多く確認された場合を「×(不良)」と評価した。
 なお、上記評価が「〇(良好)」の場合、得られる二段発泡粒子間の密度のバラツキが少なく、所望とする成形体を製造する際の発泡粒子の密度の管理が容易となると共に、良好な型内成形性が安定して発現する発泡粒子となる。
<良品を成形可能な成形圧力範囲>
 後述の<発泡粒子成形体の製造>の方法で、成形圧(成形スチーム圧)を0.10~0.20MPa(G)の間で0.01MPaずつ変化させて発泡粒子成形体を成形し、得られた成形体の融着性、表面外観(間隙=ボイドの度合い)、回復性(型内成形後の膨張または収縮の回復性)の項目について、型内成形性を評価した。下記で示した基準に達したものを合格とし、全ての項目で合格となったスチーム圧を成形可能なスチーム圧とした。なお、(G)を付した圧力は、ゲージ圧、つまり、大気圧を基準とした圧力の値である。
 成形可能なスチーム圧の下限値から上限値までの幅が広いものほど、成形可能範囲が広く、好適である。また、スチーム圧が低い条件でも成形可能なものは、成形に要するスチーム量を低減することができ、生産性に優れるため、好適である。
(融着性)
 発泡粒子成形体を折り曲げて破断させ、その破断面に存在する発泡粒子の数(C1)と、破壊した発泡粒子の数(C2)とを求めた。上記発泡粒子の数に対する破壊した発泡粒子の数の比率(C2/C1×100)を材料破壊率として算出した。異なる試験片を用いて前記測定を5回行い、それぞれの材料破壊率を求め、それらを算術平均した材料破壊率が80%以上であるときを合格とし、80%未満であるときを不合格とした。
(表面外観)
 発泡粒子成形体の中央部に100mm×100mmの正方形を描き、該正方形の一の角から対角線上に線を引き、その線上の1mm×1mmの大きさ以上のボイド(間隙)の数を数えた。ボイドの数が5個未満であり、かつ表面に凹凸がないときを合格とし、それ以外を不合格とした。
(回復性)
 型内成形により得られた縦250mm、横200mm、厚み50mmの平板形状の発泡粒子成形体における、四隅部付近(角より中心方向に10mm内側)の厚みと、中心部(成形体を、縦方向において2等分する線と、横方向において2等分する線との交点部分)の厚みとをそれぞれ計測した。次いで、四隅部付近のうち最も厚みの厚い箇所の厚みに対する中心部の厚みの比(%)を算出した。比が95%以上であるときを合格とし、95%未満を不合格とした。
<発泡粒子成形体の密度>
 発泡粒子成形体を、相対湿度50%、23℃、1atmの条件にて2日間放置した。次にその質量を測定し、これをW[g]とした。
 次に、発泡粒子成形体の寸法に基づいて、発泡粒子成形体の体積V[cm3]を測定した。
 発泡粒子成形体の質量W[g]を体積Vで割り算し(W/V)、単位を[kg/m3]に換算することにより、発泡粒子成形体の密度を求めた。
<発泡粒子成形体の50%歪時圧縮応力>
 実施例及び比較例で得られた成形体から、縦5cm×横5cm×高さ2.5cmの試験片を採取し、上記試験片を圧縮速度10mm/分で圧縮して50%歪時の応力を測定した。応力が高いほど、発泡粒子成形体の強度に優れる。なお、前記試験片は、成形可能なスチーム圧の下限値で成形された成形体から採取した。
 得られた50%歪時圧縮応力を前記密度で除して、発泡粒子成形体の密度に対する発泡粒子成形体の50%歪時圧縮応力の比を算出した。当該比が4kPa/[kg/m]以上12kPa/[kg/m]以下であれば、好ましい。また、5kPa/[kg/m]以上10kPa/[kg/m]以下であれば、強度と柔軟性のバランスがより良好であり、より好ましい。
[ポリエチレン]
 実施例、比較例において使用したポリエチレン(直鎖状低密度ポリエチレン、低密度ポリエチレン又は高密度ポリエチレン)を表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[発泡粒子及び発泡粒子成形体の製造]
(実施例1)
<発泡粒子の製造>
 出口側にストランド形成用ダイを付設した、内径26mmの押出機を用意した。
 押出機に、LL1、LL4、気泡調整剤としてホウ酸亜鉛(個数基準の算術平均粒子径:7μm)を供給し、溶融混練して混合樹脂からなる樹脂溶融物を形成した。なお、LL1とLL4は表3に示した割合で供給し、発泡粒子中のホウ酸亜鉛の含有量が500質量ppmとなるようにホウ酸亜鉛を供給した。
 得られた樹脂溶融物をストランド形成用ダイからストランドとして押出し、押出されたストランドを水冷した後、ペレタイザーにて切断した。このようにして、1個当たりの平均質量が1.5mgであり、粒子径が1.9mmであり、長さ/直径比が1.9である、2種の直鎖状低密度ポリエチレンの混合樹脂を基材樹脂とする樹脂粒子を得た。
 5Lの密閉容器内に、前記樹脂粒子500g、分散媒としての水3.5L、分散剤としてカオリン3g、界面活性剤としてドデシルベンゼンスルホン酸ナトリウム(商品名:ネオゲン、第一工業製薬株式会社製)0.2gを仕込んだ。
 次に、密閉容器内に発泡剤として二酸化炭素を圧入し、表3に示す平衡蒸気圧となるまで加圧した。次に、密閉容器の内容物を撹拌しながら、2℃/分の昇温速度で、表3に示す発泡温度まで加熱昇温した。更に同温度で15分間保持した(保持工程)。この保持工程によって、高温ピークの融解熱量(DSC測定による吸熱曲線から得られる)を調整した。その後、密閉容器の内容物を大気圧下に放出して発泡粒子(一段発泡粒子)を得た。
 上述のとおり得た発泡粒子を気温23℃、相対湿度50%、1atmの環境に24時間放置して養生を行った。次いで、加圧可能な密閉容器に養生後の発泡粒子を充填し、当該密閉容器内の圧力を常圧から上昇させて発泡粒子を加圧した。発泡粒子を加圧した状態を24時間維持して空気を発泡粒子の気泡内に含浸させた。その後、密閉容器から発泡粒子を取り出し、発泡粒子の気泡の内圧が0.5MPa(G)である発泡粒子を得た。その後、この発泡粒子を二段発泡装置に供給した。該装置内にスチームを供給して発泡粒子を二段発泡させて、発泡粒子(二段発泡粒子)を得た。二段発泡後の発泡粒子を、上述した測定や発泡粒子成形体の製造に用いた。
<発泡粒子成形体の製造>
 発泡粒子に対して空気で0.25MPa(G)の内圧を付与した後、発泡粒子を、縦250mm×横200mm×厚さ50mmの平板を成形可能な金型に充填して、以下の加熱方法で加熱を行った。
 まず、金型の両面に設けられたドレン弁を開放した状態で当該金型にスチームを供給して予備加熱(排気工程)を行った。その後、金型の一方側からスチームを供給して加熱し、さらに金型の他方側からスチームを供給して加熱を行った。続いて、所定の成形加熱スチーム圧力で、金型の両側からスチームを供給して加熱した(本加熱)。本加熱終了後、放圧し、金型の成形面に生じる圧力が0.04MPa(G)になるまで水冷したのち、金型を開放し発泡粒子成形体を取り出した。
 得られた成形体を80℃のオーブン中で12時間養生し、発泡粒子成形体を得た。なお、前述の<良品を成形可能な成形圧力範囲>の評価においては、成形圧を変更して成形を行った。
 得られた発泡粒子の物性等の測定結果、発泡粒子成形体の評価結果を表3に示す。また、各発泡粒子は無架橋の発泡粒子である。
(実施例2~8及び11)
 実施例1において、ポリエチレンとその割合、発泡温度、平衡蒸気圧を、表3に示す条件に変更した以外は実施例1と同様にして、発泡粒子及び発泡粒子成形体を得た。得られた発泡粒子の物性等の測定結果、発泡粒子成形体の評価結果を表3に示す。
(実施例9及び10)
 実施例1において、発泡温度、平衡蒸気圧を、表3に示す条件に変更すると共に、得られた一段発泡粒子を用いて型内成形を行ったこと以外は、実施例1と同様にして、発泡粒子及び発泡粒子成形体を得た。得られた発泡粒子の物性等の測定結果、発泡粒子成形体の評価結果を表3に示す。
(比較例1~8)
 実施例1において、ポリエチレンとその割合、発泡温度、平衡蒸気圧を、表4に示す条件に変更した以外は実施例1と同様にして、発泡粒子及び発泡粒子成形体を得た。得られた発泡粒子の物性等の測定結果、発泡粒子成形体の評価結果を表4に示す。
(比較例9及び10)
 実施例1において、ポリエチレンとその割合、発泡温度を、表4に示す条件に変更すると共に、得られた一段発泡粒子を用いて型内成形を行ったこと以外は、実施例1と同様にして、発泡粒子及び発泡粒子成形体を得た。得られた発泡粒子の物性等の測定結果、発泡粒子成形体の評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表3に示す結果から、実施例の発泡粒子は、バイオマス度が高く、型内成形性に優れることがわかる。更に、実施例の発泡粒子は、低い成形圧力条件での型内成形が可能であると共に、良品を得られる成形範囲が広いこともわかる。また、実施例の発泡粒子を用いることで、見掛け密度の低いポリエチレン系樹脂発泡粒子成形体が良好に得られることがわかる。更に実施例の発泡粒子を用いて製造したポリエチレン系樹脂発泡粒子成形体は、見掛け密度が低いにもかかわらず、圧縮応力が高く、強度と柔軟性とのバランスに優れることがわかる。

Claims (9)

  1.  少なくとも2種の直鎖状低密度ポリエチレンの混合樹脂を基材樹脂とする樹脂粒子を発泡させて、嵩密度10kg/m3以上240kg/m3以下の発泡粒子を製造する方法であって、
     前記混合樹脂が、ASTM D 6866により測定されるバイオマス度が50%以上である直鎖状低密度ポリエチレンAと、直鎖状低密度ポリエチレンBとを含み、
     温度190℃、荷重2.16kgの条件で測定される前記直鎖状低密度ポリエチレンAのメルトフローレイトMFRが0.1g/10分以上3g/10分以下であり、
     前記直鎖状低密度ポリエチレンAのメルトフローレイトMFRと、温度190℃、荷重2.16kgの条件で測定される前記直鎖状低密度ポリエチレンBのメルトフローレイトMFRとの差|MFR-MFR|が0g/10分以上2g/10分以下であり、
     前記混合樹脂中の前記直鎖状低密度ポリエチレンAと前記直鎖状低密度ポリエチレンBとの質量比(A/B)が5/95~95/5であり、
     ASTM D 6866により測定される前記混合樹脂のバイオマス度が5%以上であり、
     前記発泡粒子が、10℃/分の加熱速度で23℃から200℃まで加熱して得られるDSC曲線において、直鎖状低密度ポリエチレンに固有の融解ピーク(固有ピーク)と、固有ピークよりも高温側に1以上の融解ピーク(高温ピーク)とが現れる結晶構造を有し、
     前記高温ピークの融解熱量が10J/g以上50J/g以下である、発泡粒子の製造方法。
  2.  ASTM D 6866により測定される前記直鎖状低密度ポリエチレンBのバイオマス度が20%以下である、請求項1に記載の発泡粒子の製造方法。
  3.  前記直鎖状低密度ポリエチレンBの密度ρと前記直鎖状低密度ポリエチレンAの密度ρとの差(ρ-ρ)が3kg/m3以上であり、前記混合樹脂の密度が910kg/m3以上928kg/m3以下である、請求項1又は2に記載の発泡粒子の製造方法。
  4.  前記直鎖状低密度ポリエチレンBの融解熱量ΔHと前記直鎖状低密度ポリエチレンAの融解熱量ΔHとの差(ΔH-ΔH)が3J/g以上であり、前記混合樹脂の全融解熱量が70J/g以上120J/g以下である、請求項1~3のいずれか一項に記載の発泡粒子の製造方法。
  5.  前記発泡粒子の全融解熱量が70J/g以上105J/g以下であり、前記発泡粒子の全融解熱量に対する前記高温ピークの融解熱量の比が0.2以上0.7以下である、請求項1~4のいずれか一項に記載の発泡粒子の製造方法。
  6.  温度190℃、荷重2.16kgの条件で測定される前記混合樹脂のメルトフローレイトが0.1g/10分以上3g/10分以下である、請求項1~5のいずれか一項に記載の発泡粒子の製造方法。
  7.  前記直鎖状低密度ポリエチレンAは、共重合成分としてブテン成分とヘキセン成分とを含む、請求項1~6のいずれか一項に記載の発泡粒子の製造方法。
  8.  少なくとも2種の直鎖状低密度ポリエチレンの混合樹脂を基材樹脂とする、嵩密度10kg/m3以上240kg/m3以下の発泡粒子であり、
     前記混合樹脂の密度が910kg/m3以上928kg/m3以下であり、
     ASTM D 6866により測定される前記発泡粒子のバイオマス度が5%以上であり、
     温度190℃、荷重2.16kgの条件で測定される前記発泡粒子のメルトフローレイトが0.1g/10分以上3g/10分以下であり、
     前記発泡粒子が、10℃/分の加熱速度で23℃から200℃まで加熱して得られるDSC曲線において、直鎖状低密度ポリエチレンに固有の融解ピーク(固有ピーク)と、固有ピークよりも高温側に1以上の融解ピーク(高温ピーク)とが現れる結晶構造を有し、
     前記高温ピークの融解熱量が10J/g以上50J/g以下である、発泡粒子。
  9.  前記発泡粒子の全融解熱量が70J/g以上105J/g以下であり、前記発泡粒子の全融解熱量に対する前記高温ピークの融解熱量の比が0.2以上0.7以下である、請求項8に記載の発泡粒子。

     
PCT/JP2023/007330 2022-03-30 2023-02-28 発泡粒子の製造方法及び発泡粒子 WO2023189115A1 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2022056618A JP2023148536A (ja) 2022-03-30 2022-03-30 発泡粒子及び発泡粒子成形体
JP2022-056623 2022-03-30
JP2022056623A JP2023148537A (ja) 2022-03-30 2022-03-30 発泡粒子及び発泡粒子成形体
JP2022-056618 2022-03-30
JP2022-071800 2022-04-25
JP2022071800A JP7311672B1 (ja) 2022-04-25 2022-04-25 発泡粒子の製造方法及び発泡粒子
JP2022088917A JP2023176570A (ja) 2022-05-31 2022-05-31 発泡粒子
JP2022-088917 2022-05-31

Publications (1)

Publication Number Publication Date
WO2023189115A1 true WO2023189115A1 (ja) 2023-10-05

Family

ID=88200609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007330 WO2023189115A1 (ja) 2022-03-30 2023-02-28 発泡粒子の製造方法及び発泡粒子

Country Status (2)

Country Link
TW (1) TW202344588A (ja)
WO (1) WO2023189115A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216153A (ja) * 1994-01-26 1995-08-15 Sumitomo Chem Co Ltd 無架橋発泡用エチレン−α−オレフィン共重合体樹脂組成物
JPH11172034A (ja) * 1997-12-15 1999-06-29 Kanegafuchi Chem Ind Co Ltd 無架橋直鎖状低密度ポリエチレン系樹脂予備発泡粒子およびその製造方法
JP2013060514A (ja) * 2011-09-13 2013-04-04 Sekisui Plastics Co Ltd ポリエチレン系樹脂発泡粒子、ポリエチレン系樹脂発泡成形体及びポリエチレン系樹脂発泡粒子の製造方法
JP2020090609A (ja) * 2018-12-06 2020-06-11 株式会社ジェイエスピー ポリエチレン系樹脂発泡粒子及びポリエチレン系樹脂発泡粒子成形体
JP7227526B1 (ja) * 2021-10-21 2023-02-22 株式会社ジェイエスピー ポリエチレン系樹脂発泡粒子及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216153A (ja) * 1994-01-26 1995-08-15 Sumitomo Chem Co Ltd 無架橋発泡用エチレン−α−オレフィン共重合体樹脂組成物
JPH11172034A (ja) * 1997-12-15 1999-06-29 Kanegafuchi Chem Ind Co Ltd 無架橋直鎖状低密度ポリエチレン系樹脂予備発泡粒子およびその製造方法
JP2013060514A (ja) * 2011-09-13 2013-04-04 Sekisui Plastics Co Ltd ポリエチレン系樹脂発泡粒子、ポリエチレン系樹脂発泡成形体及びポリエチレン系樹脂発泡粒子の製造方法
JP2020090609A (ja) * 2018-12-06 2020-06-11 株式会社ジェイエスピー ポリエチレン系樹脂発泡粒子及びポリエチレン系樹脂発泡粒子成形体
JP7227526B1 (ja) * 2021-10-21 2023-02-22 株式会社ジェイエスピー ポリエチレン系樹脂発泡粒子及びその製造方法

Also Published As

Publication number Publication date
TW202344588A (zh) 2023-11-16

Similar Documents

Publication Publication Date Title
JP2016188321A (ja) 発泡粒子及び発泡成形体
CN117957273A (zh) 聚乙烯系树脂发泡颗粒及其制造方法
JP3995714B2 (ja) ポリエチレン系予備発泡粒子
KR20180017125A (ko) 열가소성 수지 발포 입자
JP5630591B2 (ja) ポリオレフィン系樹脂予備発泡粒子およびその製造方法
JP5909368B2 (ja) ポリプロピレン系樹脂型内発泡成形体およびその製造方法
WO2016098698A1 (ja) ポリプロピレン系樹脂発泡粒子
JPWO2016147919A1 (ja) ポリプロピレン系樹脂発泡粒子およびその製造方法
CN113045827A (zh) 聚丙烯系树脂发泡颗粒以及发泡颗粒成形体
JP5591965B2 (ja) ポリオレフィン系樹脂予備発泡粒子およびその製造方法
JP2013100555A (ja) ポリオレフィン系樹脂予備発泡粒子およびその製造方法
US20240076464A1 (en) Polyethylene Resin Foamed Particle, and Method for Producing Same
JP7311672B1 (ja) 発泡粒子の製造方法及び発泡粒子
WO2023189115A1 (ja) 発泡粒子の製造方法及び発泡粒子
JP6670850B2 (ja) ポリプロピレン系樹脂発泡粒子の製造方法、ポリプロピレン系樹脂発泡粒子および型内発泡成形体
WO2023189114A1 (ja) 発泡粒子及び発泡粒子成形体
JP2023148536A (ja) 発泡粒子及び発泡粒子成形体
JP2023176570A (ja) 発泡粒子
JP2023148537A (ja) 発泡粒子及び発泡粒子成形体
CN112955499B (zh) 发泡粒子
JP7225038B2 (ja) ポリプロピレン系樹脂発泡粒子及びポリプロピレン系樹脂発泡粒子成形体
JP5220486B2 (ja) ポリオレフィン系樹脂予備発泡粒子およびその製造方法
JP5460227B2 (ja) ポリプロピレン系樹脂型内発泡成形体
JP7295450B2 (ja) ポリエチレン系樹脂発泡粒子及びその製造方法
JP7425137B1 (ja) 発泡粒子及び発泡粒子成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779145

Country of ref document: EP

Kind code of ref document: A1