WO2023184704A1 - 双草酸硼酸锂的制备方法及双草酸硼酸锂的应用 - Google Patents

双草酸硼酸锂的制备方法及双草酸硼酸锂的应用 Download PDF

Info

Publication number
WO2023184704A1
WO2023184704A1 PCT/CN2022/097324 CN2022097324W WO2023184704A1 WO 2023184704 A1 WO2023184704 A1 WO 2023184704A1 CN 2022097324 W CN2022097324 W CN 2022097324W WO 2023184704 A1 WO2023184704 A1 WO 2023184704A1
Authority
WO
WIPO (PCT)
Prior art keywords
anhydrous
lithium
temperature
preparation
oxalic acid
Prior art date
Application number
PCT/CN2022/097324
Other languages
English (en)
French (fr)
Inventor
曾艺安
潘东优
戴文梁
毛冲
戴晓兵
Original Assignee
珠海市赛纬电子材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海市赛纬电子材料股份有限公司 filed Critical 珠海市赛纬电子材料股份有限公司
Publication of WO2023184704A1 publication Critical patent/WO2023184704A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/022Boron compounds without C-boron linkages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of compound synthesis, and in particular to a preparation method of lithium bisoxaloborate and the application of lithium bisoxaloborate.
  • Lithium-ion batteries are mainly composed of battery casing, positive electrode materials, separators, negative electrode materials, and electrolytes.
  • the electrolyte is one of the important components of the battery. It plays the role of transporting lithium ions between the positive and negative electrode materials of the battery. , has an important impact on battery capacity, cycle performance and safety.
  • the electrolyte mainly includes non-aqueous organic solvents and lithium salts.
  • some auxiliary additives are often added to the electrolyte, such as film-forming additives, flame retardant additives, lithium replenishing agents, etc.
  • lithium salts mainly include lithium perchlorate (LiClO 4 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium hexafluoroarsenate (LiAsF 6 ), etc.
  • LiPF 6 is currently used in commercial lithium Lithium salt is the main electrolyte in ion batteries, but LiPF 6 has poor thermal stability. When the temperature exceeds 70°C, it will begin to decompose and produce hydrofluoric acid. Hydrofluoric acid will seriously corrode the cathode material in the battery, causing the cathode material to The dissolution of metals will cause irreversible damage to the performance of the battery. In addition, hydrofluoric acid is very harmful to the human body and the environment.
  • LiBOB lithium bisoxalatoborate
  • Lithium bisoxalatoborate (LiBOB), as a new lithium salt, has the following main advantages:
  • lithium bisoxaloborate (LiBOB) has good thermal stability, its decomposition temperature is as high as 302°C, and its molecule does not contain fluorine, and its thermal decomposition product is B 2 O 3 and CO 2 , friendly and harmless to human body and environment.
  • LiBOB lithium bisoxalatoborate
  • solution method mainly include solution method and solid phase method.
  • LiBOB can be synthesized by using lithium oxalate or lithium hydroxide as the lithium source, combining oxalic acid and boric acid, and using water or THF as the solvent for the reaction.
  • water will be produced during the reaction, and LiBOB and water will react at high temperatures, resulting in a product with low purity and high water content, which cannot meet the requirements for its use as an electrolyte lithium salt or additive.
  • the purpose of this application is to provide a preparation method and application of lithium bisoxalate borate.
  • This preparation method has fast synthesis efficiency, high yield, few purification steps, low requirements for equipment and the prepared bisoxalate.
  • Lithium borate has high purity and low moisture, which can meet the requirements for the use of lithium salts.
  • the first aspect of this application provides a preparation method of lithium bisoxalatoborate, including the steps:
  • Oxalic acid dihydrate is pretreated to obtain anhydrous oxalic acid with a moisture content of ⁇ 100ppm.
  • Lithium oxalate is pretreated to obtain anhydrous lithium oxalate with a moisture content of ⁇ 50ppm.
  • Triethyl borate is pretreated to obtain anhydrous triethyl borate with a moisture content of ⁇ 100ppm. ester;
  • the premix is subjected to a high-temperature reaction in two steps. In the first step, the temperature is raised to 120 ⁇ 10°C for 3 to 4 hours. In the second step, the temperature is raised to 240 ⁇ 10°C for 4 to 5 hours. After the reaction is completed, it is cooled to At room temperature, crude lithium bisoxaloborate is obtained;
  • the crude lithium bisoxalatoborate is dissolved in an anhydrous nitrile solvent, and then filtered, concentrated, crystallized, and dried in sequence.
  • the preparation method of lithium bisoxalate borate of the present application involves pre-treating each raw material to remove water before the high-temperature reaction. This avoids the introduction of moisture during the high-temperature reaction and post-treatment, which can significantly reduce side reactions between the product and water and also reduce acid value, so the purity and yield of the synthesized lithium bisoxalatoborate are improved, the purity can reach 99.9%, the yield can reach 90%, and the moisture is ⁇ 100ppm.
  • the dihydrate oxalic acid can be dehydrated and dried in a blast drying oven to obtain anhydrous oxalic acid.
  • the dehydration and drying temperature is 95 ⁇ 5°C and the time is 24 to 48 hours.
  • the lithium oxalate can be obtained by vacuum drying. Anhydrous lithium oxalate is obtained.
  • the vacuum drying temperature is 120 ⁇ 5°C and the time is 8 to 12 hours.
  • the triethyl borate is dried and dehydrated with a dehydrating agent to obtain anhydrous triethyl borate.
  • the drying and dehydration is to add a dehydrating agent to the triethyl borate, add a dehydrating agent to the triethyl borate, let it stand for 3 to 6 hours, filter and distill the filtrate under reduced pressure to obtain anhydrous Triethyl borate.
  • the dehydrating agent is anhydrous magnesium sulfate, anhydrous calcium chloride, anhydrous sodium sulfate or molecular sieve.
  • the order of adding the premixed materials is to add the anhydrous oxalic acid, the anhydrous lithium oxalate and the anhydrous triethyl borate in sequence, or to add the anhydrous lithium oxalate, the anhydrous triethyl borate in sequence.
  • the heating rates of the first step and the second step are independently 5 to 10°C/min.
  • the anhydrous nitrile solvent is anhydrous acetonitrile, anhydrous glutaronitrile or anhydrous adiponitrile.
  • the crystallization temperature of the concentrated crystal is -30 to 10°C, and the crystallization time is 1 to 3 hours.
  • the second aspect of the present application provides the application of lithium bisoxaloborate.
  • the lithium bisoxaloborate prepared by the aforementioned preparation method of lithium bisoxaloborate is used as a lithium salt or additive for lithium ion batteries.
  • the purity and yield of this lithium bisoxalatoborate are both high, which is conducive to the promotion and application in lithium-ion batteries.
  • the lithium bisoxaloborate of the present application uses anhydrous oxalic acid, anhydrous lithium oxalate and anhydrous triethyl borate as raw materials and can be obtained by reacting at high temperature. Its chemical reaction formula is as follows.
  • the preparation method of lithium bisoxalatoborate of the present application includes the steps: (1) pretreatment; (2) premixing; (3) high temperature reaction; (4) post-treatment.
  • step (1) pretreatment includes pretreating oxalic acid dihydrate to obtain anhydrous oxalic acid with a moisture content of ⁇ 100ppm.
  • oxalic acid dihydrate is dehydrated and dried in a blast drying oven to obtain anhydrous oxalic acid.
  • the temperature of dehydration and drying The temperature is 95 ⁇ 5°C and the time is 24 ⁇ 48h.
  • Pretreat lithium oxalate to obtain anhydrous lithium oxalate with a moisture content of ⁇ 50 ppm.
  • anhydrous lithium oxalate can be obtained by vacuum drying the lithium oxalate.
  • the vacuum drying temperature is 120 ⁇ 5°C and the time is 8 to 12 hours.
  • Pretreat triethyl borate to obtain anhydrous triethyl borate with a moisture content of ⁇ 100ppm, specifically.
  • Add dehydrating agent to triethyl borate let it stand for 3 to 6 hours, filter and distill the filtrate under reduced pressure to obtain anhydrous triethyl borate.
  • the dehydrating agent is anhydrous magnesium sulfate, anhydrous calcium chloride, and anhydrous sodium sulfate. or molecular sieves.
  • Step (2) premixing includes mixing anhydrous lithium oxalate, anhydrous oxalic acid and anhydrous triethyl borate in a molar ratio of 1:3.0 ⁇ 3.5:2.0 ⁇ 2.5 to obtain a premix, and the preferred molar ratio is 1:3:2 .
  • the order of adding the premixed materials can be to add anhydrous oxalic acid, anhydrous lithium oxalate and anhydrous triethyl borate in sequence, or to add anhydrous lithium oxalate, anhydrous oxalic acid and anhydrous triethyl borate in sequence.
  • Step (3) High-temperature reaction includes subjecting the premix to high-temperature reaction in two steps.
  • the first step is to raise the temperature to 120 ⁇ 10°C for 3 to 4 hours.
  • the second step is to raise the temperature to 240 ⁇ 10°C for 4 to 5 hours.
  • High-temperature reactions can be carried out by transferring the premix to a crucible and placing it in a muffle furnace.
  • the heating rates of the first step and the second step are independently 5 to 10°C/min.
  • the post-treatment of step (4) includes dissolving the crude lithium bisoxaloborate in an anhydrous nitrile solvent, and then filtering, concentrating, crystallizing, and drying in sequence.
  • the anhydrous nitrile solvent is anhydrous acetonitrile (AN), anhydrous glutaronitrile (GN) or anhydrous adiponitrile.
  • AN anhydrous acetonitrile
  • GN anhydrous glutaronitrile
  • the crystallization temperature of concentrated crystallization is -30 ⁇ 10°C
  • the crystallization time is 1 ⁇ 3h. Dry in a vacuum oven at a drying temperature of 120-150°C and a drying time of 7-8 hours.
  • the preparation method of lithium bisoxalatoborate includes steps:
  • the temperature is set to 95°C and the drying time is 24 hours to obtain anhydrous oxalic acid.
  • the moisture of the anhydrous oxalic acid is detected with a Karl Fischer moisture meter and the moisture is 60ppm; Place lithium oxalate in a blast oven, set the temperature to 120°C, and dry for 10 hours to obtain anhydrous lithium oxalate.
  • Use a Karl Fischer moisture meter to test its moisture content of 50ppm; add anhydrous magnesium sulfate to triethyl borate and let stand Leave for 4.5 hours, and then filter to obtain the filtrate.
  • the filtrate is distilled under reduced pressure to obtain anhydrous triethyl borate.
  • the moisture content is measured to be 90 ppm using a Karl Fischer moisture meter.
  • the preparation method of lithium bisoxalatoborate includes steps:
  • the temperature is set to 95°C and the drying time is 20 hours to obtain anhydrous oxalic acid.
  • the moisture of the anhydrous oxalic acid is detected with a Karl Fischer moisture meter and the moisture content is 80ppm; Place lithium oxalate in a blast oven, set the temperature to 120°C, and dry for 6 hours to obtain anhydrous lithium oxalate.
  • Use a Karl Fischer moisture meter to test the moisture of 90ppm; add anhydrous sodium sulfate to triethyl borate and let it stand. 4.5h, and then filtered to obtain the filtrate.
  • the filtrate was distilled under reduced pressure to obtain anhydrous triethyl borate.
  • the moisture content was measured to be 80ppm with a Karl Fischer moisture meter.
  • the preparation method of lithium bisoxalatoborate includes steps:
  • the temperature is set to 95°C and the drying time is 18 hours.
  • Anhydrous oxalic acid is obtained.
  • the moisture of the anhydrous oxalic acid is detected with a Karl Fischer moisture meter.
  • the moisture is 100ppm.
  • Place lithium oxalate in a blast oven set the temperature to 120°C, and dry for 5 hours to obtain anhydrous lithium oxalate.
  • Use a Karl Fischer moisture meter to test its moisture content of 95ppm; add anhydrous magnesium sulfate to triethyl borate and let stand. Leave for 3 hours, then filter to obtain the filtrate.
  • the filtrate is distilled under reduced pressure to obtain anhydrous triethyl borate.
  • the moisture content is measured to be 97 ppm using a Karl Fischer moisture meter.
  • the preparation method of lithium bisoxalatoborate includes steps:
  • the temperature is set to 95°C and the drying time is 24 hours to obtain anhydrous oxalic acid.
  • the moisture of the anhydrous oxalic acid is detected with a Karl Fischer moisture meter and the moisture is 60ppm; Place lithium oxalate in a blast oven, set the temperature to 120°C, and dry for 10 hours to obtain anhydrous lithium oxalate.
  • Use a Karl Fischer moisture meter to test its moisture content of 50ppm; add anhydrous magnesium sulfate to triethyl borate and let stand Leave for 4.5 hours, and then filter to obtain the filtrate.
  • the filtrate is distilled under reduced pressure to obtain anhydrous triethyl borate.
  • the moisture content is measured to be 90 ppm using a Karl Fischer moisture meter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

一种双草酸硼酸锂的制备方法及双草酸硼酸锂的应用。其中,双草酸硼酸锂以无水草酸、无水草酸锂和无水硼酸三乙酯为原料,在高温下反应可得。双草酸硼酸锂的制备方法包括步骤:(1)预处理;(2)预混合;(3)高温反应;(4)后处理。本申请双草酸硼酸锂的制备方法,在高温反应前先将各原料进行预处理除水,在高温反应和后处理中皆避免引入水分,可以明显的减少产物与水的副反应,故提高了合成所得双草酸硼酸锂的纯度和收率,其纯度可达99.9%,收率可达90%,水分<100ppm。

Description

双草酸硼酸锂的制备方法及双草酸硼酸锂的应用 技术领域
本申请涉及一种化合物合成技术领域,尤其涉及一种双草酸硼酸锂的制备方法及双草酸硼酸锂的应用。
背景技术
锂离子电池主要是由电池外壳、正极材料、隔膜、负极材料、电解液构成,其中电解液是电池的重要组成部分之一,它在电池的正、负极材料之间起着传输锂离子的作用,对电池的容量、循环性能和安全性有着重要的影响。电解液主要包括非水有机溶剂和锂盐两大部分。另外为了改善电池的性能,往往还会在电解液中添加一些辅助的添加剂,比如成膜添加剂、阻燃添加剂、补锂剂等。
目前锂盐主要包括高氯酸锂(LiClO 4)、四氟硼酸锂(LiBF 4)、六氟磷酸锂(LiPF 6)、六氟砷酸锂(LiAsF 6)等,其中LiPF 6是目前应用于商品化锂离子电池中最主要的电解质锂盐,但是LiPF 6的热稳定性很差,当温度超过70℃就会开始分解产生氢氟酸,氢氟酸在电池当中会严重的腐蚀正极材料,使正极材料的金属溶解,对电池的性能造成不可逆的损害,另外氢氟酸对人体和环境有着非常大的危害。
双草酸硼酸锂(LiBOB)分子式为LiB(C 2O 4) 2。其为目前研究开发的新型锂盐中有可能替代LiPF 6而广泛应用于商品化锂离子电池的电解质,同时采用其低含量也可作为一种添加剂使用。其结构式如下所示。
Figure PCTCN2022097324-appb-000001
双草酸硼酸锂(LiBOB)作为新型的锂盐主要具有以下几点优势:
(1)具有比较宽的电化学窗口(>4.5V),故使得其在电池的充放电过程中不会与正负极材料发生反应。
(2)相比于六氟磷酸锂的热不稳定性,双草酸硼酸锂(LiBOB)的热稳定性良好,其分解温度高达302℃,而且其分子中不含氟元素,其热分解产物为B 2O 3和CO 2,对人体和环境友好无害。
(3)具有良好的溶解度和较高的电导率,在溶剂DMF、DMSO、DME、AN、PC和GBL等许多有机溶剂中的溶解度都可以达到1mol/L。在25℃时,1mol/L的LiBOB/DME溶液的电导率为14.9mS/cm,1mol/L的LiBOB/AN溶液的电导率更是高达25.2mS/cm。
目前,双草酸硼酸锂(LiBOB)的合成方法主要包括溶液法和固相法。如采用草酸锂或氢氧化锂作为锂源,再结合草酸和硼酸,并用水或THF作为溶剂进行反应实现了LiBOB的合成。但是其反应过程中不约而同的都会产生水,而在高温下LiBOB和水将会发生反应,导致得到的产品纯度低,水含量高,不能满足其作为电解质锂盐或添加剂的使用要求。业者也有使用LiB(OCH 3) 4和(CH 3) 3SiOOCCOOSi(CH 3) 3为原料,用乙腈作为反应溶剂而反应得到LiBOB,但该方法存在如下几个缺点:(1)原料LiB(OCH 3) 4和(CH 3) 3SiOOCCOOSi(CH 3) 3都不易得,不适合工业化;(2)该反应同时还伴随着大量的CH 3OSi(CH 3) 3副产物,反应的原子经济性不好。因此提供一种如何高效率、低成本的合成双草酸硼酸锂的制备方法同时其纯度、水分和酸值都要满足电解液锂盐的使用要求,这是本领域技术人员亟待解决的技术难题。
申请内容
基于上述问题,本申请的目的在于提供一种双草酸硼酸锂的制备方法及其应用,此制备方法的合成效率快、收率高、提纯步骤少、对设备的要求低且制备得到的双草酸硼酸锂的纯度高、水分低,能够满足锂盐的使用要求。
为实现上述目的,本申请第一方面提供了一种双草酸硼酸锂的制备方法,包括步骤:
(1)预处理
将二水草酸经预处理得水分≤100ppm的无水草酸,将草酸锂经预处理得水分≤50ppm的无水草酸锂,将硼酸三乙酯经预处理得水分≤100ppm的无水硼酸三乙酯;
(2)预混合
将所述无水草酸锂、所述无水草酸和所述无水硼酸三乙酯按摩尔比1:3.0~3.5:2.0~2.5混合得预混料;
(3)高温反应
将所述预混料分两步进行高温反应,第一步升温至120±10℃反应3~4h,第二步升温至240±10℃反应4~5h,反应完全后于氮气氛围下冷却至室温,得双草酸硼酸锂粗品;
(4)后处理
将所述双草酸硼酸锂粗品采用无水腈类溶剂进行溶解,再依次进行过滤、浓缩结晶、干燥。
本申请双草酸硼酸锂的制备方法,在高温反应前先将各原料进行预处理除水,在高温反应和后处理中皆避免引入水分,可以明显的减少产物与水的副反应还能降低酸值,故提高了合成所得双草酸硼酸锂的纯度和收率,其纯度可达99.9%,收率可达90%,水分<100ppm。且高温反应时,先低温反应使原料充分融合,减少原料中无水草酸、无水硼酸三乙酯的挥发和分解,后再升高温度是为了成键以形成LiBOB晶体,同时将生成物乙醇挥发出反应体系,以促进反应进行。
较佳的,所述二水草酸于鼓风干燥箱中经脱水干燥可得无水草酸,所述脱水干燥的温度为95±5℃,时间为24~48h,所述草酸锂经真空干燥可得无水草酸锂,所述真空干燥的温度为120±5℃,时间为8~12h。
较佳的,所述硼酸三乙酯经脱水剂干燥脱水可得无水硼酸三乙酯。
较佳的,所述干燥脱水为于所述硼酸三乙酯中加入脱水剂,于所述硼酸三乙酯中加入脱水剂,静置3~6h,过滤并将滤液减压蒸馏可得无水硼酸三乙酯。
较佳的,所述脱水剂为无水硫酸镁、无水氯化钙、无水硫酸钠或分子筛。
较佳的,所述预混合的加料顺序为依次加入所述无水草酸、所述无水草酸 锂和所述无水硼酸三乙酯,或依次加入所述无水草酸锂、所述无水草酸和所述无水硼酸三乙酯。
较佳的,所述第一步升温和所述第二步升温的速率各自独立为5~10℃/min。
较佳的,所述无水腈类溶剂为无水乙腈、无水戊二腈或无水己二腈。
较佳的,所述浓缩结晶的结晶温度为-30~10℃,结晶时间为1~3h。
本申请第二方面提供了双草酸硼酸锂的应用,采用前述的双草酸硼酸锂的制备方法所制备的双草酸硼酸锂作为锂离子电池的锂盐或添加剂。此双草酸硼酸锂的纯度和产率皆较高,有利于在锂离子电池中的推广应用。
具体实施方式
本申请的双草酸硼酸锂以无水草酸、无水草酸锂和无水硼酸三乙酯为原料,在高温下反应可得,其化学反应式如下所示。
3H 2C 2O 4+Li 2C 2O 4+2B(OC 2H 5) 3=2LiBC 4O 8+6C 2H 5OH
本申请的双草酸硼酸锂的制备方法包括步骤:(1)预处理;(2)预混合;(3)高温反应;(4)后处理。
其中,步骤(1)预处理包括将二水草酸经预处理得水分≤100ppm的无水草酸,具体的,二水草酸于鼓风干燥箱中经脱水干燥可得无水草酸,脱水干燥的温度为95±5℃,时间为24~48h。将草酸锂经预处理得水分≤50ppm的无水草酸锂,具体的,将草酸锂经真空干燥可得无水草酸锂,真空干燥的温度为120±5℃,时间为8~12h。将硼酸三乙酯经预处理得水分≤100ppm的无水硼酸三乙酯,具体的。于硼酸三乙酯中加入脱水剂,静置3~6h,过滤并将滤液减压蒸馏可得无水硼酸三乙酯,脱水剂为无水硫酸镁、无水氯化钙、无水硫酸钠或分子筛。
步骤(2)预混合包括将无水草酸锂、无水草酸和无水硼酸三乙酯按摩尔比1:3.0~3.5:2.0~2.5混合得预混料,优选摩尔比为1:3:2。预混合的加料顺序可为依次加入无水草酸、无水草酸锂和无水硼酸三乙酯,或依次加入无水草酸锂、无水草酸和无水硼酸三乙酯。
步骤(3)高温反应包括将预混料分两步进行高温反应,第一步升温至120±10℃反应3~4h,第二步升温至240±10℃反应4~5h,反应完全后于氮气氛 围下冷却至室温,得双草酸硼酸锂粗品。高温反应可将预混料转移至坩埚,并置于马弗炉中进行。第一步升温和第二步升温的速率各自独立为5~10℃/min。
步骤(4)后处理包括将双草酸硼酸锂粗品采用无水腈类溶剂进行溶解,再依次进行过滤、浓缩结晶、干燥。其中,无水腈类溶剂为无水乙腈(AN)、无水戊二腈(GN)或无水己二腈。浓缩结晶的结晶温度为-30~10℃,结晶时间为1~3h。于真空烘箱中进行干燥,且干燥温度为120~150℃,干燥时间为7~8h。
为更好地说明本申请的目的、技术方案和有益效果,下面将结合具体实施例对本申请作进一步说明。需说明的是,下述实施所述方法是对本申请做的进一步解释说明,不应当作为对本申请的限制。
实施例1
双草酸硼酸锂的制备方法,包括步骤:
(1)预处理
将二水草酸放置于鼓风烘箱中进行烘干,温度设置为95℃,烘干时间为24h,得到无水草酸,用卡尔费休水分仪对无水草酸进行水分检测,其水分为60ppm;将草酸锂放置于鼓风烘箱中,设置温度120℃,烘干时间10h,得到无水草酸锂,用卡尔费休水分仪测试其水分50ppm;在硼酸三乙酯中加入无水硫酸镁,静置4.5h,然后过滤得到滤液,对滤液进行减压蒸馏得到无水硼酸三乙酯,用卡尔费休水分仪测其水分为90ppm。
(2)预混合
在500ml三口烧瓶中依次加入无水草酸锂25.5g、无水草酸67.5g和无水硼酸三乙酯73g,在室温下用机械搅拌搅拌15min混合均匀,得到预混料。
(3)高温反应
将预混料转移至500ml的陶瓷坩埚中,然后把陶瓷坩埚放入到马弗炉中,设置升温程序,从常温升高到120℃反应4h,且升温速率为10℃/min,再从120℃升高到240℃反应5h,且升温速率为5℃/min,反应完全后于氮气氛围下冷却至室温,得到双草酸硼酸锂粗品。
(4)后处理
于双草酸硼酸锂粗品中加入400g无水乙腈进行溶解,过滤掉不溶固体,得 到澄清透明的滤液;将滤液在50℃下进行减压浓缩,浓缩到LiBOB:AN=1:2.5(重量比),然后降温结晶,结晶温度为-10℃,结晶时间2h,然后密闭过滤得到双草酸硼酸锂湿品;将双草酸硼酸锂湿品置于真空烘箱中进行干燥,干燥温度为150℃,干燥时间为8h,最终得到89.1g双草酸硼酸锂。其收率为92%,纯度为99.6%,水分为50ppm,酸值为60ppm。
实施例2
双草酸硼酸锂的制备方法,包括步骤:
(1)预处理
将二水草酸放置于鼓风烘箱中进行烘干,温度设置为95℃,烘干时间为20h,得到无水草酸,用卡尔费休水分仪对无水草酸进行水分检测,其水分80ppm;将草酸锂放置于鼓风烘箱中,设置温度120℃,烘干时间6h,得到无水草酸锂,用卡尔费休水分仪测试其水分90ppm;在硼酸三乙酯中加入无水硫酸钠,静置4.5h,然后过滤得到滤液,对滤液进行减压蒸馏得到无水硼酸三乙酯,用卡尔费休水分仪测其水分为80ppm。
(2)预混合
在500ml三口烧瓶中依次加入无水草酸锂25.5g、无水草酸67.5g和无水硼酸三乙酯73g,在室温下用机械搅拌搅拌15min混合均匀,得到预混料。
(3)高温反应
将预混料转移至500ml的陶瓷坩埚中,然后把陶瓷坩埚放入到马弗炉中,设置升温程序,从常温升高到120℃反应5h,升温速率为10℃/min,再从120℃升高到240℃反应3h,升温速率为10℃/min,反应完全后于氮气氛围下冷却至室温,得到双草酸硼酸锂粗品。
(4)后处理
于双草酸硼酸锂粗品中加入400g无水乙腈进行溶解,过滤掉不溶固体,得到澄清透明的滤液;将滤液在50℃下进行减压浓缩,浓缩到LiBOB:AN=1:2.5(重量比),然后降温结晶,结晶温度为-10℃,结晶时间2.5h,然后密闭过滤得到双草酸硼酸锂湿品;将双草酸硼酸锂湿品置于真空烘箱中进行干燥,干燥温 度为150℃,干燥时间为8h,最终得到87.2g双草酸硼酸锂。其收率为90%,纯度为99.5%,水分为70ppm,酸值为90ppm。
实施例3
双草酸硼酸锂的制备方法,包括步骤:
(1)预处理
将二水草酸放置于鼓风烘箱中进行烘干,温度设置为95℃,烘干时间为18h,得到无水草酸,用卡尔费休水分仪对无水草酸进行水分检测,其水分为100ppm。将草酸锂放置于鼓风烘箱中,设置温度120℃,烘干时间5h,得到无水草酸锂,用卡尔费休水分仪测试其水分95ppm;在硼酸三乙酯中加入无水硫酸镁,静置3h,然后过滤得到滤液,对滤液进行减压蒸馏得到无水硼酸三乙酯,用卡尔费休水分仪测其水分为97ppm。
(2)预混合
在500ml三口烧瓶中依次加入无水草酸67.5g、无水草酸锂25.5g和无水硼酸三乙酯73g,在室温下用机械搅拌搅拌15min混合均匀,得到预混料。
(3)高温反应
将预混料转移至500ml的陶瓷坩埚中,然后把陶瓷坩埚放入到马弗炉中,设置升温程序,从常温升高到120℃反应3h,升温速率为10℃/min,再从120℃升高到240℃反应3h,升温速率为10℃/min,反应完全后于氮气氛围下冷却至室温,得到双草酸硼酸锂粗品。
(4)后处理
于双草酸硼酸锂粗品中加入400g无水戊二腈进行溶解,过滤掉不溶固体,得到澄清透明的滤液;将滤液在50℃下进行减压浓缩,浓缩到LiBOB:GN=1:2.5(重量比),然后降温结晶,结晶温度为-10℃,结晶时间2h,然后密闭过滤得到双草酸硼酸锂湿品;将双草酸硼酸锂湿品置于真空烘箱中进行干燥,干燥温度为150℃,干燥时间为8h,最终得到92g双草酸硼酸锂精品。其收率为95%,纯度为99.6%,水分为80ppm,酸值为30ppm。
对比例1
双草酸硼酸锂的制备方法,包括步骤:
(1)预处理
将二水草酸放置于鼓风烘箱中进行烘干,温度设置为95℃,烘干时间为24h,得到无水草酸,用卡尔费休水分仪对无水草酸进行水分检测,其水分为60ppm;将草酸锂放置于鼓风烘箱中,设置温度120℃,烘干时间10h,得到无水草酸锂,用卡尔费休水分仪测试其水分50ppm;在硼酸三乙酯中加入无水硫酸镁,静置4.5h,然后过滤得到滤液,对滤液进行减压蒸馏得到无水硼酸三乙酯,用卡尔费休水分仪测其水分为90ppm。
(2)预混合
在500ml三口烧瓶中依次加入无水草酸锂25.5g、无水草酸67.5g和无水硼酸三乙酯73g,在室温下用机械搅拌搅拌15min混合均匀,得到预混料。
(3)高温反应
将预混料转移至500ml的陶瓷坩埚中,然后把陶瓷坩埚放入到马弗炉中,从常温升高到240℃反应9h,且升温速率为5℃/min,反应完全后于氮气氛围下冷却至室温,得到双草酸硼酸锂粗品。
(4)后处理
于双草酸硼酸锂粗品中加入400g无水乙腈进行溶解,过滤掉不溶固体,得到澄清透明的滤液;将滤液在50℃下进行减压浓缩,浓缩到LiBOB:AN=1:2.5(重量比),然后降温结晶,结晶温度为-10℃,结晶时间2h,然后密闭过滤得到双草酸硼酸锂湿品;将双草酸硼酸锂湿品置于真空烘箱中进行干燥,干燥温度为150℃,干燥时间为8h,最终得到85.3g双草酸硼酸锂。其收率为80%,纯度为98.6%,水分为100ppm,酸值为120ppm。
由实施例1~3和对比例1的比较可知,高温反应中采用分步进行的方式,所得双草酸硼酸锂的收率和纯度更高,水分和酸值更低。
最后应当说明的是,以上实施例仅用以说明本申请的技术方案而非对本申请保护范围的限制,尽管参照较佳实施例对本申请作了详细说明,但是也并不仅限于实施例中所列,本领域的普通技术人员应当理解,可以对本申请的技术 方案进行修改或者等同替换,而不脱离本申请技术方案的实质和范围。

Claims (10)

  1. 双草酸硼酸锂的制备方法,其特征在于,包括步骤:
    (1)预处理
    将二水草酸经预处理得水分≤100ppm的无水草酸,将草酸锂经预处理得水分≤50ppm的无水草酸锂,将硼酸三乙酯经预处理得水分≤100ppm的无水硼酸三乙酯;
    (2)预混合
    将所述无水草酸锂、所述无水草酸和所述无水硼酸三乙酯按摩尔比1:3.0~3.5:2.0~2.5混合得预混料;
    (3)高温反应
    将所述预混料分两步进行高温反应,第一步升温至120±10℃反应3~4h,第二步升温至240±10℃反应4~5h,反应完全后于氮气氛围下冷却至室温,得双草酸硼酸锂粗品;
    (4)后处理
    将所述双草酸硼酸锂粗品采用无水腈类溶剂进行溶解,再依次进行过滤、浓缩结晶、干燥。
  2. 根据权利要求1所述的双草酸硼酸锂的制备方法,其特征在于,所述二水草酸于鼓风干燥箱中经脱水干燥可得无水草酸,所述脱水干燥的温度为95±5℃,时间为24~48h,所述草酸锂经真空干燥可得无水草酸锂,所述真空干燥的温度为120±5℃,时间为8~12h。
  3. 根据权利要求1所述的双草酸硼酸锂的制备方法,其特征在于,所述硼酸三乙酯经脱水剂干燥脱水可得无水硼酸三乙酯。
  4. 根据权利要求3所述的双草酸硼酸锂的制备方法,其特征在于,所述干 燥脱水为于所述硼酸三乙酯中加入脱水剂,静置3~6h,过滤并将滤液减压蒸馏可得无水硼酸三乙酯。
  5. 根据权利要求3所述的双草酸硼酸锂的制备方法,其特征在于,所述脱水剂为无水硫酸镁、无水氯化钙、无水硫酸钠或分子筛。
  6. 根据权利要求1所述的双草酸硼酸锂的制备方法,其特征在于,所述预混合的加料顺序为依次加入所述无水草酸、所述无水草酸锂和所述无水硼酸三乙酯,或依次加入所述无水草酸锂、所述无水草酸和所述无水硼酸三乙酯。
  7. 根据权利要求1所述的双草酸硼酸锂的制备方法,其特征在于,所述第一步升温和所述第二步升温的速率各自独立为5~10℃/min。
  8. 根据权利要求1所述的双草酸硼酸锂的制备方法,其特征在于,所述无水腈类溶剂为无水乙腈、无水戊二腈或无水己二腈。
  9. 根据权利要求1所述的双草酸硼酸锂的制备方法,其特征在于,所述浓缩结晶的结晶温度为-30~10℃,结晶时间为1~3h。
  10. 双草酸硼酸锂的应用,其特征在于,采用权利要求1~9任意一项所述的双草酸硼酸锂的制备方法所制备的双草酸硼酸锂作为锂离子电池的锂盐或添加剂。
PCT/CN2022/097324 2022-03-28 2022-06-07 双草酸硼酸锂的制备方法及双草酸硼酸锂的应用 WO2023184704A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210316323.6A CN114671899A (zh) 2022-03-28 2022-03-28 双草酸硼酸锂的制备方法及双草酸硼酸锂的应用
CN202210316323.6 2022-03-28

Publications (1)

Publication Number Publication Date
WO2023184704A1 true WO2023184704A1 (zh) 2023-10-05

Family

ID=82076854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097324 WO2023184704A1 (zh) 2022-03-28 2022-06-07 双草酸硼酸锂的制备方法及双草酸硼酸锂的应用

Country Status (2)

Country Link
CN (1) CN114671899A (zh)
WO (1) WO2023184704A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114671899A (zh) * 2022-03-28 2022-06-28 珠海市赛纬电子材料股份有限公司 双草酸硼酸锂的制备方法及双草酸硼酸锂的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109232629A (zh) * 2018-11-28 2019-01-18 湖南科霸汽车动力电池有限责任公司 双草酸硼酸锂的制备方法
CN109734734A (zh) * 2018-12-18 2019-05-10 朝阳光达化工有限公司 一种二草酸硼酸锂的制备方法
KR20190096154A (ko) * 2018-02-08 2019-08-19 리켐주식회사 리튬 비스옥살레이토보레이트의 합성방법
CN111138464A (zh) * 2019-12-27 2020-05-12 合肥利夫生物科技有限公司 一种二草酸硼酸锂的制备方法
CN114671899A (zh) * 2022-03-28 2022-06-28 珠海市赛纬电子材料股份有限公司 双草酸硼酸锂的制备方法及双草酸硼酸锂的应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19829030C1 (de) * 1998-06-30 1999-10-07 Metallgesellschaft Ag Lithium-bisoxalatoborat, Verfahren zu dessen Herstellung und dessen Verwendung
CN103951689A (zh) * 2014-05-16 2014-07-30 北京化学试剂研究所 液态双草酸硼酸锂的制备方法
CN111943970B (zh) * 2020-09-03 2023-07-18 江苏华盛锂电材料股份有限公司 一种二草酸硼酸锂的制备方法
CN112409393A (zh) * 2020-12-11 2021-02-26 临沂小篆新材料科技有限公司 一种制备双草酸硼酸锂的工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190096154A (ko) * 2018-02-08 2019-08-19 리켐주식회사 리튬 비스옥살레이토보레이트의 합성방법
CN109232629A (zh) * 2018-11-28 2019-01-18 湖南科霸汽车动力电池有限责任公司 双草酸硼酸锂的制备方法
CN109734734A (zh) * 2018-12-18 2019-05-10 朝阳光达化工有限公司 一种二草酸硼酸锂的制备方法
CN111138464A (zh) * 2019-12-27 2020-05-12 合肥利夫生物科技有限公司 一种二草酸硼酸锂的制备方法
CN114671899A (zh) * 2022-03-28 2022-06-28 珠海市赛纬电子材料股份有限公司 双草酸硼酸锂的制备方法及双草酸硼酸锂的应用

Also Published As

Publication number Publication date
CN114671899A (zh) 2022-06-28

Similar Documents

Publication Publication Date Title
CN100593515C (zh) 一种无水四氟硼酸锂的制备方法
KR102396069B1 (ko) 리튬 비스옥살레이트 보레이트 및 이를 리튬 비스옥살레이트 보레이트를 고순도로 제조하는 방법
CN109535191B (zh) 一种双草酸硼酸锂的制备方法
CN100365863C (zh) 一种锂离子电池负极成膜功能电解液及其制备方法
CN104310421A (zh) 一种高纯四氟硼酸锂的制备方法
CN102702243A (zh) 一种二氟草酸硼酸锂的制备及纯化方法
CN110635167B (zh) 非水电解液、含有该非水电解液的电池及电动车辆
WO2023184704A1 (zh) 双草酸硼酸锂的制备方法及双草酸硼酸锂的应用
CN114865091A (zh) 六氟磷酸锂以及包含其的锂离子电池电解液的制备方法
CN104447828B (zh) 一种双草酸硼酸锂的合成及提纯方法
CN103483368A (zh) 一种二氟草酸硼酸锂的制备方法
CN116525951A (zh) 一种电解质、电解液及其应用
WO2024109206A1 (zh) 非水电解液及二次电池
CN114524422A (zh) 一种双氟磺酰亚胺锂的制备方法
CN111138464A (zh) 一种二草酸硼酸锂的制备方法
CN113929711A (zh) 一种二氟草酸硼酸锂的制备方法
CN111490293B (zh) 非水电解液添加剂、非水电解液及锂离子电池
CN113549095A (zh) 一种双草酸硼酸锂的制备工艺
CN114075226A (zh) 草酸硼酸盐的制备方法、草酸硼酸盐衍生物及其制备方法、电解质盐
CN113717205A (zh) 草酸硼酸锂及其衍生物的制备方法、电解液和二次电池
CN109110774B (zh) 一种四氟硼酸锂的制备方法
CN109293691B (zh) 一种制备双草酸硼酸锂的方法
CN110627742A (zh) 一种含有至少一种环状配体结构的化合物的制备方法和纯化方法
CN115818592A (zh) 一种双氟磺酰亚胺钠的制备方法
CN113402540B (zh) 一种锂离子电池电解液抑酸剂、电解液及锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934529

Country of ref document: EP

Kind code of ref document: A1