WO2023181868A1 - ポリカーボネート樹脂組成物及びアンテナ用部材 - Google Patents

ポリカーボネート樹脂組成物及びアンテナ用部材 Download PDF

Info

Publication number
WO2023181868A1
WO2023181868A1 PCT/JP2023/008182 JP2023008182W WO2023181868A1 WO 2023181868 A1 WO2023181868 A1 WO 2023181868A1 JP 2023008182 W JP2023008182 W JP 2023008182W WO 2023181868 A1 WO2023181868 A1 WO 2023181868A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate resin
mass
parts
resin composition
less
Prior art date
Application number
PCT/JP2023/008182
Other languages
English (en)
French (fr)
Inventor
陽平 西野
晃司 廣瀬
Original Assignee
三菱エンジニアリングプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱エンジニアリングプラスチックス株式会社 filed Critical 三菱エンジニアリングプラスチックス株式会社
Publication of WO2023181868A1 publication Critical patent/WO2023181868A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome

Definitions

  • the present invention relates to a polycarbonate resin composition, and more particularly to a polycarbonate resin composition and antenna member that have low dielectric constant and dielectric loss tangent, and are excellent in heat resistance, impact resistance, toughness, and rigidity.
  • Patent Document 1 the applicant provides a millimeter-wave radar cover in which a resin composition containing a thermoplastic resin and alumina (B) has a low dielectric constant and a low dielectric loss tangent, and has excellent millimeter-wave transparency. proposed to do so.
  • alumina is a material with a high absolute value of dielectric constant
  • Example 2 containing polycarbonate resin of Patent Document 1 shows that the dielectric constant is 3.7 and the dielectric loss tangent is 0.0093. There is.
  • the magnitude of the dielectric loss that occurs in a material is proportional to the product of the square root of the material's relative permittivity and the dielectric loss tangent, so it is necessary to use a material that has both a small relative permittivity and a small dielectric loss tangent.
  • the above-mentioned dielectric constant and dielectric loss tangent are not sufficient for a material that can handle large capacity and high speed.
  • Patent Document 2 the applicant discovered that a polycarbonate resin containing a specific bisphenol unit has a low dielectric loss tangent, and by blending this with a general-purpose polycarbonate resin, both the relative dielectric constant and the dielectric loss tangent were improved.
  • a cover for millimeter-wave radar made of polycarbonate resin material with reduced energy consumption.
  • this polycarbonate resin material is an effective material, there is a problem in that its use is limited due to its high price.
  • polystyrene As a resin with good dielectric properties, but polystyrene has the drawbacks of poor compatibility with general-purpose polycarbonate resins, poor heat resistance, and poor impact resistance.
  • base materials and covers for antennas are required to have high rigidity and impact resistance in order to maintain sufficient rigidity and to withstand wind pressure when installed outdoors.
  • it is required to have excellent heat resistance so that its functionality is not impaired.
  • the present invention was made in view of the above circumstances, and its object (problem) is to provide a polycarbonate resin composition that is low cost, has a low dielectric constant, a low dielectric loss tangent, and has excellent heat resistance, rigidity, and impact resistance.
  • An object of the present invention is to provide an antenna member made of a resin composition and such a resin composition.
  • the present invention relates to the following polycarbonate resin composition and antenna member.
  • Polycarbonate resin (A) containing 30 to 150 parts by mass of polystyrene resin (B) and 3 to 60 parts by mass of elastomer (C) with respect to 100 parts by mass of polycarbonate resin (A) at 260 ° C. and 1216 sec -1 .
  • a polycarbonate resin composition characterized in that the polystyrene resin (B) has a melt viscosity ratio ( ⁇ A/ ⁇ B) in the range of 4.5 to 12.5. 2.
  • the elastomer (C) is one or more selected from butadiene/methyl (meth)acrylate copolymer, butadiene/methyl (meth)acrylate/styrene copolymer, and styrene/ethylene/butylene/styrene copolymer.
  • 4. The polycarbonate resin composition according to any one of 1 to 3 above, wherein the content ratio [(B)/(C)] of polystyrene resin (B) and elastomer (C) is 9 or less. 5.
  • the polycarbonate resin according to any one of 1 to 4 above which does not contain an acrylonitrile-butadiene-styrene copolymer, or if it does, the content is 10 parts by mass or less based on 100 parts by mass of the polycarbonate resin (A).
  • Composition. 6. A molded article of the polycarbonate resin composition according to any one of 1 to 5 above. 7. Contains 30 to 150 parts by mass of polystyrene resin (B) and 3 to 60 parts by mass of elastomer (C) per 100 parts by mass of polycarbonate resin (A), and has a dielectric loss tangent of 0.0040 or less at a frequency of 5.8 GHz.
  • the elastomer (C) is one or more selected from butadiene/methyl (meth)acrylate copolymer, butadiene/methyl (meth)acrylate/styrene copolymer, and styrene/ethylene/butylene/styrene copolymer.
  • the antenna member according to 7 above. 9.
  • the antenna member according to 7 or 8 above, wherein the polycarbonate resin composition has a content ratio [(B)/(C)] of polystyrene resin (B) and elastomer (C) of 9 or less. 10.
  • the polycarbonate resin composition of the present invention is low in cost, has excellent impact resistance, toughness, rigidity, and heat resistance, has low dielectric constant and dielectric loss tangent, and has small transmission attenuation of electromagnetic waves, so it can be used in 5G and 6G. It is suitable for electronic and electrical equipment parts that can handle high frequency bands, such as antenna base materials and antenna covers, and is particularly suitable for use as antenna members that use electromagnetic waves with a frequency of 1 GHz or higher. Sufficient reliability can be ensured.
  • the polycarbonate resin composition according to the first invention of the present application contains 30 to 150 parts by mass of polystyrene resin (B) and 3 to 60 parts by mass of elastomer (C) to 100 parts by mass of polycarbonate resin (A). It is characterized in that the melt viscosity ratio ( ⁇ A/ ⁇ B) of the polycarbonate resin (A) and the polystyrene resin (B) at 260° C. and 1216 sec ⁇ 1 is in the range of 4.5 to 12.5, including parts by mass.
  • Polycarbonate resin (A) Although there are no specific restrictions on the specific type of polycarbonate resin, examples thereof include polycarbonate polymers obtained by reacting a dihydroxy compound and a carbonate precursor. At this time, in addition to the dihydroxy compound and the carbonate precursor, a polyhydroxy compound or the like may be reacted. Alternatively, a method in which carbon dioxide is used as a carbonate precursor and is reacted with a cyclic ether may also be used. Further, the polycarbonate polymer may be linear or branched. Furthermore, the polycarbonate polymer may be a monopolymer consisting of one type of repeating unit, or a copolymer having two or more types of repeating units. At this time, the copolymer can be selected from various copolymerization forms such as a random copolymer and a block copolymer. Note that such a polycarbonate polymer is usually a thermoplastic resin.
  • polycarbonate resins can be classified into aromatic polycarbonate resins in which the carbons directly bonded to the carbonic acid bonds are aromatic carbons, and aliphatic polycarbonate resins in which the carbons are aliphatic carbons, and any of them can be used.
  • aromatic polycarbonate resins are preferred from the viewpoints of heat resistance, mechanical properties, electrical properties, and the like.
  • aromatic dihydroxy compounds include: Dihydroxybenzenes such as 1,2-dihydroxybenzene, 1,3-dihydroxybenzene (i.e. resorcinol), 1,4-dihydroxybenzene; Dihydroxybiphenyls such as 2,5-dihydroxybiphenyl, 2,2'-dihydroxybiphenyl, 4,4'-dihydroxybiphenyl; 2,2'-dihydroxy-1,1'-binaphthyl, 1,2-dihydroxynaphthalene, 1,3-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 1 , 7-dihydroxynaphthalene, 2,7-dihydroxynaphthalene and other dihydroxynaphthalenes; 2,2'-dihydroxydiphenyl ether, 3,3'-dihydroxydiphenyl ether, 3,3'-dihydroxydiphen
  • 2,2-bis(4-hydroxyphenyl)propane i.e. bisphenol A
  • 9,9-bis(4-hydroxyphenyl)fluorene Bisphenols containing cardo structure such as 9,9-bis(4-hydroxy-3-methylphenyl)fluorene; 4,4'-dihydroxydiphenyl sulfide, Dihydroxydiaryl sulfides such as 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfide; 4,4'-dihydroxydiphenyl sulfoxide, Dihydroxydiaryl sulfoxides such as 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfoxide; 4,4'-dihydroxydiphenyl sulfone, Dihydroxydiarylsulfones such as 4,4'-dihydroxy-3,3'-dimethyldiphenylsulfone; etc.
  • bis(hydroxyaryl)alkanes are preferred, and bis(4-hydroxyphenyl)alkanes are particularly preferred, and 2,2-bis(4-hydroxyphenyl)propane (i.e. Bisphenol A) is preferred.
  • one type of aromatic dihydroxy compound may be used, or two or more types may be used in combination in any combination and ratio.
  • carbonate precursors examples include carbonyl halides, carbonate esters, and the like.
  • one type of carbonate precursor may be used, or two or more types may be used in combination in any combination and ratio.
  • carbonyl halides include phosgene; haloformates such as bischloroformates of dihydroxy compounds and monochloroformates of dihydroxy compounds.
  • carbonate esters include diaryl carbonates such as diphenyl carbonate and ditolyl carbonate; dialkyl carbonates such as dimethyl carbonate and diethyl carbonate; biscarbonates of dihydroxy compounds, monocarbonates of dihydroxy compounds, and cyclic carbonates. Examples include carbonate forms of dihydroxy compounds such as .
  • the method for producing polycarbonate resin is not particularly limited, and any method can be adopted. Examples include interfacial polymerization, melt transesterification, pyridine method, ring-opening polymerization of cyclic carbonate compounds, and solid phase transesterification of prepolymers.
  • the molecular weight of the polycarbonate resin is arbitrary and may be selected and determined as appropriate, but the viscosity average molecular weight Mv is usually 10,000 or more, preferably 14,000 or more, more preferably 16,000 or more, and usually 40,000 or less, preferably 30,000 or less.
  • the viscosity average molecular weight is usually 10,000 or more, preferably 14,000 or more, more preferably 16,000 or more, and usually 40,000 or less, preferably 30,000 or less.
  • polycarbonate resins having different viscosity average molecular weights may be mixed and used, and in this case, polycarbonate resins having a viscosity average molecular weight outside the above-mentioned preferred range may be mixed.
  • the polycarbonate resin preferably contains a high molecular weight polycarbonate resin, for example, preferably a polycarbonate resin having a viscosity average molecular weight Mv of 50,000 to 95,000.
  • the viscosity average molecular weight of the high molecular weight polycarbonate resin is more preferably 55,000 or more, still more preferably 60,000 or more, especially 61,000 or more, particularly preferably 62,000 or more, and more preferably 90,000 or less, even more preferably 85,000 or less, and especially It is preferably 80,000 or less, especially 75,000 or less, especially 70,000 or less.
  • a high molecular weight polycarbonate resin When a high molecular weight polycarbonate resin is included, it is preferably included in the polycarbonate resin in an amount of 5% by mass or more, more preferably 10% by mass or more, and even more preferably 15% by mass or more. Note that the upper limit is preferably 40% by mass or less, more preferably 30% by mass or less.
  • the viscosity average molecular weight Mv of the polycarbonate resin is determined by using methylene chloride as a solvent, determining the intrinsic viscosity [ ⁇ ] (unit: dl/g) at a temperature of 25°C using an Ubbelohde viscometer, and using Schnell's method.
  • the intrinsic viscosity [ ⁇ ] is a value calculated by measuring the specific viscosity [ ⁇ sp ] at each solution concentration [C] (g/dl) and using the following formula.
  • the terminal hydroxyl group concentration of the polycarbonate resin is arbitrary and may be selected and determined as appropriate, but it is usually 2000 ppm or less, preferably 1500 ppm or less, more preferably 1000 ppm or less. Thereby, the retention heat stability and color tone of the resin composition of the present invention can be further improved.
  • the lower limit is usually 10 ppm or more, preferably 30 ppm or more, and more preferably 40 ppm or more, especially for polycarbonate resins manufactured by melt transesterification. Thereby, it is possible to suppress a decrease in molecular weight and further improve the mechanical properties of the resin composition of the present invention.
  • the unit of the terminal hydroxyl group concentration is the mass of the terminal hydroxyl group expressed in ppm relative to the mass of the polycarbonate resin.
  • the measurement method is colorimetric determination using titanium tetrachloride/acetic acid method (method described in Macromol. Chem. 88 215 (1965)).
  • the polycarbonate resin may contain a polycarbonate oligomer.
  • the viscosity average molecular weight Mv of this polycarbonate oligomer is usually 1,500 or more, preferably 2,000 or more, and usually 9,500 or less, preferably 9,000 or less.
  • the contained polycarbonate oligomer be 30% by mass or less of the polycarbonate resin (including the polycarbonate oligomer).
  • Polycarbonate resin is manufactured not only from virgin resin, but also from polycarbonate resin recycled from used products (so-called material recycled polycarbonate resin), or from polycarbonate resin that has been chemically decomposed and returned to raw materials. It may be a polycarbonate resin (so-called chemically recycled polycarbonate resin), preferably containing both a virgin resin and a recycled resin, or a recycled polycarbonate resin. When containing recycled polycarbonate resin, the proportion of recycled polycarbonate resin in the polycarbonate resin is preferably 40% or more, 50% or more, 60% or more, or 80% or more, and it is also preferable that the recycled polycarbonate resin is 100%.
  • the polycarbonate resin (A) preferably has a melt viscosity ( ⁇ A) at 260°C and 1216 cm -1 in the range of 100 to 2000 Pa ⁇ s, and the viscosity difference between the polystyrene resin (B) and the polystyrene resin (B) is brought closer to each other.
  • ⁇ A/ ⁇ B melt viscosity ratio
  • it is more preferably 400 Pa ⁇ s or more, especially 500 Pa ⁇ s or more, especially 600 Pa ⁇ s or more. preferable.
  • it is more preferably 1,500 Pa ⁇ s or less, especially 1,250 Pa ⁇ s or less, particularly preferably 1,000 Pa ⁇ s or less.
  • the polycarbonate resin composition of the present invention contains 30 to 150 parts by mass of polystyrene resin (B) based on 100 parts by mass of polycarbonate resin (A).
  • the polystyrene resin is preferably a styrene homopolymer, or contains other aromatic vinyl monomers such as ⁇ -methylstyrene, paramethylstyrene, vinyltoluene, vinylxylene, etc. in an amount of less than 50% by mass. It may also be a copolymerized one.
  • the polystyrene resin may be a rubber reinforced polystyrene resin.
  • the rubber-reinforced polystyrene resin is preferably one copolymerized or blended with a butadiene rubber component, and the amount of the butadiene rubber component is usually 1% by mass or more and less than 50% by mass, preferably 3 to 40% by mass. , more preferably 5 to 30% by weight, still more preferably 5 to 20% by weight.
  • High impact polystyrene (HIPS) is particularly preferred as the rubber reinforced polystyrene resin.
  • HIPS High impact polystyrene
  • As the polystyrene resin styrene homopolymer, high impact polystyrene, or a mixture thereof is particularly preferred.
  • the content of the polystyrene resin (B) is 30 to 150 parts by mass based on 100 parts by mass of the polycarbonate resin (A), preferably 40 parts by mass or more, more preferably 50 parts by mass or more, especially 60 parts by mass. parts or more, especially 70 parts by weight or more, preferably 140 parts by weight or less, especially 130 parts by weight or less, 120 parts by weight or less, especially 110 parts by weight or less, 100 parts by weight or less, 95 parts by weight or less, especially 90 parts by weight. Part or less is preferred.
  • ABS resins acrylonitrile-butadiene-styrene copolymers
  • the melt viscosity ( ⁇ B) of the polystyrene resin (B) at 260° C. and 1216 cm ⁇ 1 is preferably in the range of 30 to 300 Pa ⁇ s, more preferably 40 Pa ⁇ s or more, especially 50 Pa ⁇ s or more, especially 60 Pa. - It is preferable that it is s or more. Moreover, it is more preferably 250 Pa ⁇ s or less, especially 200 Pa ⁇ s or less, particularly preferably 150 Pa ⁇ s or less.
  • the melt viscosity ratio ( ⁇ A/ ⁇ B) between the melt viscosity ⁇ A of the polycarbonate resin (A) and the melt viscosity ⁇ B of the polystyrene resin (B) at 260°C and 1216 sec -1 is 4.5 to 12. It is in the range of 5.
  • ⁇ A/ ⁇ B is preferably 6.0 or more, more preferably 7.0 or more, especially 8.0 or more, particularly preferably 9.0 or more, preferably 12.0 or less, more preferably 11. It is preferably 5 or less, especially 11.0 or less, particularly 10.5 or less.
  • melt viscosity of the polycarbonate resin (A) and the polystyrene resin (B) at 260° C. and 1216 sec ⁇ 1 is a value measured using a capillary rheometer in accordance with ISO 11443. Specifically, using an orifice with a capillary diameter of 1 mm and a capillary length of 10 mm, the melting was caused by the stress caused when a piston was pushed into a furnace body with an inner diameter of 9.55 mm heated to 260°C at a piston speed of 100 mm/min. Viscosity can be calculated.
  • the elastomer is preferably a copolymer obtained by graft copolymerizing a rubber component with a monomer component copolymerizable with the rubber component.
  • the method for producing such a graft copolymer may be any production method such as bulk polymerization, solution polymerization, suspension polymerization, or emulsion polymerization, and the method of copolymerization may be single-stage grafting or multi-stage grafting. Good too.
  • the above-mentioned rubber component usually has a glass transition temperature of 0°C or lower, preferably -20°C or lower, and more preferably -30°C or lower.
  • Specific examples of rubber components include polybutadiene rubber, polyisoprene rubber or hydrogenated products thereof, butadiene-acrylic composite rubber, styrene-butadiene rubber, ethylene- ⁇ olefin rubber such as ethylene-propylene rubber, ethylene-butene rubber, and ethylene-octene rubber. Examples include rubber, ethylene-acrylic rubber, and the like. These may be used alone or in combination of two or more.
  • polybutadiene rubber hydrogenated polyisoprene rubber, and styrene-butadiene rubber are preferred.
  • the rubber component is polyalkyl acrylate rubber such as polybutyl acrylate, poly(2-ethylhexyl acrylate), butyl acrylate/2-ethylhexyl acrylate copolymer, or silicone rubber such as organopolysiloxane rubber, the dielectric loss tangent is This is not desirable as it tends to rise.
  • monomer components that can be graft copolymerized with the rubber component include aromatic vinyl compounds, vinyl cyanide compounds, (meth)acrylic acid ester compounds, (meth)acrylic acid compounds, glycidyl (meth)acrylate, etc.
  • Epoxy group-containing (meth)acrylic acid ester compounds include maleimide compounds such as maleimide, N-methylmaleimide, and N-phenylmaleimide; ⁇ , ⁇ -unsaturated carboxylic acid compounds such as maleic acid, phthalic acid, and itaconic acid, and their anhydrides (eg, maleic anhydride, etc.).
  • These monomer components may be used alone or in combination of two or more.
  • aromatic vinyl compounds and (meth)acrylic acid ester compounds are preferred, and styrene, methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, cyclohexyl (meth)acrylate, ( Preferred examples include octyl meth)acrylate.
  • the elastomer is preferably a core/shell graft copolymer type.
  • at least one rubber component selected from polybutadiene-containing rubber, ethylene/butylene rubber, and polybutyl acrylate-containing rubber is used as a core layer, and a shell layer formed by copolymerizing (meth)acrylic acid ester around the core layer.
  • a core/shell type graft copolymer is preferred, and a core/shell type elastomer having a core of butadiene rubber is particularly preferred.
  • one containing a rubber component in an amount of 40% by mass or more is preferable, and one containing a rubber component in an amount of 60% by weight or more is more preferable. Further, it is preferable that the (meth)acrylic acid component is contained in an amount of 10% by mass or more.
  • these core/shell type graft copolymers include butadiene/methyl (meth)acrylate copolymer (MB), butadiene/methyl (meth)acrylate/styrene copolymer (MBS), and styrene/ethylene copolymer.
  • MB butadiene/methyl (meth)acrylate copolymer
  • MMS butadiene/methyl (meth)acrylate/styrene copolymer
  • SEBS styrene/ethylene /butylene/styrene copolymer
  • the content of the elastomer (C) is 3 to 60 parts by mass based on 100 parts by mass of the polycarbonate resin (A). By containing it in such an amount, the impact resistance, rigidity, and heat resistance of the polycarbonate resin composition, as well as the dielectric constant and dielectric loss tangent can be made to be well-balanced.
  • the content of the elastomer (C) is preferably 5 parts by mass or more, more preferably 7.5 parts by mass or more, especially 10 parts by mass or more, especially preferably 15 parts by mass or more, preferably 55 parts by mass or less, more preferably It is preferably 50 parts by mass or less, particularly 45 parts by mass or less, 40 parts by mass or less, 35 parts by mass or less, 30 parts by mass or less, particularly 25 parts by mass or less.
  • the ratio of the content of polystyrene resin (B) and elastomer (C) in the polycarbonate resin composition is 9 or less, the notch This is preferable because the Charpy impact strength value becomes high.
  • the polycarbonate resin composition of the present invention preferably contains a stabilizer, and the stabilizer is preferably a phosphorus stabilizer (thermal stabilizer) or a phenol stabilizer (antioxidant).
  • any known phosphorus stabilizer can be used.
  • oxoacids of phosphorus such as phosphoric acid, phosphonic acid, phosphorous acid, phosphinic acid, and polyphosphoric acid
  • metal salts of acidic pyrophosphate such as sodium acidic pyrophosphate, potassium acidic pyrophosphate, and calcium acidic pyrophosphate
  • phosphoric acid Phosphates of Group 1 or Group 2B metals such as potassium, sodium phosphate, cesium phosphate, and zinc phosphate
  • examples include organic phosphate compounds, organic phosphite compounds, and organic phosphonite compounds; Particularly preferred.
  • organic phosphite compounds include triphenyl phosphite, tris (monononylphenyl) phosphite, tris (monononyl/dinonyl phenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, monooctyl Diphenyl phosphite, dioctyl monophenyl phosphite, monodecyl diphenyl phosphite, didecyl monophenyl phosphite, tridecyl phosphite, trilauryl phosphite, tristearyl phosphite, 2,2-methylenebis(4,6-di- Examples include tert-butylphenyl) octyl phosphite.
  • organic phosphite compounds include, for example, "ADEKA STAB 1178", “ADEKA STAB 2112", “ADEKA STAB HP-10” manufactured by ADEKA, "JP-351” manufactured by Johoku Kagaku Kogyo Co., Ltd. JP-360'', ⁇ JP-3CP'', BASF's ⁇ Irgafoss 168'', etc.
  • one type of phosphorus stabilizer may be contained, or two or more types may be contained in any combination and ratio.
  • the content of the phosphorus stabilizer is preferably 0.01 parts by mass or more, more preferably 0.03 parts by mass or more, and usually 1 part by mass or less, preferably is 0.7 parts by mass or less, more preferably 0.5 parts by mass or less. If the content of the phosphorus stabilizer is less than the lower limit of the above range, the thermal stabilizing effect may be insufficient, and if the content of the phosphorus stabilizer exceeds the upper limit of the above range, the effect may be insufficient. may reach a peak and become uneconomical.
  • phenolic stabilizers include hindered phenolic antioxidants. Specific examples include pentaerythritol tetrakis [3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl) ) propionate, thiodiethylenebis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], N,N'-hexane-1,6-diylbis[3-(3,5-di- tert-butyl-4-hydroxyphenyl)propionamide], 2,4-dimethyl-6-(1-methylpentadecyl)phenol, diethyl[[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl ]Methyl]phosphoate, 3,3',3",5,5',5"-hexa
  • phenolic antioxidants include "Irganox 1010” and “Irganox 1076” manufactured by BASF, "ADEKA STAB AO-50” and “ADEKA STAB AO-60” manufactured by ADEKA, etc. can be mentioned.
  • one type of phenolic stabilizer may be contained, or two or more types may be contained in any combination and ratio.
  • the content of the phenolic stabilizer is preferably 0.01 parts by mass or more, and usually 1 part by mass or less, preferably 0.5 parts by mass or less, based on 100 parts by mass of the polycarbonate resin (A).
  • the content of the phenol stabilizer is preferably 0.01 parts by mass or more, and usually 1 part by mass or less, preferably 0.5 parts by mass or less, based on 100 parts by mass of the polycarbonate resin (A).
  • the polycarbonate resin composition of the present invention contains a mold release agent.
  • the mold release agent include aliphatic carboxylic acids, esters of aliphatic carboxylic acids and alcohols, aliphatic hydrocarbon compounds having a number average molecular weight of 200 to 15,000, and polysiloxane silicone oils.
  • aliphatic carboxylic acids examples include saturated or unsaturated aliphatic monovalent, divalent, or trivalent carboxylic acids.
  • aliphatic carboxylic acid also includes alicyclic carboxylic acid.
  • preferred aliphatic carboxylic acids are monovalent or divalent carboxylic acids having 6 to 36 carbon atoms, and aliphatic saturated monovalent carboxylic acids having 6 to 36 carbon atoms are more preferred.
  • aliphatic carboxylic acids include palmitic acid, stearic acid, caproic acid, capric acid, lauric acid, arachidic acid, behenic acid, lignoceric acid, cerotic acid, melisic acid, tetraliacontanoic acid, montanic acid, and adipine.
  • Examples include acids, azelaic acid, and the like.
  • aliphatic carboxylic acid in the ester of aliphatic carboxylic acid and alcohol for example, the same aliphatic carboxylic acids as mentioned above can be used.
  • examples of the alcohol include saturated or unsaturated monohydric or polyhydric alcohols. These alcohols may have a substituent such as a fluorine atom or an aryl group. Among these, monohydric or polyhydric saturated alcohols having 30 or less carbon atoms are preferred, and aliphatic saturated monohydric alcohols or aliphatic saturated polyhydric alcohols having 30 or less carbon atoms are more preferred. Note that the term aliphatic herein is used to include alicyclic compounds as well.
  • alcohols include octanol, decanol, dodecanol, stearyl alcohol, behenyl alcohol, ethylene glycol, diethylene glycol, glycerin, pentaerythritol, 2,2-dihydroxyperfluoropropanol, neopentylene glycol, ditrimethylolpropane, dipentaerythritol, and the like. can be mentioned.
  • ester may contain an aliphatic carboxylic acid and/or an alcohol as an impurity.
  • the above-mentioned ester may be a pure substance, but may also be a mixture of a plurality of compounds.
  • the aliphatic carboxylic acid and alcohol that combine to form one ester may be used alone or in combination of two or more in any combination and ratio.
  • esters of aliphatic carboxylic acids and alcohols include beeswax (a mixture containing myricyl palmitate as the main component), stearyl stearate, behenyl behenate, stearyl behenate, glycerin monopalmitate, and glycerin monostearate.
  • Examples of the aliphatic hydrocarbons having a number average molecular weight of 200 to 15,000 include liquid paraffin, paraffin wax, microwax, polyethylene wax, Fischer-Tropsch wax, and ⁇ -olefin oligomers having 3 to 12 carbon atoms.
  • the aliphatic hydrocarbons herein also include alicyclic hydrocarbons. Moreover, these hydrocarbons may be partially oxidized. Among these, paraffin wax, polyethylene wax, or a partial oxide of polyethylene wax is preferred, and paraffin wax and polyethylene wax are more preferred.
  • the number average molecular weight of the aliphatic hydrocarbon is preferably 5,000 or less.
  • the aliphatic hydrocarbon may be a single substance, or a mixture of various components and molecular weights can be used as long as the main component is within the above range.
  • polysiloxane silicone oil examples include dimethyl silicone oil, methylphenyl silicone oil, diphenyl silicone oil, and fluorinated alkyl silicone.
  • mold release agents may be contained alone or in any combination and ratio of two or more types.
  • the content of the mold release agent is usually 0.001 parts by mass or more, preferably 0.01 parts by mass or more, and usually 2 parts by mass or less, preferably 1 part by mass, based on 100 parts by mass of the polycarbonate resin (A). Parts by mass or less. If the content of the mold release agent is less than the lower limit of the above range, the mold release effect may not be sufficient, and if the content of the mold release agent exceeds the upper limit of the range, the hydrolysis resistance may be insufficient. This may lead to a decrease in performance and contamination of the mold during injection molding.
  • the polycarbonate resin composition may contain other additives other than those mentioned above, such as ultraviolet absorbers, fillers, reinforcing materials (carbon fibers, glass fibers), pigments, dyes, flame retardants, antistatic agents, plasticizers, and compatibilizers. It may contain additives such as additives, and resins other than the polycarbonate resin (A) and polystyrene resin (B). These additives or other resins may be used alone or in combination of two or more.
  • the content is preferably 40 parts by mass or less with respect to 100 parts by mass of polycarbonate resin (A). , more preferably 30 parts by mass or less, further preferably 20 parts by mass or less, 10 parts by mass or less, particularly preferably 5 parts by mass or less.
  • Method for producing polycarbonate resin composition There are no restrictions on the method for producing the polycarbonate resin composition, and a wide range of known methods for producing polycarbonate resin compositions can be adopted, and each essential component and other components blended as necessary can be prepared using a tumbler, a Henschel mixer, etc. Examples include a method of pre-mixing using various mixers, and then melt-kneading with a mixer such as a Banbury mixer, a roll, a Brabender, a single-screw kneading extruder, a twin-screw kneading extruder, or a kneader. Note that the melt-kneading temperature is not particularly limited, but is usually in the range of 240 to 320°C.
  • Pellets obtained by pelletizing the above-mentioned polycarbonate resin composition can be molded by various molding methods to produce molded products.
  • the resin melt-kneaded in an extruder can be directly molded into a molded product without going through pellets.
  • any molding method generally employed for polycarbonate resin compositions can be adopted. Examples include injection molding, ultra-high-speed injection molding, injection compression molding, two-color molding, gas-assisted blow molding, molding using an insulated mold, and rapid heating mold.
  • Molding method foam molding (including supercritical fluid), insert molding, IMC (in-mold coating molding) molding method, extrusion molding method, sheet molding method, thermoforming method, rotational molding method, lamination molding method, press molding method, Examples include blow molding, and a molding method using a hot runner method can also be used.
  • injection molding methods such as injection molding method, ultra-high speed injection molding method, and injection compression molding method are preferred.
  • a hard coat layer may be provided on the surface of the molded product.
  • the hard coat agent for forming the hard coat layer known materials can be used as appropriate.
  • various hard coat agents such as silicone-based, acrylic-based, silazane-based, and urethane-based hard coat agents can be used. can.
  • a two-coat type hard coat agent may be used in which a primer layer is provided before applying the hard coat agent.
  • the coating method of the hard coating agent is preferably 1 to 50 ⁇ m, more preferably 5 to 30 ⁇ m.
  • the polycarbonate resin composition of the present invention has a small dielectric loss tangent, and the dielectric loss tangent at a frequency of 5.8 GHz is preferably 0.0040 or less, more preferably 0.0038 or less, still more preferably 0.0036 or less, and particularly preferably is 0.0034 or less.
  • the dielectric constant of the polycarbonate resin composition of the present invention is also small, preferably 2.8 or less, more preferably 2.7 or less, still more preferably 2.6 or less. Details of specific methods for measuring dielectric loss tangent and dielectric constant are as described in Examples.
  • the polycarbonate resin composition of the present invention has excellent heat resistance, and its deflection temperature under load, which is an indicator thereof, is preferably higher than 86°C, more preferably higher than 90°C, and still more preferably 92°C or higher.
  • the deflection temperature under load was measured in accordance with ISO75-2, and the details of the specific measuring method are as described in the Examples.
  • the polycarbonate resin composition of the present invention has excellent impact resistance, and preferably has a Charpy impact strength of NB (non-break) without a notch and 10 kJ/m 2 or more with a notch. Charpy impact strength was measured in accordance with ISO179-1, 2, and details of the specific measuring method are as described in Examples.
  • the polycarbonate resin composition of the present invention preferably has excellent rigidity, and has a bending modulus of 2000 MPa or more and a bending strength of 67 MPa or more.
  • the bending elastic modulus and bending strength were measured in accordance with ISO 178, and the details of the specific measuring method are as described in Examples.
  • the polycarbonate resin composition of the present invention preferably has excellent toughness and a nominal tensile strain at break of 20% or more.
  • the tensile nominal strain at failure was measured in accordance with ISO527, and the details of the specific measuring method are as described in the Examples.
  • the polycarbonate resin composition of the present invention is preferably used particularly in electronic and electrical equipment parts that use electromagnetic waves with a frequency of 1 GHz or higher.
  • Electronic and electrical equipment parts made of the polycarbonate resin composition of the present invention can be used in a wide frequency band of 1 GHz or more. It can also be applied to the frequency band up to 52.6GHz of the 5G wireless communication standard "NR", up to about 90GHz which is being considered for use in the future 5G evolution, and sub-terahertz waves such as 90G to 300GHz for 6G. It is. Of course, it is also suitable for existing low frequency bands and bands such as 10 to 20 GHz of 6G low band/mid band.
  • Electronic and electrical equipment parts for which molded products of the polycarbonate resin composition of the present invention can be used include housings of electronic and electrical equipment, circuit boards, semiconductor interlayer insulation films, antenna parts (substrates, antenna covers, radar covers), and high-frequency coaxial Cable insulation materials
  • Base parts such as resistors, switches, capacitors, and photosensors, IC sockets and connectors, transportation equipment such as automobiles, bicycles, motorcycles, trucks, railway vehicles, helicopters, and aircraft, bulldozers, hydraulic excavators, cranes, etc.
  • Construction machinery commercial ships, special-purpose ships, fishing boats, ships such as ships, agricultural machinery such as tractors, harvesters, smartphones, tablets, wearable devices, computers, television receivers, VR goggles, cameras, speakers, drones, robots, Examples include parts for sensors, medical equipment, analytical equipment, etc., and are particularly suitable as antenna substrates, antenna covers, and radar covers.
  • Antenna covers and radar covers are housings, antenna covers (radomes), etc. that house or protect antenna modules that transmit or receive electromagnetic waves, as well as members installed on the path of electromagnetic waves transmitted and received from radar modules. including.
  • the antenna member of the second invention of the present application contains 30 to 150 parts by mass of polystyrene resin (B) and 3 to 60 parts by mass of elastomer (C) to 100 parts by mass of polycarbonate resin (A).
  • the antenna member is made of a polycarbonate resin composition having a dielectric loss tangent of 0.0040 or less at a frequency of 5.8 GHz, and uses electromagnetic waves at a frequency of 1 GHz or more.
  • the polycarbonate resin (A) used in the resin composition of the antenna member of the second invention is the same as the polycarbonate resin (A) used in the resin composition of the first invention, and the preferable range is They are the same, including the quantity.
  • the polystyrene resin (B) used in the resin composition of the antenna member of the second invention is the same as the polystyrene resin (B) used in the resin composition of the first invention, and the preferable range is , including the content.
  • the elastomer (C) used in the resin composition of the antenna member of the second invention is the same as the elastomer (C) used in the resin composition of the first invention, and the preferable range is also the content. Everything is the same.
  • the resin composition of the antenna member of the second invention preferably contains a stabilizer, and the stabilizer is the same as the stabilizer explained in the resin composition of the first invention, and the preferable range is , including the content.
  • the resin composition of the antenna member of the second invention preferably contains a mold release agent, and the mold release agent is the same as the mold release agent explained in the resin composition of the first invention, The preferred range is the same including the content.
  • Other additives, resins, etc. that can be contained in the resin composition of the antenna member of the second invention are the same as the additives, resins, etc. explained in the resin composition of the first invention.
  • the preferred ranges are the same including the content.
  • the method for producing the resin composition of the antenna member of the second invention is the same as the method for producing the resin composition of the first invention. Further, the method for manufacturing the molded product is the same as the method for manufacturing the molded product of the first invention. Furthermore, a hard coat layer similar to that explained for the molded product of the first invention may be provided on the surface of the molded product.
  • the polycarbonate resin composition used in the second invention has a small dielectric loss tangent, and the dielectric loss tangent at a frequency of 5.8 GHz is preferably 0.0040 or less, more preferably 0.0038 or less, and even more preferably 0.0036. It is particularly preferably 0.0034 or less.
  • the dielectric constant of the polycarbonate resin composition used in the second invention is also small, preferably 2.8 or less, more preferably 2.7 or less, still more preferably 2.6 or less. Specific methods for measuring the dielectric loss tangent and dielectric constant are as described in Examples.
  • the polycarbonate resin composition used in the second invention has excellent heat resistance, and the deflection temperature under load, which is an index thereof, is preferably higher than 86°C, more preferably higher than 90°C, and still more preferably 92°C or higher. be.
  • the deflection temperature under load was measured in accordance with ISO75-2, and the specific method is as described in the Examples.
  • the polycarbonate resin composition used in the second invention has excellent impact resistance, and preferably has a Charpy impact strength of NB (non-break) without a notch and 10 kJ/m 2 or more with a notch. Charpy impact strength was measured in accordance with ISO179-1, 2, and the specific method is as described in the Examples.
  • the polycarbonate resin composition used in the second invention preferably has excellent rigidity, and has a bending modulus of 2000 MPa or more and a bending strength of 67 MPa or more.
  • the bending elastic modulus and bending strength were measured in accordance with ISO178, and the specific method is as described in Examples.
  • the polycarbonate resin composition used in the second invention preferably has excellent toughness and a nominal tensile strain at break of 20% or more. The measurement of the nominal tensile strain at failure was carried out in accordance with ISO527, and the specific method thereof is as described in the Examples.
  • the molded product made of the polycarbonate resin composition used in the second invention is used for an antenna member that uses electromagnetic waves with a frequency of 1 GHz or higher.
  • the antenna member of the present invention can be used in a wide range of frequencies of 1 GHz or more. It can also be applied to the frequency band up to 52.6GHz of the 5G wireless communication standard "NR", up to about 90GHz which is being considered for use in the future 5G evolution, and sub-terahertz waves such as 90G to 300GHz for 6G. It is. Of course, it is also suitable for existing low frequency bands and bands such as 10 to 20 GHz of 6G low band/mid band.
  • the antenna member of the second invention can be used as a component that transmits or receives electromagnetic waves with a frequency of 1 GHz or higher, especially as an antenna substrate, an antenna cover, and a radar cover. ), etc. Furthermore, it can be suitably used for members installed on the path of electromagnetic waves transmitted and received from radar modules. Furthermore, the antenna member of the present invention may have a hard coat layer similar to that described above on the surface.
  • Examples 1 to 19 of the first invention, Comparative Examples 1 to 4 [Manufacture of polycarbonate resin composition pellets]
  • the components listed in Table 1 above were blended in the proportions (parts by mass) listed in Tables 2 to 4 below, mixed in a tumbler for 20 minutes, and then mixed using a twin screw extruder (manufactured by Toshiba Machine Co., Ltd., TEM26SX). The mixture was melt-kneaded at a cylinder temperature of 260° C., and pellets of the polycarbonate resin composition were obtained by strand cutting.
  • ⁇ Load deflection temperature> After drying the pellets obtained by the above method at 100°C for 5 hours, they were molded using a NEX80III injection molding machine manufactured by Nissei Jushi Kogyo Co., Ltd. under the conditions of a cylinder temperature of 260°C, a mold temperature of 80°C, and a molding cycle of 50 seconds. Injection molding was performed to form an ISO multipurpose test piece (4 mm thick). Using the obtained test piece, the load deflection temperature (unit: °C) was measured under high load (1.80 MPa) conditions in accordance with ISO75-2 using a 6A-2 HDT measurement device manufactured by Toyo Seiki Co., Ltd. did.
  • the polycarbonate resin composition of the first invention has excellent mechanical properties (impact resistance, toughness, rigidity, heat resistance, etc.) and also excellent electrical properties (relative permittivity, dielectric loss tangent).
  • mechanical properties impact resistance, toughness, rigidity, heat resistance, etc.
  • electrical properties relative permittivity, dielectric loss tangent
  • Examples 20 to 33 of the second invention, Comparative Examples 5 to 9 [Manufacture of polycarbonate resin composition pellets]
  • the components listed in Table 1 above were blended in the proportions (parts by mass) listed in Tables 5 to 7 below, mixed in a tumbler for 20 minutes, and then mixed using a twin screw extruder (manufactured by Toshiba Machine Co., Ltd., TEM26SX). The mixture was melt-kneaded at a cylinder temperature of 260° C., and pellets of the polycarbonate resin composition were obtained by strand cutting.
  • the antenna member of the present invention has excellent mechanical properties (impact resistance, rigidity, heat resistance, etc.) and excellent electrical properties (relative dielectric constant, dielectric loss tangent). On the other hand, in the case of the comparative example, results that achieved both mechanical properties and electrical properties could not be obtained.
  • the polycarbonate resin composition of the present invention has low dielectric constant and dielectric loss tangent, low transmission attenuation, and excellent heat resistance, impact resistance, and rigidity, so it is widely used in various electronic and electrical equipment parts that use electromagnetic waves. It can be used suitably.
  • the antenna member of the present invention has low dielectric constant and dielectric loss tangent, reduces transmission attenuation, and has excellent heat resistance, impact resistance, and rigidity, so it can be used for various antennas that use electromagnetic waves with a frequency of 1 GHz or higher. It can be used widely and suitably as parts for use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

比誘電率及び誘電正接が共に低く、耐熱性、耐衝撃性及び靱性、剛性にも優れたポリカーボネート樹脂組成物及びアンテナ用部材の提供。 ポリカーボネート樹脂(A)100質量部に対し、ポリスチレン系樹脂(B)を30~120質量部、およびエラストマー(C)を3~50質量部含み、260℃、1216sec-1におけるポリカーボネート樹脂(A)とポリスチレン系樹脂(B)の溶融粘度比(ηA/ηB)が4.5~12.5の範囲にあることを特徴とするポリカーボネート樹脂組成物、及びアンテナ用部材。

Description

ポリカーボネート樹脂組成物及びアンテナ用部材
 本発明はポリカーボネート樹脂組成物に関し、詳しくは、比誘電率及び誘電正接が共に低く、耐熱性、耐衝撃性及び靱性、剛性にも優れたポリカーボネート樹脂組成物及びアンテナ用部材に関する。
 移動体通信機器、その基地局装置、サーバー、ルーター等のネットワークインフラ機器、大型コンピュータなどの電子機器では使用する信号の高速化及び大容量化が進行している。また、上記した電子機器の他に、自動車や交通システム関連、あるいは室内の近距離通信分野でも高周波無線信号を扱うシステムの実用化が進んでいる。
 そして、GHzレベルの高周波信号を用いた情報通信分野では高速化の伸びが著しく、国内では2020年3月に第5世代移動通信システム(5G)の商用サービスが開始され、その次の世代となる第6世代移動通信システム(6G)ではより高い周波数帯域の使用が検討されている。
 このような大容量・高速化に対応するため、使用する通信機器やレーダー機器の部品には、低比誘電率及び低誘電正接の材料が求められる。
 本出願人は、特許文献1にて、熱可塑性樹脂とアルミナ(B)とを含む樹脂組成物が、比誘電率と誘電正接も低く、ミリ波透過性に優れたミリ波レーダー用カバーを提供することを提案した。しかし、アルミナは誘電率の絶対値が高い材料であり、特許文献1のポリカーボネート樹脂を含有する実施例2には比誘電率は3.7、誘電正接は0.0093であることが示されている。
 電磁波の透過損失を小さくするためには、材料に発生する誘電損失の大きさが、材料の比誘電率の平方根と誘電正接の積に比例するため、比誘電率と誘電正接がともに小さい材料が求められるが、上記のような比誘電率と誘電正接では大容量・高速化対応の材料としては十分とはいい難い。
 さらに、本出願人は、特許文献2にて、特定のビスフェノール単位のポリカーボネート樹脂が低誘電正接であることを見出し、これを汎用のポリカーボネート樹脂にブレンドすることにより、比誘電率と誘電正接をともに低減させたポリカーボネート樹脂材料のミリ波レーダー用カバーを提案した。このポリカーボネート樹脂材料は有効な材料であるが、価格が高くなるために用途が限定されるという問題がある。
 誘電特性の良い樹脂として、ポリスチレンを配合することが考えられるが、ポリスチレンは汎用のポリカーボネート樹脂とは相溶性が悪く、また耐熱性が悪く、さらに耐衝撃性が悪いという欠点がある。
 また、アンテナ用の基材やカバー等は、剛性を十分に保持するため、また、屋外設置において風圧に十分に耐えうるために高い剛性や耐衝撃性に優れることも要求され、さらに、高温下でも機能が損なわれないためにも耐熱性に優れることが求められる。
特開2013-102512号公報 特開2019-195137号公報
 本発明は、上記状況に鑑みなされたものであり、その目的(課題)は、低コストで、低比誘電率で低誘電正接であり、耐熱性、剛性及び耐衝撃性に優れたポリカーボネート樹脂組成物及びそのような樹脂組成物からなるアンテナ用部材を提供することにある。
 汎用のポリカーボネート樹脂にポリスチレン系樹脂を配合すると、低誘電正接にはなるが耐衝撃性が大きく低下する。そこでエラストマーを添加すると耐衝撃性は向上するが、添加しすぎると強度、剛性、耐熱性が低下するという課題がある。
 本発明者は、上記課題を解決すべく、鋭意検討を重ねた結果、ポリカーボネート樹脂(A)にポリスチレン系樹脂(B)とエラストマー(C)を配合した、特定のポリカーボネート樹脂組成物が上記課題を解決できることを見出し、本発明を完成するに至った。
 本発明は、以下のポリカーボネート樹脂組成物及びアンテナ用部材に関する。
1.ポリカーボネート樹脂(A)100質量部に対し、ポリスチレン系樹脂(B)を30~150質量部、およびエラストマー(C)を3~60質量部含み、260℃、1216sec-1におけるポリカーボネート樹脂(A)とポリスチレン系樹脂(B)の溶融粘度比(ηA/ηB)が4.5~12.5の範囲にあることを特徴とするポリカーボネート樹脂組成物。
2.エラストマー(C)が、ブタジエン/メチル(メタ)アクリレート共重合体、ブタジエン/メチル(メタ)アクリレート/スチレン共重合体、およびスチレン/エチレン/ブチレン/スチレン共重合体から選ばれる1種または2種以上である上記1に記載のポリカーボネート樹脂組成物。
3.周波数5.8GHzでの誘電正接が0.0040以下である上記1または2に記載のポリカーボネート樹脂組成物。
4.ポリスチレン系樹脂(B)とエラストマー(C)の含有量の比[(B)/(C)]が9以下である上記1~3のいずれかに記載のポリカーボネート樹脂組成物。
5.アクリロニトリル-ブタジエン-スチレン共重合体を含有しないか、含有する場合の含有量が、ポリカーボネート樹脂(A)100質量部に対し、10質量部以下である上記1~4のいずれかに記載のポリカーボネート樹脂組成物。
6.上記1~5のいずれかに記載のポリカーボネート樹脂組成物の成形品。
7.ポリカーボネート樹脂(A)100質量部に対し、ポリスチレン系樹脂(B)を30~150質量部、およびエラストマー(C)を3~60質量部含み、周波数5.8GHzでの誘電正接が0.0040以下であるポリカーボネート樹脂組成物からなり、周波数1GHz以上の電磁波を使用するアンテナ用部材。
8.エラストマー(C)が、ブタジエン/メチル(メタ)アクリレート共重合体、ブタジエン/メチル(メタ)アクリレート/スチレン共重合体、およびスチレン/エチレン/ブチレン/スチレン共重合体から選ばれる1種または2種以上である上記7に記載のアンテナ用部材。
9.ポリカーボネート樹脂組成物のポリスチレン系樹脂(B)とエラストマー(C)の含有量の比[(B)/(C)]が9以下である上記7または8に記載のアンテナ用部材。
10.アクリロニトリル-ブタジエン-スチレン共重合体を含有しないか、含有する場合の含有量が、ポリカーボネート樹脂(A)100質量部に対し、10質量部以下である上記7~9のいずれかに記載のアンテナ用部材。
 本発明のポリカーボネート樹脂組成物は、低コストでありながら、耐衝撃性、靱性、剛性及び耐熱性に優れ、比誘電率と誘電正接が共に低く、電磁波の透過減衰量が小さいので、5Gや6Gのような高周波帯域にも対応可能な電子電気機器部品、特にアンテナ基材やアンテナカバー等として好適であり、特に周波数1GHz以上の電磁波を使用するアンテナ用の部材として特に好適に使用でき、電磁波の信頼性を十分に確保することができる。
 以下、本発明について実施形態及び例示物等を示して詳細に説明する。
 なお、本明細書において、「~」とは、特に断りがない場合、その前後に記載される数値を下限値及び上限値として含む意味で使用される。
[1]本願の第一の発明に係るポリカーボネート樹脂組成物は、ポリカーボネート樹脂(A)100質量部に対し、ポリスチレン系樹脂(B)を30~150質量部、およびエラストマー(C)を3~60質量部含み、260℃、1216sec-1におけるポリカーボネート樹脂(A)とポリスチレン系樹脂(B)の溶融粘度比(ηA/ηB)が4.5~12.5の範囲にあることを特徴とする。
 以下、本発明のポリカーボネート樹脂組成物に使用するポリカーボネート樹脂組成物を構成する各成分等につき、詳細に説明する。
[ポリカーボネート樹脂(A)]
 ポリカーボネート樹脂の具体的な種類に制限はないが、例えば、ジヒドロキシ化合物とカーボネート前駆体とを反応させてなるポリカーボネート重合体が挙げられる。この際、ジヒドロキシ化合物及びカーボネート前駆体に加えて、ポリヒドロキシ化合物等を反応させるようにしてもよい。また、二酸化炭素をカーボネート前駆体として、環状エーテルと反応させる方法も用いてもよい。またポリカーボネート重合体は、直鎖状でもよく、分岐鎖状でもよい。さらに、ポリカーボネート重合体は1種の繰り返し単位からなる単重合体であってもよく、2種以上の繰り返し単位を有する共重合体であってもよい。このとき共重合体は、ランダム共重合体、ブロック共重合体等、種々の共重合形態を選択することができる。なお、通常、このようなポリカーボネート重合体は、熱可塑性の樹脂となる。
 また、ポリカーボネート樹脂は、炭酸結合に直接結合する炭素がそれぞれ芳香族炭素である芳香族ポリカーボネート樹脂、及び脂肪族炭素である脂肪族ポリカーボネート樹脂に分類できるが、いずれを用いることもできる。中でも、耐熱性、機械的物性、電気的特性等の観点から、芳香族ポリカーボネート樹脂が好ましい。
 芳香族ポリカーボネート樹脂の原料となるモノマーのうち、芳香族ジヒドロキシ化合物の例としては、
1,2-ジヒドロキシベンゼン、1,3-ジヒドロキシベンゼン(即ちレゾルシノール)、1,4-ジヒドロキシベンゼン等のジヒドロキシベンゼン類;
2,5-ジヒドロキシビフェニル、2,2’-ジヒドロキシビフェニル、4,4’-ジヒドロキシビフェニル等のジヒドロキシビフェニル類;
2,2’-ジヒドロキシ-1,1’-ビナフチル、1,2-ジヒドロキシナフタレン、1,3-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン等のジヒドロキシナフタレン類;
2,2’-ジヒドロキシジフェニルエーテル、3,3’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエーテル、1,4-ビス(3-ヒドロキシフェノキシ)ベンゼン、1,3-ビス(4-ヒドロキシフェノキシ)ベンゼン等のジヒドロキシジアリールエーテル類;
2,2-ビス(4-ヒドロキシフェニル)プロパン(即ちビスフェノールA)、
1,1-ビス(4-ヒドロキシフェニル)プロパン、
α,α’-ビス(4-ヒドロキシフェニル)-1,4-ジイソプロピルベンゼン、
1,3-ビス[2-(4-ヒドロキシフェニル)-2-プロピル]ベンゼン、
ビス(4-ヒドロキシフェニル)メタン、
ビス(4-ヒドロキシフェニル)シクロヘキシルメタン、
ビス(4-ヒドロキシフェニル)フェニルメタン、
ビス(4-ヒドロキシフェニル)(4-プロペニルフェニル)メタン、
ビス(4-ヒドロキシフェニル)ジフェニルメタン、
ビス(4-ヒドロキシフェニル)ナフチルメタン、
1,1-ビス(4-ヒドロキシフェニル)エタン、
1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン(即ちビスフェノールAP)、
1,1-ビス(4-ヒドロキシフェニル)-1-ナフチルエタン、
1,1-ビス(4-ヒドロキシフェニル)ブタン、
2,2-ビス(4-ヒドロキシフェニル)ブタン、
2,2-ビス(4-ヒドロキシフェニル)ペンタン、
1,1-ビス(4-ヒドロキシフェニル)ヘキサン、
2,2-ビス(4-ヒドロキシフェニル)ヘキサン、
1,1-ビス(4-ヒドロキシフェニル)オクタン、
2,2-ビス(4-ヒドロキシフェニル)オクタン、
4,4-ビス(4-ヒドロキシフェニル)ヘプタン、
2,2-ビス(4-ヒドロキシフェニル)ノナン、
1,1-ビス(4-ヒドロキシフェニル)デカン、
1,1-ビス(4-ヒドロキシフェニル)ドデカン、
等のビス(ヒドロキシアリール)アルカン類;
9,9-ビス(4-ヒドロキシフェニル)フルオレン、
9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン等のカルド構造含有ビスフェノール類;
4,4’-ジヒドロキシジフェニルスルフィド、
4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド等のジヒドロキシジアリールスルフィド類;
4,4’-ジヒドロキシジフェニルスルホキシド、
4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド等のジヒドロキシジアリールスルホキシド類;
4,4’-ジヒドロキシジフェニルスルホン、
4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホン等のジヒドロキシジアリールスルホン類;
等が挙げられる。
 これらの中でもビス(ヒドロキシアリール)アルカン類が好ましく、中でもビス(4-ヒドロキシフェニル)アルカン類が好ましく、特に耐衝撃性、耐熱性の点から2,2-ビス(4-ヒドロキシフェニル)プロパン(即ちビスフェノールA)が好ましい。
 なお、芳香族ジヒドロキシ化合物は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 芳香族ポリカーボネート樹脂の原料となるモノマーのうち、カーボネート前駆体の例を挙げると、カルボニルハライド、カーボネートエステル等が使用される。なお、カーボネート前駆体は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 カルボニルハライドとしては、具体的には例えば、ホスゲン;ジヒドロキシ化合物のビスクロロホルメート体、ジヒドロキシ化合物のモノクロロホルメート体等のハロホルメート等が挙げられる。
 カーボネートエステルとしては、具体的には例えば、ジフェニルカーボネート、ジトリルカーボネート等のジアリールカーボネート類;ジメチルカーボネート、ジエチルカーボネート等のジアルキルカーボネート類;ジヒドロキシ化合物のビスカーボネート体、ジヒドロキシ化合物のモノカーボネート体、環状カーボネート等のジヒドロキシ化合物のカーボネート体等が挙げられる。
 ポリカーボネート樹脂の製造方法は、特に限定されるものではなく、任意の方法を採用できる。その例を挙げると、界面重合法、溶融エステル交換法、ピリジン法、環状カーボネート化合物の開環重合法、プレポリマーの固相エステル交換法などを挙げることができる。
 ポリカーボネート樹脂の分子量は任意であり、適宜選択して決定すればよいが、粘度平均分子量Mvは、通常10000以上、好ましくは14000以上、より好ましくは16000以上であり、また、通常40000以下、好ましくは30000以下である。粘度平均分子量を前記範囲の下限値以上とすることにより、樹脂組成物の機械的強度をより向上させることができる。一方、粘度平均分子量を前記範囲の上限値以下とすることにより樹脂組成物の流動性低下を抑制して改善でき、成形加工性を高めて成形加工を容易に行えるようになる。
 なお、粘度平均分子量の異なる2種類以上のポリカーボネート樹脂を混合して用いてもよく、この場合には、粘度平均分子量が上記の好適な範囲外であるポリカーボネート樹脂を混合してもよい。
 ポリカーボネート樹脂は、高分子量のポリカーボネート樹脂、例えば好ましくは粘度平均分子量Mvが、50000~95000のポリカーボネート樹脂を含有することも好ましい。高分子量ポリカーボネート樹脂の粘度平均分子量は、より好ましくは55000以上であり、さらに好ましくは60000以上、中でも61000以上、特には62000以上が好ましく、また、より好ましくは90000以下、さらに好ましくは85000以下、中でも80000以下、とりわけ75000以下、特には70000以下が好ましい。
 高分子量ポリカーボネート樹脂を含む場合は、ポリカーボネート樹脂中、5質量%以上含むことが好ましく、10質量%以上がより好ましく、15質量%以上であることがさらに好ましい。なお、上限は、好ましくは40質量%以下であり、より好ましくは30質量%以下である。
 なお、本発明において、ポリカーボネート樹脂の粘度平均分子量Mvは、溶媒としてメチレンクロライドを使用し、ウベローデ粘度計を用いて温度25℃での極限粘度[η](単位dl/g)を求め、Schnellの粘度式、すなわち、
 η=1.23×10-4Mv0.83 から算出される値を意味する。
 また極限粘度[η]とは、各溶液濃度[C](g/dl)での比粘度[ηsp]を測定し、下記式により算出した値である。
 ポリカーボネート樹脂の末端水酸基濃度は任意であり、適宜選択して決定すればよいが、通常2000ppm以下、好ましくは1500ppm以下、より好ましくは1000ppm以下である。これにより本発明の樹脂組成物の滞留熱安定性及び色調をより向上させることができる。また、その下限は、特に溶融エステル交換法で製造されたポリカーボネート樹脂では、通常10ppm以上、好ましくは30ppm以上、より好ましくは40ppm以上である。これにより、分子量の低下を抑制し、本発明の樹脂組成物の機械的特性をより向上させることができる。
 なお、末端水酸基濃度の単位は、ポリカーボネート樹脂の質量に対する、末端水酸基の質量をppmで表示したものである。その測定方法は、四塩化チタン/酢酸法による比色定量(Macromol.Chem.88 215(1965)に記載の方法)である。
 また、成形品の外観の向上や流動性の向上を図るため、ポリカーボネート樹脂は、ポリカーボネートオリゴマーを含有していてもよい。このポリカーボネートオリゴマーの粘度平均分子量Mvは、通常1500以上、好ましくは2000以上であり、また、通常9500以下、好ましくは9000以下である。さらに、含有されるポリカーボネートオリゴマーは、ポリカーボネート樹脂(ポリカーボネートオリゴマーを含む)の30質量%以下とすることが好ましい。
 ポリカーボネート樹脂は、バージン樹脂だけでなく、使用済みの製品から再生されたポリカーボネート樹脂(いわゆるマテリアルリサイクルされたポリカーボネート樹脂)、あるいは、ポリカーボネート樹脂を化学的に分解して原料にまで戻したものから製造したポリカーボネート樹脂(いわゆるケミカルリサイクルされたポリカーボネート樹脂)であってもよく、バージン樹脂とリサイクル樹脂の両方を含有することも好ましく、リサイクルポリカーボネート樹脂からなることでもよい。リサイクルポリカーボネート樹脂を含む場合、ポリカーボネート樹脂中のリサイクルポリカーボネート樹脂の割合は40%以上、50%以上、60%以上、80%以上が好ましく、リサイクルポリカーボネート樹脂が100%であることも好ましい。
 ポリカーボネート樹脂(A)は、260℃、1216cm-1での溶融粘度(ηA)が100~2000Pa・sの範囲にあることが好ましく、ポリスチレン系樹脂(B)との粘度差を近づけて、両者の溶融粘度比(ηA/ηB)を4.5~12.5とし、且つ靱性を保持するためには、より好ましくは400Pa・s以上、中でも500Pa・s以上、特に600Pa・s以上であることが好ましい。また、より好ましくは1500Pa・s以下、中でも1250Pa・s以下、特に1000Pa・s以下であることが好ましい。
[ポリスチレン系樹脂(B)]
 本発明のポリカーボネート樹脂組成物は、ポリスチレン系樹脂(B)を、ポリカーボネート樹脂(A)100質量部に対し、30~150質量部を含有する。
 ポリスチレン系樹脂としては、好ましくはスチレンの単独重合体であり、あるいは他の芳香族ビニルモノマー、例えばα-メチルスチレン、パラメチルスチレン、ビニルトルエン、ビニルキシレン等を例えば、50質量%未満の範囲で共重合したものであってもよい。
 また、ポリスチレン系樹脂は、ゴム強化ポリスチレン樹脂であってもよい。ゴム強化ポリスチレン樹脂としては、好ましくはブタジエン系ゴム成分を共重合またはブレンドしたものであり、ブタジエン系ゴム成分の量は、通常1質量%以上50質量%未満であり、好ましくは3~40質量%、より好ましくは5~30質量%、さらに好ましくは5~20質量%である。ゴム強化ポリスチレン樹脂としては、ハイインパクトポリスチレン(HIPS)が特に好ましい。
 ポリスチレン系樹脂としては、スチレン単独重合体、ハイインパクトポリスチレンまたはこれらの混合物が特に好ましい。
 ポリスチレン系樹脂(B)の含有量は、ポリカーボネート樹脂(A)100質量部に対して、30~150質量部であるが、好ましくは40質量部以上、より好ましくは50質量部以上、中でも60質量部以上、特に70質量部以上が好ましく、好ましくは140質量部以下、中でも130質量部以下、120質量部以下が好ましく、とりわけ110質量部以下、100質量部以下、95質量部以下、特に90質量部以下が好ましい。
 ただし、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)等のアクリロニトリルを含む共重合体は、誘電正接を高める傾向があるため、含有しない方が好ましく、含有する場合でもその量は、ポリカーボネート樹脂(A)100質量部に対して、10質量部以下であることが好ましく、より好ましくは7質量部以下、中でも5質量部以下、3質量部以下、2質量部以下、1質量部以下が好ましい。
 ポリスチレン系樹脂(B)の260℃、1216cm-1での溶融粘度(ηB)が30~300Pa・sの範囲にあることが好ましく、より好ましくは40Pa・s以上、中でも50Pa・s以上、特に60Pa・s以上であることが好ましい。また、より好ましくは250Pa・s以下、中でも200Pa・s以下、特に150Pa・s以下であることが好ましい。
 本発明においては、260℃,1216sec-1におけるポリカーボネート樹脂(A)の溶融粘度ηAと、ポリスチレン系樹脂(B)の溶融粘度ηBとの溶融粘度比(ηA/ηB)が4.5~12.5の範囲にある。ポリカーボネート樹脂(A)とポリスチレン系樹脂(B)の溶融粘度の差を小さくして、溶融粘度比をこのような範囲とすることで、両者の相溶性が向上し、耐衝撃性を向上させることができる。
 ηA/ηBは、好ましくは6.0以上であり、より好ましくは7.0以上、中でも8.0以上、特に9.0以上が好ましく、好ましくは12.0以下であり、より好ましくは11.5以下、中でも11.0以下、特に10.5以下が好ましい。
 なお、ポリカーボネート樹脂(A)及びポリスチレン系樹脂(B)の260℃、1216sec-1における溶融粘度は、ISO 11443に準拠し、キャピラリーレオメーターを用いることで測定される値である。具体的には、キャピラリー径1mm、キャピラリー長10mmのオリフィスを用い、260℃に加熱した内径9.55mmの炉体に対し、ピストンスピード100mm/minの速度でピストンを押し込んだ際の応力から、溶融粘度が算出可能である。
[エラストマー(C)]
 エラストマーとしては、ゴム成分にこれと共重合可能な単量体成分をグラフト共重合した共重合体が好ましい。このようなグラフト共重合体の製造方法としては、塊状重合、溶液重合、懸濁重合、乳化重合などのいずれの製造方法であってもよく、共重合の方式は一段グラフトでも多段グラフトであってもよい。
 上記ゴム成分は、ガラス転移温度が通常0℃以下、中でも-20℃以下のものが好ましく、更には-30℃以下のものが好ましい。ゴム成分の具体例としては、ポリブタジエンゴム、ポリイソプレンゴムあるいはその水添物、ブタジエン-アクリル複合ゴム、スチレン-ブタジエンゴム、エチレン-プロピレンゴムやエチレン-ブテンゴム、エチレン-オクテンゴムなどのエチレン-αオレフィン系ゴム、エチレン-アクリルゴムなどを挙げることができる。これらは、単独でも2種以上を混合して使用してもよい。これらの中でも、ポリブタジエンゴム、ポリイソプレンゴムその水添物、スチレン-ブタジエンゴムが好ましい。
 ゴム成分が、ポリブチルアクリレートやポリ(2-エチルヘキシルアクリレート)、ブチルアクリレート/2-エチルヘキシルアクリレート共重合体などのポリアルキルアクリレートゴム、あるいはオルガノポリシロキサンゴムなどのシリコーン系ゴムのものは、誘電正接が上昇しやすいので好ましくない。
 ゴム成分とグラフト共重合可能な単量体成分の具体例としては、芳香族ビニル化合物、シアン化ビニル化合物、(メタ)アクリル酸エステル化合物、(メタ)アクリル酸化合物、グリシジル(メタ)アクリレート等のエポキシ基含有(メタ)アクリル酸エステル化合物;マレイミド、N-メチルマレイミド、N-フェニルマレイミド等のマレイミド化合物;マレイン酸、フタル酸、イタコン酸等のα,β-不飽和カルボン酸化合物やそれらの無水物(例えば無水マレイン酸等)などが挙げられる。これらの単量体成分は1種を単独で用いても2種以上を併用してもよい。これらの中でも、芳香族ビニル化合物、(メタ)アクリル酸エステル化合物が好ましく、スチレン、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸オクチル等を好ましく挙げることができる。
 エラストマーは、コア/シェル型グラフト共重合体タイプのものが好ましい。中でもポリブタジエン含有ゴム、エチレン/ブチレンゴム、ポリブチルアクリレート含有ゴムから選ばれる少なくとも1種のゴム成分をコア層とし、その周囲に(メタ)アクリル酸エステルを共重合して形成されたシェル層からなる、コア/シェル型グラフト共重合体が好ましく、特にブタジエン系ゴムをコアとするコア/シェル型エラストマーが好ましい。上記コア/シェル型グラフト共重合体において、ゴム成分を40質量%以上含有するものが好ましく、60質量%以上含有するものがさらに好ましい。また、(メタ)アクリル酸成分は、10質量%以上含有するものが好ましい。
 これらコア/シェル型グラフト共重合体の好ましい具体例としては、ブタジエン/メチル(メタ)アクリレート共重合体(MB)、ブタジエン/メチル(メタ)アクリレート/スチレン共重合体(MBS)、およびスチレン/エチレン/ブチレン/スチレン共重合体(SEBS)等が好ましく挙げられ、ブタジエン/メチル(メタ)アクリレート共重合体(MB)、ブタジエン/メチル(メタ)アクリレート/スチレン共重合体(MBS)、およびスチレン/エチレン/ブチレン/スチレン共重合体(SEBS)がより好ましい。
 エラストマー(C)の含有量は、ポリカーボネート樹脂(A)100質量部に対し、3~60質量部である。このような量で含有することにより、ポリカーボネート樹脂組成物の耐衝撃性、剛性及び耐熱性、さらに比誘電率と誘電正接をバランスよく良好なものとすることができる。エラストマー(C)の含有量は、好ましくは5質量部以上、より好ましくは7.5質量部以上、中でも10質量部以上、特に15質量部以上が好ましく、好ましくは55質量部以下、より好ましくは50質量部以下、中でも45質量部以下、40質量部以下、35質量部以下、30質量部以下、特に25質量部以下が好ましい。
 また、ポリカーボネート樹脂組成物のポリスチレン系樹脂(B)とエラストマー(C)の含有量の比[ポリスチレン系樹脂(B)の含有量/エラストマー(C)の含有量]が9以下であると、ノッチ付きシャルピー衝撃強さ値が高くなるため好ましい。
[安定剤]
 本発明のポリカーボネート樹脂組成物は、安定剤を含有することが好ましく、安定剤としてはリン系安定剤(熱安定剤)やフェノール系安定剤(酸化防止剤)が好ましい。
 リン系安定剤としては、公知の任意のものを使用できる。具体例を挙げると、リン酸、ホスホン酸、亜燐酸、ホスフィン酸、ポリリン酸などのリンのオキソ酸;酸性ピロリン酸ナトリウム、酸性ピロリン酸カリウム、酸性ピロリン酸カルシウムなどの酸性ピロリン酸金属塩;リン酸カリウム、リン酸ナトリウム、リン酸セシウム、リン酸亜鉛など第1族または第2B族金属のリン酸塩;有機ホスフェート化合物、有機ホスファイト化合物、有機ホスホナイト化合物などが挙げられるが、有機ホスファイト化合物が特に好ましい。
 有機ホスファイト化合物としては、トリフェニルホスファイト、トリス(モノノニルフェニル)ホスファイト、トリス(モノノニル/ジノニル・フェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、モノオクチルジフェニルホスファイト、ジオクチルモノフェニルホスファイト、モノデシルジフェニルホスファイト、ジデシルモノフェニルホスファイト、トリデシルホスファイト、トリラウリルホスファイト、トリステアリルホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト等が挙げられる。
 このような、有機ホスファイト化合物としては、具体的には、例えば、ADEKA社製「アデカスタブ1178」、「アデカスタブ2112」、「アデカスタブHP-10」、城北化学工業社製「JP-351」、「JP-360」、「JP-3CP」、BASF社製「イルガフォス168」等が挙げられる。
 なお、リン系安定剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。
 リン系安定剤の含有量は、ポリカーボネート樹脂(A)100質量部に対し、好ましくは0.01質量部以上、より好ましくは0.03質量部以上であり、また、通常1質量部以下、好ましくは0.7質量部以下、より好ましくは0.5質量部以下である。リン系安定剤の含有量が前記範囲の下限値未満の場合は、熱安定効果が不十分となる可能性があり、リン系安定剤の含有量が前記範囲の上限値を超える場合は、効果が頭打ちとなり経済的でなくなる可能性がある。
 フェノール系安定剤としては、例えばヒンダードフェノール系酸化防止剤が挙げられる。その具体例としては、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、チオジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N’-ヘキサン-1,6-ジイルビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナミド]、2,4-ジメチル-6-(1-メチルペンタデシル)フェノール、ジエチル[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]ホスフォエート、3,3’,3”,5,5’,5”-ヘキサ-tert-ブチル-a,a’,a”-(メシチレン-2,4,6-トリル)トリ-p-クレゾール、4,6-ビス(オクチルチオメチル)-o-クレゾール、エチレンビス(オキシエチレン)ビス[3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート]、ヘキサメチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン,2,6-ジ-tert-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノール、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート等が挙げられる。
 中でも、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネートが好ましい。このようなフェノール系酸化防止剤としては、具体的には、例えば、BASF社製「イルガノックス1010」、「イルガノックス1076」、ADEKA社製「アデカスタブAO-50」、「アデカスタブAO-60」等が挙げられる。
 なお、フェノール系安定剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。
 フェノール系安定剤の含有量は、ポリカーボネート樹脂(A)100質量部に対し、好ましくは0.01質量部以上であり、また、通常1質量部以下、好ましくは0.5質量部以下である。フェノール系安定剤の含有量を前記範囲の下限値以上とすることで、フェノール系安定剤としての効果を十分得ることができる。また、フェノール系安定剤の含有量が前記範囲の上限値以下にすることにより、効果が頭打ちになることなく経済的である。
[離型剤]
 本発明のポリカーボネート樹脂組成物は、離型剤を含有することが好ましい。離型剤としては、例えば、脂肪族カルボン酸、脂肪族カルボン酸とアルコールとのエステル、数平均分子量200~15000の脂肪族炭化水素化合物、ポリシロキサン系シリコーンオイルなどが挙げられる。
 脂肪族カルボン酸としては、例えば、飽和または不飽和の脂肪族一価、二価または三価カルボン酸を挙げることができる。ここで脂肪族カルボン酸とは、脂環式のカルボン酸も包含する。これらの中で好ましい脂肪族カルボン酸は、炭素数6~36の一価または二価カルボン酸であり、炭素数6~36の脂肪族飽和一価カルボン酸がさらに好ましい。かかる脂肪族カルボン酸の具体例としては、パルミチン酸、ステアリン酸、カプロン酸、カプリン酸、ラウリン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、メリシン酸、テトラリアコンタン酸、モンタン酸、アジピン酸、アゼライン酸などが挙げられる。
 脂肪族カルボン酸とアルコールとのエステルにおける脂肪族カルボン酸としては、例えば、前記脂肪族カルボン酸と同じものが使用できる。一方、アルコールとしては、例えば、飽和または不飽和の一価または多価アルコールが挙げられる。これらのアルコールは、フッ素原子、アリール基などの置換基を有していてもよい。これらの中では、炭素数30以下の一価または多価の飽和アルコールが好ましく、炭素数30以下の脂肪族飽和一価アルコールまたは脂肪族飽和多価アルコールがさらに好ましい。なお、ここで脂肪族とは、脂環式化合物も包含する用語として使用される。
 かかるアルコールの具体例としては、オクタノール、デカノール、ドデカノール、ステアリルアルコール、ベヘニルアルコール、エチレングリコール、ジエチレングリコール、グリセリン、ペンタエリスリトール、2,2-ジヒドロキシペルフルオロプロパノール、ネオペンチレングリコール、ジトリメチロールプロパン、ジペンタエリスリトール等が挙げられる。
 なお、上記のエステルは、不純物として脂肪族カルボン酸及び/またはアルコールを含有していてもよい。また、上記のエステルは、純物質であってもよいが、複数の化合物の混合物であってもよい。さらに、結合して一つのエステルを構成する脂肪族カルボン酸及びアルコールは、それぞれ、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 脂肪族カルボン酸とアルコールとのエステルの具体例としては、蜜ロウ(ミリシルパルミテートを主成分とする混合物)、ステアリン酸ステアリル、ベヘン酸ベヘニル、ベヘン酸ステアリル、グリセリンモノパルミテート、グリセリンモノステアレート、グリセリンジステアレート、グリセリントリステアレート、ペンタエリスリトールモノパルミテート、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート、ペンタエリスリトールテトラステアレート等が挙げられる。
 数平均分子量200~15000の脂肪族炭化水素としては、例えば、流動パラフィン、パラフィンワックス、マイクロワックス、ポリエチレンワックス、フィッシャ-トロプシュワックス、炭素数3~12のα-オレフィンオリゴマー等が挙げられる。なお、ここで脂肪族炭化水素としては、脂環式炭化水素も含まれる。また、これらの炭化水素は部分酸化されていてもよい。
 これらの中では、パラフィンワックス、ポリエチレンワックスまたはポリエチレンワックスの部分酸化物が好ましく、パラフィンワックス、ポリエチレンワックスがさらに好ましい。
 また、前記の脂肪族炭化水素の数平均分子量は、好ましくは5000以下である。
 なお、脂肪族炭化水素は、単一物質であってもよいが、構成成分や分子量が様々なものの混合物であっても、主成分が上記の範囲内であれば使用できる。
 ポリシロキサン系シリコーンオイルとしては、例えば、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、ジフェニルシリコーンオイル、フッ素化アルキルシリコーン等が挙げられる。
 なお、上述した離型剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。
 離型剤の含有量は、ポリカーボネート樹脂(A)100質量部に対して、通常0.001質量部以上、好ましくは0.01質量部以上であり、また、通常2質量部以下、好ましくは1質量部以下である。離型剤の含有量が前記範囲の下限値未満の場合は、離型性の効果が十分でない場合があり、離型剤の含有量が前記範囲の上限値を超える場合は、耐加水分解性の低下、射出成形時の金型汚染などが生じる可能性がある。
[添加剤等]
 ポリカーボネート樹脂組成物は、上記した以外のその他の添加剤、例えば、紫外線吸収剤、充填材、強化材(炭素繊維、ガラス繊維)、顔料、染料、難燃剤、帯電防止剤、可塑剤、相溶化剤などの添加剤、またポリカーボネート樹脂(A)、ポリスチレン系樹脂(B)以外の他の樹脂を含有することができる。これらの添加剤あるいは他の樹脂は一種または二種以上を配合してもよい。
 なお、上記したポリカーボネート樹脂(A)及びポリスチレン系樹脂(B)以外の他の樹脂を含有する場合の含有量は、ポリカーボネート樹脂(A)100質量部に対し、40質量部以下とすることが好ましく、より好ましくは30質量部以下、さらには20質量部以下、10質量部以下、特には5質量部以下とすることが好ましい。
[ポリカーボネート樹脂組成物の製造方法]
 ポリカーボネート樹脂組成物の製造方法に制限はなく、公知のポリカーボネート樹脂組成物の製造方法を広く採用でき、各必須成分、並びに、必要に応じて配合されるその他の成分を、例えばタンブラーやヘンシェルミキサーなどの各種混合機を用い予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダーなどの混合機で溶融混練する方法が挙げられる。なお、溶融混練の温度は特に制限されないが、通常240~320℃の範囲である。
 上記したポリカーボネート樹脂組成物をペレタイズしたペレットは、各種の成形法で成形し、成形品が製造できる。またペレットを経由せずに、押出機で溶融混練された樹脂を直接、成形して成形品にすることもできる。
 成形品を製造する方法は、ポリカーボネート樹脂組成物について一般に採用されている成形法を任意に採用できる。その例を挙げると、射出成形法、超高速射出成形法、射出圧縮成形法、二色成形法、ガスアシスト等の中空成形法、断熱金型を使用した成形法、急速加熱金型を使用した成形法、発泡成形(超臨界流体も含む)、インサート成形、IMC(インモールドコーティング成形)成形法、押出成形法、シート成形法、熱成形法、回転成形法、積層成形法、プレス成形法、ブロー成形法などが挙げられ、また、ホットランナー方式を使用した成形法を用いることも出来る。
 これらの中でも、射出成形法、超高速射出成形法、射出圧縮成形法などの射出成形法が好ましい。
 更に、前記成形品の表面には、ハードコート層を設けてもよい。ハードコート層を形成するためのハードコート剤としては、公知の材料を適宜使用することができ、例えば、シリコーン系、アクリル系、シラザン系、ウレタン系などの種々のハードコート剤を使用することができる。接着性や耐候性を向上させるために、ハードコート剤を塗布する前にプライマー層を設ける2コートタイプのハードコート剤であってもよい。ハードコート剤のコーティング方法としては、特に制限はないが、スプレーコート、ディップコート、フローコート、スピンコート、バーコート、カーテンコート、ダイコート、グラビアコート、ロールコート、ブレードコート及びエアーナイフコート等のいずれの塗工方法によって塗布することもできる。
 ハードコート層の厚みは、好ましくは1~50μm、より好ましくは5~30μmである。
 本発明のポリカーボネート樹脂組成物は、誘電正接が小さく、周波数5.8GHzでの誘電正接が好ましくは0.0040以下であり、より好ましくは0.0038以下、さらに好ましくは0.0036以下、特に好ましくは0.0034以下である。
 また、本発明のポリカーボネート樹脂組成物の比誘電率も小さく、比誘電率は好ましくは2.8以下であり、より好ましくは2.7以下、更に好ましくは2.6以下である。
 誘電正接および比誘電率の具体的な測定方法の詳細は、実施例に記載の通りである。
 本発明のポリカーボネート樹脂組成物は耐熱性に優れ、その指標となる荷重たわみ温度が、好ましくは86℃超であり、より好ましくは90℃超であり、さらに好ましくは92℃以上である。荷重たわみ温度の測定はISO75-2に準拠して行い、その具体的な測定方法の詳細は実施例に記載する通りである。
 本発明のポリカーボネート樹脂組成物は耐衝撃性に優れ、シャルピー衝撃強度が、ノッチなしでNB(ノンブレーク)、ノッチ付きで10kJ/m以上であることが好ましい。シャルピー衝撃強度の測定はISO179-1,2に準拠して行い、その具体的な測定方法の詳細は実施例に記載する通りである。
 本発明のポリカーボネート樹脂組成物は剛性に優れ、曲げ弾性率が2000MPa以上、曲げ強度が67MPa以上であることが好ましい。曲げ弾性率と曲げ強度の測定はISO178に準拠して行い、その具体的な測定方法の詳細は実施例に記載する通りである。
 さらに、本発明のポリカーボネート樹脂組成物は靭性に優れ、引張破壊呼び歪みが20%以上であることが好ましい。引張破壊呼び歪みの測定はISO527に準拠して行い、その具体的な測定方法の詳細は実施例に記載する通りである。
 本発明のポリカーボネート樹脂組成物は、好ましくは、特に周波数1GHz以上の電磁波を使用する電子電気機器部品に好適に用いられる。本発明のポリカーボネート樹脂組成物からな電子電気機器部品は、周波数1GHz以上の広い範囲の帯域に利用可能である。5Gの無線通信規格の「NR」の52.6GHzまでの周波数帯、今後の5G evolutionで利用が検討されている90GHz程度まで、あるいは6Gに向けての90G~300GHzといったサブテラヘルツ波にも適応可能である。もちろん、既存の低周波帯や、6Gローバンド/ミッドバンドの10~20GHzというような帯域にも好適である。
 本発明のポリカーボネート樹脂組成物の成形品が利用可能な電子電気機器部品には、電子電気機器の筐体、回路基板、半導体層間絶縁膜、アンテナ部品(基板、アンテナカバー、レーダーカバー)、高周波同軸ケーブルの絶縁材料抵抗器、スイッチ、コンデンサ、フォトセンサ等のベース部品、ICソケットやコネクタ、自動車、自転車、オートバイ、トラック、鉄道車両、ヘリコプター、航空機等の輸送機器、ブルドーザー、油圧ショベル、クレーン等の建設機械、商船、特殊用途船、漁船、艦艇等の船舶、トラクター、収穫機等の農業機械、スマートフォン、タブレット、ウェアラブルデバイス、コンピュータ、テレビジョン受像機、VRゴーグル、カメラ、スピーカー、ドローン、ロボット、センサー、医療機器、分析機器等の部品を挙げることができ、特にアンテナの基板やアンテナカバー、レーダーカバーとして特に好適である。
 アンテナカバー、レーダー用カバーは、電磁波を送信もしくは受信するアンテナモジュールを格納または保護するハウジング、アンテナカバー(レドーム)等であり、さらにはレーダーモジュールから送受信される電磁波の経路上に設置される部材などを含む。
[2]本願の第二の発明のアンテナ用部材は、ポリカーボネート樹脂(A)100質量部に対し、ポリスチレン系樹脂(B)を30~150質量部、およびエラストマー(C)を3~60質量部含み、周波数5.8GHzでの誘電正接が0.0040以下であるポリカーボネート樹脂組成物からなり、周波数1GHz以上の電磁波を使用するアンテナ用部材である。
 第二の発明のアンテナ用部材に使用するポリカーボネート樹脂組成物を構成する各成分等につき、以下、説明する。
 第二の発明のアンテナ用部材の樹脂組成物に用いられるポリカーボネート樹脂(A)としては、上記第一の発明の樹脂組成物に用いられるポリカーボネート樹脂(A)と同じであり、好ましい範囲は、含有量も含め同じである。
 第二の発明のアンテナ用部材の樹脂組成物に用いられるポリスチレン系樹脂(B)としては、上記第一の発明の樹脂組成物に用いられるポリスチレン系樹脂(B)と同じであり、好ましい範囲は、含有量も含め同じである。
 第二の発明のアンテナ用部材の樹脂組成物に用いられるエラストマー(C)としては、上記第一の発明の樹脂組成物に用いられるエラストマー(C)と同じであり、好ましい範囲は、含有量も含め同じである。
 第二の発明のアンテナ用部材の樹脂組成物は、安定剤を含有することが好ましく、安定剤としては、上記第一の発明の樹脂組成物で説明した安定剤と同じであり、好ましい範囲は、含有量も含め同じである。
 第二の発明のアンテナ用部材の樹脂組成物は、離型剤を含有することが好ましく、離型剤としては、上記第一の発明の樹脂組成物で説明した離型剤と同じであり、好ましい範囲は、含有量も含め同じである。
 第二の発明のアンテナ用部材の樹脂組成物が含有することができる、その他の添加剤や樹脂等としては、上記第一の発明の樹脂組成物で説明した添加剤や樹脂等と同じであり、好ましい範囲は、含有量も含め同じである。
 第二の発明のアンテナ用部材の樹脂組成物の製造方法としては、上記第一の発明の樹脂組成物の製造方法と同じである。また、成形品を製造する方法としては、上記第一の発明の成形品の製造方法と同じである。
 更に、前記成形品の表面に、第一の発明の成形品で説明したのと同様の、ハードコート層を設けてもよい。
 第二の発明で使用するポリカーボネート樹脂組成物は、誘電正接が小さく、周波数5.8GHzでの誘電正接が好ましくは0.0040以下であり、より好ましくは0.0038以下、さらに好ましくは0.0036以下、特に好ましくは0.0034以下である。第二の発明で使用するポリカーボネート樹脂組成物の比誘電率も小さく、比誘電率は好ましくは2.8以下であり、より好ましくは2.7以下、更に好ましくは2.6以下である。誘電正接および比誘電率の具体的な測定方法は、実施例に記載の通りである。
 第二の発明で使用するポリカーボネート樹脂組成物は耐熱性に優れ、その指標となる荷重たわみ温度が、好ましくは86℃超であり、より好ましくは90℃超であり、さらに好ましくは92℃以上である。荷重たわみ温度の測定はISO75-2に準拠して行い、その具体的な方法は実施例に記載する通りである。
 第二の発明で使用するポリカーボネート樹脂組成物は耐衝撃性に優れ、シャルピー衝撃強度が、ノッチなしでNB(ノンブレーク)、ノッチ付きで10kJ/m以上であることが好ましい。シャルピー衝撃強度の測定はISO179-1,2に準拠して行い、その具体的な方法は実施例に記載する通りである。
 第二の発明で使用するポリカーボネート樹脂組成物は剛性に優れ、曲げ弾性率が2000MPa以上、曲げ強度が67MPa以上であることが好ましい。曲げ弾性率と曲げ強度の測定はISO178に準拠して行い、その具体的な方法は実施例に記載する通りである。
 さらに、第二の発明で使用するポリカーボネート樹脂組成物は靭性に優れ、引張破壊呼び歪みが20%以上であることが好ましい。引張破壊呼び歪みの測定はISO527に準拠して行い、その具体的な方法は実施例に記載する通りである。
 第二の発明で使用するポリカーボネート樹脂組成物からなる成形品は、周波数1GHz以上の電磁波を使用するアンテナ用部材に用いられる。本発明のアンテナ用部材は、周波数1GHz以上の広い範囲の帯域に利用可能である。5Gの無線通信規格の「NR」の52.6GHzまでの周波数帯、今後の5G evolutionで利用が検討されている90GHz程度まで、あるいは6Gに向けての90G~300GHzといったサブテラヘルツ波にも適応可能である。もちろん、既存の低周波帯や、6Gローバンド/ミッドバンドの10~20GHzというような帯域にも好適である。
 第二の発明のアンテナ用部材は、周波数1GHz以上の電磁波を送信もしくは受信する部品、特にアンテナ用の基板、アンテナカバー、レーダーカバーとして利用でき、アンテナモジュールを格納または保護するハウジング、アンテナカバー(レドーム)等、さらにはレーダーモジュールから送受信される電磁波の経路上に設置される部材などに好適に使用できる。
 更に、本発明のアンテナ用部材は表面に、前記したのと同様のハードコート層を有していてもよい。
 以下、第一の発明及び第二の発明(以下、併せて「本発明」ということがある。)を実施例により、更に具体的に説明する。ただし、これらの発明は以下の実施例に限定して解釈されるものではない。
 以下の実施例及び比較例で使用した原料は以下の表1の通りである。
Figure JPOXMLDOC01-appb-T000002
(第一の発明の実施例1~19、比較例1~4)
[ポリカーボネート樹脂組成物ペレットの製造]
 上記表1に記載した各成分を、以下の表2~4に記した割合(質量部)で配合し、タンブラーにて20分混合した後、二軸押出機(東芝機械株式会社製、TEM26SX)を用いて、シリンダー温度260℃で溶融混練し、ストランドカットによりポリカーボネート樹脂組成物のペレットを得た。
<比誘電率、誘電正接>
 上述の方法で得られたペレットを、100℃で5時間乾燥させた後、射出成形機(ファナック社ROBOSHOT S-2000i 150B)を用いて、100mm×150mm×厚みが約2mmの成形品を得た。上記方法によって得られた平板状試験片から100mm×1mm×2mmの平板状試験片を切削により得た後、KEYSIGHT社製、ネットワークアナライザおよび関東電子応用開発社製、空洞共振器を用いて、摂動法により周波数5.8GHzにおける比誘電率と誘電正接を測定した。
<曲げ弾性率、曲げ強度>
 上述の方法で得られたペレットを100℃で5時間乾燥した後、日精樹脂工業社製のNEX80III型射出成形機を用いて、シリンダー温度260℃、金型温度80℃、成形サイクル50秒の条件で射出成形を行い、ISO多目的試験片(4mm厚)を成形した。得られた試験片を用い、室温(23℃)条件下でISO-178規格に基づき、曲げ試験を行い、曲げ弾性率(単位:MPa)、曲げ強度(単位:MPa)を測定した。
<シャルピー衝撃強度>
 上述の方法で得られたペレットを100℃で5時間乾燥した後、日精樹脂工業社製のNEX80III型射出成形機を用いて、シリンダー温度260℃、金型温度80℃、成形サイクル50秒の条件で射出成形を行い、ISO179-1、2に基づく3mm厚の耐衝撃性試験片を作製した。得られた試験片を用い、23℃の温度環境下において、ノッチ無し、及びノッチ付きシャルピー衝撃強度(単位:kJ/m)を測定した。
<荷重たわみ温度>
 上述の方法で得られたペレットを100℃で5時間乾燥した後、日精樹脂工業社製のNEX80III型射出成形機を用いて、シリンダー温度260℃、金型温度80℃、成形サイクル50秒の条件で射出成形を行い、ISO多目的試験片(4mm厚)を成形した。得られた試験片を用い、東洋精機社製6A-2型HDT測定装置を用いて、ISO75-2に準拠し、高荷重(1.80MPa)の条件で荷重たわみ温度(単位:℃)を測定した。
<引張破壊呼び歪み(単位:%)>
 上述の方法で得られたペレットを100℃で5時間乾燥した後、日精樹脂工業社製のNEX80III型射出成形機を用いて、シリンダー温度260℃、金型温度80℃、成形サイクル50秒の条件で射出成形を行い、ISO多目的試験片(4mm厚)を成形した。
 得られた試験片を用い、ISO527規格に準拠して、引張破壊呼び歪(単位:%)を測定した。
 以上の評価結果を以下の表2~4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 上記結果から明らかな通り、第一の発明のポリカーボネート樹脂組成物は、機械物性(耐衝撃性、靭性、剛性、耐熱性等)に優れ、電気特性(比誘電率、誘電正接)にも優れる。これに対し、比較例の場合は、機械物性と電気特性を両立する結果は得られなかった。
(第二の発明の実施例20~33、比較例5~9)
[ポリカーボネート樹脂組成物ペレットの製造]
 前記表1に記載した各成分を、以下の表5~7に記した割合(質量部)で配合し、タンブラーにて20分混合した後、二軸押出機(東芝機械株式会社製、TEM26SX)を用いて、シリンダー温度260℃で溶融混練し、ストランドカットによりポリカーボネート樹脂組成物のペレットを得た。
 前記と同様にして、比誘電率、誘電正接、曲げ弾性率、曲げ強度、シャルピー衝撃強度、荷重たわみ温度を測定した。
 結果を以下の表5~7に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 本発明のアンテナ用部材は、機械物性(耐衝撃性、剛性、耐熱性等)に優れ、電気特性(比誘電率、誘電正接)にも優れる。
 これに対し、比較例の場合は、機械物性と電気特性を両立する結果は得られなかった。
 本発明のポリカーボネート樹脂組成物は、比誘電率及び誘電正接が共に低く、透過減衰量が低減され、耐熱性、耐衝撃性及び剛性に優れるので、電磁波を使用する各種の電子電気機器部品に広く好適に利用できる。また、本発明のアンテナ用部材は、比誘電率及び誘電正接が共に低く、透過減衰量が低減され、耐熱性、耐衝撃性及び剛性に優れるので、周波数1GHz以上の電磁波を使用する各種のアンテナ用部品として、広く好適に利用できる。

Claims (10)

  1.  ポリカーボネート樹脂(A)100質量部に対し、ポリスチレン系樹脂(B)を30~150質量部、およびエラストマー(C)を3~60質量部含み、260℃、1216sec-1におけるポリカーボネート樹脂(A)とポリスチレン系樹脂(B)の溶融粘度比(ηA/ηB)が4.5~12.5の範囲にあることを特徴とするポリカーボネート樹脂組成物。
  2.  エラストマー(C)が、ブタジエン/メチル(メタ)アクリレート共重合体、ブタジエン/メチル(メタ)アクリレート/スチレン共重合体、およびスチレン/エチレン/ブチレン/スチレン共重合体から選ばれる1種または2種以上である請求項1に記載のポリカーボネート樹脂組成物。
  3.  周波数5.8GHzでの誘電正接が0.0040以下である請求項1または2に記載のポリカーボネート樹脂組成物。
  4.  ポリスチレン系樹脂(B)とエラストマー(C)の含有量の比[(B)/(C)]が9以下である請求項1または2に記載のポリカーボネート樹脂組成物。
  5.  アクリロニトリル-ブタジエン-スチレン共重合体を含有しないか、含有する場合の含有量が、ポリカーボネート樹脂(A)100質量部に対し、10質量部以下である請求項1または2に記載のポリカーボネート樹脂組成物。
  6.  請求項1または2に記載のポリカーボネート樹脂組成物の成形品。
  7.  ポリカーボネート樹脂(A)100質量部に対し、ポリスチレン系樹脂(B)を30~150質量部、およびエラストマー(C)を3~60質量部含み、周波数5.8GHzでの誘電正接が0.0040以下であるポリカーボネート樹脂組成物からなり、周波数1GHz以上の電磁波を使用するアンテナ用部材。
  8.  エラストマー(C)が、ブタジエン/メチル(メタ)アクリレート共重合体、ブタジエン/メチル(メタ)アクリレート/スチレン共重合体、およびスチレン/エチレン/ブチレン/スチレン共重合体から選ばれる1種または2種以上である請求項7に記載のアンテナ用部材。
  9.  ポリカーボネート樹脂組成物のポリスチレン系樹脂(B)とエラストマー(C)の含有量の比[(B)/(C)]が9以下である請求項7または8に記載のアンテナ用部材。
  10.  アクリロニトリル-ブタジエン-スチレン共重合体を含有しないか、含有する場合の含有量が、ポリカーボネート樹脂(A)100質量部に対し、10質量部以下である請求項7または8に記載のアンテナ用部材。
PCT/JP2023/008182 2022-03-22 2023-03-03 ポリカーボネート樹脂組成物及びアンテナ用部材 WO2023181868A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-045578 2022-03-22
JP2022-045577 2022-03-22
JP2022045578 2022-03-22
JP2022045577 2022-03-22

Publications (1)

Publication Number Publication Date
WO2023181868A1 true WO2023181868A1 (ja) 2023-09-28

Family

ID=88100645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008182 WO2023181868A1 (ja) 2022-03-22 2023-03-03 ポリカーボネート樹脂組成物及びアンテナ用部材

Country Status (1)

Country Link
WO (1) WO2023181868A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310693A (ja) * 1998-04-30 1999-11-09 Nippon Steel Chem Co Ltd 難燃性樹脂組成物
JP2000007904A (ja) * 1998-06-25 2000-01-11 Mitsubishi Eng Plast Corp 制振性に優れたoa機器部品用成形体
JP2000025091A (ja) * 1998-07-09 2000-01-25 Daicel Chem Ind Ltd 熱可塑性樹脂シートの製造方法
JP2001172491A (ja) * 1999-12-15 2001-06-26 Daicel Chem Ind Ltd ポリカーボネート系樹脂組成物
JP2006241201A (ja) * 2005-02-28 2006-09-14 Toray Ind Inc スチレン系樹脂組成物およびその製造方法
JP2010202782A (ja) * 2009-03-04 2010-09-16 Fuji Xerox Co Ltd 再生樹脂組成物及びその製造方法、並びに樹脂成形体
JP2014074162A (ja) * 2012-09-14 2014-04-24 Mitsubishi Engineering Plastics Corp レーザーダイレクトストラクチャリング用樹脂組成物、樹脂成形品、およびメッキ層付樹脂成形品の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310693A (ja) * 1998-04-30 1999-11-09 Nippon Steel Chem Co Ltd 難燃性樹脂組成物
JP2000007904A (ja) * 1998-06-25 2000-01-11 Mitsubishi Eng Plast Corp 制振性に優れたoa機器部品用成形体
JP2000025091A (ja) * 1998-07-09 2000-01-25 Daicel Chem Ind Ltd 熱可塑性樹脂シートの製造方法
JP2001172491A (ja) * 1999-12-15 2001-06-26 Daicel Chem Ind Ltd ポリカーボネート系樹脂組成物
JP2006241201A (ja) * 2005-02-28 2006-09-14 Toray Ind Inc スチレン系樹脂組成物およびその製造方法
JP2010202782A (ja) * 2009-03-04 2010-09-16 Fuji Xerox Co Ltd 再生樹脂組成物及びその製造方法、並びに樹脂成形体
JP2014074162A (ja) * 2012-09-14 2014-04-24 Mitsubishi Engineering Plastics Corp レーザーダイレクトストラクチャリング用樹脂組成物、樹脂成形品、およびメッキ層付樹脂成形品の製造方法

Similar Documents

Publication Publication Date Title
US20180362758A1 (en) Thermoplastic compositions for laser direct structuring and methods for the manufacture and use thereof
WO2020013127A1 (ja) 熱可塑性樹脂組成物および成形品
JP6147595B2 (ja) ポリカーボネート樹脂組成物、それからなる成形体およびその製造方法
CN113785017B (zh) 具有通过硫酸钡改进的阻燃性的导热聚碳酸酯
JP2020111668A (ja) 難燃性ポリカーボネート樹脂組成物および成形品
JP6367039B2 (ja) ポリカーボネート樹脂組成物および成形品
JP7254588B2 (ja) ポリカーボネート樹脂組成物および成形品
WO2023181868A1 (ja) ポリカーボネート樹脂組成物及びアンテナ用部材
EP4056624A1 (en) Resin composition for laser direct structuring, molded product, and production method of plated molded product
JP2023140301A (ja) ポリカーボネート樹脂組成物
JP2023140302A (ja) アンテナ用部材
WO2023181849A1 (ja) ポリカーボネート樹脂組成物及びアンテナ用部材
JP7245065B2 (ja) 樹脂組成物および成形品
JP2016084414A (ja) ポリカーボネート樹脂組成物および成形品
JP2014156588A (ja) ポリカーボネート樹脂組成物
EP4056623A1 (en) Resin composition and electronic/electrical device component
JP6411588B6 (ja) 摺動性ポリカーボネート樹脂組成物及び成形品
JP2014227436A (ja) 熱可塑性樹脂組成物
WO2018163562A1 (ja) ポリカーボネート樹脂組成物及び成形品
JP5217996B2 (ja) ポリカーボネート樹脂組成物
JP2017171810A (ja) ポリカーボネート樹脂組成物
JP6454038B2 (ja) ポリカーボネート樹脂組成物および成形品
EP4223834A1 (en) Resin composition, molded article, and molded article with hard coat layer
JP2024081515A (ja) 樹脂組成物、ペレット、および、成形品
JP2022080749A (ja) ポリカーボネート樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774467

Country of ref document: EP

Kind code of ref document: A1