WO2023178900A1 - Matériau d'électrode positive à gradient d'oxyde de lithium-nickel-manganèse-cobalt et son procédé de préparation - Google Patents

Matériau d'électrode positive à gradient d'oxyde de lithium-nickel-manganèse-cobalt et son procédé de préparation Download PDF

Info

Publication number
WO2023178900A1
WO2023178900A1 PCT/CN2022/108632 CN2022108632W WO2023178900A1 WO 2023178900 A1 WO2023178900 A1 WO 2023178900A1 CN 2022108632 W CN2022108632 W CN 2022108632W WO 2023178900 A1 WO2023178900 A1 WO 2023178900A1
Authority
WO
WIPO (PCT)
Prior art keywords
gradient
cathode material
lithium nickel
lithium
nickel cobalt
Prior art date
Application number
PCT/CN2022/108632
Other languages
English (en)
Chinese (zh)
Inventor
许开华
李伟
谢军
桑雨辰
周晓燕
陈玉君
张翔
Original Assignee
格林美(无锡)能源材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 格林美(无锡)能源材料有限公司 filed Critical 格林美(无锡)能源材料有限公司
Publication of WO2023178900A1 publication Critical patent/WO2023178900A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the technical field of positive electrode materials, and in particular to a nickel cobalt lithium manganate gradient positive electrode material and a preparation method thereof.
  • Lithium nickel cobalt manganate ternary lithium ion battery cathode material is widely used in the field of new energy vehicles due to its high energy density.
  • High nickel enrichment is generally used to maximize reversible capacity.
  • the cycle and thermal stability gradually decrease, resulting in a reduction in the cycle life of the battery. Therefore, some studies have proposed that by controlling the gradual decrease of nickel from the core to the particle surface, that is, the higher nickel content in the core contributes to a higher discharge capacity, and the higher cobalt and manganese content in the outer layer provides more structural stability, thereby improving the material interface. Stability and battery cycle life.
  • the differences in composition and structure between the core and the shell during the sintering process cause the core and shell to shrink to varying degrees during the cycle and gradually separate, thereby inhibiting the diffusion-migration process of ions/electrons between the core and the shell, resulting in Decrease in long-term cyclic performance of materials.
  • the purpose of the present invention is to overcome the above technical deficiencies, propose a lithium nickel cobalt manganate gradient cathode material and a preparation method thereof, and solve the problem of unreasonable sintering processes of nickel cobalt lithium manganate gradient cathode materials with gradient changes in nickel content in the prior art, resulting in material Technical issues that degrade performance.
  • the inventor found that since the nickel content gradually increased from the outer shell to the core, due to the concentration diffusion mechanism during the sintering process, the nickel in the core part gradually diffused to the surface, and the content of manganese and cobalt on the surface was higher than that in the core, gradually Diffusion to the interior, theoretically the optimal calcination temperature increases step by step from the core to the shell. Therefore, it is hoped that through temperature gradient calcination, the core and shell will be in their respective optimal sintering conditions to avoid core and shell composition and structural differences during the sintering process, which will cause the core and shell to shrink to varying degrees and gradually separate during the cycle, thereby improving the long-term durability of the material. Cycle performance.
  • the first aspect of the present invention provides a method for preparing a lithium nickel cobalt manganate gradient cathode material, which includes the following steps:
  • lithium nickel cobalt manganate gradient cathode material precursor wherein, the nickel content in the lithium nickel cobalt manganate gradient cathode material precursor decreases from the core to the outer shell, and the cobalt and manganese contents increase from the core to the outer shell;
  • the lithium nickel cobalt manganate gradient cathode material precursor and the lithium source are mixed evenly and then gradient calcination is performed to obtain the nickel cobalt lithium manganate gradient cathode material; wherein, the gradient calcination process includes: controlling the calcination temperature to decrease the calcination temperature gradient.
  • a second aspect of the present invention provides a lithium nickel cobalt manganate gradient positive electrode material, which is obtained by the preparation method of a lithium nickel cobalt manganate gradient positive electrode material provided by the first aspect of the present invention.
  • the beneficial effects of the present invention include:
  • the present invention uses temperature gradient calcination to keep the core and shell in their respective optimal sintering conditions to avoid core and shell composition and structural differences during the sintering process, causing the core and shell to shrink to varying degrees and gradually separate during the cycle, thereby effectively improving the long-term durability of the material. Cycle performance.
  • a first aspect of the invention provides a method for preparing a lithium nickel cobalt manganate gradient cathode material, which includes the following steps:
  • the gradient calcination process includes: controlling the calcination temperature to achieve a calcination temperature gradient decline.
  • the steps of obtaining the nickel-cobalt lithium manganate gradient cathode material precursor include:
  • n groups of mixed salt solutions containing nickel sources, cobalt sources and manganese sources with different nickel contents where n is a positive integer ⁇ 2; in some embodiments of the present invention, n is 3; nickel source It is at least one of nickel sulfate, nickel chloride, nickel nitrate, and nickel acetate.
  • the cobalt source is at least one of cobalt sulfate, cobalt chloride, cobalt nitrate, and cobalt acetate.
  • the manganese source is manganese sulfate, manganese chloride, At least one of manganese nitrate and manganese acetate.
  • the nickel source, cobalt source and manganese source are configured into three metal ratios according to the nickel, cobalt and manganese metal molar ratios of 5:2:3, 7:1:2 and 90:5:5 respectively.
  • the mixed salt solutions are respectively counted as A metal salt solution, B metal salt solution, and C metal salt solution; further, in the above mixed salt solution, the total metal ion concentration of nickel, cobalt, and manganese is 1 to 3 mol/L.
  • step S13 of the present invention the steps of sequentially mixing n groups of mixed salt solutions with different nickel contents with an alkali solution and a complexing agent solution for continuous reaction include:
  • step S133 Repeat step S132 to perform the mixing reaction in sequence until the nth reaction solution is obtained, and undergoes aging, filtration, washing and drying to obtain the nickel cobalt lithium manganate gradient cathode material precursor;
  • i is a positive integer, 1 ⁇ i ⁇ i+1 ⁇ n
  • the nickel content of the i-th group of mixed salt solutions is greater than the nickel content of the i+1-th group of mixed salt solutions
  • the cobalt-manganese content of the i-th group of mixed salt solutions It is less than the cobalt and manganese content of the mixed salt solution of the i+1 group, thereby achieving a gradient decrease in nickel content from the core to the outer shell, and a gradient increase in the cobalt and manganese content from the core to the outer shell.
  • the mixed salt solution, alkali solution, and complexing agent are all introduced into the reaction system at a certain flow rate.
  • the nickel source, the cobalt source and the manganese source are respectively configured to the total metal ion concentration according to the nickel, cobalt and manganese metal molar ratios of 5:2:3, 7:1:2 and 90:5:5.
  • a mixed salt solution of 1 to 3 mol/L is counted as A metal salt solution, B metal salt solution, and C metal salt solution respectively, and the feed rate of the mixed salt solution, alkali solution, and complexing agent solution is 1 mol/h respectively.
  • 0.5mol/h and 2mol/h the reaction times of A metal salt solution, B metal salt solution and C metal salt solution are 4h, 6h and 20h respectively.
  • the lithium source is lithium hydroxide or lithium carbonate.
  • the lithium source is lithium hydroxide monohydrate (LiOH ⁇ H 2 O).
  • the molar ratio of the lithium nickel cobalt manganate gradient cathode material precursor to the lithium source is 1: (1.01 to 1.1).
  • the molar ratio of the nickel cobalt lithium manganate gradient cathode material precursor to the lithium source is The molar ratio of sources is 1:1.04.
  • the calcination temperature is controlled according to the optimal sintering temperature of each layer of the nickel cobalt lithium manganate gradient cathode material precursor to reduce the calcination temperature gradient, so that each layer structure is at its own optimal sintering temperature to avoid occurrences during the sintering process.
  • the differences in the composition and structure of the core and shell cause the core and shell to shrink to varying degrees and gradually separate during the cycle, thus improving the long-term cycle performance of the material.
  • the optimal sintering temperature of each layer of the gradient cathode material precursor of lithium nickel cobalt manganate was obtained by conducting a sintering DOE test on lithium salt and lithium nickel cobalt manganate ternary cathode material precursor of different compositions at different temperatures.
  • the fluctuation range of different proportions is ⁇ 0.01, and the fluctuation range of different temperatures is generally ⁇ 10°C.
  • the nickel cobalt lithium manganate ternary cathode material obtained from the above-mentioned DOE test has been discharged after electrochemical testing.
  • the sintering parameters (temperature, etc.) with the largest specific capacity and best cycle performance are the optimal values. This process is an existing technology and will not be described in detail here.
  • the optimal sintering temperature of the precursor hydroxide Ni 0.81 Co 0.08 Mn 0.11 (OH) 2 is 800 to 820°C, and the optimal sintering temperature of the precursor hydroxide Ni 0.5 Co 0.2 Mn
  • the optimal sintering temperature of 0.3 (OH) 2 is 900 ⁇ 920°C
  • the optimal sintering temperature of precursor hydroxide Ni 0.7 Co 0.1 Mn 0.2 (OH) 2 is 840 ⁇ 860°C
  • the optimal sintering temperature of 0.05 Mn 0.05 (OH) 2 is 740 ⁇ 760°C.
  • the gradient calcination process was carried out in an oxygen atmosphere.
  • the sintering time corresponding to the lowest sintering temperature is 6 to 12 hours, and the sintering time corresponding to other sintering temperatures except the lowest sintering temperature is 0.5 to 1.5 hours. Within this time range, the obtained lithium nickel cobalt manganate gradient cathode material has better battery performance.
  • a flux is also added during the above gradient calcination process.
  • the present invention can reduce the calcination temperature of the shell part, make the shell material recrystallize at a relatively low temperature, reduce the temperature difference between the outer shell part and the core part, and weaken the occurrence of cores during the sintering process.
  • the differences in composition and structure between the shells cause the core and shell to shrink and separate to varying degrees during the cycle, ultimately improving the cycle performance of the cathode material.
  • the amount of flux added should not be too high.
  • the molar ratio of the nickel cobalt lithium manganate gradient cathode material precursor to the cosolvent is 1: (0.00001 ⁇ 0.003), and further is 1: (0.00001 ⁇ 0.001);
  • the cosolvent is selected from boron, silicon, magnesium, and calcium. At least one of oxides, hydroxides, carbonates or chlorides.
  • a second aspect of the present invention provides a lithium nickel cobalt manganate gradient positive electrode material, which is obtained by the preparation method of a lithium nickel cobalt manganate gradient positive electrode material provided by the first aspect of the present invention.
  • the preparation process of the gradient precursor hydroxide with the nickel content gradually decreasing from the core to the shell is as follows:
  • NiSO 4 ⁇ 6H 2 O, CoSO 4 ⁇ 7H 2 O and MnSO 4 ⁇ H 2 O are respectively configured into the total A mixed salt solution with a metal ion concentration of 2mol/L of A, B, and C; then prepare a 1mol/L ammonia solution and a 4mol/L sodium hydroxide solution; first add the high-nickel metal salt solution in C, NaOH solution and ammonia solution were simultaneously pumped into the reaction kettle at pump speeds of 1 mol/h, 0.5 mol/h and 2 mol/h.
  • the reaction temperature was controlled between 40-60°C and the reaction pH was between 10-13.
  • the reaction process Use nitrogen as protection; during this process, the metal ions passed into the kettle are complexed by ammonium ions, uniformly forming a large number of nuclei; after the reaction proceeds for 20 hours, C is switched to B metal salt solution and is passed into the kettle to form Intermediate buffer layer; after continuing the reaction for 6 hours, pass the A mixed salt solution into the kettle, and continue the reaction for 4 hours before ending; after aging, filtration, washing and drying, a gradient precursor hydroxide with a gradually decreasing nickel content from the core to the shell is obtained Ni 0.81 Co 0.08 Mn 0.11 (OH) 2 .
  • the gradient precursor hydroxide, LiOH monohydrate, and boron oxide according to the molar ratio of 1:1.04:0.001, place them in a ball mill tank and mix them evenly. Place the mixture in an oxygen atmosphere furnace for gradient calcination. The reaction is completed. Finally, the gradient cathode material is obtained after cooling, crushing and sieving.
  • the specific gradient calcination process is as follows: first, the temperature is raised from room temperature to 900°C at a heating rate of 2°C/min, kept for 1 hour, then lowered to 850°C at a cooling rate of 5°C/min, and kept for 1 hour. Finally, the temperature was lowered to 750°C and kept warm for 10 hours.
  • the specific gradient calcination process is as follows: first, the temperature is raised from room temperature to 920°C at a heating rate of 2°C/min, kept for 1 hour, then lowered to 850°C at a cooling rate of 5°C/min, and kept for 1 hour. Finally, the temperature was lowered to 750°C and kept warm for 10 hours.
  • the specific gradient calcination process is as follows: first, the temperature is raised from room temperature to 900°C at a heating rate of 2°C/min, kept for 1 hour, then lowered to 850°C at a cooling rate of 5°C/min, and kept for 1 hour. Finally, the temperature was lowered to 750°C and kept for 10 hours.
  • the gradient precursor hydroxide LiOH monohydrate and boron oxide according to the molar ratio of 1:1.04:0.005
  • mix them evenly in a ball mill jar and place the mixture in an oxygen atmosphere furnace for gradient calcination.
  • the reaction is completed.
  • the gradient cathode material is obtained after cooling, crushing and sieving.
  • the specific gradient calcination process is as follows: first, the temperature is raised from room temperature to 900°C at a heating rate of 2°C/min, kept for 1 hour, then lowered to 850°C at a cooling rate of 5°C/min, and kept for 1 hour. Finally, the temperature was lowered to 750°C and kept for 10 hours.
  • the gradient precursor hydroxide, LiOH monohydrate, and boron oxide according to the molar ratio of 1:1.04:0.001, place them in a ball mill tank and mix them evenly. Place the mixture in an oxygen atmosphere furnace for gradient calcination. The reaction is completed. Finally, the gradient cathode material is obtained after cooling, crushing and sieving.
  • the specific gradient calcination process is: first, the temperature is raised from room temperature to 750°C at a heating rate of 2°C/min, kept for 10 hours, then the temperature is raised to 850°C, kept for 1 hour, and finally the temperature is raised to 900°C. Keep warm for 1 hour.
  • the gradient precursor hydroxide, LiOH monohydrate, and boron oxide according to the molar ratio of 1:1.04:0.001, place them in a ball mill tank and mix them evenly. Place the mixture in an oxygen atmosphere furnace for gradient calcination. The reaction is completed. Finally, the gradient cathode material is obtained after cooling, crushing and sieving. Among them, the gradient calcination process is as follows: first, the temperature is raised from room temperature to 900°C at a heating rate of 2°C/min, maintained for 4 hours, and then lowered to 850°C at a cooling rate of 5°C/min, and maintained for 4 hours. Finally, the temperature was lowered to 750°C and kept warm for 4 hours.
  • the gradient precursor hydroxide LiOH monohydrate and boron oxide according to the molar ratio of 1:1.04:0.001, place them in a ball mill tank and mix them evenly. Place the mixture in an oxygen atmosphere furnace for calcination. After the reaction is completed , after cooling, crushing and screening, the gradient cathode material is obtained. Among them, the specific calcination process is: raising the temperature to 800°C and holding it for 12 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

La présente invention divulgue un matériau d'électrode positive à gradient d'oxyde de lithium-nickel-manganèse-cobalt et son procédé de préparation. Le procédé de préparation comprend les étapes suivantes consistant à : obtenir un précurseur de matériau d'électrode positive à gradient d'oxyde de lithium-nickel-manganèse-cobalt, la teneur en nickel dans le précurseur de matériau d'électrode positive à gradient d'oxyde de lithium-nickel-manganèse-cobalt diminuant d'un noyau à une coque dans un mode de gradient, et la teneur en cobalt et en manganèse augmentant du noyau à la coque dans un mode de gradient ; et mélanger uniformément le précurseur de matériau d'électrode positive à gradient d'oxyde de lithium-nickel-manganèse-cobalt avec une source de lithium, puis effectuer une calcination à gradient, ce qui permet d'obtenir le matériau d'électrode positive à gradient d'oxyde de lithium-nickel-manganèse-cobalt, le processus de calcination à gradient comprenant la régulation de la température de calcination de telle sorte que la température de calcination diminue dans un mode de gradient. Selon la présente invention, au moyen d'une calcination à base de température de gradient, le noyau et la coque sont dans des conditions de frittage optimales respectives, de façon à éviter des différences dans des composants et des structures de noyau et de coque dans un processus de frittage, ce qui peut provoquer différents degrés de retrait et une séparation progressive du noyau et de la coque dans un processus de cyclage, ce qui permet d'améliorer efficacement les performances de cycle à long terme du matériau.
PCT/CN2022/108632 2022-03-22 2022-07-28 Matériau d'électrode positive à gradient d'oxyde de lithium-nickel-manganèse-cobalt et son procédé de préparation WO2023178900A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210283165.9A CN114613987B (zh) 2022-03-22 2022-03-22 一种镍钴锰酸锂梯度正极材料及其制备方法
CN202210283165.9 2022-03-22

Publications (1)

Publication Number Publication Date
WO2023178900A1 true WO2023178900A1 (fr) 2023-09-28

Family

ID=81864730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108632 WO2023178900A1 (fr) 2022-03-22 2022-07-28 Matériau d'électrode positive à gradient d'oxyde de lithium-nickel-manganèse-cobalt et son procédé de préparation

Country Status (2)

Country Link
CN (1) CN114613987B (fr)
WO (1) WO2023178900A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114613987B (zh) * 2022-03-22 2024-03-29 格林美(无锡)能源材料有限公司 一种镍钴锰酸锂梯度正极材料及其制备方法
CN115259244B (zh) * 2022-08-31 2023-10-17 宁波容百新能源科技股份有限公司 一种钴梯度高镍三元正极材料及其制备方法、锂离子电池
CN115403074B (zh) * 2022-09-26 2024-05-17 湘潭大学 一种高镍型镍钴锰酸锂前驱体及其制备方法
CN115676914A (zh) * 2022-10-27 2023-02-03 荆门市格林美新材料有限公司 一种正极材料前驱体的生产方法
CN116130618A (zh) * 2022-11-23 2023-05-16 巴斯夫杉杉电池材料有限公司 一种高容量长循环的低钴单晶正极材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103367704A (zh) * 2012-04-06 2013-10-23 协鑫动力新材料(盐城)有限公司 梯度分布的复合多元材料前驱体及其制备方法和应用
JP2017154915A (ja) * 2016-02-29 2017-09-07 住友金属鉱山株式会社 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに非水系電解質二次電池
CN109216687A (zh) * 2018-10-16 2019-01-15 桑顿新能源科技有限公司 一种单晶三元复合材料的制备方法与一种锂离子电池
CN111769277A (zh) * 2020-06-30 2020-10-13 中国科学院上海微系统与信息技术研究所 一种梯度单晶高镍正极材料及其制备方法
CN114613987A (zh) * 2022-03-22 2022-06-10 格林美(无锡)能源材料有限公司 一种镍钴锰酸锂梯度正极材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103700845B (zh) * 2013-12-18 2016-02-10 宁夏科捷锂电池股份有限公司 浓度梯度分布锂镍钴锰氧三元锂电池正极材料的制备方法
CN104241640A (zh) * 2014-10-10 2014-12-24 国家电网公司 一种镍钴铝酸锂正极材料、其制备方法及锂离子电池
CN105226270B (zh) * 2015-10-22 2018-05-18 北京科技大学 具有镍锰浓度梯度的锂镍锰氧化物正极材料及其制备方法
CN106207138B (zh) * 2016-09-20 2019-10-01 中国科学院化学研究所 一种锂离子电池正极材料制备方法及其应用
CN112928253B (zh) * 2021-01-22 2022-06-17 厦门厦钨新能源材料股份有限公司 一种镍锰钛复合材料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103367704A (zh) * 2012-04-06 2013-10-23 协鑫动力新材料(盐城)有限公司 梯度分布的复合多元材料前驱体及其制备方法和应用
JP2017154915A (ja) * 2016-02-29 2017-09-07 住友金属鉱山株式会社 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに非水系電解質二次電池
CN109216687A (zh) * 2018-10-16 2019-01-15 桑顿新能源科技有限公司 一种单晶三元复合材料的制备方法与一种锂离子电池
CN111769277A (zh) * 2020-06-30 2020-10-13 中国科学院上海微系统与信息技术研究所 一种梯度单晶高镍正极材料及其制备方法
CN114613987A (zh) * 2022-03-22 2022-06-10 格林美(无锡)能源材料有限公司 一种镍钴锰酸锂梯度正极材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG JIAN, ZHANG YONGJIE; YANG CHENGYUN; LUO HAIBO; XIE XIAOHUA; XIA BAOJIA: "Controllable Preparation and Performance of Full Concentration-Gradient High Nickel Cathode Material", AEROSPACE SHANGHAI, vol. 37, no. 2, 25 April 2020 (2020-04-25), XP093094403, ISSN: 1006-1630, DOI: 10.19328/j.cnki.1006-1630.2020.02.004 *

Also Published As

Publication number Publication date
CN114613987A (zh) 2022-06-10
CN114613987B (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
CN110518220B (zh) 一种高镍梯度镍钴锰铝四元正极材料及制备方法
WO2023178900A1 (fr) Matériau d'électrode positive à gradient d'oxyde de lithium-nickel-manganèse-cobalt et son procédé de préparation
CN111634958A (zh) 一种锂电池用前驱体、锂电池正极材料及其制备方法
KR102669854B1 (ko) 단결정형 다원계 양극재 및 이의 제조 방법과 응용
CN107123792B (zh) 双层复合结构三元正极材料及其制备方法
EP3965188A1 (fr) Matériau d'électrode positive composite pour batterie au lithium-ion, batterie au lithium-ion et véhicule
WO2016155315A1 (fr) Matériau d'électrode positive de batterie rechargeable au lithium-ion du type à forte teneur en nickel et son procédé de préparation
CN110649252A (zh) 锂电池三元材料LiNi0.8Co0.1Mn0.1O2表面包覆Li2ZrO3的方法
CN112928253B (zh) 一种镍锰钛复合材料及其制备方法和应用
CN113644272B (zh) 一种铈铋复合氧化物掺杂锂离子电池正极材料及其制备方法
CN109962234B (zh) 浓度梯度的单晶正极材料及其制备方法
WO2022188480A1 (fr) Précurseur de matériau composite d'électrode positive pour batterie au lithium et procédé de préparation pour matériau composite d'électrode positive
WO2024066892A1 (fr) Précurseur d'oxyde riche en manganèse, son procédé de préparation et son utilisation
CN115259244B (zh) 一种钴梯度高镍三元正极材料及其制备方法、锂离子电池
CN108987740B (zh) 镍钴铝酸锂正极材料、其制备方法及应用其的电池
CN112952085B (zh) 梯度高镍单晶三元材料及其制备方法和使用该材料的电池
WO2023246102A1 (fr) Matériau d'électrode à oxyde stratifié à haute teneur en nickel modifié par hafnium et son procédé de préparation
WO2023226554A1 (fr) Matériau d'électrode positive d'oxyde de lithium-nickel-cobalt-manganèse à haute tension, sa méthode de préparation et son utilisation
CN112952056B (zh) 一种富锂锰基复合正极材料及其制备方法和应用
CN113488620A (zh) 三元正极前驱体及其制备方法、三元正极材料及其制备方法、锂离子电池
CN113422039A (zh) 三元系复合氧化物基体材料、三元正极材料及制备方法与由其制备的锂离子电池
CN109678217B (zh) 高振实密度的Ni0.8Co0.1Mn0.1(OH)2材料的制备方法及应用
CN115911315A (zh) 一种高镍正极前驱体材料及其制备方法和应用
CN114927682A (zh) 提升高镍三元LiNixCoyMn1-x-yO2正极材料循环稳定性和安全性的方法
CN114156463A (zh) 一种锂离子电池复合富锂锰基正极材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932952

Country of ref document: EP

Kind code of ref document: A1