WO2023167286A1 - 非接触ガイド、光ファイバの製造方法、および光ファイバの製造装置 - Google Patents

非接触ガイド、光ファイバの製造方法、および光ファイバの製造装置 Download PDF

Info

Publication number
WO2023167286A1
WO2023167286A1 PCT/JP2023/007861 JP2023007861W WO2023167286A1 WO 2023167286 A1 WO2023167286 A1 WO 2023167286A1 JP 2023007861 W JP2023007861 W JP 2023007861W WO 2023167286 A1 WO2023167286 A1 WO 2023167286A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
flange
contact guide
gap
bare
Prior art date
Application number
PCT/JP2023/007861
Other languages
English (en)
French (fr)
Inventor
智 吉川
学 塩▲崎▼
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022032804A external-priority patent/JP2023128454A/ja
Priority claimed from JP2022032799A external-priority patent/JP2023128450A/ja
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN202380019091.0A priority Critical patent/CN118647584A/zh
Publication of WO2023167286A1 publication Critical patent/WO2023167286A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H51/00Forwarding filamentary material
    • B65H51/02Rotary devices, e.g. with helical forwarding surfaces
    • B65H51/04Rollers, pulleys, capstans, or intermeshing rotary elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H59/00Adjusting or controlling tension in filamentary material, e.g. for preventing snarling; Applications of tension indicators
    • B65H59/10Adjusting or controlling tension in filamentary material, e.g. for preventing snarling; Applications of tension indicators by devices acting on running material and not associated with supply or take-up devices
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/03Drawing means, e.g. drawing drums ; Traction or tensioning devices
    • C03B37/035Drawing means, e.g. drawing drums ; Traction or tensioning devices having means for deflecting or stripping-off fibres or for removing defective parts
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/07Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/1065Multiple coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/12General methods of coating; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/62Surface treatment of fibres or filaments made from glass, minerals or slags by application of electric or wave energy; by particle radiation or ion implantation
    • C03C25/6206Electromagnetic waves
    • C03C25/6226Ultraviolet
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables

Definitions

  • TECHNICAL FIELD The present disclosure relates to a non-contact guide, an optical fiber manufacturing method, and an optical fiber manufacturing apparatus.
  • This application claims priority based on Japanese Application No. 2022-032799 and Japanese Application No. 2022-032804 filed on March 3, 2022, and incorporates all the descriptions described in the Japanese application. is.
  • Patent Document 1 discloses an example of a method for manufacturing an optical fiber bare wire.
  • an optical fiber preform is melted and drawn, and a coating layer is provided on the outer circumference of the drawn optical fiber bare wire.
  • Patent Documents 2 and 3 disclose other examples of non-contact guides or methods of manufacturing optical fibers using non-contact guides.
  • Patent Document 4 discloses a method for manufacturing an optical fiber. In this method of manufacturing an optical fiber, a resin is coated on an optical fiber bare wire obtained by melting and drawing an optical fiber preform. Then, the direction of the resin-coated optical fiber is changed by the directly below roller and wound by the winding device.
  • Patent Document 5 discloses changing the direction of a bare optical fiber with an air guide at any position from the spinning process to the coating process.
  • Patent Literature 6 discloses that the uncured thermosetting resin coating deforms when it comes into contact with the directly-underlying roller, so that the fluid is blown out from the guide portion of the directly-underlying roller to float it.
  • the present disclosure provides a non-contact guide that includes an inner member and first and second flanges.
  • the internal member has a plurality of ejection ports on its outer peripheral surface through which gas can be ejected.
  • the first flange and the second flange accommodate the internal member so as to sandwich it in a first direction that intersects the ejection direction of the gas ejected from the plurality of ejection ports.
  • At least one of the first flange and the second flange is an internal member so that a gap for passing the gas ejected from the plurality of ejection ports is provided between the outer edge of the first flange and the outer edge of the second flange can be attached to At least one of the first flange and the second flange is movable in the direction of changing the width of the gap.
  • FIG. 1 is a schematic diagram of an optical fiber manufacturing apparatus according to one embodiment.
  • FIG. 2 is a perspective view showing a non-contact guide. 3 is an exploded perspective view when the non-contact guide shown in FIG. 2 is exploded along the central axis C.
  • FIG. 4 is a cross-sectional view of the non-contact guide shown in FIG. 2 taken along line IV-IV. 5 is an exploded perspective view when the internal member of the non-contact guide shown in FIG. 2 is exploded along the central axis C.
  • FIG. 6 is an enlarged view of a region A surrounded by a dashed line in the non-contact guide shown in FIG. 4.
  • FIG. FIG. 7 is a cross-sectional view of the non-contact guide shown in FIG.
  • FIG. 8 is a schematic diagram of an optical fiber manufacturing apparatus according to a modification.
  • FIG. 9 is a cross-sectional view of the non-contact guide shown in FIG. 2 taken along line VII-VII in a modified example.
  • a drawn optical fiber bare wire is passed through a gap provided along the outer periphery of the non-contact guide to change direction.
  • the bare optical fiber may be broken in the non-contact guide, and the broken bare optical fiber may clog the gap of the non-contact guide. In this case, it is not easy to remove the bare optical fiber clogged in the gap. Therefore, a non-contact guide that can be easily maintained is desired.
  • a non-contact guide comprises an inner member and first and second flanges.
  • the internal member has a plurality of ejection ports on its outer peripheral surface through which gas can be ejected.
  • the first flange and the second flange accommodate the internal member so as to sandwich it in a first direction that intersects the ejection direction of the gas ejected from the plurality of ejection ports.
  • At least one of the first flange and the second flange is an internal member such that a gap for passing gas ejected from the plurality of ejection ports is provided between the outer edge of the first flange and the outer edge of the second flange attached to the At least one of the first flange and the second flange is movable in the direction of changing the width of the gap.
  • the width of the gap for passing the bare optical fiber or bare optical fiber (hereinafter also referred to as "bare optical fiber, etc.") can be expanded.
  • This makes it possible to easily perform maintenance of the non-contact guide, such as removing bare optical fibers clogging the gap and cleaning the surfaces of the first and second flanges that define the gap.
  • by changing the width of the gap it is possible to adjust the pressure of the gas blown out from the non-contact guide. Therefore, it is possible to blow the gas with an appropriate pressure to the optical fiber bare wire or the like in accordance with the type and state of the optical fiber bare wire or the like to be passed through the gap.
  • the outer peripheral surface of the inner member may have buffer grooves extending along the circumferential direction of the outer peripheral surface.
  • a plurality of spouts may be provided at the bottom of the buffer groove.
  • the buffer groove may be spatially connected to the gap in the ejection direction.
  • the gas ejected from the plurality of ejection ports is dispersed in the buffer groove in the circumferential direction and then ejected to the outside through the gap. That is, the buffer groove reduces the pressure unevenness of the gas blown out from the gap. This makes it possible to more stably change the direction of the bare optical fiber or the like.
  • the internal member may have a disk shape and have a gas supply section to which gas is supplied from the outside, and a plurality of gas flow paths connecting the gas supply section and the plurality of ejection ports, respectively.
  • the gas supply may be located in the central portion of the inner member.
  • the plurality of gas flow paths may be radially provided from the gas supply section to the plurality of ejection ports.
  • a plurality of ejection ports may be positioned along the circumferential direction of the outer peripheral surface. In this case, the plurality of ejection ports are not concentrated in a specific region of the outer peripheral surface of the internal member, but are arranged dispersedly, so that the pressure unevenness of the gas ejected from the gap is reduced. This makes it possible to more stably change the direction of the bare optical fiber or the like.
  • the gas flow path may have a circular cross section, and the inner diameter on the ejection port side may be larger than the inner diameter on the gas supply section side.
  • the inner diameter on the ejection port side may be larger than the inner diameter on the gas supply section side.
  • the outer peripheral surface of the internal member may have a first cylindrical surface and a second cylindrical surface positioned across the plurality of ejection ports in the first direction.
  • the first flange may have a first receiving portion defined by an inner peripheral surface facing the first cylindrical surface when the inner member is received.
  • the second flange may have a second receiving portion defined by an inner peripheral surface facing the second cylindrical surface when the inner member is received.
  • a sealing member may be provided between the first cylindrical surface and the inner peripheral surface of the first accommodating portion and between the second cylindrical surface and the inner peripheral surface of the second accommodating portion.
  • the gap between the first cylindrical surface and the inner peripheral surface of the first containing portion and the gap between the second cylindrical surface and the inner circumferential surface of the second containing portion are sealed by the sealing members, respectively, and the jet from the ejection port is sealed.
  • a sealing member that seals at least one of the plurality of ejection ports may be further provided.
  • the ejection port can be sealed with a sealing member so that the gas does not leak from the ejection port that does not contribute to the floating of the bare optical fiber or the like. That is, the gas supplied to the non-contact guide can be efficiently used to float the bare optical fiber or the like.
  • the Vickers hardness of at least one of the surface of the outer edge of the first flange and the surface of the outer edge of the second flange defining the gap may be 800 HV or more. In this case, even if a bare optical fiber or the like comes into contact with the surface of each flange that defines the gap, it is less likely to be damaged. Therefore, the flow of the gas blown out from the gap is less likely to be disturbed by the scratches, and the gas is stably blown out. This makes it easier to maintain the floating state of the bare optical fiber or the like that is passed through the gap.
  • a method for manufacturing an optical fiber is a method for manufacturing an optical fiber using any of the non-contact guides described above.
  • This method of manufacturing an optical fiber includes the steps of melting an optical fiber preform and drawing an optical fiber bare wire, cooling the optical fiber bare wire, coating the optical fiber bare wire with a resin, and forming an optical fiber bare wire. and forming a.
  • the bare optical fiber is passed through the gap of the non-contact guide, and the direction of the bare optical fiber is oriented around the non-contact guide while floating by blowing the gas jetted from the nozzle. change.
  • An optical fiber manufacturing apparatus is an optical fiber manufacturing apparatus using the non-contact guide according to any one of the aspects described above.
  • This optical fiber manufacturing apparatus includes a melting device for melting the optical fiber preform for drawing the optical fiber bare wire from the optical fiber preform, a cooling device for cooling the optical fiber bare wire, and a resin a coating device for coating with to form an optical fiber strand.
  • the cooling device is a device that cools the optical fiber bare wire while floating it by passing the optical fiber bare wire through the gap of the non-contact guide and blowing gas ejected from the ejection port.
  • the gas is directly blown onto the bare optical fiber from the gap of the non-contact guide. As a result, the bare optical fiber is efficiently cooled.
  • At least one of the first flange and the second flange may be moved to adjust the width of the gap.
  • the width of the gap can be adjusted according to the diameter or type of the bare optical fiber or the like, and the pressure of the gas blown onto the bare optical fiber can be kept at an appropriate level. Thereby, the floating state of the optical fiber bare wire can be maintained.
  • a method for manufacturing an optical fiber according to another embodiment is a method for manufacturing an optical fiber using the non-contact guide according to any one of the aspects described above.
  • the method for manufacturing an optical fiber according to another embodiment includes the steps of melting an optical fiber preform and drawing an optical fiber bare wire, and coating the optical fiber bare wire with a resin to form an optical fiber bare wire. and a step of changing the direction of the optical fiber by the direct roller and winding the optical fiber with a winding device.
  • the direct roller is the non-contact guide of any of the above modes.
  • An optical fiber manufacturing apparatus is an optical fiber manufacturing apparatus using the non-contact guide of any one of the aspects described above.
  • An optical fiber manufacturing apparatus includes a melting device for melting an optical fiber preform for drawing a bare optical fiber from the optical fiber preform, a cooling device for cooling the bare optical fiber, A coating device that coats a bare optical fiber with a resin to form an optical fiber, a winding device that winds the optical fiber, and between the coating device and the winding device in the passage of the optical fiber and directly below the roller for changing the direction of the optical fiber strand.
  • the direct roller is a non-contact guide.
  • minute vibrations may occur in the roller directly below that changes the direction of the optical fiber strand due to the deviation between the rotation axis and the perpendicularity of the roller.
  • This minute vibration propagates to the optical fiber bare wire guided by the directly below roller and the optical fiber bare wire connected thereto, vibrating the optical fiber bare wire and the like.
  • the bare optical fiber or the like vibrates, the bare optical fiber coated with resin deviates slightly from the predetermined path in the horizontal direction, causing uneven thickness in the coating resin of the bare optical fiber or variation in outer diameter. I end up.
  • the quality characteristics of the optical fiber will also fluctuate along with those fluctuations.
  • the rotational resistance of the bearing is added to the drawing tension, and there is individual difference in the rotational resistance of the bearing, so there is a possibility that the drawing tension cannot be adjusted within a favorable range.
  • the optical fiber may roll on the bottom of the groove of the directly-underlying roller and be twisted in the longitudinal direction due to swing vibration of the directly-underlying roller. If the multi-core optical fiber is twisted, for example, when connecting the multi-core fibers, it becomes difficult to face the cores in the correct order and position.
  • the optical fiber manufacturing method and manufacturing apparatus when winding the resin-coated optical fiber, the direction of the optical fiber is changed by the direct-under roller. .
  • This directly below roller is a non-contact guide roller, and conveys the optical fiber strand without contact.
  • the vibration from the directly-below roller is not propagated to the bare optical fiber or the like. Therefore, according to this another embodiment, it is possible to appropriately coat the bare optical fiber with a resin, thereby manufacturing an optical fiber that suppresses fluctuations such as uneven thickness of the coating.
  • the non-contact guide roller may be a non-rotating guide roller.
  • Another embodiment of the above optical fiber manufacturing method or manufacturing apparatus may further include a step or measuring device for measuring the drawing tension.
  • the winding process or the control device may adjust the width of the gap of the non-contact guide based on the measured drawing tension, and wind the optical fiber through the non-contact guide.
  • the optical fiber by blowing gas at a blowing pressure corresponding to the drawing tension, the optical fiber can be guided by the non-contact guide while maintaining an appropriate floating amount. Therefore, according to this embodiment, it is possible to manufacture an optical fiber that further suppresses fluctuations such as uneven coating thickness.
  • Another embodiment of the above optical fiber manufacturing method or manufacturing apparatus may further include a step or measuring device for measuring the fiber diameter of the optical fiber bare wire.
  • the winding step or the control device may adjust the gap width of the non-contact guide based on the measured fiber diameter, and wind the optical fiber through the non-contact guide.
  • the optical fiber can be guided by the non-contact guide while maintaining an appropriate amount of floating. Therefore, according to this embodiment, it is possible to manufacture an optical fiber that further suppresses fluctuations such as uneven coating thickness.
  • FIG. 1 is a schematic diagram of an optical fiber manufacturing apparatus 1 according to one embodiment.
  • the manufacturing apparatus 1 heats and melts an optical fiber preform 2 to draw an optical fiber bare wire 10, and coats the outer periphery of the optical fiber bare wire 10 with a coating resin to form an optical fiber.
  • It is an apparatus for manufacturing the wire 11 .
  • the manufacturing apparatus 1 includes a drawing furnace 3, a cooling device 4, a coating device 5, a curing device 6, a direct roller 7, a pulling roller 8, and a winding device 9 on the passage path of the bare optical fiber 10 and the bare optical fiber 11. Prepared in order along the way.
  • the drawing furnace 3 heats and melts the optical fiber preform 2 so that it can be drawn along the vertical direction (the direction X shown in FIG. 1) to form the bare optical fiber 10 .
  • the drawing furnace 3 has heaters positioned around the optical fiber preform 2 .
  • the optical fiber preform 2 is a glass body (preform) containing silica glass, for example.
  • the optical fiber bare wire 10 is, for example, a glass wire including a core and a clad covering the core.
  • the drawing furnace 3 heats and softens the lower end of the optical fiber preform 2 with a heater, and then draws the preform.
  • the drawn optical fiber bare wire 10 is sent to the cooling device 4 .
  • the cooling device 4 cools the bare optical fiber 10 .
  • the cooling device 4 has an internal space S surrounded by an outer wall, for example, and the bare optical fiber 10 passes through the internal space S.
  • the outer wall of the cooling device 4 may be made of transparent glass or resin so that the inside of the cooling device 4 can be checked.
  • the cooling device 4 may have an intake port (not shown) for injecting dry gas into the internal space S for cooling the bare optical fiber 10 .
  • the heat of the bare optical fiber 10 is released to the outside using the dry gas as a coolant.
  • the cooling device 4 has an exhaust port (not shown) for discharging dry gas.
  • the bare optical fiber 10 passes through the internal space S in a meandering manner while being changed in direction by a plurality of non-contact guides 20 .
  • the bare optical fiber 10 passes between the non-contact guides 20 in a direction inclined with respect to the X and Y directions.
  • the height direction of the manufacturing apparatus 1 is the direction X
  • the width direction is the direction Y
  • the depth direction is the direction Z.
  • direction X, direction Y and direction Z are orthogonal to each other.
  • the cooling device 4 has seven non-contact guides 20 .
  • the non-contact guides 20A, 20B, 20C, 20D, 20E, 20F, and 20G are provided in this order on the running path of the bare optical fiber 10 .
  • the non-contact guides 20 are collectively referred to as the non-contact guides 20 unless it is necessary to distinguish between them.
  • the number of non-contact guides 20 that the cooling device 4 has may be plural, and is not limited to seven.
  • the cooling device 4 may have 3 or more and 15 or less non-contact guides 20 .
  • Each non-contact guide 20 is a member that changes the moving direction of the bare optical fiber 10 .
  • the non-contact guide 20 is a disk-shaped member, and the bare optical fiber 10 is passed through a gap 80 (see FIG. 2) provided on the outer periphery.
  • Each non-contact guide 20 may be movable along the direction Y across the internal space S, or may be in a predetermined position without movement.
  • three non-contact guides 20 (non-contact guides 20B, 20D, 20F) move along the direction Y toward the right side of the paper surface of FIG.
  • the bare optical fiber 10 cooled by the cooling device 4 is sent to the coating device 5 . Details of the non-contact guide 20 will be described later.
  • the coating device 5 applies a coating resin to the outer periphery of the bare optical fiber 10 .
  • the coating resin is, for example, an ultraviolet curable resin.
  • the coating device 5 may apply two coating resins of different types to the outer periphery of the bare optical fiber 10 .
  • the coating device 5 may, for example, apply a primary resin to the bare optical fiber 10 and then apply a secondary resin having higher hardness than the primary resin to the outside of the primary resin.
  • the coating device 5 may coat the bare optical fiber 10 with the primary resin and the secondary resin substantially simultaneously.
  • the bare optical fiber 10 coated with the coating resin is sent to the curing device 6 .
  • the curing device 6 cures the coating resin applied to the bare optical fiber 10 by irradiating it with ultraviolet rays.
  • the curing device 6 has a light-emitting element such as an ultraviolet lamp that emits ultraviolet rays.
  • the coating resin applied to the bare optical fiber 10 the bare optical fiber 11 is completed.
  • the completed optical fiber strand 11 is sent to the directly below rollers 7 .
  • the directly-lower roller 7 changes the moving direction of the optical fiber strand 11 from the direction along the direction X to a predetermined direction.
  • the optical fiber strand 11 whose movement direction has been changed by the direct-lower roller 7 is sent to the pulling roller 8 .
  • the pulling roller 8 pulls and moves the optical fiber strand 11 .
  • the moving speed of the optical fiber strand 11 may be adjustable by changing the rotation speed of the pulling roller 8 .
  • the optical fiber strand 11 is sent from the traction roller 8 to the winding device 9 and is wound by the winding device 9 . Thus, the manufacturing process of the optical fiber strand 11 is completed.
  • FIG. 2 is a perspective view showing the non-contact guide 20.
  • FIG. 3 is an exploded perspective view when the non-contact guide 20 is exploded along the central axis C.
  • FIG. 4 is a cross-sectional view of the non-contact guide 20 taken along line IV-IV shown in FIG. 5 is an exploded perspective view of the internal member 40 exploded along the central axis C.
  • FIG. FIG. 6 is an enlarged view of area A enclosed by a dashed line shown in FIG.
  • the non-contact guide 20 is a member that changes the moving direction of the bare optical fiber 10 .
  • the non-contact guide 20 has a circular shape in plan view.
  • the non-contact guide 20 has a gap 80 between the first flange 30 and the second flange 70, as shown in FIG.
  • the gap 80 is annularly provided along the outer periphery of the non-contact guide 20 .
  • the bare optical fiber 10 is passed through the gap 80 .
  • the gas introduced into the non-contact guide 20 is blown outward from the gap 80 .
  • the blown gas is blown onto the bare optical fiber 10 passed through the gap 80 .
  • the bare optical fiber 10 floats by being blown with gas so as not to come into contact with the first flange 30 and the second flange 70 .
  • the direction can be changed without damaging the bare optical fiber 10 .
  • the non-contact guide 20 includes a first flange 30, an internal member 40 and a second flange 70, as shown in FIG.
  • the first flange 30 is a member that is provided on the side of the non-contact guide 20 and accommodates part of the internal member 40 .
  • the first flange 30 has a disc portion 31 having a circular shape in plan view and a peripheral wall portion 32 formed along the outer circumference of the disc portion 31 .
  • the disc portion 31 is provided with one hole portion 31a and a plurality of screw holes 31b.
  • the hole portion 31 a is a through hole provided at the center of the disk portion 31 .
  • the shaft portion 42 of the internal member 40 can be inserted through the hole portion 31a.
  • the plurality of screw holes 31b are small-diameter through-holes scattered around the hole 31a.
  • a plurality of screws 90 can be inserted through the plurality of screw holes 31b.
  • First flange 30 is secured to inner member 40 by screws 90 .
  • the peripheral wall portion 32 has an outer peripheral surface 32a facing the outside of the first flange 30, and an inner peripheral surface 32b facing the inside of the first flange 30 (the side of the first housing portion 33 described later).
  • the end of the outer peripheral surface 32a on the side of the second flange 70 is curved inward toward the central axis C and connected to the end of the inner peripheral surface 32b. That is, the end portion of the outer peripheral surface 32a has a curved shape in a cross-sectional view.
  • a gap 80 through which the bare optical fiber 10 passes is provided between the outer peripheral surface 32a and an outer peripheral surface 72a of the second flange 70, which will be described later.
  • the surface of the outer edge of the first flange 30 that defines the gap 80 (the outer peripheral surface 32a in this embodiment) has a Vickers hardness of, for example, 800 HV or higher, and more preferably 1500 HV or higher. Vickers hardness is measured based on JIS Z2244:2009. Specifically, a square-pyramidal diamond indenter is pressed into the surface of the sample (in this embodiment, the outer peripheral surface 32a), and the Vickers hardness is obtained from the diagonal length of the depression left on the surface.
  • the first flange 30 has a first accommodation portion 33 in which a portion of the internal member 40 is accommodated.
  • the first accommodating portion 33 is a substantially cylindrical space defined by the surface of the disk portion 31 and the inner peripheral surface 32 b of the peripheral wall portion 32 .
  • the inner peripheral surface 32b of the peripheral wall portion 32 faces the first cylindrical surface 50 of the internal member 40 as shown in FIG.
  • the internal member 40 is a member that blows out the introduced gas to the outside from the gap 80 between the first flange 30 and the second flange 70 .
  • the internal member 40 has a disk shape.
  • the internal member 40 includes a body portion 41 and a plate 60, as shown in FIG.
  • the body portion 41 has a shaft portion 42 extending along the central axis C and a cylindrical portion 43 provided at one end of the shaft portion 42, as shown in FIG.
  • a first gas flow path 44 extending along the central axis C is formed inside the shaft portion 42 .
  • the first gas flow path 44 has an opening 42b on the end surface 42a of the shaft portion 42 .
  • the opening 42b is connected to an external gas supply source (such as an air pump).
  • Gas supplied from the gas supply source flows into the first gas flow path 44 through the opening 42b.
  • the gas supplied from the gas supply source may be, for example, a dry gas that fills the internal space S of the cooling device 4 (see FIG. 1).
  • An end portion of the first gas flow path 44 located on the side opposite to the opening 42b is connected to a flow path branching portion 45 (gas supply portion) of the cylindrical portion 43 .
  • the gas that has flowed into the first gas channel 44 is supplied to the channel branching portion 45 .
  • the first gas flow path 44 is formed such that its inner diameter gradually decreases from the opening 42b side toward the flow path branching portion 45 side.
  • the columnar portion 43 is a substantially columnar member, and is accommodated so as to be sandwiched between the first accommodating portion 33 and a second accommodating portion 73, which will be described later.
  • the cylindrical portion 43 has a flow path branching portion 45 , a plurality of second gas flow paths 46 and a plurality of ejection ports 47 .
  • the channel branching part 45 is an internal space having a substantially cylindrical shape, and branches the flow direction of the gas supplied from the first gas channel 44 into a plurality of directions.
  • An inner peripheral surface 45a that defines the flow path branching portion 45 is provided with a plurality of openings at regular intervals along the circumferential direction thereof. The plurality of openings are connected to the plurality of second gas flow paths 46 respectively.
  • a plurality of second gas flow paths 46 are radially provided from the flow path branching portion 45 toward the outer peripheral surface of the cylindrical portion 43 (see FIG. 7).
  • One end of the second gas flow path 46 is connected to the opening provided on the inner peripheral surface 45 a as described above, and the other end is connected to the ejection port 47 provided on the outer peripheral surface of the cylindrical portion 43 .
  • a plurality of ejection ports 47 are provided at regular intervals along the outer peripheral surface.
  • the gas supplied from the first gas flow path 44 stays in the flow path branching portion 45 and then branches to flow into the second gas flow path 46 .
  • the gas that has flowed into the second gas flow path 46 is ejected from the ejection port 47 .
  • the cross section of the second gas flow path 46 is circular. A portion of the second gas flow path 46 located on the ejection port 47 side is formed to have a larger inner diameter than a portion located on the inner peripheral surface 45a side.
  • the shape of the second gas flow path 46 is not limited to the shape described above.
  • the cross section of the second gas flow path 46 may be elliptical or polygonal.
  • the second gas channel 46 may be a straight channel with a constant cross-sectional area.
  • the outer peripheral surface of the cylindrical portion 43 has a first cylindrical surface 50, a buffer groove 51 and a second cylindrical surface 52 in this order along the central axis C, as shown in FIG.
  • the first cylindrical surface 50 is located closer to the shaft portion 42 than the buffer groove 51 is.
  • the first cylindrical surface 50 faces the inner peripheral surface 32 b of the peripheral wall portion 32 .
  • the first cylindrical surface 50 has a first groove portion 54 as shown in FIG.
  • the first groove portion 54 is a concave portion that is recessed toward the inner side of the internal member 40 (the side of the central axis C shown in FIG. 4 ), and is annularly provided continuously along the first cylindrical surface 50 .
  • the first groove portion 54 is a bottomed rectangular groove defined by a bottom surface 54a and a pair of opposing side surfaces 54b.
  • a first seal member 65 is fitted in the first groove portion 54 .
  • the first seal member 65 may be an O-ring made of elastic resin, for example.
  • the first seal member 65 seals the gap between the first cylindrical surface 50 and the inner peripheral surface 32b of the peripheral wall portion 32 to prevent the gas ejected from the ejection port 47 from flowing into the gap.
  • the width of the first groove portion 54 in the direction along the central axis C is slightly larger than the width of the cross section of the first seal member 65. As shown in FIG. Thereby, the first flange 30 can be smoothly moved with respect to the internal member 40 .
  • the buffer groove 51 is a concave portion recessed toward the central axis C, and is continuously provided in an annular shape along the outer peripheral surface of the internal member 40 .
  • the buffer groove 51 is a bottomed rectangular groove, and has a plurality of ejection ports 47 on the bottom surface. After the gas ejected from the plurality of ejection ports 47 is dispersed in the circumferential direction (or after the gas is once stopped), the buffer groove 51 releases the gas from the gap 80 between the first flange 30 and the second flange 70 to the outside. blow out to
  • the second cylindrical surface 52 is located farther from the shaft portion 42 than the buffer groove 51 is.
  • the second cylindrical surface 52 faces the inner peripheral surface 72 b of the peripheral wall portion 72 when the internal member 40 is accommodated in the second accommodation portion 73 described later.
  • the second cylindrical surface 52 has a second groove portion 56 as shown in FIG.
  • the second groove portion 56 is a concave portion that is recessed inside the internal member 40 (on the side of the central axis C shown in FIG. 4 ), and is annularly provided continuously along the second cylindrical surface 52 .
  • the second groove portion 56 is a bottomed rectangular groove defined by a bottom surface 56a and a pair of opposing side surfaces 56b.
  • a second seal member 66 is fitted in the second groove portion 56 .
  • the second seal member 66 may be an O-ring made of elastic resin, for example.
  • the second seal member 66 seals the gap between the second cylindrical surface 52 and the inner peripheral surface 72b of the peripheral wall portion 72 to prevent the gas ejected from the ejection port 47 from flowing into the gap.
  • the width of the second groove portion 56 (the distance between the pair of side surfaces 56b) in the direction along the central axis C is slightly larger than the cross-sectional width of the second seal member 66. As shown in FIG. Thereby, the second flange 70 can be smoothly moved with respect to the internal member 40 .
  • the internal member 40 has a plate accommodating portion 57 as shown in FIG.
  • the plate accommodating portion 57 is a substantially cylindrical space that can accommodate the plate 60 .
  • the inner diameter of the plate accommodating portion 57 is larger than the inner diameter of the channel branching portion 45 .
  • An inner peripheral surface 57 a that defines the plate accommodating portion 57 and an inner peripheral surface 45 a that defines the flow path branching portion 45 are connected by an inner surface 58 .
  • the inner side surface 58 extends along a plane perpendicular to the central axis C and is annularly provided so as to surround the central axis C. As shown in FIG.
  • the inner side surface 58 is provided with a plurality of screw holes 58a to which a plurality of screws 91 for fixing the plate 60 to the body portion 41 are respectively attached.
  • the plate 60 is a plate member having a circular shape in plan view, as shown in FIG.
  • the plate 60 is housed in the plate housing portion 57 of the body portion 41 .
  • Plate 60 has a first side 61 , a second side 62 and an outer peripheral surface 63 .
  • the first side surface 61 and the second side surface 62 are surfaces that form side surfaces of the plate 60 in the direction along the central axis C.
  • the outer peripheral surface 63 is a surface that connects the outer edge of the first side surface 61 and the outer edge of the second side surface 62 .
  • the first side surface 61 is provided with a third groove 61a.
  • the third groove portion 61a is continuously provided in an annular shape so as to surround the central axis C.
  • the third groove portion 61a is a bottomed rectangular groove, and a third sealing member 67 is fitted therein.
  • the third sealing member 67 may be an O-ring made of elastic resin, for example. The third sealing member 67 seals the gap between the inner side surface 58 and the first side surface 61 to prevent the gas supplied to the flow path branching portion 45 from leaking out through the gap.
  • the plate 60 is provided with a plurality of through holes 64 penetrating from the first side surface 61 toward the second side surface 62, as shown in FIG.
  • the plurality of through-holes 64 are arranged in a ring shape surrounding the central axis C.
  • a plurality of screws 91 are inserted into the plurality of through holes 64 respectively.
  • the tip of the screw 91 inserted into the through-hole 64 is attached to the screw hole 58 a of the body portion 41 . Thereby, the plate 60 is fixed to the main body portion 41 while being accommodated in the plate accommodating portion 57 .
  • the second flange 70 is a member that is provided on the side of the non-contact guide 20 and accommodates part of the internal member 40 .
  • the second flange 70 has a configuration similar to that of the first flange 30 .
  • the second flange 70 is located on the opposite side of the first flange 30 in the direction along the central axis C, and is attached to the inner member 40 in a direction opposite to that of the first flange 30. good too. That is, in this embodiment, one flange can be used for both the first flange 30 and the second flange 70, so there is no need to prepare different shaped flanges for the first flange 30 and the second flange 70. good.
  • the second flange 70 has a disc portion 71 having a circular shape in plan view and a peripheral wall portion 72 formed along the outer periphery of the disc portion 71 .
  • the disc portion 71 is provided with one hole portion 71a and a plurality of screw holes 71b.
  • the hole portion 71 a is a through hole provided at the center of the disk portion 71 .
  • the plurality of screw holes 71b are small-diameter through-holes scattered around the hole 31a.
  • the peripheral wall portion 72 has an outer peripheral surface 72a facing the outside of the second flange 70, and an inner peripheral surface 72b facing the inside of the second flange 70 (the side of the second housing portion 73 described later). As shown in FIG. 4, the end of the outer peripheral surface 72a on the side of the first flange 30 is curved inward toward the central axis C and connected to the end of the inner peripheral surface 72b. That is, the end portion of the outer peripheral surface 72a has a curved shape in a cross-sectional view. Between the outer peripheral surface 72a of the second flange 70 and the outer peripheral surface 32a of the first flange 30, the gap 80 through which the bare optical fiber 10 passes is provided as described above.
  • the surface of the outer edge of the second flange 70 that defines the gap 80 has a Vickers hardness of, for example, 800 HV or higher, and more preferably 1500 HV or higher.
  • the method for measuring the Vickers hardness is the same as the method for measuring the Vickers hardness of the surface of the first flange 30 described above.
  • the second flange 70 has a second accommodation portion 73 in which a portion of the internal member 40 is accommodated.
  • the second housing portion 73 is a substantially cylindrical space defined by the surface of the disk portion 71 and the inner peripheral surface 72 b of the peripheral wall portion 72 .
  • the inner peripheral surface 72b of the peripheral wall portion 72 faces the second cylindrical surface 52 of the internal member 40 as shown in FIG.
  • the second flange 70 is not fixed to the inner member 40 and is movable relative to the inner member 40 .
  • the second flange 70 may be detachable from the internal member 40 . Since the second flange 70 is detachable, maintenance of the gap 80 (removal of the bare optical fiber 10 clogged in the gap 80, confirmation of scratches on the outer peripheral surfaces 32a, 72a, etc.) can be easily performed. .
  • FIG. FIG. 7 is a cross-sectional view of the non-contact guide 20 taken along line VII-VII shown in FIG.
  • the first flange 30 and the second flange 70 are attached to the inner member 40 such that a gap 80 is provided between the outer edge of the first flange 30 and the outer edge of the second flange 70, as shown in FIG. .
  • a gap 80 is provided between the outer peripheral surface 32 a of the first flange 30 and the outer peripheral surface 72 a of the second flange 70 .
  • the gap 80 is provided so as to surround the central axis C along the circumferential direction of the non-contact guide 20, as shown in FIG.
  • the bare optical fiber 10 is passed through the gap 80 . Specifically, the bare optical fiber 10 enters the gap 80 from the wire entry portion 81 , moves along the gap 80 , and then exits from the wire exit portion 82 . In the example shown in FIG. 7 , the bare optical fiber 10 moves in an area that is about half of the gap 80 in the circumferential direction. That is, the moving direction of the bare optical fiber 10 is changed by approximately 180° by the non-contact guide 20 .
  • the positions of the incoming line portion 81 and the outgoing line portion 82 described above are determined by the amount of change in the moving direction of the bare optical fiber 10 .
  • the moving direction of the bare optical fiber 10 is changed by about 180 degrees as described above. Therefore, the outgoing wire portion 82 is set at a position shifted from the incoming wire portion 81 by about half the length of the gap 80 in the circumferential direction. For example, when the moving direction of the bare optical fiber 10 is changed by about 90°, the outgoing wire portion 82 is shifted from the incoming wire portion 81 by about a quarter of the length of the gap 80 in the circumferential direction (see FIG. 7). the uppermost part of the gap 80).
  • the gap 80 is spatially connected to the buffer groove 51 and the ejection port 47, as shown in FIG.
  • the gas ejected from the ejection port 47 passes through the buffer groove 51 and is ejected to the outside of the non-contact guide 20 through the gap 80 .
  • the gas blown out from the gap 80 is blown onto the bare optical fiber 10 passed through the gap 80 .
  • the wind pressure of the gas keeps the bare optical fiber 10 floating from the outer peripheral surface 32 a of the first flange 30 and the outer peripheral surface 72 a of the second flange 70 . That is, the optical fiber bare wire 10 is in a floating state in the gap 80 .
  • the second flange 70 is not fixed to the internal member 40 and is movable in the direction of changing the width W of the gap 80.
  • the width W of the gap 80 refers to the distance between the closest portions of the outer peripheral surface 32a of the first flange 30 and the outer peripheral surface 72a of the second flange 70 that face each other.
  • a moving method of the second flange 70 is not limited.
  • the width W of the gap 80 may be changed by moving the second flange 70 in the direction along the central axis C.
  • the width W of the gap 80 may be changed by rotating the second flange 70 in the direction of the arrow T about the imaginary point P shown in FIG. In this case, the width W of the gap 80 near the imaginary point P (the lower part in FIG. 4) becomes smaller, and the width W of the part farther from the imaginary point P (the upper part in FIG. 4) becomes larger. do.
  • the pressure (blowing pressure) of the gas blown out from the gap 80 depends on factors such as the pressure (inlet pressure) of the gas supplied to the first gas flow path 44 (see FIG. 4) and the width W of the gap 80. It is also affected by factors such as the winding diameter D1 of the non-contact guide 20 .
  • the winding diameter D1 is the diameter of a circle formed by the bare optical fiber 10 when the bare optical fiber 10 is passed over the entire circumference of the gap 80 (circle B indicated by a solid line and a broken line in FIG. 7). means diameter.
  • the blowing pressure is optimized by adjusting the above elements (groove width) according to the tension of the bare optical fiber 10, the fiber diameter of the bare optical fiber 10, and the like.
  • the tension applied to the bare optical fiber 10 is small, and if the pressure of the blown gas is high, the bare optical fiber 10 resonates and becomes non-uniform.
  • the contact guide 20 is touched. Therefore, the blowing pressure is decreased while the linear velocity of the bare optical fiber 10 is increased.
  • the tension of the bare optical fiber 10 is kept high, so the blowing pressure is increased.
  • a method of increasing the blowing pressure for example, a method of increasing the inlet pressure and decreasing the width W of the gap 80 can be adopted.
  • the width W of the gap 80 is adjusted so that the inlet pressure is optimally in the range of 50 kPa or more and 200 kPa or less.
  • the flow rate of the gas blown out from the gap 80 of one non-contact guide 20 may be 30 L/min or more and 150 L/min or less.
  • the width W of the gap 80 is reduced until the inlet pressure reaches a predetermined value (for example, 200 kPa) while a constant flow rate of gas is flowing. At this time, the width W of the gap 80 may be reduced by, for example, bringing the second flange 70 closer to the first flange 30 . After that, the width W of the gap 80 is gradually increased until the blowing pressure reaches an optimum level (a size that allows the bare optical fiber 10 to float appropriately). At this time, the width W of the gap 80 may be increased by, for example, separating the second flange 70 from the first flange 30 .
  • This blowing pressure adjustment work may be performed for each non-contact guide 20 shown in FIG. Also, the adjustment work may be performed at any timing during the manufacturing process of the optical fiber strand 11 .
  • the non-contact guide 20 has a sealing member 68, as shown in FIG.
  • the sealing member 68 seals at least one of the plurality of ejection ports 47 to prevent gas from passing through the ejection port 47 .
  • the sealing member 68 may be made of an elastic material such as resin.
  • the sealing member 68 has an elongated shape and is fitted into a partial area of the buffer groove 51 so as to block the ejection port 47 . In this embodiment, the sealing member 68 is fitted into approximately half the area of the buffer groove 51 . Gas does not flow into some of the second gas flow paths 46 whose ejection ports 47 are sealed by the sealing member 68, and gas flows into other second gas flow paths 46 whose ejection ports 47 are not sealed. .
  • sealing member 68 is provided so as not to overlap the bare optical fiber 10 passed through the gap 80 in the direction from the central axis C toward the outer periphery of the non-contact guide 20 (radial direction of the non-contact guide 20). be done.
  • the portion of the sealing member 68 excluding both ends is provided so as not to overlap the bare optical fiber 10 passed through the gap 80 in the circumferential direction.
  • a pair of gas release portions 84 are provided between both ends of the sealing member 68 and the bare optical fiber 10 to allow the gas in the buffer groove 51 to flow out.
  • the shape of the sealing member 68 is not limited to that described above.
  • the plurality of ejection ports 47 are sealed by one continuous sealing member 68.
  • the plurality of ejection ports 47 are each sealed by a plurality of separate sealing members 68. may have been
  • the width of the gap 80 can be widened by moving at least one of the first flange 30 and the second flange 70 .
  • This facilitates maintenance of the non-contact guide 20 such as removing the bare optical fiber 10 clogging the gap 80 and cleaning the surfaces of the first flange 30 and the second flange 70 that define the gap 80 .
  • the pressure of the gas blown out from the non-contact guide 20 can be adjusted. Therefore, it is possible to blow the gas with an appropriate pressure to the bare optical fiber 10 according to the type and condition of the bare optical fiber 10 to be passed through the gap 80 .
  • the first flange 30 may be attached movably to the internal member 40 without being fixed to the internal member 40 .
  • the width W of the gap 80 may be adjusted by moving the first flange 30 together with or instead of the second flange 70 .
  • the moving mechanism for moving the flange can be simplified.
  • At least one of the first flange 30 and the second flange 70 may be movable with respect to the inner member 40 , but the first flange 30 is fixed to the inner member 40 and the second flange 70 is attached to the inner member 40 .
  • the movement mechanism for moving the flange can be simplified if it is movable with respect to.
  • FIG. 8 is a schematic diagram of an optical fiber manufacturing apparatus according to a modification.
  • the manufacturing apparatus 101 includes a drawing furnace 3, a cooling device 104, a coating device 5, a curing device 6, a directly-lower roller 107, a pulling roller 8, and a winding device 9, along the passage path of the bare optical fiber 10 and the bare optical fiber 11. It is prepared in order along.
  • the optical fiber preform 2 is heated and melted to draw the optical fiber bare wire 10 , and the optical fiber bare wire 10 is cooled to a predetermined temperature by the cooling device 104 .
  • the outer circumference of the cooled optical fiber bare wire 10 is coated with resin by the coating device 5 and the resin is cured by the curing device 6 to form the optical fiber bare wire 11 .
  • the direction of the optical fiber 11 is changed by the direct roller 107 and the optical fiber 11 is wound by the winding device 9 .
  • the above-described non-contact guide 20 is applied to the directly below roller 107 .
  • Other configurations of the manufacturing apparatus 101 are generally the same as those of the above-described optical fiber manufacturing apparatus 1, and overlapping descriptions are omitted.
  • the cooling device used may be the normal cooling device 104 or the cooling device 4 using the non-contact guide 20 described above.
  • the cooling device 104 cools the bare optical fiber 10 .
  • the cooling device 104 has an internal space S surrounded by an outer wall, for example, and the bare optical fiber 10 passes through the internal space S.
  • the outer wall of the cooling device 104 may be made of transparent glass or resin so that the inside of the cooling device 104 can be checked.
  • the cooling device 104 may have an intake port (not shown) for injecting cooling gas into the internal space S for cooling the bare optical fiber 10 .
  • the heat of the bare optical fiber 10 is released to the outside using the cooling gas as a coolant.
  • the cooling device 104 may have an exhaust port (not shown) for discharging the cooling gas.
  • the coating device 5 applies coating resin to the outer periphery of the bare optical fiber 10 cooled to a predetermined temperature by the cooling device 104 . Further, the curing device 6 cures the coating resin applied to the bare optical fiber 10 by irradiating it with ultraviolet rays to form the bare optical fiber 11 . The completed optical fiber strand 11 is sent to the directly below rollers 107 . A measuring device for measuring the fiber diameter of the optical fiber strand 11 with the coating resin cured may be provided immediately after the curing device 6 .
  • Directly below roller 107 is a non-rotating roller arranged in the drawing direction (vertical direction) connecting optical fiber preform 2 and coating device 5 and immediately below coating device 5 and curing device 6.
  • the moving direction of the fiber strand 11 is changed from the vertical direction to a predetermined direction.
  • the optical fiber strand 11 whose movement direction has been changed by the direct-lower roller 107 is sent to the pulling roller 8 .
  • the pulling roller 8 pulls and moves the optical fiber strand 11 .
  • the optical fiber strand 11 is sent from the traction roller 8 to the winding device 9 and is wound by the winding device 9 .
  • a tension meter may be installed in front of the pulling roller 8 to measure the drawing tension of the bare optical fiber 10 or bare optical fiber 11 .
  • the directly under roller 107 is a disc-shaped member constituted by a non-contact guide 20 (see FIG. 2) which is a non-rotating guide roller, and the optical fiber strand 11 is inserted into a gap 80 provided along the outer peripheral surface. is passed.
  • the gap 80 has a groove shape and functions as a guide portion that allows the optical fiber strand 11 to be wound in a non-rotating and non-contact state.
  • the width of the gap 80 may be adjustable based on the fiber diameter or drawing tension of the optical fiber strand 11 to be guided.
  • a plurality of ejection ports 47 are provided inside the gap 80 to eject gas for floating the optical fiber strands 11 .
  • the direct-lower roller 107 blows gas outward from the ejection port 47 to guide the optical fiber strand 11 in a non-rotating and non-contact state to change its direction. It should be noted that the non-contact roller applied to the direct-lower roller 107 may have a configuration different from that of the non-contact guide 20 as long as the direction of the guided optical fiber strand 11 can be changed in a non-contact state.
  • FIG. 9 is a cross-sectional view of the non-contact guide 20 applied to this modification taken along line VII-VII shown in FIG.
  • the first flange 30 and the second flange 70 are attached to the inner member 40 such that a gap 80 is provided between the outer edge of the first flange 30 and the outer edge of the second flange 70, as shown in FIG. .
  • a gap 80 is provided between the outer peripheral surface 32 a of the first flange 30 and the outer peripheral surface 72 a of the second flange 70 .
  • the gap 80 is provided along the circumferential direction of the non-contact guide 20 so as to surround the central axis C, as shown in FIG.
  • the optical fiber strand 11 is passed through the gap 80 .
  • the optical fiber strand 11 enters the gap 80 from the incoming wire portion 181 , moves along the gap 80 , and then exits from the outgoing wire portion 182 .
  • the optical fiber strand 11 moves in an area that is about one third of the gap 80 in the circumferential direction. That is, the moving direction of the optical fiber strand 11 is changed by about 120° by the non-contact guide 20 .
  • the positions of the incoming line portion 181 and the outgoing line portion 182 described above are determined by the amount of change in the moving direction of the optical fiber wire 11 .
  • the moving direction of the optical fiber strand 11 is changed by about 120° as described above. Therefore, the outgoing wire portion 182 is set at a position shifted from the incoming wire portion 181 by about one third of the length of the gap 80 in the circumferential direction. For example, when the moving direction of the optical fiber strand 11 is changed by about 90°, the outgoing wire portion 182 is shifted from the incoming wire portion 181 by about a quarter of the length of the gap 80 in the circumferential direction (see FIG. 9). lower part of the gap 80).
  • the gap 80 is spatially connected to the buffer groove 51 and the ejection port 47, as shown in FIG.
  • the gas ejected from the ejection port 47 passes through the buffer groove 51 and is ejected to the outside of the non-contact guide 20 through the gap 80 .
  • the gas blown out from the gap 80 is blown onto the optical fiber strand 11 passed through the gap 80 .
  • the wind pressure of the gas keeps the optical fiber 11 floating from the outer peripheral surface 32 a of the first flange 30 and the outer peripheral surface 72 a of the second flange 70 . That is, the optical fiber strand 11 is in a floating state in the gap 80 .
  • the pressure (blowing pressure) of the gas blown out from the gap 80 depends on factors such as the pressure (inlet pressure) of the gas supplied to the first gas flow path 44 (see FIG. 4) and the width W of the gap 80. It is also affected by factors such as the winding diameter D1 of the non-contact guide 20 .
  • the winding diameter D1 is the diameter of a circle formed by the optical fiber 11 when the optical fiber 11 is passed over the entire circumference of the gap 80 (circle B indicated by a solid line and a broken line in FIG. 9). means diameter.
  • the blowing pressure is optimized by adjusting the above elements (groove width) according to the tension (drawing tension) of the optical fiber 11 or the fiber diameter of the optical fiber 11 .
  • the tension applied to the optical fiber 11 is small, and if the pressure of the blown gas is high, the optical fiber 11 resonates, resulting in non-uniformity.
  • the contact guide 20 is touched. Therefore, the blowing pressure is decreased while the linear velocity of the optical fiber strand 11 is increased.
  • the tension of the optical fiber strand 11 is kept high, so the blowing pressure is increased.
  • a method of increasing the blowing pressure for example, a method of increasing the inlet pressure and decreasing the width W of the gap 80 can be adopted.
  • the width W of the gap 80 is adjusted so that the inlet pressure is in the range of 50 kPa or more and 200 kPa or less.
  • the flow rate of the gas blown out from the gap 80 of one non-contact guide 20 may be 30 L/min or more and 150 L/min or less.
  • the width W of the gap 80 is reduced until the inlet pressure reaches a predetermined value (for example, 200 kPa) while a constant flow rate of gas is flowing.
  • the width W of the gap 80 may be reduced by, for example, bringing the second flange 70 closer to the first flange 30 .
  • the width W of the gap 80 is gradually increased until the blowing pressure reaches an optimum level (a size at which the optical fiber strand 11 is appropriately floated).
  • the width W of the gap 80 may be increased by, for example, separating the second flange 70 from the first flange 30 . This adjustment work may be performed at any timing during the manufacturing process of the optical fiber strand 11 .
  • the non-contact guide 20 has a sealing member 168, as shown in FIG.
  • the sealing member 168 seals at least one of the plurality of ejection ports 47 to prevent gas from passing through the ejection port 47 .
  • the sealing member 168 may be made of an elastic material such as resin.
  • the sealing member 168 has an elongated shape and is fitted into a partial area of the buffer groove 51 so as to block the ejection port 47 .
  • a sealing member 168 is fitted in approximately two-thirds of the area of the buffer groove 51 . Gas does not flow into some of the second gas flow paths 46 whose ejection ports 47 are sealed by the sealing member 168, and gas flows into other second gas flow paths 46 whose ejection ports 47 are not sealed. .
  • sealing member 168 is provided so as not to overlap the optical fiber strand 11 passed through the gap 80 in the direction from the central axis C toward the outer periphery of the non-contact guide 20 (radial direction of the non-contact guide 20). be done.
  • the portion of the sealing member 168 excluding both ends is provided so as not to overlap the optical fiber strand 11 passed through the gap 80 in the circumferential direction.
  • a pair of gas release portions 184 are provided between both ends of the sealing member 168 and the optical fiber strand 11 to allow the gas inside the buffer groove 51 to flow out.
  • the shape of the sealing member 168 is not limited to that described above.
  • the plurality of ejection ports 47 are sealed by one continuous sealing member 168.
  • the plurality of ejection ports 47 are each sealed by a plurality of separate sealing members 168. may have been
  • the non-contact guide 20 to the directly under roller 107, when winding the optical fiber 11 coated with resin, the optical fiber 11 is non-rotating and non-rotating.
  • the direction is changed by the directly below roller 107 which is a contact roller.
  • the optical fiber 11 is suspended by gas, that is, the optical fiber 11 is transported and wound in a non-rotating, non-contact state.
  • the direct roller does not rotate and the direction of the resin-coated optical fiber 11 can be changed without contacting the roller, so vibration from the non-contact roller is propagated to the bare optical fiber 10 and the like. not.
  • vibrations from various devices for example, the winding device 9, etc.
  • vibrations from various devices are attenuated by floating on the non-contact roller, and are less likely to propagate to the bare optical fiber 10, etc.
  • the non-contact roller applied to the directly under roller 107 is not limited to the roller having the configuration shown in FIG. It is sufficient that the guide portion is provided with a plurality of ejection ports for ejecting gas for floating the optical fiber strands 11 . Further, when a roller other than the direct-lower roller 107, for example, another roller is provided between the coating device 5 and the winding device 9, the roller may be a non-rotating non-contact roller as described above.
  • Cylindrical portion 44 ... First Gas flow path 45 Flow path branching portion 45a Inner circumferential surface 46 Second gas flow path 47 Jet port 50 First cylindrical surface 51 Buffer groove 52 Second cylindrical surface 54 First grooves 54a, 56a Bottom surface 54b, 56b Side surface 56 Second groove portion 57 Plate housing portion 57a Inner peripheral surface 58 Inner surface 58a Threaded hole 60 Plate 61 First side surface 61a Third groove portion 62 Second side surface 63 Outer periphery Surface 64 Through hole 65 First sealing member 66 Second sealing member 67 Third sealing member 68, 168 Sealing member 70 Second flange 73 Second accommodating portion 80 Gap 81, 181 Inlet portion 82, 182... Outlet portions 84, 184... Gas release parts 90, 91... Screw A... Area C... Central axis D1... Winding diameter P... Virtual point S... Internal space T... Arrow W... Width

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

非接触ガイドは、内部部材と、第1フランジおよび第2フランジとを備える。内部部材は、気体を噴出可能な複数の噴出口を外周面に有する。第1フランジおよび第2フランジは、複数の噴出口から噴出される気体の噴出方向と交差する第1方向において内部部材を挟み込むように収容する。第1フランジおよび第2フランジの少なくとも一方は、複数の噴出口から噴出された気体を通過させる隙間が第1フランジの外縁部と第2フランジの外縁部との間に設けられるように、内部部材に取り付けられている。第1フランジおよび第2フランジの少なくとも一方は、隙間の幅を変化させる方向に移動可能となっている。

Description

非接触ガイド、光ファイバの製造方法、および光ファイバの製造装置
 本開示は、非接触ガイド、光ファイバの製造方法、および光ファイバの製造装置に関する。
 本出願は、2022年3月3日出願の日本出願第2022-032799号および日本出願第2022-032804号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 特許文献1には、光ファイバ素線の製造方法の一例が開示されている。この製造方法では、光ファイバ母材を溶融して線引きを行い、線引きされた光ファイバ裸線の外周に被覆層を設けている。この線引きの際に、光ファイバ裸線の方向を方向変更器(非接触ガイド)によって変更する。特許文献2および特許文献3には、非接触ガイド又は非接触ガイドを用いた光ファイバの製造方法の他の例が開示されている。特許文献4には、光ファイバの製造方法が開示されている。この光ファイバの製造方法では、光ファイバ母材を溶融して線引きした光ファイバ裸線に樹脂を被覆する。そして、樹脂が被覆された光ファイバ素線を直下ローラで方向変更して巻取り装置で巻き取る。これにより、光ファイバが製造される。特許文献5には、紡糸工程からコーティング工程までのいずれかの位置で、エアガイドで光ファイバ裸線の方向を変更することが開示されている。特許文献6には、熱硬化性樹脂の被覆が未硬化のまま直下ローラに接触すると変形するので、直下ローラのガイド部から流体を吹き出して浮上させることが開示されている。
特開2016-124727号公報 特開昭62-3037号公報 特表2010-510957号公報 特開2020-147457号公報 特開2016-147771号公報 特開2020-007183号公報
 本開示は、内部部材と、第1フランジおよび第2フランジとを備える非接触ガイドを提供する。内部部材は、気体を噴出可能な複数の噴出口を外周面に有する。第1フランジおよび第2フランジは、複数の噴出口から噴出される気体の噴出方向と交差する第1方向において内部部材を挟み込むように収容する。第1フランジおよび第2フランジの少なくとも一方は、複数の噴出口から噴出された気体を通過させる隙間が第1フランジの外縁部と第2フランジの外縁部との間に設けられるように、内部部材に取り付けられる。第1フランジおよび第2フランジの少なくとも一方は、隙間の幅を変化させる方向に移動可能となっている。
図1は、一実施形態に係る光ファイバの製造装置の概略図である。 図2は、非接触ガイドを示す斜視図である。 図3は、図2に示す非接触ガイドを中心軸Cに沿って分解したときの分解斜視図である。 図4は、図2に示す非接触ガイドをIV-IV線に沿って切断した際の断面図である。 図5は、図2に示す非接触ガイドの内部部材を中心軸Cに沿って分解したときの分解斜視図である。 図6は、図4に示す非接触ガイドのうち破線で囲まれた領域Aの拡大図である。 図7は、図2に示す非接触ガイドをVII-VII線に沿って切断した際の断面図である。 図8は、変形例に係る光ファイバの製造装置の概略図である。 図9は、変形例において、図2に示す非接触ガイドをVII-VII線に沿って切断した際の断面図である。
[本開示が解決しようとする課題]
 非接触ガイドを用いて光ファイバを製造する際、線引きされた光ファイバ裸線を非接触ガイドの外周に沿って設けられた隙間に通して方向変更する。この際、非接触ガイドにおいて光ファイバ裸線が断線することがあり、断線した光ファイバ裸線が非接触ガイドの隙間に詰まることがある。この場合、隙間に詰まった光ファイバ裸線の除去は容易ではない。そこで、メンテナンスを容易に行うことができる非接触ガイドが望まれている。
[本開示の効果]
 本開示に係る非接触ガイドによれば、メンテナンスを容易に行うことができる。
[本開示の実施形態の説明]
 最初に、本開示の実施形態の内容を列記して説明する。一実施形態に係る非接触ガイドは、内部部材と、第1フランジおよび第2フランジとを備える。内部部材は、気体を噴出可能な複数の噴出口を外周面に有する。第1フランジおよび第2フランジは、複数の噴出口から噴出される気体の噴出方向と交差する第1方向において内部部材を挟み込むように収容する。第1フランジおよび第2フランジの少なくとも一方は、複数の噴出口から噴出された気体を通過させる隙間が第1フランジの外縁部と第2フランジの外縁部との間に設けられるように、内部部材に取り付けられている。第1フランジおよび第2フランジの少なくとも一方は、隙間の幅を変化させる方向に移動可能となっている。
 この非接触ガイドでは、第1フランジおよび第2フランジの少なくとも一方を移動させることにより、光ファイバ裸線又は光ファイバ素線(以下「光ファイバ裸線等」とも記す)を通すための隙間の幅を広げることができる。これにより、隙間に詰まった光ファイバ裸線等の除去や、隙間を画定する第1フランジおよび第2フランジの表面の清掃といった非接触ガイドのメンテンナンスを容易に行うことができる。また、隙間の幅を変化させることにより、非接触ガイドから吹き出される気体の圧力を調整可能となっている。そのため、隙間に通される光ファイバ裸線等の種類および状態に合わせて適切な圧力の気体を光ファイバ裸線等に吹き付けることができる。
 一実施形態として、内部部材の外周面は、外周面の周方向に沿って延在するバッファ溝を有していてもよい。複数の噴出口は、バッファ溝の底部に設けられていてもよい。バッファ溝は、噴出方向において隙間と空間的に接続していてもよい。この場合、複数の噴出口から噴出された気体は、バッファ溝において周方向に分散された後に隙間から外部へと吹き出される。すなわち、隙間から吹き出される気体の圧力むらがバッファ溝によって低減される。これにより、光ファイバ裸線等の方向転換をより安定的に行うことができる。
 一実施形態として、内部部材は円盤形状であり、外部から気体が供給される気体供給部、および、気体供給部と複数の噴出口とをそれぞれ繋ぐ複数の気体流路を有していてもよい。気体供給部は、内部部材の中央部分に位置していてもよい。複数の気体流路は、気体供給部から複数の噴出口へと放射状に設けられていてもよい。複数の噴出口は、外周面の周方向に沿って位置していてもよい。この場合、複数の噴出口が内部部材の外周面の特定領域に集中して位置せず、分散して配置されるので、隙間から吹き出される気体の圧力むらが低減される。これにより、光ファイバ裸線等の方向転換をより安定的に行うことができる。
 一実施形態として、気体流路は断面が円形であり、噴出口側の内径が気体供給部側の内径よりも大きくてもよい。この場合、噴出口側の内径を大きくすることで、隙間から吹き出される気体の圧力むらが低減される。これにより、光ファイバ裸線等の方向転換をより安定的に行うことができる。
 一実施形態として、内部部材の外周面は、第1方向において複数の噴出口を挟んで位置する第1円柱面および第2円柱面を有していてもよい。第1フランジは、内部部材を収容した際に第1円柱面と対向する内周面によって画定される第1収容部を有していてもよい。第2フランジは、内部部材を収容した際に第2円柱面と対向する内周面によって画定される第2収容部を有していてもよい。第1円柱面と第1収容部の内周面との間、および第2円柱面と第2収容部の内周面との間には、それぞれシール部材が設けられていてもよい。この場合、第1円柱面と第1収容部の内周面との隙間、および第2円柱面と第2収容部の内周面との隙間がそれぞれシール部材によって封止され、噴出口から噴射された気体がフランジ間に設けられた隙間以外の隙間に流れ込むことが防止される。すなわち、非接触ガイドに供給した気体が意図しない隙間に流れ込むことを防止し、気体を光ファイバ裸線等の浮遊に効率良く使用できる。
 一実施形態として、複数の噴出口のうちの少なくとも一つを封止する封止部材を更に備えていてもよい。この場合、光ファイバ裸線等の浮遊に寄与しない噴出口から気体が漏れ出ないように、当該噴出口を封止部材で封止することができる。すなわち、非接触ガイドに供給した気体を光ファイバ裸線等の浮遊に効率良く使用できる。
 一実施形態として、隙間を画定する、第1フランジの外縁部の表面および第2フランジの外縁部の表面の少なくとも一方のビッカース硬度は、800HV以上であってもよい。この場合、隙間を画定する各フランジの表面に光ファイバ裸線等が接触した場合でも傷が生じづらい。そのため、隙間から吹き出される気体の流れが傷によって乱されにくく、安定して気体が吹き出される。これにより、隙間に通される光ファイバ裸線等の浮遊状態を維持しやすくなる。
 一実施形態に係る光ファイバの製造方法は、上述した何れかの態様の非接触ガイドを用いた光ファイバの製造方法である。この光ファイバの製造方法は、光ファイバ母材を溶融して光ファイバ裸線を線引きする工程と、光ファイバ裸線を冷却する工程と、光ファイバ裸線を樹脂により被覆して光ファイバ素線を形成する工程と、を備える。冷却する工程では、光ファイバ裸線を非接触ガイドの隙間に通し、噴出口から噴出される気体を吹き付けることによって光ファイバ裸線を浮遊させつつ非接触ガイドを軸として光ファイバ裸線の方向を変更する。
 一実施形態に係る光ファイバの製造装置は、上述した何れかの態様の非接触ガイドを用いた光ファイバの製造装置である。この光ファイバの製造装置は、光ファイバ母材から光ファイバ裸線を線引きするために光ファイバ母材を溶融する溶融装置と、光ファイバ裸線を冷却する冷却装置と、光ファイバ裸線を樹脂により被覆して光ファイバ素線を形成するコーティング装置と、を備える。冷却装置は、光ファイバ裸線を非接触ガイドの隙間に通し、噴出口から噴出される気体を吹き付けることによって光ファイバ裸線を浮遊させつつ冷却する装置である。
 上記の一実施形態に係る光ファイバの製造方法および製造装置では、光ファイバ裸線に非接触ガイドの隙間から気体が直接吹き付けられる。これにより、光ファイバ裸線の冷却が効率良く行われる。
 上記の光ファイバの製造方法および製造装置の実施形態において、第1フランジおよび第2フランジの少なくとも一方を移動し、隙間の幅を調整してもよい。この場合、光ファイバ裸線等の径又は種類等に応じて隙間の幅を調整することができ、光ファイバ裸線に吹き付けられる気体の圧力を適切な大きさに保つことができる。これにより、光ファイバ裸線の浮遊状態を維持することができる。
 別の実施形態に係る光ファイバの製造方法は、上述した何れかの態様の非接触ガイドを用いた光ファイバの製造方法である。この別の実施形態に係る光ファイバの製造方法は、光ファイバ母材を溶融して光ファイバ裸線を線引きする工程と、光ファイバ裸線を樹脂により被覆して光ファイバ素線を形成する工程と、直下ローラにより光ファイバ素線を方向変更して光ファイバ素線を巻取り装置で巻き取る工程と、を備える。この製造方法では、直下ローラは、上述した何れかの態様の非接触ガイドである。
 別の実施形態に係る光ファイバの製造装置は、上述した何れかの態様の非接触ガイドを用いた光ファイバの製造装置である。この別の実施形態に係る光ファイバの製造装置は、光ファイバ母材から光ファイバ裸線を線引きするために光ファイバ母材を溶融する溶融装置と、光ファイバ裸線を冷却する冷却装置と、光ファイバ裸線を樹脂により被覆して光ファイバ素線を形成するコーティング装置と、光ファイバ素線を巻き取る巻取り装置と、光ファイバ素線の通過経路においてコーティング装置と巻取り装置との間に位置し、光ファイバ素線を方向変更する直下ローラと、を備える。直下ローラは、非接触ガイドである。
 従来の光ファイバの製造方法では、光ファイバ素線を方向変更する直下ローラにおいて、回転軸とローラの垂直度とのずれに起因する微小な振動(あおり振動)が生じることがある。この微小な振動は、直下ローラにガイドされる光ファイバ素線およびそれに連なる光ファイバ裸線に伝搬し、光ファイバ裸線等を振動させる。光ファイバ裸線等が振動すると、樹脂を被覆中の光ファイバ裸線が所定経路から水平方向に僅かにずれ、光ファイバ素線の被覆樹脂に偏肉を生じさせたり、外径変動を生じさせたりしてしまう。また、それらの変動に伴い、光ファイバの品質特性にも変動が生じる可能性がある。また、従来のローラでは、ベアリングの回転抵抗が線引き張力に加算されてしまい、ベアリングの回転抵抗には個体差があるため、線引き張力を良好の範囲に合わせ込めない可能性もある。更に、1本の光ファイバに複数のコアを持つマルチコア光ファイバの製造方法では、直下ローラのあおり振動により、直下ローラの溝の底で光ファイバが転がり、長手方向に捻じれる場合がある。マルチコア光ファイバが捻れると、例えば、マルチコアファイバ同士を接続する際に、複数のコアを正しい順番および位置で対向させることが難しくなる。これに対し、上記の別の実施形態に係る光ファイバの製造方法および製造装置では、樹脂が被覆された光ファイバ素線を巻き取る際、当該光ファイバ素線を直下ローラで方向変更している。この直下ローラは非接触のガイドローラであり、接触せずに、光ファイバ素線を搬送している。この場合、直下ローラに光ファイバ素線が接触しないため、直下ローラからの振動が光ファイバ裸線等に伝搬されない。このため、この別の実施形態によれば、光ファイバ裸線への樹脂の被覆を適切に行って、被覆偏肉等の変動を抑制した光ファイバを製造することができる。なお、この非接触のガイドローラは、非回転式のガイドローラであってもよい。
 上記の光ファイバの製造方法または製造装置の別の実施形態は、線引き張力を測定する工程又は測定装置を更に備えてもよい。この場合において、巻き取る工程又は制御装置では、測定された線引き張力に基づいて非接触ガイドの隙間の幅を調整して、非接触ガイドを介して光ファイバ素線を巻き取ってもよい。この場合、線引き張力に応じた吹出圧で気体を吹き付けることで、適切な浮遊量としながら、光ファイバ素線を非接触ガイドによってガイドすることができる。そのため、この実施形態によれば、被覆偏肉等の変動を更に抑制した光ファイバを製造することができる。
 上記の光ファイバの製造方法または製造装置の別の実施形態は、光ファイバ素線のファイバ径を測定する工程又は測定装置を更に備えてもよい。この場合において、巻き取る工程又は制御装置では、測定されたファイバ径に基づいて非接触ガイドの隙間の幅を調整して、非接触ガイドを介して光ファイバ素線を巻き取ってもよい。この場合、光ファイバ素線のファイバ径に応じた隙間の幅とすることで、適切な浮遊量としながら、光ファイバ素線を非接触ガイドによってガイドすることができる。そのため、この実施形態によれば、被覆偏肉等の変動を更に抑制した光ファイバを製造することができる。
[本開示の実施形態の詳細]
 本開示に係る非接触ガイド、光ファイバの製造方法、および光ファイバの製造装置の具体例を、以下に図面を参照しつつ説明する。以下の説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 図1を参照して、一実施形態に係る光ファイバの製造方法および光ファイバの製造装置について説明する。図1は、一実施形態に係る光ファイバの製造装置1の概略図である。製造装置1は、図1に示されるように、光ファイバ母材2を加熱溶融して光ファイバ裸線10の線引きを行い、その光ファイバ裸線10の外周に被覆樹脂を設けることにより光ファイバ素線11を製造する装置である。製造装置1は、線引き炉3、冷却装置4、コーティング装置5、硬化装置6、直下ローラ7、牽引ローラ8および巻取り装置9を、光ファイバ裸線10および光ファイバ素線11の通過経路に沿って順に備えている。
 線引き炉3は、光ファイバ母材2を加熱溶融して鉛直方向(図1に示す方向X)に沿って線引きできるようにすることにより光ファイバ裸線10を形成する。線引き炉3は、光ファイバ母材2の周囲に位置するヒータを有する。光ファイバ母材2は、例えば石英ガラスを含むガラス体(プリフォーム)である。光ファイバ裸線10は、例えばコアと、コアの外周を覆うクラッドを含むガラス線である。線引き炉3は、光ファイバ母材2の下端をヒータによって加熱し軟化させた後に線引きを行えるようにする。線引きされた光ファイバ裸線10は、冷却装置4へと送られる。
 冷却装置4は、光ファイバ裸線10を冷却する。冷却装置4は、例えば外壁によって囲まれる内部空間Sを有し、当該内部空間Sの中を光ファイバ裸線10が通過する。冷却装置4の外壁は、冷却装置4の内部を確認できるように透明なガラス又は樹脂によって構成されていてもよい。冷却装置4は、光ファイバ裸線10を冷却するための乾燥ガスを内部空間Sに注入するための吸気口(不図示)を有していてもよい。光ファイバ裸線10の熱は、乾燥ガスを冷媒として外部に放出される。冷却装置4は、乾燥ガスを排出するための排気口(不図示)を有している。なお、外壁で囲むことにより、冷却装置4内部の露点管理や、断線時の光ファイバの飛散防止が可能となるが、外壁で囲まずに、後述する非接触ガイド20によって光ファイバ裸線10を冷却するだけであってもよい。また、外壁で囲った場合であっても、内部空間Sに乾燥ガスを注入せずに光ファイバ裸線10を外気に直接触れないようにするだけであってもよい。
 光ファイバ裸線10は、複数の非接触ガイド20によって進行方向を変化させられながら蛇行するように内部空間Sを通過する。光ファイバ裸線10は、各非接触ガイド20の間を方向Xおよび方向Yに対して傾斜する方向に通過する。本実施形態において、製造装置1の高さ方向を方向Xとし、幅方向を方向Yとし、奥行き方向を方向Zとする。本実施形態においては、方向X、方向Yおよび方向Zは互いに直交する。冷却装置4は、7個の非接触ガイド20を有する。非接触ガイド20A,20B,20C,20D,20E,20F,20Gは、光ファイバ裸線10の走行路において、この順に設けられている。以下、各非接触ガイド20を区別して説明する必要のない場合には、単に非接触ガイド20と総称して説明を行う。冷却装置4が有する非接触ガイド20の個数は複数であればよく、7個に限定されない。例えば、冷却装置4は、3個以上15個以下の非接触ガイド20を有していてもよい。
 各非接触ガイド20は、光ファイバ裸線10の移動方向を変更する部材である。非接触ガイド20は、円盤形状の部材であり、外周に設けられた隙間80(図2を参照)に光ファイバ裸線10が通される。各非接触ガイド20は、内部空間Sを横切るように方向Yに沿って移動可能であってもよいし、移動せずに所定の位置にあってもよい。非接触ガイド20が移動可能な場合、本実施形態においては、3個の非接触ガイド20(非接触ガイド20B,20D,20F)が図1の紙面右側に向かって方向Yに沿って移動する。冷却装置4によって冷却された光ファイバ裸線10は、コーティング装置5へと送られる。非接触ガイド20の詳細については後述する。
 コーティング装置5は、光ファイバ裸線10の外周に被覆樹脂を塗布する。被覆樹脂は、例えば紫外線硬化型樹脂である。コーティング装置5は、種類の異なる2つの被覆樹脂を光ファイバ裸線10の外周に塗布してもよい。コーティング装置5は、例えばプライマリ樹脂を光ファイバ裸線10に塗布した後、プライマリ樹脂よりも硬度の高いセカンダリ樹脂をプライマリ樹脂の外側に塗布してもよい。コーティング装置5は、プライマリ樹脂とセカンダリ樹脂とを略同時に光ファイバ裸線10に塗布してもよい。被覆樹脂が塗布された光ファイバ裸線10は、硬化装置6に送られる。
 硬化装置6は、紫外線を照射することにより、光ファイバ裸線10に塗布された被覆樹脂を硬化させる。硬化装置6は、紫外線を出射する紫外線ランプ等の発光素子を有している。光ファイバ裸線10に塗布された被覆樹脂が硬化することにより、光ファイバ素線11が完成する。完成した光ファイバ素線11は、直下ローラ7へと送られる。
 直下ローラ7は、光ファイバ素線11の移動方向を方向Xに沿う方向から所定の方向へと変更する。直下ローラ7によって移動方向が変更された光ファイバ素線11は牽引ローラ8へと送られる。牽引ローラ8は、光ファイバ素線11を牽引し移動させる。牽引ローラ8の回転速度を変更することにより、光ファイバ素線11の移動速度を調整可能となっていてもよい。光ファイバ素線11は、牽引ローラ8から巻取り装置9へと送られ、巻取り装置9によって巻き取られる。以上で光ファイバ素線11の製造工程が終了する。
 次に、図2から図6を参照して、非接触ガイド20の構造について説明する。図2は、非接触ガイド20を示す斜視図である。図3は、非接触ガイド20を中心軸Cに沿って分解したときの分解斜視図である。図4は、非接触ガイド20を図2に示すIV-IV線に沿って切断した際の断面図である。図5は、内部部材40を中心軸Cに沿って分解したときの分解斜視図である。図6は、図4に示す破線で囲まれた領域Aの拡大図である。
 非接触ガイド20は、光ファイバ裸線10の移動方向を変更する部材である。非接触ガイド20は、平面視において円形状を有している。非接触ガイド20は、図2に示すように、第1フランジ30と第2フランジ70との間に隙間80を有している。隙間80は、非接触ガイド20の外周に沿って環状に設けられている。隙間80には、光ファイバ裸線10が通される。隙間80からは、外方に向けて、非接触ガイド20の内部に導入された気体が吹き出されている。吹き出された気体は、隙間80に通された光ファイバ裸線10に吹き付けられる。光ファイバ裸線10は、気体が吹き付けられることにより浮遊し、第1フランジ30および第2フランジ70と接触しないようになっている。これにより、非接触ガイド20が非回転式であっても、光ファイバ裸線10を傷付けることなく、方向変換することができる。
 非接触ガイド20は、図3に示すように、第1フランジ30、内部部材40、および、第2フランジ70を備える。第1フランジ30は、非接触ガイド20の側部に設けられ内部部材40の一部を収容する部材である。第1フランジ30は、平面視において円形状を有する円盤部31と、円盤部31の外周に沿って形成された周壁部32を有する。円盤部31には、図3に示すように、1つの孔部31aおよび複数のねじ穴31bが設けられている。孔部31aは、円盤部31の中心に設けられた貫通孔である。孔部31aは、図4に示すように、内部部材40が有する軸部42を挿通可能となっている。複数のねじ穴31bは、孔部31aを囲むように点在して設けられた小径の貫通孔である。複数のねじ穴31bは、複数のねじ90をそれぞれ挿通可能となっている。第1フランジ30は、ねじ90によって内部部材40に固定される。
 周壁部32は、第1フランジ30の外側に面する外周面32aと、第1フランジ30の内側(後述する第1収容部33側)に面する内周面32bとを有する。外周面32aの第2フランジ70側の端部は、図4に示すように、中心軸Cに向かって内側に湾曲し、内周面32bの端部と接続している。すなわち、外周面32aの端部は、断面視において曲線形状を有する。外周面32aと、後述する第2フランジ70の外周面72aとの間には、光ファイバ裸線10が通る隙間80が設けられている。隙間80を画定する第1フランジ30の外縁部の表面(本実施形態においては、外周面32a)が有するビッカース硬度は、例えば800HV以上であればよく、1500HV以上であればより好ましい。ビッカース硬度は、JIS Z2244:2009に基づいて測定される。具体的には、正四角錐のダイヤモンド圧子を、試料の表面(本実施形態においては外周面32a)に押し込み、表面に残ったくぼみの対角線長さからビッカース硬度を求める。
 第1フランジ30は、内部部材40の一部が収容される第1収容部33を有する。第1収容部33は、円盤部31の表面と周壁部32の内周面32bとによって画定される略円柱状の空間である。第1収容部33に内部部材40が収容された状態では、図4に示すように、周壁部32の内周面32bが内部部材40の第1円柱面50と対向する。
 内部部材40は、導入された気体を、第1フランジ30と第2フランジ70との間に隙間80から外部へと吹き出す部材である。内部部材40は、円盤形状を呈している。内部部材40は、図5に示すように、本体部41とプレート60とを備える。本体部41は、図4に示すように、中心軸Cに沿って延在する軸部42と、軸部42の一端に設けられた円柱部43を有する。軸部42の内部には、中心軸Cに沿って延びる第1気体流路44が形成されている。第1気体流路44は、軸部42の端面42aに開口42bを有する。開口42bは、外部の気体供給源(エアポンプ等)と繋がる。気体供給源から供給される気体は、開口42bを介して第1気体流路44に流れ込む。気体供給源から供給される気体は、例えば冷却装置4の内部空間S(図1を参照)に充満する乾燥ガスであってもよい。開口42bとは逆側に位置する第1気体流路44の端部は、円柱部43が有する流路分岐部45(気体供給部)と繋がっている。第1気体流路44に流れ込んだ気体は、流路分岐部45へと供給される。第1気体流路44は、開口42b側から流路分岐部45側に向かうにつれてその内径が段階的に小さくなるように形成されている。
 円柱部43は、略円柱状の部材であり、第1収容部33および後述する第2収容部73に挟まれるように収容される。円柱部43は、流路分岐部45、複数の第2気体流路46および複数の噴出口47を有する。流路分岐部45は、略円柱状を有する内部空間であり、第1気体流路44から供給された気体の流れる方向を複数方向に分岐させる。流路分岐部45を画定する内周面45aには、その周方向に沿って複数の開口が等間隔に設けられている。当該複数の開口は、複数の第2気体流路46とそれぞれ繋がっている。
 複数の第2気体流路46は、流路分岐部45から円柱部43の外周面に向かって放射状に設けられている(図7を参照)。第2気体流路46の一端は上述したように内周面45aに設けられた開口と繋がっており、他端は円柱部43の外周面に設けられた噴出口47と繋がっている。噴出口47は、外周面に沿って等間隔に複数設けられている。第1気体流路44から供給された気体は、流路分岐部45において滞留した後に分岐され、第2気体流路46へと流れ込む。第2気体流路46へと流れ込んだ気体は、噴出口47から噴出される。噴出口47から噴出された気体は、後述するバッファ溝51を介して隙間80から光ファイバ裸線10に吹き付けられる。本実施形態では、第2気体流路46の断面は円形状である。第2気体流路46のうち噴出口47側に位置する部分は、内周面45a側に位置する部分よりも内径が大きくなるように形成されている。第2気体流路46の形状は、上述した形状に限定されない。第2気体流路46の断面は、楕円形状又は多角形状であってもよい。第2気体流路46は、断面積が一定であるストレートな流路であってもよい。
 円柱部43の外周面は、図4に示すように、第1円柱面50、バッファ溝51および第2円柱面52を中心軸Cに沿ってこの順に有している。第1円柱面50は、バッファ溝51よりも軸部42側に寄って位置する。第1収容部33に内部部材40が収容された状態では、第1円柱面50は、周壁部32の内周面32bと対向する。第1円柱面50は、図6に示すように、第1溝部54を有している。第1溝部54は、内部部材40の内側(図4に示す中心軸C側)に向かって窪む凹部であり、第1円柱面50に沿って環状に連続して設けられている。第1溝部54は、有底の矩形溝であり、底面54aおよび対向する一対の側面54bにより画定される。
 第1溝部54には、第1シール部材65が嵌め込まれている。第1シール部材65は、例えば弾力性を有する樹脂から構成されたOリングであってもよい。第1シール部材65は、第1円柱面50と、周壁部32の内周面32bとの隙間を封止し、噴出口47から噴出された気体が当該隙間に流れ込むことを防止する。中心軸Cに沿う方向における第1溝部54の幅(一対の側面54b間の距離)は、第1シール部材65の断面の幅よりも若干大きく形成されている。これにより、第1フランジ30を内部部材40に対してスムーズに移動させることができる。
 バッファ溝51は、中心軸Cに向かって窪む凹部であり、内部部材40の外周面に沿って環状に連続して設けられている。バッファ溝51は、有底の矩形溝であり、底面に複数の噴出口47が設けられている。バッファ溝51は、複数の噴出口47から噴出された気体を周方向に分散した後(または当該気体を一旦留めた後)、第1フランジ30と第2フランジ70との隙間80から気体を外部へと吹き出す。
 第2円柱面52は、バッファ溝51よりも軸部42から離れて位置する。後述する第2収容部73に内部部材40が収容された状態では、第2円柱面52は、周壁部72の内周面72bと対向する。第2円柱面52は、図6に示すように、第2溝部56を有している。第2溝部56は、内部部材40の内側(図4に示す中心軸C側)に窪む凹部であり、第2円柱面52に沿って環状に連続して設けられている。第2溝部56は、有底の矩形溝であり、底面56aおよび対向する一対の側面56bにより画定される。
 第2溝部56には、第2シール部材66が嵌め込まれている。第2シール部材66は、例えば弾力性を有する樹脂から構成されたOリングであってもよい。第2シール部材66は、第2円柱面52と、周壁部72の内周面72bとの隙間を封止し、噴出口47から噴出された気体が当該隙間に流れ込むことを防止する。中心軸Cに沿う方向における第2溝部56の幅(一対の側面56b間の距離)は、第2シール部材66の断面の幅よりも若干大きく形成されている。これにより、第2フランジ70を内部部材40に対してスムーズに移動させることができる。
 内部部材40は、図5に示すように、プレート収容部57を有する。プレート収容部57は、プレート60を収容可能な略円柱状の空間である。プレート収容部57の内径は、流路分岐部45の内径よりも大きい。プレート収容部57を画定する内周面57aと、流路分岐部45を画定する内周面45aとは、内側面58によって接続されている。内側面58は、中心軸Cに垂直な面に沿って広がりを有し、中心軸Cを囲むように環状に設けられている。内側面58には、プレート60を本体部41に固定するための複数のねじ91がそれぞれ取り付けられる複数のねじ穴58aが設けられている。
 プレート60は、図5に示すように、平面視において円形状を有する板部材である。プレート60は、本体部41のプレート収容部57に収容される。プレート60は、第1側面61、第2側面62および外周面63を有する。第1側面61および第2側面62は、中心軸Cに沿う方向においてプレート60の側面を形成する面である。外周面63は、第1側面61の外縁と第2側面62の外縁とを接続する面である。プレート60がプレート収容部57に収容された状態において、第1側面61のうち外周面63寄りの領域は、プレート収容部57の内側面58と接触する。また、第1側面61の中央領域は、内側面58とは接触せず、流路分岐部45を画定する壁面として機能する。
 第1側面61には、図4に示すように、第3溝部61aが設けられている。第3溝部61aは、中心軸Cを囲むように環状に連続して設けられている。第3溝部61aは、有底の矩形溝であり、第3シール部材67が嵌め込まれている。第3シール部材67は、例えば弾力性を有する樹脂から構成されたOリングであってもよい。第3シール部材67は、内側面58と、第1側面61との隙間を封止し、当該隙間から流路分岐部45に供給された気体が外部に漏れ出ることを防止する。
 プレート60は、図5に示すように、第1側面61から第2側面62に向かって貫通する複数の貫通孔64が設けられている。複数の貫通孔64は、中心軸Cを囲む環状に並んで設けられている。複数の貫通孔64には、複数のねじ91がそれぞれ挿入される。貫通孔64に挿入されたねじ91の先端部は、本体部41のねじ穴58aに取り付けられる。これにより、プレート60がプレート収容部57に収容された状態で本体部41に対して固定される。
 第2フランジ70は、非接触ガイド20の側部に設けられ内部部材40の一部を収容する部材である。第2フランジ70は、第1フランジ30と同様の構成を有している。第2フランジ70は、図3に示すように、中心軸Cに沿う方向において第1フランジ30とは逆側に位置し、第1フランジ30とは反転した向きで内部部材40に取り付けられていてもよい。すなわち、本実施形態においては、1つのフランジを第1フランジ30および第2フランジ70の両方に用いることができるので、第1フランジ30および第2フランジ70それぞれに異なる形状のフランジを用意しなくともよい。
 第2フランジ70は、平面視において円形状を有する円盤部71と、円盤部71の外周に沿って形成された周壁部72を有する。円盤部71には、図3に示すように、1つの孔部71aおよび複数のねじ穴71bが設けられている。孔部71aは、円盤部71の中心に設けられた貫通孔である。複数のねじ穴71bは、孔部31aを囲むように点在して設けられた小径の貫通孔である。第2フランジ70を第1フランジ30の位置に付け替えた場合、孔部71aには、内部部材40が有する軸部42を挿通可能であり、複数のねじ穴71bには、複数のねじ90をそれぞれ挿通可能となっている。
 周壁部72は、第2フランジ70の外側に面する外周面72aと、第2フランジ70の内側(後述する第2収容部73側)に面する内周面72bとを有する。外周面72aの第1フランジ30側の端部は、図4に示すように、中心軸Cに向かって内側に湾曲し、内周面72bの端部と接続している。すなわち、外周面72aの端部は、断面視において曲線形状を有する。第2フランジ70の外周面72aと、第1フランジ30の外周面32aとの間には、上述したように光ファイバ裸線10が通る隙間80が設けられている。隙間80を画定する第2フランジ70の外縁部の表面(本実施形態においては、外周面72a)が有するビッカース硬度は、例えば800HV以上であればよく、1500HV以上であればより好ましい。ビッカース硬度の測定方法は、上述した第1フランジ30の表面が有するビッカース硬度の測定方法と同様である。
 第2フランジ70は、内部部材40の一部が収容される第2収容部73を有する。第2収容部73は、円盤部71の表面と周壁部72の内周面72bとによって画定される略円柱状の空間である。第2収容部73に内部部材40が収容された状態では、図4に示すように、周壁部72の内周面72bが内部部材40の第2円柱面52と対向する。第2フランジ70は内部部材40に固定されておらず、内部部材40に対して移動可能となっている。第2フランジ70は内部部材40に対して着脱可能となっていてもよい。第2フランジ70が着脱可能であることにより、隙間80のメンテナンス(隙間80に詰まった光ファイバ裸線10の除去又は外周面32a、72aに生じた傷の確認等)を容易に行うことができる。
 図6および図7を参照して、隙間80に光ファイバ裸線10を通した際の非接触ガイド20の構成について説明する。図7は、非接触ガイド20を図2に示すVII-VII線に沿って切断した際の断面図である。第1フランジ30および第2フランジ70は、図6に示すように、第1フランジ30の外縁部と第2フランジ70の外縁部との間に隙間80が設けられるように内部部材40に取り付けられる。本実施形態においては、第1フランジ30の外周面32aと第2フランジ70の外周面72aとの間に隙間80が設けられる。
 隙間80は、図7に示すように、非接触ガイド20の周方向に沿って中心軸Cを囲むように設けられている。隙間80には、光ファイバ裸線10が通される。具体的には、光ファイバ裸線10は、入線部81から隙間80に入り、隙間80に沿って移動した後、出線部82から外部へ出る。図7に示す例では、光ファイバ裸線10は、隙間80の周方向におけるおよそ2分の1の領域を移動する。すなわち、非接触ガイド20によって光ファイバ裸線10の移動方向が約180°変更される。上述した入線部81および出線部82の位置は、光ファイバ裸線10の移動方向の変更量によって定まる。本実施形態においては、上述のように光ファイバ裸線10の移動方向を約180°変更する。そのため、出線部82は、隙間80の周方向のおよそ2分の1の長さだけ入線部81からずれた位置に設定される。例えば、光ファイバ裸線10の移動方向を約90°変更する場合、出線部82は、隙間80の周方向のおよそ4分の1の長さだけ入線部81からずれた位置(図7における隙間80の最上部)に設定されてもよい。
 隙間80は、図6に示すように、バッファ溝51および噴出口47と空間的に接続されている。これにより、噴出口47から噴出された気体は、バッファ溝51を通って隙間80から非接触ガイド20の外部へと吹き出す。隙間80から吹き出された気体は、隙間80に通された光ファイバ裸線10に吹き付けられる。気体の風圧により、第1フランジ30の外周面32aおよび第2フランジ70の外周面72aから光ファイバ裸線10が浮いた状態が維持される。すなわち、光ファイバ裸線10は、隙間80において浮遊した状態となる。
 第2フランジ70は、内部部材40に固定されておらず、隙間80の幅Wを変化させる方向に移動可能となっている。隙間80の幅Wとは、互いに対向する第1フランジ30の外周面32aと、第2フランジ70の外周面72aとの最近接部の間の距離をいう。第2フランジ70の移動方法は限定されない。一例として、第2フランジ70を中心軸Cに沿う方向に移動することにより、隙間80の幅Wを変化させてもよい。他の例として、第2フランジ70を、図4に示す仮想点Pを中心とし矢印Tの方向に回転移動させることにより、隙間80の幅Wを変化させてもよい。この場合、隙間80のうち仮想点Pに近い部分(図4における下側部分)の幅Wは小さくなり、仮想点Pから遠い部分(図4における上側部分)の幅Wは大きくなるように変化する。
 隙間80から吹き出される気体の圧力(吹出圧)は、第1気体流路44(図4を参照)に供給される気体の圧力(入口圧)、隙間80の幅W等の要素に応じて変化し、非接触ガイド20の巻き付き径D1等の要素にも影響を受ける。ここで巻き付き径D1とは、隙間80の全周に亘って光ファイバ裸線10を通した際に、光ファイバ裸線10によって形成される円(図7において実線および破線で示す円B)の直径をいう。吹出圧は、光ファイバ裸線10の張力又は光ファイバ裸線10のファイバ径等に応じて上記各要素(溝の幅)を調整することにより最適化される。
 一般に、光ファイバ裸線10の線速(移動速度)を上昇させている過程では光ファイバ裸線10にかかる張力が小さく、吹き付けられる気体の圧力が大きいと光ファイバ裸線10が共振し、非接触ガイド20に接触してしまう。そのため、光ファイバ裸線10の線速を上昇させている過程では吹出圧を小さくする。一方、線速が安定した状態では光ファイバ裸線10の張力が高く維持されるので吹出圧を大きくする。吹出圧を大きくする方法としては、例えば、入口圧を大きくする、隙間80の幅Wを小さくするという方法を採用することができる。
 例えば直径125μmの光ファイバ裸線10を浮遊させる場合、入口圧を50kPa以上200kPa以下の範囲の最適な圧力条件となるように、隙間80の幅Wを調整する。このとき、1つの非接触ガイド20の隙間80から吹き出される気体の流量は、30L/分以上150L/分以下であってもよい。
 吹出圧を適切な大きさに調整する際には、まず一定流量の気体を流した状態において、入口圧が所定の値(例えば200kPa)になるまで隙間80の幅Wを小さくする。このとき、例えば第2フランジ70を第1フランジ30に向かって近づけることにより隙間80の幅Wを小さくしてもよい。その後、吹出圧が最適な大きさ(光ファイバ裸線10が適切に浮遊する大きさ)になるまで隙間80の幅Wを徐々に大きくする。このとき、例えば第2フランジ70を第1フランジ30から離隔させることにより隙間80の幅Wを大きくしてもよい。この吹出圧の調整作業は、図1に示す各非接触ガイド20に対して行われてもよい。また、調整作業は、光ファイバ素線11の製造工程において任意のタイミングで行われてもよい。
 非接触ガイド20は、図7に示すように、封止部材68を有する。説明の便宜上、図7以外の図においては封止部材68の図示を省略している。封止部材68は、複数の噴出口47のうち少なくとも一つを封止し、噴出口47における気体の通過を妨げる。封止部材68は、例えば樹脂等の弾性を有する材料から構成されてもよい。封止部材68は、細長い形状を有しており、噴出口47を塞ぐようにバッファ溝51の一部の領域に嵌め込まれる。本実施形態においては、バッファ溝51のおよそ半分の領域に封止部材68が嵌め込まれている。封止部材68によって噴出口47が封止された一部の第2気体流路46には気体が流れ込まず、噴出口47が封止されていない他の第2気体流路46に気体が流れ込む。
 中心軸Cから非接触ガイド20の外周に向かう方向(非接触ガイド20の径方向)において、封止部材68の大部分は、隙間80に通される光ファイバ裸線10と重ならないように設けられる。図7に示す例では、封止部材68のうち両端部を除いた部分は、隙間80に通された光ファイバ裸線10と周方向における位置が重ならないように設けられている。また、封止部材68の両端部と、光ファイバ裸線10との間にはバッファ溝51内部の気体が流れ出る一対の気体逃げ部84が設けられている。気体逃げ部84からバッファ溝51に溜まった気体がスムーズに流れ出ることにより、隙間80から過度に高圧の気体が吹き出さず、光ファイバ裸線10を安定した状態で浮遊させることが可能となる。封止部材68の形状は上述したものに限られない。本実施形態においては、複数の噴出口47が、連続した1本の封止部材68によって封止されているが、例えば各々分離した複数の封止部材68によって複数の噴出口47がそれぞれ封止されていてもよい。
 以上、本実施形態に係る非接触ガイド20によれば、第1フランジ30および第2フランジ70の少なくとも一方を移動させることにより、隙間80の幅を広げることができる。これにより、隙間80に詰まった光ファイバ裸線10の除去や、隙間80を画定する第1フランジ30および第2フランジ70の表面の清掃といった非接触ガイド20のメンテンナンスを容易に行うことができる。また、隙間80の幅を変化させることにより、非接触ガイド20から吹き出される気体の圧力を調整可能となっている。そのため、隙間80に通される光ファイバ裸線10の種類および状態に合わせて適切な圧力の気体を光ファイバ裸線10に吹き付けることができる。
 以上、本開示に係る実施形態について詳細に説明してきたが、本発明は上記実施形態に限定されるものではなく様々な実施形態に適用することができる。
 例えば、第1フランジ30は内部部材40に固定されず、内部部材40に対して移動可能に取り付けられていてもよい。この場合、第2フランジ70と共に又は第2フランジ70に代えて第1フランジ30を移動させることにより、隙間80の幅Wの大きさを調整してもよい。第1フランジ30又は第2フランジ70の一方を内部部材40に対して固定することにより、フランジを移動させるための移動機構を簡略化することができる。第1フランジ30および第2フランジ70は、少なくともいずれか一方が内部部材40に対して移動可能であればよいが、第1フランジ30が内部部材40に固定され、第2フランジ70が内部部材40に対して移動可能である場合、フランジを移動させるための移動機構をより簡略化することができる。
[変形例]
 図8を参照して、本開示の一実施形態に係る光ファイバの製造方法および光ファイバの製造装置の変形例について説明する。図8は、変形例に係る光ファイバの製造装置の概略図である。製造装置101は、線引き炉3、冷却装置104、コーティング装置5、硬化装置6、直下ローラ107、牽引ローラ8、および巻取り装置9を、光ファイバ裸線10および光ファイバ素線11の通過経路に沿って順に備えている。この製造装置101では、製造装置1と同様に、光ファイバ母材2を加熱溶融して光ファイバ裸線10の線引きを行い、光ファイバ裸線10を冷却装置104で所定の温度まで冷却する。その後、冷却された光ファイバ裸線10の外周にコーティング装置5で樹脂を被覆すると共に硬化装置6でその樹脂を硬化することにより光ファイバ素線11を形成する。そして、光ファイバ素線11を直下ローラ107により方向変更して光ファイバ素線11を巻取り装置9で巻き取る。この変形例に係る光ファイバの製造方法および製造装置101では、上述した非接触ガイド20を直下ローラ107に適用している。製造装置101のその他の構成は、概ね上述した光ファイバの製造装置1と同様であり、重複する説明は省略する。但し、使用される冷却装置は、通常の冷却装置104であってもよく、又は、上述した非接触ガイド20を用いた冷却装置4であってもよい。
 冷却装置104は、光ファイバ裸線10を冷却する。冷却装置104は、例えば外壁によって囲まれる内部空間Sを有し、内部空間Sの中を光ファイバ裸線10が通過する。冷却装置104の外壁は、冷却装置104の内部を確認できるように透明なガラス又は樹脂によって構成されていてもよい。冷却装置104は、光ファイバ裸線10を冷却するための冷却ガスを内部空間Sに注入するための吸気口(不図示)を有していてもよい。光ファイバ裸線10の熱は、冷却ガスを冷媒として外部に放出される。冷却装置104は、冷却ガスを排出するための排気口(不図示)を有していてもよい。
 コーティング装置5は、冷却装置104によって所定温度まで冷却された光ファイバ裸線10の外周に被覆樹脂を塗布する。また、硬化装置6は、紫外線を照射することにより、光ファイバ裸線10に塗布された被覆樹脂を硬化させ、光ファイバ素線11とする。完成した光ファイバ素線11は、直下ローラ107へと送られる。なお、硬化装置6の直後に被覆樹脂が硬化された光ファイバ素線11のファイバ径を測定する測定装置を設けてもよい。
 直下ローラ107は、光ファイバ母材2とコーティング装置5とを結ぶ線引き方向(鉛直方向)上であって、コーティング装置5および硬化装置6の直下に配置された非回転式のローラであり、光ファイバ素線11の移動方向を鉛直方向から所定の方向へと変更する。直下ローラ107によって移動方向が変更された光ファイバ素線11は、牽引ローラ8へと送られる。牽引ローラ8は、光ファイバ素線11を牽引し移動させる。牽引ローラ8の回転速度を変更することにより、光ファイバ素線11の移動速度を調整可能となっている。光ファイバ素線11は、牽引ローラ8から巻取り装置9へと送られ、巻取り装置9によって巻き取られる。なお、牽引ローラ8の手前に張力計を設置し、光ファイバ裸線10又は光ファイバ素線11に対する線引き張力を測定するようにしてもよい。
 直下ローラ107は、非回転式のガイドローラである非接触ガイド20(図2を参照)によって構成される円盤形状の部材であり、外周面に沿って設けられた隙間80に光ファイバ素線11が通される。隙間80は、上述したように、溝形状を有し、光ファイバ素線11を非回転で且つ非接触状態で巻き付け可能なガイド部として機能する。隙間80の幅は、ガイドする光ファイバ素線11のファイバ径又は線引き張力等に基づいて調整可能であってもよい。隙間80の内側には、光ファイバ素線11を浮遊させる気体を吹き出す複数の噴出口47(図4を参照)が設けられている。直下ローラ107は、噴出口47から外方に気体を吹き出すことにより、光ファイバ素線11を、非回転で且つ非接触状態でガイドして、その方向を変更する。なお、直下ローラ107に適用される非接触ローラは、ガイドする光ファイバ素線11を非接触状態で方向変更できるものであれば、非接触ガイド20と異なる他の構成であってもよい。
 次に、図6及び図9を参照して、本変形例に係る製造装置101において、隙間80に光ファイバ素線11を通した際の非接触ガイド20の構成について説明する。図9は、本変形例に適用した非接触ガイド20を図2に示すVII-VII線に沿って切断した際の断面図である。第1フランジ30及び第2フランジ70は、図6に示すように、第1フランジ30の外縁部と第2フランジ70の外縁部との間に隙間80が設けられるように内部部材40に取り付けられる。本変形例においては、第1フランジ30の外周面32aと第2フランジ70の外周面72aとの間に隙間80が設けられる。
 隙間80は、図9に示すように、非接触ガイド20の周方向に沿って中心軸Cを囲むように設けられている。隙間80には、光ファイバ素線11が通される。具体的には、光ファイバ素線11は、入線部181から隙間80に入り、隙間80に沿って移動した後、出線部182から外部へ出る。図9に示す例では、光ファイバ素線11は、隙間80の周方向におけるおよそ3分の1の領域を移動する。すなわち、非接触ガイド20によって光ファイバ素線11の移動方向が約120°変更される。上述した入線部181及び出線部182の位置は、光ファイバ素線11の移動方向の変更量によって定まる。本変形例においては、上述のように光ファイバ素線11の移動方向を約120°変更する。そのため、出線部182は、隙間80の周方向のおよそ3分の1の長さだけ入線部181からずれた位置に設定される。例えば、光ファイバ素線11の移動方向を約90°変更する場合、出線部182は、隙間80の周方向のおよそ4分の1の長さだけ入線部181からずれた位置(図9における隙間80の下側部分)に設定されてもよい。
 隙間80は、図6に示すように、バッファ溝51及び噴出口47と空間的に接続されている。これにより、噴出口47から噴出された気体は、バッファ溝51を通って隙間80から非接触ガイド20の外部へと吹き出す。隙間80から吹き出された気体は、隙間80に通された光ファイバ素線11に吹き付けられる。気体の風圧により、第1フランジ30の外周面32a及び第2フランジ70の外周面72aから光ファイバ素線11が浮いた状態が維持される。すなわち、光ファイバ素線11は、隙間80において浮遊した状態となる。
 隙間80から吹き出される気体の圧力(吹出圧)は、第1気体流路44(図4を参照)に供給される気体の圧力(入口圧)、隙間80の幅W等の要素に応じて変化し、非接触ガイド20の巻き付き径D1等の要素にも影響を受ける。ここで巻き付き径D1とは、隙間80の全周に亘って光ファイバ素線11を通した際に、光ファイバ素線11によって形成される円(図9において実線及び破線で示す円B)の直径をいう。吹出圧は、光ファイバ素線11の張力(線引き張力)又は光ファイバ素線11のファイバ径等に応じて上記各要素(溝の幅)を調整することにより最適化される。
 一般に、光ファイバ素線11の線速(移動速度)を上昇させている過程では光ファイバ素線11にかかる張力が小さく、吹き付けられる気体の圧力が大きいと光ファイバ素線11が共振し、非接触ガイド20に接触してしまう。そのため、光ファイバ素線11の線速を上昇させている過程では吹出圧を小さくする。一方、線速が安定した状態では光ファイバ素線11の張力が高く維持されるので吹出圧を大きくする。吹出圧を大きくする方法としては、例えば、入口圧を大きくする、隙間80の幅Wを小さくするという方法を採用することができる。
 例えば直径250μmの光ファイバ素線11を浮遊させる場合、入口圧を50kPa以上200kPa以下の範囲の最適な圧力条件となるように、隙間80の幅Wを調整する。このとき、1つの非接触ガイド20の隙間80から吹き出される気体の流量は、30L/分以上150L/分以下であってもよい。
 吹出圧を適切な大きさに調整する際には、まず一定流量の気体を流した状態において、入口圧が所定の値(例えば200kPa)になるまで隙間80の幅Wを小さくする。このとき、例えば第2フランジ70を第1フランジ30に向かって近づけることにより隙間80の幅Wを小さくしてもよい。その後、吹出圧が最適な大きさ(光ファイバ素線11が適切に浮遊する大きさ)になるまで隙間80の幅Wを徐々に大きくする。このとき、例えば第2フランジ70を第1フランジ30から離隔させることにより隙間80の幅Wを大きくしてもよい。この調整作業は、光ファイバ素線11の製造工程において任意のタイミングで行われてもよい。
 本変形例に係る非接触ガイド20は、図9に示すように、封止部材168を有する。封止部材168は、複数の噴出口47のうち少なくとも一つを封止し、噴出口47における気体の通過を妨げる。封止部材168は、封止部材68と同様、例えば樹脂等の弾性を有する材料から構成されてもよい。封止部材168は、細長い形状を有しており、噴出口47を塞ぐようにバッファ溝51の一部の領域に嵌め込まれる。本変形例においては、バッファ溝51のおよそ3分の2の領域に封止部材168が嵌め込まれている。封止部材168によって噴出口47が封止された一部の第2気体流路46には気体が流れ込まず、噴出口47が封止されていない他の第2気体流路46に気体が流れ込む。
 中心軸Cから非接触ガイド20の外周に向かう方向(非接触ガイド20の径方向)において、封止部材168の大部分は、隙間80に通される光ファイバ素線11と重ならないように設けられる。図9に示す例では、封止部材168のうち両端部を除いた部分は、隙間80に通された光ファイバ素線11と周方向における位置が重ならないように設けられている。また、封止部材168の両端部と、光ファイバ素線11との間にはバッファ溝51内部の気体が流れ出る一対の気体逃げ部184が設けられている。気体逃げ部184からバッファ溝51に溜まった気体がスムーズに流れ出ることにより、隙間80から過度に高圧の気体が吹き出さず、光ファイバ素線11を安定した状態で浮遊させることが可能となる。封止部材168の形状は上述したものに限られない。本変形例においては、複数の噴出口47が、連続した1本の封止部材168によって封止されているが、例えば各々分離した複数の封止部材168によって複数の噴出口47がそれぞれ封止されていてもよい。
 ここで、上述した非接触ガイド20を直下ローラ107に適用した作用効果について説明する。従来、直下ローラ107にはベアリングで回転するローラを用いているが、このローラでは、回転軸とローラの垂直度とのずれ(例えば30μmから50μm程度のずれ)に起因する微小な振動(あおり振動、振幅0.1mm程度)が生じることがある。この微小な振動は、直下ローラにガイドされる光ファイバ素線11(例えば直径170μmから250μm)及びそれに連なる光ファイバ裸線10に伝搬し、光ファイバ裸線10等を振動させる。光ファイバ裸線10等が振動すると、コーティング装置5にて樹脂を被覆中の光ファイバ裸線10が所定経路から水平方向に僅かにずれ、光ファイバ素線11となった際に被覆樹脂に偏肉を生じさせてしまう。
 これに対し、本変形例では、直下ローラ107に非接触ガイド20を適用することにより、樹脂が被覆された光ファイバ素線11を巻き取る際、光ファイバ素線11を非回転式で、非接触ローラである直下ローラ107で方向変更している。この非接触ローラでは、光ファイバ素線11を気体により浮遊させている、即ち非回転で、非接触の状態で光ファイバ素線11を搬送して巻取りを行っている。このため、直下ローラが回転せず、樹脂が被覆された光ファイバ素線11をローラに接触することなく方向変更することができるため、非接触ローラからの振動が光ファイバ裸線10等に伝搬されない。非接触ローラであれば、非接触ローラ後段の各種装置(例えば巻取り装置9等)からの振動も、非接触ローラでの浮遊により減衰され、光ファイバ裸線10等へ伝搬されづらくなる。以上により、本変形例によれば、光ファイバ裸線10への樹脂の被覆を適切に行って、被覆偏肉等の変動を抑制した光ファイバを製造することができる。
 以上、本開示に係る実施形態の変形例について詳細に説明してきたが、本発明は上記変形例に限定されるものではなく様々な実施形態に適用することができる。例えば、直下ローラ107に適用する非接触ローラは、図2等に示した構成を有するローラに限られず、光ファイバ素線11の一部を巻き付け可能なガイド部を外周面に沿って有する非接触ガイドであり、このガイド部に光ファイバ素線11を浮遊させる気体を吹き出す複数の噴出口が設けられているものであればよい。また、直下ローラ107以外のローラ、例えば、コーティング装置5と巻取り装置9との間に更に別途のローラを設ける場合には、当該ローラを上記同様に非回転式の非接触ローラとしてもよい。
1,101…製造装置
2…光ファイバ母材
3…線引き炉
4,104…冷却装置
5…コーティング装置
6…硬化装置
7,107…直下ローラ
8…牽引ローラ
9…巻取り装置
10…光ファイバ裸線
11…光ファイバ素線
20、20A、20B、20C、20D、20E、20F、20G…非接触ガイド
30…第1フランジ
31、71…円盤部
31a、71a…孔部
31b、71b…ねじ穴
32、72…周壁部
32a、72a…外周面
32b、72b…内周面
33…第1収容部
40…内部部材
41…本体部
42…軸部
42a…端面
42b…開口
43…円柱部
44…第1気体流路
45…流路分岐部
45a…内周面
46…第2気体流路
47…噴出口
50…第1円柱面
51…バッファ溝
52…第2円柱面
54…第1溝部
54a、56a…底面
54b、56b…側面
56…第2溝部
57…プレート収容部
57a…内周面
58…内側面
58a…ねじ穴
60…プレート
61…第1側面
61a…第3溝部
62…第2側面
63…外周面
64…貫通孔
65…第1シール部材
66…第2シール部材
67…第3シール部材
68,168…封止部材
70…第2フランジ
73…第2収容部
80…隙間
81,181…入線部
82,182…出線部
84,184…気体逃げ部
90、91…ねじ
A…領域
C…中心軸
D1…巻き付き径
P…仮想点
S…内部空間
T…矢印
W…幅

Claims (14)

  1.  気体を噴出可能な複数の噴出口を外周面に有する内部部材と、
     前記複数の噴出口から噴出される気体の噴出方向と交差する第1方向において前記内部部材を挟み込むように収容する第1フランジおよび第2フランジと、
    を備え、
     前記第1フランジおよび前記第2フランジの少なくとも一方は、前記複数の噴出口から噴出された前記気体を通過させる隙間が前記第1フランジの外縁部と前記第2フランジの外縁部との間に設けられるように、前記内部部材に取り付けられており、
     前記第1フランジおよび前記第2フランジの少なくとも一方は、前記隙間の幅を変化させる方向に移動可能となっている、非接触ガイド。
  2.  前記内部部材の前記外周面は、前記外周面の周方向に沿って延在するバッファ溝を有し、
     前記複数の噴出口は、前記バッファ溝の底部に設けられ、
     前記バッファ溝は、前記噴出方向において前記隙間と空間的に接続している、
    請求項1に記載の非接触ガイド。
  3.  前記内部部材は円盤形状であり、外部から前記気体が供給される気体供給部、および、前記気体供給部と前記複数の噴出口とをそれぞれ繋ぐ複数の気体流路を有し、
     前記気体供給部は、前記内部部材の中央部分に位置し、
     前記複数の気体流路は、前記気体供給部から前記複数の噴出口へと放射状に設けられ、
     前記複数の噴出口は、前記外周面の周方向に沿って位置している、
    請求項1又は請求項2に記載の非接触ガイド。
  4.  前記気体流路は断面が円形であり、前記噴出口側の内径が前記気体供給部側の内径よりも大きい、
    請求項3に記載の非接触ガイド。
  5.  前記内部部材の外周面は、前記第1方向において前記複数の噴出口を挟んで位置する第1円柱面および第2円柱面を有し、
     前記第1フランジは、前記内部部材を収容した際に前記第1円柱面と対向する内周面によって画定される第1収容部を有し、
     前記第2フランジは、前記内部部材を収容した際に前記第2円柱面と対向する内周面によって画定される第2収容部を有し、
     前記第1円柱面と前記第1収容部の内周面との間、および前記第2円柱面と前記第2収容部の内周面との間には、それぞれシール部材が設けられている、
    請求項1から請求項4のいずれか1項に記載の非接触ガイド。
  6.  前記複数の噴出口のうちの少なくとも一つを封止する封止部材を更に備える、
    請求項1から請求項5のいずれか1項に記載の非接触ガイド。
  7.  前記隙間を画定する、前記第1フランジの外縁部の表面および前記第2フランジの外縁部の表面の少なくとも一方のビッカース硬度は、800HV以上である、
    請求項1から請求項6のいずれか1項に記載の非接触ガイド。
  8.  請求項1から請求項7のいずれか1項に記載の非接触ガイドを用いた光ファイバの製造方法であって、
     光ファイバ母材を溶融して光ファイバ裸線を線引きする工程と、
     前記光ファイバ裸線を冷却する工程と、
     前記光ファイバ裸線を樹脂により被覆して光ファイバ素線を形成する工程と、
    を備え、
     前記冷却する工程では、前記光ファイバ裸線を前記非接触ガイドの前記隙間に通し、前記噴出口から噴出される前記気体を吹き付けることによって前記光ファイバ裸線を浮遊させつつ前記非接触ガイドを軸として前記光ファイバ裸線の方向を変更する、
    光ファイバの製造方法。
  9.  前記第1フランジおよび前記第2フランジの少なくとも一方を移動し、前記隙間の幅を調整する、
    請求項8に記載の光ファイバの製造方法。
  10.  請求項1から請求項7のいずれか1項に記載の非接触ガイドを用いた光ファイバの製造装置であって、
     光ファイバ母材から光ファイバ裸線を線引きするために前記光ファイバ母材を溶融する溶融装置と、
     前記光ファイバ裸線を冷却する冷却装置と、
     前記光ファイバ裸線を樹脂により被覆して光ファイバ素線を形成するコーティング装置と、を備え、
     前記冷却装置は、前記光ファイバ裸線を前記非接触ガイドの前記隙間に通し、前記噴出口から噴出される前記気体を吹き付けることによって前記光ファイバ裸線を浮遊させつつ冷却する装置である、光ファイバの製造装置。
  11.  請求項1から請求項7のいずれか1項に記載の非接触ガイドを用いた光ファイバの製造方法であって、
     光ファイバ母材を溶融して光ファイバ裸線を線引きする工程と、
     前記光ファイバ裸線を樹脂により被覆して光ファイバ素線を形成する工程と、
     直下ローラにより前記光ファイバ素線を方向変更して前記光ファイバ素線を巻取り装置で巻き取る工程と、
    を備え、
     前記直下ローラは、前記非接触ガイドである、光ファイバの製造方法。
  12.  線引き張力を測定する工程を更に備え、
     前記巻き取る工程では、前記測定された線引き張力に基づいて前記非接触ガイドの前記隙間の幅を調整して、前記非接触ガイドを介して前記光ファイバ素線を巻き取る、
    請求項11に記載の光ファイバの製造方法。
  13.  前記光ファイバ素線のファイバ径を測定する工程を更に備え、
     前記巻き取る工程では、前記測定されたファイバ径に基づいて前記非接触ガイドの前記隙間の幅を調整して、前記非接触ガイドを介して前記光ファイバ素線を巻き取る、
    請求項11または請求項12に記載の光ファイバの製造方法。
  14.  請求項1から請求項7のいずれか1項に記載の非接触ガイドを用いた光ファイバの製造装置であって、
     光ファイバ母材から光ファイバ裸線を線引きするために前記光ファイバ母材を溶融する溶融装置と、
     前記光ファイバ裸線を冷却する冷却装置と、
     前記光ファイバ裸線を樹脂により被覆して光ファイバ素線を形成するコーティング装置と、
     前記光ファイバ素線を巻き取る巻取り装置と、
     前記光ファイバ素線の通過経路において前記コーティング装置と前記巻取り装置との間に位置し、前記光ファイバ素線を方向変更する直下ローラと、を備え、
     前記直下ローラは、前記非接触ガイドである、光ファイバの製造装置。
PCT/JP2023/007861 2022-03-03 2023-03-02 非接触ガイド、光ファイバの製造方法、および光ファイバの製造装置 WO2023167286A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380019091.0A CN118647584A (zh) 2022-03-03 2023-03-02 非接触引导部、光纤的制造方法及光纤的制造装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-032799 2022-03-03
JP2022-032804 2022-03-03
JP2022032804A JP2023128454A (ja) 2022-03-03 2022-03-03 光ファイバの製造方法及び光ファイバの製造装置
JP2022032799A JP2023128450A (ja) 2022-03-03 2022-03-03 非接触ガイド及び光ファイバの製造方法

Publications (1)

Publication Number Publication Date
WO2023167286A1 true WO2023167286A1 (ja) 2023-09-07

Family

ID=87883735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007861 WO2023167286A1 (ja) 2022-03-03 2023-03-02 非接触ガイド、光ファイバの製造方法、および光ファイバの製造装置

Country Status (1)

Country Link
WO (1) WO2023167286A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0524743A (ja) * 1991-07-18 1993-02-02 Toray Ind Inc 糸ガイド
JPH09263357A (ja) * 1996-03-26 1997-10-07 Sanyo Seiki:Kk 糸条ガイド
JP2011523397A (ja) * 2008-05-29 2011-08-11 コーニング インコーポレイテッド 熱可塑性塗膜を付された光ファイバを生産するシステムおよび方法
JP2016124727A (ja) * 2014-12-26 2016-07-11 株式会社フジクラ 光ファイバ素線の製造方法および製造装置
WO2019031031A1 (ja) * 2017-08-08 2019-02-14 株式会社フジクラ 非接触方向転換器、及び、光ファイバの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0524743A (ja) * 1991-07-18 1993-02-02 Toray Ind Inc 糸ガイド
JPH09263357A (ja) * 1996-03-26 1997-10-07 Sanyo Seiki:Kk 糸条ガイド
JP2011523397A (ja) * 2008-05-29 2011-08-11 コーニング インコーポレイテッド 熱可塑性塗膜を付された光ファイバを生産するシステムおよび方法
JP2016124727A (ja) * 2014-12-26 2016-07-11 株式会社フジクラ 光ファイバ素線の製造方法および製造装置
WO2019031031A1 (ja) * 2017-08-08 2019-02-14 株式会社フジクラ 非接触方向転換器、及び、光ファイバの製造方法

Similar Documents

Publication Publication Date Title
JP6469778B1 (ja) 非接触方向転換器、及び、光ファイバの製造方法
KR20100101612A (ko) 저감쇠 섬유의 생산 방법
US10745314B2 (en) Method of manufacturing optical fiber, optical fiber manufacturing apparatus, and control apparatus therefor
EP2199438B1 (en) Air spinning machine
WO2023167286A1 (ja) 非接触ガイド、光ファイバの製造方法、および光ファイバの製造装置
US9676659B2 (en) Method of manufacturing an optical fiber
JP5771736B1 (ja) 光ファイバ素線の製造方法および製造装置
JP2000009975A (ja) 分割型光ファイバテープ心線の製造用一括被覆ダイス装置及び製造方法
JPH0791092B2 (ja) 光フアイバ用樹脂塗布装置
US20100319405A1 (en) Optical fiber manufacturing device and optical fiber manufacturing method
JP2023128454A (ja) 光ファイバの製造方法及び光ファイバの製造装置
JP2023128450A (ja) 非接触ガイド及び光ファイバの製造方法
KR100547755B1 (ko) 스핀을 이용한 광섬유 제조 장치 및 방법
JP6724121B2 (ja) 非接触方向転換器、光ファイバの製造方法、及び、非接触方向転換方法
JP2019137599A (ja) ガイドローラ及び光ファイバ線引装置
RU2326825C2 (ru) Устройство для скручивания оптического волокна, способ изготовления оптического волокна и оптическое волокно
US6471892B1 (en) Method of producing tape type optical fiber core wire
JP2017043528A (ja) 光ファイバ素線の製造方法および製造装置
WO2023167304A1 (ja) 光ファイバの製造方法、および光ファイバの製造装置
JP2005289764A (ja) 光ファイバの製造方法
JPS62148348A (ja) 光学フイラメントに対してプライマリコ−テイングを施す方法及びその装置
JP3911220B2 (ja) フォトニッククリスタル光ファイバ及びその製造方法
JP2024044752A (ja) 樹脂塗布装置
WO2022224798A1 (ja) 光ファイバの製造方法
JP2024077142A (ja) 樹脂塗布装置、光ファイバ製造装置、および光ファイバの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763543

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202447064260

Country of ref document: IN