WO2023167268A1 - 一酸化珪素の製造方法 - Google Patents

一酸化珪素の製造方法 Download PDF

Info

Publication number
WO2023167268A1
WO2023167268A1 PCT/JP2023/007725 JP2023007725W WO2023167268A1 WO 2023167268 A1 WO2023167268 A1 WO 2023167268A1 JP 2023007725 W JP2023007725 W JP 2023007725W WO 2023167268 A1 WO2023167268 A1 WO 2023167268A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
powder
silicon
combustible
silicon monoxide
Prior art date
Application number
PCT/JP2023/007725
Other languages
English (en)
French (fr)
Inventor
秀二 田中
健 大橋
宏文 福岡
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2023167268A1 publication Critical patent/WO2023167268A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing silicon monoxide.
  • SiO silicon monoxide
  • Si powder metal silicon powder
  • SiO 2 or SiO 2 powder silica powder
  • Non-Patent Document 1 SiO is passed through in the process of obtaining metallic silicon Si by reduction of SiO 2 (Non-Patent Document 1).
  • the reactions are thought to proceed as follows in the order of elementary processes (1) to (3).
  • SiO 2 +C ⁇ SiO + CO SiO+C ⁇ Si+CO
  • Patent Documents 8 and 9 disclose a method of producing fine silica or a composite oxide of fine SiO 2 + another oxide by explosive combustion of Si and O 2 (Patent Documents 8 and 9).
  • Patent Document 9 it is devised that "metallic silicon powder is supplied into an oxygen-containing gas stream and burned to form silicon dioxide powder having an average particle size of 0.01 to 10 ⁇ m", and fine SiO 2 powder. is already known.
  • Patent Documents 10 to 13 the generation of SiO by an explosive combustion method or plasma jet, and the generation of SiN x via SiO have been disclosed.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a highly productive method for producing silicon monoxide.
  • the present invention provides a method for producing silicon monoxide, comprising: adding a mixture of metallic silicon powder or metallic silicon powder and SiOx (x ⁇ 2) powder to oxygen gas and an inert gas; A first mixed fluid containing as a carrier, supplied to the combustion device, and a second fluid containing a combustible silicon compound fluid alone, or the combustible silicon compound fluid, oxygen gas, and an inert gas. and an operation C of supplying a third mixed fluid containing a combustible gas, an oxygen gas and an inert gas to the combustion device to form a flame. and performing said operation A, said operation B and said operation C simultaneously to produce a silicon monoxide product.
  • silicon monoxide powder can be produced efficiently. Further, by adding a combustible silicon compound as a Si source (silicon atom source) to the metal silicon powder or the mixture of the metal silicon powder and SiOx (x ⁇ 2) powder, a flame with a high energy density can be formed. Therefore, uniform silicon monoxide can be produced.
  • a combustible silicon compound as a Si source (silicon atom source)
  • a fourth mixed fluid containing oxygen gas and an inert gas for controlling diffusion of oxygen into the metal silicon powder or the mixture of the metal silicon powder and SiOx (x ⁇ 2) powder, or the inert gas alone It is preferable that the operation D is performed at the same time when the operations A to C are performed.
  • the gas for controlling the diffusion of oxygen into the mixed powder of the metallic silicon powder or the metallic silicon powder and the SiOx (x ⁇ 2) powder makes it possible to control the generation of the silicon monoxide powder with higher accuracy.
  • the first mixed fluid can be air.
  • the combustible gas can be a combustible gas containing hydrocarbons.
  • the combustible gas can be a combustible gas containing hydrogen.
  • These gases can be used as the combustible gas in the method for producing silicon monoxide of the present invention.
  • the combustible silicon compound fluid is a low-molecular organosilicon compound selected from alkoxysilane, silane, alkylsilane, alkylsilanol, alkylcyclosilane, alkylsiloxane, alkylcyclosiloxane, silazane, and cyclosilazane, or a mixture thereof. It is preferable to
  • Fluids of these combustible silicon compounds can be used in the method for producing silicon monoxide of the present invention.
  • operation A and operation B can be integrated.
  • the silicon monoxide product produced by performing the above operations A to C is heated at a temperature of 1100° C. or higher and 1500° C. or lower to remove the An operation E of sublimating and extracting the silicon monoxide that is extracted can be further included.
  • SiO 2 silicon dioxide
  • the method for producing silicon monoxide of the present invention such a method may be used. Only the silicon oxide component can be extracted by sublimation. This is because the temperature at which Si and SiO2 vaporize is much higher than silicon monoxide.
  • the production of metal silicon powder or metal silicon powder and SiOx (x ⁇ 2) powder which is much more productive than conventional solid-phase contact and liquid-solid reaction methods, is performed.
  • the mixture and the oxidation reaction in the gas stream with the combustible silicon compound allow efficient production of silicon monoxide powder.
  • a combustible silicon compound as a Si source silicon atom source
  • SiOx (x ⁇ 2) powder a flame with a high energy density can be formed. Therefore, uniform silicon monoxide can be produced.
  • Silicon monoxide produced by the method for producing silicon monoxide of the present invention can be used as a negative electrode material for lithium ion secondary batteries, in addition to glass and plastic coating applications.
  • a negative electrode material can be widely used as a high-capacity negative electrode material for mobile devices such as smartphones and smart watches, and batteries for electric vehicles.
  • it is also suitable for applications such as deposition film agents with high gas barrier properties, and material properties with excellent cost performance can be obtained.
  • FIG. 1 is a schematic cross-sectional view showing an example of a combustion apparatus that can be used in the method for producing silicon monoxide of the present invention
  • FIG. FIG. 4 is a schematic cross-sectional view showing another example of a combustion apparatus that can be used in the method for producing silicon monoxide of the present invention
  • FIG. 4 is a schematic cross-sectional view showing still another example of a combustion apparatus that can be used in the method for producing silicon monoxide of the present invention
  • 1 is a binary phase diagram of Si—O; FIG.
  • Silicon monoxide is a very important material that is indispensable as a negative electrode material for improving the performance of lithium-ion secondary batteries in the future, and its application fields are expected to expand. Therefore, an efficient (highly productive, low-cost) manufacturing method and silicon monoxide production that maintains a low disproportionation state are desired.
  • the present inventors have provided a production method that is more productive and economical than such conventional solid phase contact, liquid phase solid phase contact method, and plasma jet method, and produced by this method, Intensive researches have been carried out in search of providing silicon monoxide with a low degree of disproportionation.
  • a combustible silicon compound having both a Si source and a high energy source and an energy source are further assisted to secure a high-temperature flame region. It has been found that a method for producing silicon monoxide with high productivity can be provided by allowing the combustible gas combustion reaction to proceed simultaneously and controlling the O 2 concentration in the flame. Furthermore, by adding a combustible silicon compound to the Si source, it became clear that disproportionation is less likely to occur than silicon monoxide synthesized by conventional solid-solid phase reactions and solid-liquid phase reactions. Although the reason is not clear, in the method of the present invention, part of the Si source exists in a liquid phase or a gas phase at room temperature. be done.
  • the present invention is a method for producing silicon monoxide, wherein a first mixed fluid containing metallic silicon powder or a mixture of metallic silicon powder and SiOx (x ⁇ 2) powder, oxygen gas and an inert gas as a carrier to the combustion device, and a combustible silicon compound fluid alone or a second mixed fluid containing the combustible silicon compound fluid, oxygen gas, and inert gas to the combustion device and an operation C of supplying a third mixed fluid containing a combustible gas, an oxygen gas, and an inert gas to the combustion device to form a flame, wherein the operation A and the operation A method for producing silicon monoxide, characterized in that B and operation C are performed simultaneously to produce a silicon monoxide product.
  • a fourth mixed fluid containing oxygen gas and an inert gas for controlling oxygen diffusion to the metal silicon powder or the mixture of the metal silicon powder and the SiOx (x ⁇ 2) powder, or the inert gas alone is supplied.
  • An operation D may be further provided, and when the operations A to C are performed, the operation D may be performed at the same time.
  • FIG. 4 shows a binary phase diagram of Si—O.
  • SiO2 silicon monoxide
  • FIG. 1 shows an example of a combustion device (combustion reaction device) that is important for realizing the method for producing silicon monoxide of the present invention.
  • the combustion reaction apparatus is not limited to the apparatus shown in FIG. 1, and the method for producing silicon monoxide of the present invention can be carried out with any apparatus capable of controlling flame and combustion oxidation.
  • a silicon monoxide production apparatus (combustion apparatus) 100 has a combustion vessel 10 .
  • the combustion vessel 10 is provided with means 11 for supplying metallic silicon powder or a mixture of metallic silicon powder and SiOx (x ⁇ 2) powder (illustrated as means for supplying metallic silicon powder), oxygen gas and inert gas.
  • a first gas supply means 12 is connected through a burner 13 for supplying a first mixed fluid containing.
  • FIG. 1 shows the case where nitrogen gas (N 2 gas) is added to air as the first gas supply means 12 to form the first mixed fluid. In this case, the flow rate of the inert gas is adjusted by the added nitrogen gas together with the nitrogen and argon contained in the air.
  • the metal silicon powder or the mixture of the metal silicon powder and the SiOx (x ⁇ 2) powder which is the raw material, uses the first mixed fluid containing oxygen gas and inert gas as a carrier, and the combustion device 100 ( inside the combustion vessel 10 of the combustion device 100).
  • the combustion device 100 further includes a combustible silicon compound fluid alone, or the combustible silicon compound fluid, oxygen gas, and inert gas in the combustion device 100 (inside the combustion vessel 10 of the combustion device 100). It comprises second gas supply means 15a, 15b for supplying a second mixed fluid.
  • FIG. 1 shows the case where TMOS (tetramethoxysilane) is supplied from the second gas supply means 15b and O 2 and N 2 are supplied from the second gas supply means 15a.
  • TMOS tetramethoxysilane
  • the combustion device 100 further includes third gas supply means for supplying a third mixed fluid containing a combustible gas, an oxygen gas, and an inert gas to the combustion device 100 (inside the combustion vessel 10 of the combustion device 100). 14.
  • FIG. 1 shows a case where LPG and air are supplied as the third gas supply means 14 .
  • the combustion device 100 further controls oxygen diffusion to the metal silicon powder or the mixture of the metal silicon powder and SiOx (x ⁇ 2) powder in the combustion device 100 (inside the combustion vessel 10 of the combustion device 100).
  • a fourth gas supply means for supplying a fourth mixed fluid containing oxygen gas and an inert gas or an inert gas alone may be provided.
  • the fourth gas supply means may also serve as a protect gas supply means for supplying a protect gas for the purpose of reducing radiant heat to the furnace wall, reducing the concentration of oxygen gas in the furnace, and cooling the product.
  • FIG. 1 shows a case where air and additional nitrogen gas are mixed and supplied as fourth gas supply means 16 and 17 .
  • the combustion device 100 further comprises a collecting chamber 23 for collecting the generated silicon monoxide powder 24 at its lower portion.
  • silicon monoxide can be produced using such a combustion apparatus 100. That is, from the center of the upper part of the combustion apparatus 100, the metallic silicon powder or the metallic silicon powder and SiOx (x ⁇ 2) The powder mixture is supplied (operation A). At this time, the metal silicon powder or the mixture of the metal silicon powder and the SiOx (x ⁇ 2) powder can be, for example, about #200 mesh. Further, from the concentric outer circumference or inner circumference, a combustible silicon compound fluid alone or a second mixed fluid containing the combustible silicon compound fluid, oxygen gas, and inert gas is supplied to the second fluid supply means 15a.
  • combustible gas consisting of LPG, air, and additional nitrogen gas
  • combustible gas consisting of LPG, air, and additional nitrogen gas
  • the tip of the burner 13 is ignited to form a flame 21.
  • Metal silicon powder or a mixture of metal silicon powder and SiOx (x ⁇ 2) powder and a combustible silicon compound are oxidized in the flame 21, and SiO gas is rapidly cooled and solidified in the lower part of the apparatus to produce silicon monoxide powder (operation C).
  • a fourth mixed gas containing oxygen gas and inert gas in the case of FIG. 1, air and additional nitrogen gas (operation D).
  • operations A, B and C are performed at the same time, or operations A to D are performed at the same time.
  • the operation C of supplying a third mixed gas containing a combustible gas, an oxygen gas and an inert gas to a combustion apparatus to form a flame is performed by using metallic silicon powder or metallic silicon powder.
  • a mixture of metal silicon powder or metal silicon powder and SiOx (x ⁇ 2) powder as a raw material is used as a carrier in a first mixed gas containing oxygen gas and an inert gas, and a combustible silane compound alone or
  • the operations A and B of supplying the second mixed fluid containing the oxygen gas and the inert gas to the combustion device are present in the same combustion device, and the metal silicon powder or the metal silicon powder and the SiO x (x ⁇ 2) powder and the heat of oxidation of the oxygen gas and the heat of combustion of the combustible silicon compound, the temperature is raised to the SiO gas temperature range described above to generate silicon monoxide (SiO).
  • Operation A is an operation of supplying metallic silicon powder or a mixture of metallic silicon powder and SiOx (x ⁇ 2) powder to a combustion device using a first mixed fluid containing oxygen gas and inert gas as a carrier.
  • the particles supplied in operation A may be metallic silicon powder alone, or may be a mixture of metallic silicon powder and SiOx (x ⁇ 2) powder.
  • the flow rate of the combustible gas or combustible silicon compound may be increased by the amount of heating heat of the added SiOx (x ⁇ 2) powder.
  • metallic silicon powder or a mixture of metallic silicon powder and SiOx (x ⁇ 2) powder is used as a carrier in the first mixed fluid containing oxygen gas and inert gas, and the combustor is supply to
  • a mixed fluid (first mixed fluid) of an inert gas other than the combustion-supporting O gas is used as a carrier for metallic silicon powder or a powder mixture of metallic silicon powder and SiOx ( x ⁇ 2) powder. This is for controlling the oxidation reaction of If the carrier gas is only combustion-supporting O 2 gas, an explosive oxidation reaction may occur instantaneously to produce SiO 2 .
  • a mixed fluid of a combustion-supporting O 2 gas and an inert gas is used to dilute the O 2 concentration to control the oxidation exothermic reaction rate and facilitate the generation of SiO.
  • the explosive limit oxygen concentration In order to stop the reaction with SiO without reaching SiO 2 formation, it is necessary not to exceed the explosive limit oxygen concentration of 10%.
  • a mixed fluid of O 2 and N 2 , a mixed fluid of O 2 and Ar, or the like, having a controlled amount ratio is desirable.
  • an organic solvent may be used as part of the carrier in operation A.
  • combustible silicon compounds and organic A solvent may be used. In this case, it can be said that operation A and operation B are integrated as described later. This case is also included in the present invention.
  • a combustible silicon compound it is desirable to use a volatile combustible silicon compound or an organic solvent as much as possible in order to increase the burning rate. In this way, a large amount of heat can be secured as compared with the mixed gas carrier, and the flame can be lengthened, so an effect of increasing the number of generated SiO particles can be expected.
  • operation B supplies the combustible silicon compound fluid alone or a second mixed fluid containing the combustible silicon compound fluid, oxygen gas, and inert gas to the combustion device.
  • This operation is an operation of supplying a combustible silicon compound or a mixed fluid of oxygen gas and an inert gas (second mixed fluid) together with it, and supplying an auxiliary raw material (sub-raw material).
  • This operation together with operation A, constitutes a step of supplying raw material Si (silicon atoms).
  • this operation B as in operation A, if only the combustible silicon compound and oxygen are supplied, the reaction may proceed violently and SiO 2 may be generated, so an inert gas is also mixed. , which controls the oxidative exothermic reaction.
  • the combustible silicon compound one that is easily combustible is preferably selected.
  • a low-molecular-weight organosilicon compound selected from, etc., or a mixture thereof is desirable. Considering the above combustion heat ratio, it can be appropriately selected in consideration of process operability and safety.
  • [Unification of Operation A and Operation B] Supply of metallic silicon powder or a mixture of metallic silicon powder and SiOx (x ⁇ 2) powder in operation A, and supply of the combustible silicon compound fluid alone or the combustible silicon compound fluid and oxygen in operation B.
  • the supply of the second mixed fluid containing the gas and the inert gas can be performed by mixing at the same point of the combustion device.
  • combustible materials such as alkoxysilane, silane, alkylsilane, alkylsilanol, alkylcyclosilane, alkylsiloxane, alkylcyclosiloxane, silazane, and cyclosilazane for operation B can be used.
  • a soluble silicon compound or an organic solvent may also be used.
  • a large amount of heat can be secured and the flame can be lengthened, so an effect of increasing the number of generated SiO particles can be expected.
  • the mixed slurry of the metallic silicon powder described in Operation A, or the powder mixture of metallic silicon powder and SiOx (x ⁇ 2) powder, a combustible silicon compound or an organic solvent, or the ejector burner provided to the combustion apparatus in Operation A It is also possible to form a feeding device integrated with the . In this case as well, an increase in the amount of heat and an expansion of the flame in the vertical direction due to combustion of the droplets can be expected, and this can contribute to increasing the particle size of the generated SiO particles, so this is preferably selected.
  • the advantage of seemingly integrating operation A and operation B is that the completeness of combustion can be pursued and is preferably used. stomach.
  • the combustible silicon compound When the combustible silicon compound is supplied as a liquid, it may be supplied by a high-speed atomizer for the purpose of suppressing energy consumption until combustion because it is a mixture of metallic silicon powder and SiOx (x ⁇ 2).
  • the mixing step can be selected in advance so that the metal silicon particles/SiOx (x ⁇ 2) particles are uniformly dispersed.
  • combustible silicon compound Various monomers and low-molecular-weight oligomers are suitably used for this combustible silicon compound.
  • Silicone-based liquid polymers can also be used, but these high-molecular compounds are highly viscous and require a large amount of energy to disperse, vaporize, and ignite until combustion. preferable.
  • the combustible silicon compound used here is a combustible silicon compound that does not produce halides that may adversely affect the performance of the silicon monoxide produced and that does not produce solid or liquid oxides other than silicon monoxide after combustion. is also preferred.
  • a compound that can secure combustion heat that can stabilize the combustion temperature in the flame to silicon monoxide is preferably used.
  • Combustion heat ratio is effective for this indicator. It represents the ratio of the combustion reaction heat to SiO (g) when the combustion heat in complete combustion of the generally known low-molecular-weight organosilicon compounds listed in Table 1 is taken as 1.0. This combustion heat ratio can be positioned as an index capable of preventing an extreme drop in flame temperature when the oxygen concentration in the flame is lowered. The larger this value is, the more resistant flame can be formed to changes in oxygen concentration.
  • SiO(g) is used as the standard, SiO 2 is usually treated as a solid, but here it is treated as a liquid which is considered to be in a state around 1860° C. (2133 K) where SiO(g) can exist.
  • combustible silicon compounds not only have a great advantage over the combustion heat of combustible gases, but can also be used as Si sources. Therefore, as the Si source, metallic silicon powder, a mixture of metallic silicon powder and SiOx (x ⁇ 2), or a combustible silicon compound can be selected. can be selected.
  • the conditions for synthesizing silicon monoxide in the combustible silicon compound group can be found by adjustment from the relationship between the amount of heat generated and the partial pressure of oxygen in the flame.
  • Operation B is an important operation for reacting the Si source and O2 gas in the flame to produce more uniform silicon monoxide.
  • the balance of the Si source, supporting gas, and inert gas is adjusted to increase the size of the flame as long as possible, and silicon monoxide is produced while controlling the oxidation reaction of Si as slowly as possible in the flame. It is desirable to
  • the rate of combustion can be suppressed more than in the case of gas. Also, the effect of prolonging the flame can be expected. In that case, the oxyhydrogen flame and the amount of combustible gas can be adjusted and optimized.
  • the combustible silicon compound used in the present invention can be appropriately selected in consideration of this description, and is not particularly limited. Mixtures thereof can be employed.
  • operation C is the operation of supplying the third mixed fluid containing combustible gas, oxygen gas (combustion-supporting O2 gas) and inert gas to the combustion device to form a flame.
  • This operation is the third heat supply step for converting the metallic silicon powder or the mixture of the metallic silicon powder and the SiOx (x ⁇ 2) powder into silicon monoxide.
  • it is preferable to adjust the amount of heat in operation C. For example, when the mixed fluid (first mixed fluid and second mixed fluid) is air or nitrogen-rich gas in operation A or operation B, O 2 for SiO generation is often insufficient.
  • operation C it is preferable to adjust the calorie with a mixed fluid (third mixed fluid) of combustible gas and oxygen gas (combustion-supporting O2 gas). Furthermore, as in operations A and B, in operation C, an inert gas is also added to adjust and control the SiO generation rate.
  • the inert gas here may be nitrogen, argon, or the like contained in the air.
  • the combustible gas may be a hydrocarbon gas such as CH 4 or LPG (liquefied natural gas).
  • hydrocarbon gases that can be used are not limited to these.
  • hydrocarbons such as methane, ethane, propane, acetylene, and propylene are preferable because sufficient combustion heat generation can be obtained, but the combustible gas is not limited to these.
  • the combustible gas may be hydrogen (hereinafter also referred to as H2 ) or a mixed fluid of H2 and hydrocarbon.
  • H2 hydrogen
  • the amount of heat generated in the flame and the shape of the flame, such as the length of the flame may be determined by determining the proportions and the like so as to be suitable for the generation of silicon monoxide.
  • Operation C forms a flame in which the silicon metal powder or a mixture of silicon metal powder and SiOx (x ⁇ 2) powder, the first mixed fluid (supplied in operation A), and This is an essential step for reacting the combustible silicon compound (supplied in operation B) with O2 gas to stably produce silicon monoxide.
  • operation C similarly to operation B, the size of the flame is increased as long as possible, and Si is oxidized as slowly as possible in the flame to generate silicon monoxide. It is preferable to carry out the reaction between the Si component and the oxygen gas under such conditions that silicon monoxide powder is produced.
  • the oxidation reaction control is based on the amount of Si raw material supplied to the combustion apparatus and the amount of oxygen gas (the first mixed fluid, the oxygen gas contained in the second mixed fluid, and the third mixed fluid).
  • the total amount of oxygen gas contained in the Furthermore, it is possible to control the oxidation reaction by optimizing the mixing ratio and type of combustible gas (hydrocarbon gas, H2 , etc.), and the mixing ratio of combustible gas, oxygen gas (combustion-supporting gas), and inert gas. preferable. That is, since the proper amount of O 2 in the flame changes depending on the Si source supply amount, combustible gas species, flow rate, etc., these generation conditions can be adjusted experimentally.
  • Such operation C is an operation of supplying a mixed gas of a combustible gas, a combustion-supporting oxygen gas, and an inert gas to the combustion device to supplement the formation of a flame, and is used to supplement the Si source oxidation region. It becomes a heat source.
  • an operation A of supplying metallic silicon powder or a mixture of metallic silicon powder and SiOx (x ⁇ 2) powder to the combustion device using a first mixed fluid containing oxygen gas and inert gas as a carrier Since the same combustion apparatus is used, the temperature is raised to the SiO gas temperature range described above to generate silicon monoxide while adding the oxidation heat of the Si source containing the combustible silicon compound and the oxygen gas in operation B. do.
  • the reason why the mixed gas containing an inert gas in addition to the oxygen gas is used as the carrier in the operation A is to control the oxidation reaction of Si. If the carrier gas is only oxygen gas, there is a possibility that an explosive oxidation reaction will occur instantaneously to produce SiO 2 .
  • a mixed gas containing oxygen gas and an inert gas is used to dilute the oxygen concentration to control the oxidation exothermic reaction rate and facilitate the generation of SiO.
  • the mixed gas is air, a mixed gas of oxygen and nitrogen, a mixed gas of oxygen and Ar, or the like, in which the amount ratio is controlled.
  • Operation C is a step of supplying a mixed gas containing a combustible gas, an oxygen gas and an inert gas to maintain and assist flame formation and high temperature. process.
  • the main calorie supply is selected from one or more combustible silicon compound groups, and at least the mixed gas with oxygen gas is used.
  • the operation B of supplying the fuel to the combustion device is performed, and in the operation C, the mixed gas of the combustible gas and the oxygen gas is used to supplementally adjust the calorie.
  • an inert gas is added to adjust and control the SiO production rate.
  • the inert gas may be nitrogen contained in the air, or nitrogen having a concentration of about 90 to 95% generated by a nitrogen PSA (pressure swing adsorption nitrogen gas generator) or the like.
  • the combustible gas in operation C may be a hydrocarbon gas such as CH 4 or LPG, and of course the hydrocarbon gas is not limited to these.
  • a flame is formed as an auxiliary flame, and since the heat source does not have a Si source, the amount thereof can be set independently, and the Si source and oxygen gas are reacted in the flame to generate more heat.
  • This step is necessary to produce uniform silicon monoxide. In this step, it is desirable to increase the size of the flame as long as possible in the same manner as in operation B, and to oxidize the metallic silicon powder as slowly as possible in the flame while controlling it to produce silicon monoxide.
  • controlling the oxidation reaction by optimizing the ratio and type of combustible gas and hydrogen, and the mixing ratio of combustible gas, combustion-supporting gas, and inert gas is as important as the adjustment in operation B.
  • Flame optimization means that the flame is made as long as possible, and the metal silicon powder or the mixture of metal silicon powder and SiOx (x ⁇ 2) powder is dropped into the flame and controlled oxidation is performed to generate SiO. Pod temperature distribution and oxygen amount control may not be compatible. In that case, as described later, a mixed gas containing oxygen and an inert gas or an inert gas alone is used to control oxygen diffusion into the metallic silicon powder or the mixture of the metallic silicon powder and SiOx (x ⁇ 2) powder.
  • Oxidation rate in operation B and operation C can be controlled by operation D to supply.
  • the amount of supplied metal silicon powder is small, naturally the required amount of oxygen may be small. In that case, if the amount of oxygen gas in operation C is reduced, the flame cannot be optimized. Therefore, the 100% combustible silicon compound and the oxygen-nitrogen mixed fluid containing it in operation B maintain the flame within the adjustment range, and the ratio of the mixed gas containing oxygen and inert gas in operation D is adjusted to the oxygen decreasing side. We supply what we do.
  • the supply ratio of the fourth mixed fluid in operation D is Optimizing is preferred. However, optimizing such supply ratios may not be compatible with optimizing flames. In other words, flame optimization is about making the flame as long as possible.
  • SiO is generated by controlling oxidation while dropping metal silicon powder or a mixture of metal silicon powder and SiOx (x ⁇ 2) powder into a flame together with a combustible silicon compound or the like. Distribution and oxygen amount control may not be compatible.
  • a fourth mixed fluid containing oxygen gas and an inert gas that controls oxygen diffusion to the metal silicon powder or the mixture of the metal silicon powder and SiOx (x ⁇ 2) powder, or the inert gas Feeding operation D allows the final fine-tuning control of the oxidation rate in operations A, B, and C.
  • oxygen It may further comprise an operation D of supplying a fourth fluid mixture comprising gas and inert gas or inert gas alone.
  • the mixed gas in operation C maintains the flame within the adjustment range, and in operation D, the O 2 /inert gas ratio is adjusted to the O 2 less side (the side with less O 2 ) is supplied. Conversely, when the amounts of the metallic silicon powder and the combustible silicon compound supplied are large, the O 2 /inert gas ratio is adjusted to the O 2 rich side (the O 2 large side) in operation D.
  • the supply of the protect gas from the fourth gas supply means 16, 17, etc. shown in FIG. is also part of operation D, supplying a fourth mixed fluid containing oxygen gas and inert gas or inert gas alone.
  • silicon monoxide can be efficiently produced by oxidation reaction of silicon powder and a combustible silicon compound in an air stream, which is much more productive than the conventional solid-phase contact reaction method.
  • a silicon monoxide material suitable as a negative electrode material for LIB lithium ion battery
  • Silicon monoxide produced by the production method of the present invention can be used as a negative electrode material for lithium ion secondary batteries, in addition to glass and plastic coating applications. Furthermore, it can be widely used as a high-capacity negative electrode material for mobile devices such as smartphones and smart watches, and batteries for electric vehicles.
  • silicon monoxide can be produced with good productivity by the above-described method.
  • products are obtained as mixtures.
  • the silicon monoxide product produced by performing operations A to C (of course, operation D may also be performed) is heated at a temperature of 1100° C. or more and 1500° C. or less to convert the product into An operation E for sublimation extraction of contained silicon monoxide can be further included.
  • SiO contained in the product can be extracted by sublimation. Since the temperature at which Si and SiO 2 vaporize is much higher than that of SiO, only the SiO component can be sublimated and extracted by such a method.
  • Example 1 Using the combustion apparatus (combustion reaction apparatus) 100 shown in FIG. 1, silicon monoxide was produced according to the production method of the present invention.
  • the combustible silicon compound used in Operation B was tetramethoxysilane Si(OCH 3 ) 4 (hereinafter referred to as TMOS), and the combustible gas used in Operation C was LPG.
  • Air was used as the O 2 gas and the inert gas
  • the third mixed gas used in operation C was air (that is, a mixed gas containing oxygen gas and nitrogen and argon as inert gases).
  • TMOS was vaporized by an evaporator at 5.69 kg/hr and TMOS combustion air was supplied at 24.13 Nm 3 /hr and ignited by the burner 13 (operation B).
  • the first mixed fluid 2.50 Kg /hr of metallic silicon powder is supplied from the metallic silicon powder supply means 11, and this metallic silicon powder is a carrier gas (O 2 Concentration 8 vol % standard) 1.01 Nm 3 /hr and 0.86 Nm 3 /hr of Ar were supplied from the first gas supply means 12 and supplied on top of this (operation A).
  • a carrier gas O 2 Concentration 8 vol % standard
  • Combustion vessel 10 is supplied with air and N2 from fourth gas supply means 16 and 17 for the purpose of controlling the air flow and flame in the furnace, reducing radiant heat to the furnace wall, maintaining low oxygen concentration in the furnace, and cooling.
  • An air current curtain was supplied in two stages at a rate of 2.5 Nm 3 /hr.
  • silicon monoxide powder was generated at approximately 5.55 kg/hr while controlling the amount of O 2 in the combustion flame 21 .
  • Example 2 Silicon monoxide was manufactured using the silicon monoxide manufacturing apparatus 200 shown in FIG.
  • the configuration of the silicon monoxide manufacturing apparatus 200 in FIG. 2 is basically the same as that in FIG .
  • Other configurations denoted by the same reference numerals are the same as in FIG.
  • H 2 gas and a stoichiometric amount of O 2 gas were supplied from the third gas supply means 14 instead of the hydrocarbon gas (LPG), which is the combustible gas in Example 1, and used as the main heat source.
  • LPG hydrocarbon gas
  • the flame is mainly controlled in operation C, it is possible to introduce air while mixing with the above H 2 (however, in this example, the amount of air introduced was set to zero as described later by adjustment.) and adjusted the amount of oxygen in the flame.
  • the protective gas is air + N 2 (however, the amount of nitrogen is adjusted depending on the state of adhesion to the furnace wall and the cooling state), and the amount of oxygen in the tank (inside the combustion vessel 10) is adjusted and controlled. I made it
  • the supply amount of the metallic silicon powder from the metallic silicon powder supply means 11 was set at 2.50 kg/hr, which is the same as in Example 1, and the amount of accompanying carrier gas was set at the same level as in Example 1 (operation A).
  • Tetramethoxysilane Si(OCH 3 ) 4 (hereinafter referred to as TMOS) was vaporized in an evaporator and supplied at a rate of 5.69 Kg/hr (operation B). Further, 8.45 Nm 3 /hr of H 2 gas was introduced from the third gas supply means 14, and air and oxygen gas were supplied from the same third gas supply means 14 to the O 2 gas supplied from the PSA apparatus.
  • a flow rate of 4.86 Nm 3 /hr was introduced from the coaxial burner at an initial velocity of up to 100 m/sec from the nozzle to form an H 2 /O 2 hydrolysis flame (operation C).
  • N 2 gas with an O 2 concentration of 5% was flowed from two locations at a rate of 2.2 Nm 3 /hr to adjust the amount of oxygen in the tank (inside the combustion vessel 10).
  • the generated silicon monoxide powder was similarly collected in the collecting chamber 23 to examine its characteristics. When the obtained silicon monoxide powder was analyzed by XRD and XPS, it was confirmed that it was amorphous SiO with no Si peak observed and only broad reflection.
  • Example 3 Silicon monoxide was manufactured using the silicon monoxide manufacturing apparatus 300 shown in FIG.
  • the structure of the silicon monoxide manufacturing apparatus 300 in FIG. 3 is substantially the same as that in FIG.
  • the means 11, 12 for supplying the first mixed fluid are integrated.
  • hexamethyldisiloxane HMDS: (CH 3 ) 3 SiOSi(CH 3 ) 3 is supplied from the second mixed fluid supply means 35b, and dry air (Dry-Air) is supplied from the supply means 35a forming a two-fluid nozzle. is different.
  • dry air and nitrogen supplied from the PSA apparatus were supplied as protection gas supply means 36a, 36b, 37a, and 37b.
  • Other configurations denoted by the same reference numerals are the same as in FIG.
  • H 2 gas and a stoichiometric amount of O 2 gas are supplied from the third gas supply means 14 instead of the hydrocarbon gas (LPG), which is the combustible gas in Example 1, to serve as an auxiliary heat source.
  • LPG hydrocarbon gas
  • the flame is mainly controlled in operation C, it is possible to introduce air while mixing with the above H 2 (however, in this example, the amount of air introduced was set to zero as described later by adjustment.) and adjusted the amount of oxygen in the flame.
  • the protective gas is air + N 2 (however, the amount of nitrogen is adjusted depending on the state of adhesion to the furnace wall and the cooling state), and the amount of oxygen in the tank (inside the combustion vessel 10) is adjusted and controlled. I made it
  • the supply amount of the metal silicon powder from the metal silicon powder supply means 11 was set to 2.50 kg/hr, the same as in Example 1, and the amount of entrained carrier gas was set to the same as in Example 1 (operation A).
  • Operation B was performed from an atomizer nozzle that formed a two-fluid nozzle in the ejector of operation A and was mounted. That is, hexamethyldisiloxane HMDS: (CH 3 ) 3 SiOSi(CH 3 ) 3 liquid was supplied at a rate of 3.04 Kg/hr and dry air was supplied at 24.13 Nm 3 /hr to form HMDS microparticles. (Operation B).
  • H 2 /O 2 hydrolysis flame was formed by introducing from a coaxial burner at an initial velocity of up to 100 m/sec from the nozzle (operation C).
  • the protective gas for operation D was dry air from two locations (36a, 36b) at 2.2 Nm 3 /hr intervals, and 95% concentration N 2 gas at 0.5 Nm 3 from two locations (37a, 37b) for enhanced cooling. /hr to adjust the amount of oxygen in the tank (inside the combustion vessel 10).
  • the generated silicon monoxide powder was similarly collected in the collecting chamber 23 to examine its characteristics. When the obtained silicon monoxide powder was analyzed by XRD and XPS, it was confirmed that it was amorphous SiO with no Si peak observed and only broad reflection.
  • Example 2 Except for these first, second and third supply means and supply fluid conditions, the same procedure as in Example 1 was carried out. As a result, 5.3 kg/hr of gray powder was obtained. As a result, a slight Si peak was observed, and about 20% of bonds derived from SiO 2 were also observed. Although the same amount of heat was supplied to form a flame, silicon monoxide powder equivalent to that of Examples 1 to 3 could not be obtained.
  • the present invention is not limited to the above embodiments.
  • the above-described embodiment is an example, and any device having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect is the present invention. included in the technical scope of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

本発明は、一酸化珪素を製造する方法であって、金属珪素粉末、又は、金属珪素粉末とSiOx(x≦2)粉末の混合物を、酸素ガスと不活性ガスとを含む第1の混合流体をキャリアとして、燃焼装置に供給する操作Aと、可燃性シリコン化合物の流体単独、又は、該可燃性シリコン化合物の流体と酸素ガスと不活性ガスとを含む第2の混合流体を前記燃焼装置に供給する操作Bと、可燃性ガスと酸素ガスと不活性ガスとを含む第3の混合流体を、前記燃焼装置に供給し、火焔を形成する操作Cとを有し、前記操作A、前記操作B及び前記操作Cを同時に行って、一酸化珪素の生成物を製造する一酸化珪素の製造方法である。これにより、生産性の高い一酸化珪素の製造方法が提供される。

Description

一酸化珪素の製造方法
 本発明は、一酸化珪素の製造方法に関する。
 従来から良く知られている一酸化珪素(以下では、「SiO」とも記述することがある)の製造は、金属珪素粉(以下では、「Si」又は「Si粉」とも記述することがある)とシリカ粉(以下では、SiO又はSiO粉とも記述することがある)を接触させて、1200℃以上、1500℃近くの温度領域で保持して反応させ、SiOを昇華させて製造する。このような固相反応昇華法は古くから知られており、多くの特許出願がされている(特許文献1から特許文献7)。SiOには液相が存在しないため、基本的に液相を経由せず、粉体間の接触反応で直接昇華して、SiOガスとなる。SiOガスは蒸着板などに蒸着・冷却され、固化してバルクSiOとなる。
 従来のこの方法によるSiOガス生成のためには、Si/SiO粉体間接触点を多くする必要があり、微粉同士を混合し、何らかの方法で造粒もしくは圧粉体として接触点を増やして反応を促進させる必要がある。
 従来のこの方法における反応温度は高い方が望ましいが、高くし過ぎると金属珪素Siが溶融して液の保持が難しくなる。粉体間接触点を増やすには、粉体同士を強く加圧することが有効であるが、SiとSiO共にセラミックで変形しないため限度がある。Si粉及びSiO粉の粉末同士の接触点を増やすには、各粉末を細かくすることが有効である。しかし、例えばμmオーダーの微細粉末にするには、装置やエネルギーコストもかかり、かつ、細かくし過ぎるとSi粉は表面酸化し易く粉塵爆発の危険性も増すため、微細化も限界があった。つまり従来の固相間接触法では、反応温度を上げることや粉体接触点を増やす上で限界があるため、SiO生成速度に限界があった。
 一方、SiOの還元による金属珪素Siを得る過程で、SiOを経由することが知られている(非特許文献1)。例えば、SiO還元炉内では素過程(1)~(3)の順番で、下記のように反応が進むと考えられている。
  (1) SiO+C → SiO+CO
  (2) SiO+C → Si+CO
  (3) SiO+2C → Si+2CO
 SiOのC還元の上記(1)過程で止めて、SiOのみを取り出せると望ましい。しかし、還元炉の中で(1)~(3)過程は連続的に起きており、生成したSiOガスは溶湯中で直ちに(2)の反応が起きて、溶融Siが生成する。(1)過程で止めてSiOのみを取り出すことは難しい。(1)過程の還元炉中に高温耐性のあるパイプを挿入などして、SiOガスを取り出しすることも原理的には考えられるが、実際に実行された例はない。
 このようにSiO製造において、従来の固相接触法を越える効率的な製造方法は知られていなかった。
 一方、SiとOの爆発燃焼により微細シリカや微細SiO+別酸化物の複合酸化物などを製造する方法は、下記の先行技術文献などにおいて開示されている(特許文献8、9)。
 例えば、特許文献9では「金属珪素粉末を酸素を含む気流中に供給し、燃焼させて平均粒径0.01~10μmの二酸化珪素粉末を形成する」ことが考案されており、微細SiO粉の製造方法が既に知られている。
 また、爆発燃焼法やプラズマジェットによるSiO生成やSiOを経由しSiNを生成することについても開示されている(特許文献10~特許文献13)。
特開2001-220123号公報 特開2001-220122号公報 特開2001-220125号公報 特開2002-373653号公報 特開平6-325765号公報 特開2015-149171号公報 国際公開第WO2014/188851号 特公平7-61855号公報 特開2003-221218号公報 特公平5-036363号公報 特公平4-079975号公報 国際公開第WO2015/015795号 特開2011-79724号公報
日本金属学会誌 第52巻、第10号、1988年、945~953ページ
 上記の先行技術文献から、Si粉とOガスの制御された爆発的酸化反応によってSiOを生成しようとすることは既知である。しかしながら、これらの製造法で一酸化珪素が生成するためには、プラズマジェット・高周波加熱等の高温で且つ高エネルギー密度の環境が必要であるばかりか、爆発的酸化反応は瞬時に起きるため、一酸化珪素で反応を留めることが難しい。仮に一酸化珪素が生成できても量産化には高コスト化するためこれも商用化には至っていない。
 本発明は、上記問題点に鑑みてなされたものであって、生産性の高い一酸化珪素の製造方法を提供することを目的とする。
 上記目的を達成するために、本発明では、一酸化珪素を製造する方法であって、金属珪素粉末、又は、金属珪素粉末とSiOx(x≦2)粉末の混合物を、酸素ガスと不活性ガスとを含む第1の混合流体をキャリアとして、燃焼装置に供給する操作Aと、可燃性シリコン化合物の流体単独、又は、該可燃性シリコン化合物の流体と酸素ガスと不活性ガスとを含む第2の混合流体を前記燃焼装置に供給する操作Bと、可燃性ガスと酸素ガスと不活性ガスとを含む第3の混合流体を、前記燃焼装置に供給し、火焔を形成する操作Cとを有し、前記操作A、前記操作B及び前記操作Cを同時に行って、一酸化珪素の生成物を製造することを特徴とする一酸化珪素の製造方法を提供する。
 このような一酸化珪素の製造方法では、従来の固相接触反応法と比べて非常に生産性の高い金属珪素粉末又は金属珪素粉末とSiOx(x≦2)粉末の混合粉の気流中酸化反応により、一酸化珪素粉末を効率的に生成できるようになる。また、金属珪素粉末、又は、金属珪素粉末とSiOx(x≦2)粉末の混合物に加えて可燃性シリコン化合物をSi源(シリコン原子源)として加えることで高いエネルギー密度の火炎を形成することできるため、均一な一酸化珪素を製造できる。
 このとき、前記金属珪素粉末、若しくは、前記金属珪素粉末とSiOx(x≦2)粉末の混合物への酸素拡散を制御する酸素ガスと不活性ガスとを含む第4の混合流体又は不活性ガス単独を供給する操作Dをさらに有し、前記操作A~Cを行う際に前記操作Dも同時に行うことが好ましい。
 このように、金属珪素粉末または金属珪素粉末とSiOx(x≦2)粉末の混合粉への酸素拡散を制御するためのガスにより、一酸化珪素粉末の生成をさらに高精度に制御することができる。
 また、本発明の一酸化珪素の製造方法では、前記第1の混合流体を、空気とすることができる。
 このように、空気を混合ガスとすることによって、より低コストで一酸化珪素を製造することができる。
 また、本発明の一酸化珪素の製造方法では、前記可燃性ガスを、炭化水素を含む可燃性ガスとすることができる。
 また、前記可燃性ガスを、水素を含む可燃性ガスとすることもできる。
 本発明の一酸化珪素の製造方法における可燃性ガスとしてはこれらのものを用いることができる。
 前記可燃性シリコン化合物の流体を、アルコキシシラン、シラン、アルキルシラン、アルキルシラノール、アルキルシクロシラン、アルキルシロキサン、アルキルシクロシロキサン、シラザン、シクロシラザンから選ばれる低分子有機シリコン化合物単独、又は、それらの混合物とすることが好ましい。
 本発明の一酸化珪素の製造方法では、これらの可燃性シリコン化合物の流体を用いることができる。
 また、本発明では、前記操作Aにおける、金属珪素粉末、又は、金属珪素粉末とSiOx(x≦2)粉末の混合物の供給と、前記操作Bにおける、可燃性シリコン化合物の流体単独、又は、該可燃性シリコン化合物の流体と酸素ガスと不活性ガスとを含む第2の混合流体の供給を、前記燃焼装置の同一箇所において混合して行うことが好ましい。
 このように、本発明では、操作Aと操作Bを一体化して行うことができる。
 また、本発明の一酸化珪素の製造方法では、前記操作A~Cを行って製造した一酸化珪素の生成物を、1100℃以上1500℃以下の温度で加熱することにより、前記生成物に含まれる一酸化珪素を昇華抽出する操作Eをさらに含むことができる。
 本発明の一酸化珪素の製造方法によって、一酸化珪素以外の成分である未反応のSiや二酸化珪素(SiO)との混合物として生成物が得られた場合には、このような方法により一酸化珪素成分のみを昇華抽出することができる。これは、SiやSiOが気化する温度は一酸化珪素よりもはるかに高いためである。
 本発明の一酸化珪素の製造方法では、従来の固相接触、液相固相反応法と比べて非常に生産性の高い金属珪素粉末、又は、金属珪素粉末とSiOx(x≦2)粉末の混合物、及び可燃性シリコン化合物による気流流体中の酸化反応により、一酸化珪素粉末を効率的に生成できるようになる。また、金属珪素粉末、又は、金属珪素粉末とSiOx(x≦2)粉末の混合物に加えて可燃性シリコン化合物をSi源(シリコン原子源)として加えることで高いエネルギー密度の火炎を形成することできるため、均一な一酸化珪素を製造できる。本発明の一酸化珪素の製造方法により製造した一酸化珪素は、ガラスやプラスチックコーティング用途やその他以外に、リチウムイオン二次電池の負極材として用いることができる。また、そのような負極材は、スマートフォンやスマートウォッチ等のモバイル機器、電気自動車の電池などの高容量化負極材として広く用いることができる。また、ガスバリア性の高い蒸着膜剤等の用途にも適しており、コストパフォーマンスに優れた材料特性を得られる。
本発明の一酸化珪素の製造方法において用いることができる燃焼装置の一例を示す概略断面図である。 本発明の一酸化珪素の製造方法において用いることができる燃焼装置の別の一例を示す概略断面図である。 本発明の一酸化珪素の製造方法において用いることができる燃焼装置のさらに別の一例を示す概略断面図である。 Si-Oの二元相図である。
 以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
 上記のように、従来の固相接触法やプラズマジェット法では一酸化珪素の効率的な生成には限界があった。一酸化珪素は、今後のリチウムイオン二次電池の高性能化のために、負極材として欠くことができない大変重要な素材であり、応用分野も拡大が期待できる。そのため効率的(生産性が高く、低コスト)な製造方法と低不均化状態を維持した一酸化珪素生成が望まれている。
 本発明者らはこのような従来の固相接触、液相固相接触法やプラズマジェット法に比して、より生産性・経済性に優れた製造方法を提供し、当該法により製造され、不均化程度の低い一酸化珪素を提供することを模索して鋭意研究を重ねた。
 その結果、金属珪素粉末、又は、金属珪素粉末とSiOx(x≦2)粉末の混合物に加え、Si源と高エネルギー源を併せ持つ可燃性シリコン化合物とさらにエネルギー源を補助し高温火焔領域を確保する可燃性ガス燃焼反応を同時に進行させ、その火焔中でO濃度を制御することによって、生産性の高い一酸化珪素の製造方法を提供できることを見出した。さらに、可燃性シリコン化合物をSi源に加えることで従来の固相-固相反応、固相-液相反応で合成された一酸化珪素に比べ、不均化しにくい性質が明らかになった。理由は明確ではないが、本発明の方法は、Si源の一部が常温で液相~気相で存在する方法であるため、従来法より均一な一酸化珪素が生成できるためではないかと考えられる。
 本発明は、一酸化珪素を製造する方法であって、金属珪素粉末、又は、金属珪素粉末とSiOx(x≦2)粉末の混合物を、酸素ガスと不活性ガスとを含む第1の混合流体をキャリアとして、燃焼装置に供給する操作Aと、可燃性シリコン化合物の流体単独、又は、該可燃性シリコン化合物の流体と酸素ガスと不活性ガスとを含む第2の混合流体を前記燃焼装置に供給する操作Bと、可燃性ガスと酸素ガスと不活性ガスとを含む第3の混合流体を、前記燃焼装置に供給し、火焔を形成する操作Cとを有し、前記操作A、前記操作B及び前記操作Cを同時に行って、一酸化珪素の生成物を製造することを特徴とする一酸化珪素の製造方法である。
 また、金属珪素粉末、若しくは、金属珪素粉末とSiOx(x≦2)粉末の混合物への酸素拡散を制御する酸素ガスと不活性ガスとを含む第4の混合流体又は不活性ガス単独を供給する操作Dをさらに有し、操作A~Cを行う際に操作Dも同時に行うこととしてもよい。
 図4にSi-Oの2元相図を示す。Si:O=1:1のところで、一酸化珪素(SiO)ガス相が1,860℃まで食い込んでいる。SiOをガス相とするには、2,860℃を超える温度まで昇温する必要があるのに比較すると、SiOをガス相とするのは、1,000℃低い温度でよく、この温度がSiOガス相生成の温度下限である。従って、酸化雰囲気で該温度以上に昇温できれば良いことになる。
 図1に、本発明の一酸化珪素の製造方法を実現するために重要な、燃焼装置(燃焼反応装置)の一例を示した。もちろん燃焼反応装置は図1に示した装置に限定されるものでなく、火焔と燃焼酸化制御ができる装置であれば、本発明の一酸化珪素の製造方法を実施できる。
 一酸化珪素の製造装置(燃焼装置)100は、燃焼容器10を有している。この燃焼容器10には、金属珪素粉末、または、金属珪素粉末とSiOx(x≦2)粉末の混合物の供給手段11(金属珪素粉末の供給手段として図示)と、酸素ガスと不活性ガスとを含む第1の混合流体を供給する第1のガス供給手段12がバーナー13を通じてつながっている。図1中では、第1のガス供給手段12として、空気に窒素ガス(Nガス)を加えて第1の混合流体とする場合を示している。この場合、不活性ガスは、空気に含まれる窒素やアルゴンとともに、追加された窒素ガスによって流量が調整される。これらの構成要素によって、原料となる金属珪素粉末または金属珪素粉末とSiOx(x≦2)粉末の混合物が、酸素ガスと不活性ガスとを含む第1の混合流体をキャリアとして、燃焼装置100(燃焼装置100の燃焼容器10の内部)に供給される。
 燃焼装置100は、さらに、燃焼装置100(燃焼装置100の燃焼容器10の内部)に、可燃性シリコン化合物の流体単独、又は、該可燃性シリコン化合物の流体と酸素ガスと不活性ガスとを含む第2の混合流体を供給する第2のガス供給手段15a、15bを具備する。図1中には、第2のガス供給手段15bからTMOS(テトラメトキシシラン)を供給し、第2のガス供給手段15aからO及びNを供給する場合を示している。なお、可燃性シリコン化合物を液体として供給する場合については後述する。
 燃焼装置100は、さらに、燃焼装置100(燃焼装置100の燃焼容器10の内部)に、可燃性ガスと酸素ガスと不活性ガスとを含む第3の混合流体を供給する第3のガス供給手段14を具備する。図1中には、第3のガス供給手段14として、LPGと、空気を供給する場合を示している。
 燃焼装置100は、さらに、燃焼装置100(燃焼装置100の燃焼容器10の内部)に、金属珪素粉末、若しくは、前記金属珪素粉末とSiOx(x≦2)粉末の混合物への酸素拡散を制御する酸素ガスと不活性ガスとを含む第4の混合流体又は不活性ガス単独を供給する第4のガス供給手段を具備してもよい。第4のガス供給手段は、炉壁への輻射熱を軽減することや炉内酸素ガス濃度低減、生成物の冷却等の目的のためのプロテクトガスを供給するプロテクトガス供給手段を兼ねてもよい。図1中には、第4のガス供給手段16、17として、空気及び追加窒素ガスを混合して供給する場合を示している。
 燃焼装置100は、さらに、下部において、生成した一酸化珪素粉末24を捕集するための捕集室23を具備している。
 本発明では、このような燃焼装置100を用いて、一酸化珪素を製造することができる。すなわち、燃焼装置100の上部中心から、金属珪素粉末または金属珪素粉末とSiOx(x≦2)粉末の混合物供給手段11及び第1のガス供給手段12により金属珪素粉末または金属珪素粉末とSiOx(x≦2)粉末の混合物を、第1の流体供給手段12から供給した第1の混合流体(図1の例の場合、空気と追加窒素ガス)からなるキャリアガスの気流に乗せて供給する(操作A)。このとき、金属珪素粉末または金属珪素粉末とSiOx(x≦2)粉末の混合物は、例えば、#200メッシュ程度とすることができる。また、その同心外周又は内周から、可燃性シリコン化合物の流体単独、又は、該可燃性シリコン化合物の流体と酸素ガスと不活性ガスとを含む第2の混合流体を第2の流体供給手段15a、15bから供給し、更にその同心外周から可燃性ガスと酸素ガスと不活性ガスとを含む第3の混合流体(図1の例の場合、LPGからなる可燃性ガスと空気と追加窒素ガス)を第3の流体供給手段14から供給する。
 これらの供給とともにバーナー13の先端で着火し、火焔21を形成する。火焔21中で金属珪素粉末または金属珪素粉末とSiOx(x≦2)粉末の混合物と可燃性シリコン化合物を酸化し、SiOガスとして装置下部で急冷・固化し一酸化珪素の粉末を生成する(操作C)。
 供給する金属珪素粉末または金属珪素粉末とSiOx(x≦2)粉末の混合物の量により、必要に応じて酸素ガスと不活性ガスを含む第4の混合ガス(図1の場合、空気及び追加窒素ガス)を供給する(操作D)。これらの操作A、B及び操作Cを同時に行い、又は、操作A~Dを同時に行い、槽内及び火焔中の酸素雰囲気最適化による一酸化珪素粉末の生成速度と火焔流制御を両立させて、安定的に一酸化珪素粉末を生成する。
 本発明の一酸化珪素の製造方法では、可燃性ガスと酸素ガスと不活性ガスとを含む第3の混合ガスを燃焼装置に供給して火焔を形成する操作Cを、金属珪素粉末または金属珪素粉末とSiOx(x≦2)粉末の混合物と可燃性シリコン化合物の酸化のための並列発熱源とする。
 これに、原料となる金属珪素粉末または金属珪素粉末とSiOx(x≦2)粉末の混合物を、酸素ガスと不活性ガスとを含む第1の混合ガスをキャリアとし、更に可燃性シラン化合物単独或いはその酸素ガスと不活性ガスを含む第2の混合流体を、燃焼装置に供給する操作AとBが、同じ燃焼装置内に存在し、金属珪素粉末または金属珪素粉末とSiOx(x≦2)粉末の混合物と酸素ガスの酸化発熱と可燃性シリコン化合物の燃焼熱も付加しながら、前記で述べたSiOガス温度領域まで昇温して一酸化珪素(SiO)を生成する。
 以下、各操作ごとにより詳細に説明する。
[操作A]
 操作Aは、金属珪素粉末、又は、金属珪素粉末とSiOx(x≦2)粉末の混合物を、酸素ガスと不活性ガスとを含む第1の混合流体をキャリアとして、燃焼装置に供給する操作である。操作Aにおいて供給される粒子は、金属珪素粉末単独であってもよいし、金属珪素粉末とSiOx(x≦2)粉末の混合物であってもよい。特に、SiOx(x≦2)粉末を添加する場合は、添加されるSiOx(x≦2)粉末の加熱熱量分の可燃性ガスや可燃性シリコン化合物の流量を増加させてもよい。
 前述のように、操作Aは、金属珪素粉末、又は、金属珪素粉末とSiOx(x≦2)粉末の混合物を、酸素ガスと不活性ガスとを含む第1の混合流体をキャリアとして、燃焼装置に供給する。操作Aで支燃性Oガス以外に不活性ガスの混合流体(第1の混合流体)をキャリアとするのは、金属珪素粉末又は、金属珪素粉末とSiOx(x≦2)粉末の粉末混合物の酸化反応を制御するためである。キャリアガスが支燃性のOガスのみであると、瞬時に爆発的酸化反応が起きて、SiOが生成してしまう可能性がある。そのため支燃性のOガスと不活性ガスの混合流体として、O濃度を薄めて酸化発熱反応速度を制御し、SiOを生成し易くするものである。SiO生成まで至らずSiOで反応を停止させるには、爆発限界酸素濃度10%を超えないようにする必要がある。該第1の混合流体として、OとNの混合流体、OとArの混合流体などの量比を制御したものが望ましい。
 また、操作Aのキャリアの一部として有機溶剤を用いても良い。さらには、操作Aのキャリアの一部として、操作Bで挙げるアルコキシシラン、シラン、アルキルシラン、アルキルシラノール、アルキルシクロシラン、アルキルシロキサン、アルキルシクロシロキサン、シラザン、シクロシラザンなどの可燃性シリコン化合物や有機溶剤を用いてもよい。この場合、後述のように操作Aと操作Bの一体化ということもできる。この場合も本発明の形態に含まれる。可燃性シリコン化合物を用いる場合は、燃焼速度を高めるためできるだけ揮発性の可燃性シリコン化合物や有機溶剤を用いることが望ましい。このようにすると、混合ガスキャリアの場合に比較して大きな熱量を確保でき且つ、火炎を長くできることから生成したSiO粒子を増大させる効果が期待できる。
[操作B]
 前述のように、操作Bは、可燃性シリコン化合物の流体単独、又は、該可燃性シリコン化合物の流体と酸素ガスと不活性ガスとを含む第2の混合流体を燃焼装置に供給する。この操作は、可燃性シリコン化合物、又はそれとともに酸素ガスと不活性ガスの混合流体(第2の混合流体)を供給し、補助的な原料(サブの原料)を供給する操作である。この操作が操作Aと合わせて、原料Si(珪素原子)を供給する工程となる。この操作Bでは、操作Aと同じく、可燃性シリコン化合物と酸素のみの供給を行うと、反応が激烈に進行してくSiOが生成してしまう可能性があるため、不活性ガスも混合して、酸化発熱反応を制御するものである。
 可燃性シリコン化合物としては、易燃焼性のものが好適に選ばれ、揮発性で低沸点のアルコキシシラン、シラン、アルキルシラン、アルキルシラノール、アルキルシクロシラン、アルキルシロキサン、アルキルシクロシロキサン、シラザン、シクロシラザン等から選ばれる低分子有機シリコン化合物単独、又は、それらの混合物が望ましい。先の燃焼熱比を鑑み、プロセス上の操作性や安全性に配慮して適切に選択できる。
[操作Aと操作Bの一体化]
 操作Aにおける、金属珪素粉末、又は、金属珪素粉末とSiOx(x≦2)粉末の混合物の供給と、操作Bにおける、可燃性シリコン化合物の流体単独、又は、該可燃性シリコン化合物の流体と酸素ガスと不活性ガスとを含む第2の混合流体の供給は、燃焼装置の同一箇所において混合して行うことができる。
 例えば、操作Aのキャリアとして、酸素ガス、不活性ガスに加えて、操作Bのアルコキシシラン、シラン、アルキルシラン、アルキルシラノール、アルキルシクロシラン、アルキルシロキサン、アルキルシクロシロキサン、シラザン、シクロシラザンなどの可燃性シリコン化合物や有機溶剤を用いても良い。この場合は、燃焼速度を高めるためできるだけ揮発性の可燃性シリコン化合物を用いることが望ましい。この場合、混合ガスキャリアの場合に比較して大きな熱量を確保でき且つ、火炎を長くできることから生成したSiO粒子を増大させる効果が期待できる。
 但し、液体の可燃性シリコン化合物を用いる場合、金属珪素粉末、又は、金属珪素粉末とSiOx(x≦2)粉末の粉末混合物と混合するとスラリー液となるため、気体キャリアで粉末を供給する場合と比べると操作性・安定性が低下し、装置コストも高くなる傾向があるが、必要なSiO物性によっては、選択することができる。
 また、操作Aで述べた金属珪素粉末、又は、金属珪素粉末とSiOx(x≦2)粉末の粉末混合物と可燃性シリコン化合物や有機溶剤の混合スラリーや操作Aで燃焼装置に提供されるエジェクタバーナーと一体型の供給装置を形成することもできる。この場合もやはり熱量増大化や液滴燃焼による火炎の縦方向の拡大が期待でき、生成SiO粒子の粒径拡大に寄与できるため、好適に選択される。操作Aと操作Bを見かけ上一体化させるメリットは、燃焼の完全性を追求でき好適に利用されるが、この場合のSi/Oとの化学量論比を制御する必要があることは、言うまでもない。
[操作Bの補足説明]
 操作Bにおいては、上記のように、可燃性シリコン化合物(1種又は複数種でもよい)の流体単独、又は、該可燃性シリコン化合物の流体と酸素ガスと不活性ガスとを含む第2の混合流体を前記燃焼装置に供給する。この可燃性シリコン化合物は、燃焼火焔中で酸化される過程において、金属珪素粉末と接触衝突しながら通過する。可燃性シリコン化合物は常温で気体・液体のいずれのものもが選択できる。可燃性シリコン化合物は、気体で供給しても、微細な液滴(アトマイズ粒子様)で供給してもよい。この操作Bにおける可燃性シリコン化合物は、上記のように、操作Aの金属珪素粉末との混合物であってもよい。可燃性シリコン化合物を液体として供給する場合は、金属珪素粉末やSiOx(x≦2)との混合物であるため、燃焼までのエネルギー消費を抑える目的で高速アトマイザー供給されてもよい。この場合は、金属珪素粒子/SiOx(x≦2)粒子が、均一に分散する様に事前に混合工程を選択することができる。
 この可燃性シリコン化合物には、種々のモノマーや低分子量のオリゴマーが好適に使用される。シリコーン系液状ポリマーも使用できるが、これらの高分子化合物は、粘性も高く、燃焼に至るまでの分散、気化、着火までに多大のエネルギーを与える必要があるため低分子有機シリコン化合物を用いることが好ましい。また、ここで用いる可燃性シリコン化合物は、生成した一酸化珪素の性能に悪影響を与える可能性があるハロゲン化物や燃焼後に一酸化珪素以外の固体、液体酸化物を生成しない可燃性シリコン化合物であることも好ましい。
 さらに、好適には、一酸化珪素への火焔中での燃焼温度を安定させることができる燃焼熱を確保できる化合物が好適に使用される。
 この指標には、「燃焼熱比」が有効である。表1に挙げた、一般的に知られている低分子有機シリコン化合物の完全燃焼における燃焼熱を1.0とした場合のSiO(g)への燃焼反応熱との比を表している。この燃焼熱比は、火焔中での酸素濃度が低下した場合に火炎温度の極端な下降を防止できる指標として位置づけることができる。この数値が大きいほど酸素濃度の変化に強い火炎を形成することができる。
 表1のシリコン化合物以降にSiOとSiOが生成物であった場合の燃焼熱の例を挙げる。CH、H等の可燃性ガスの燃焼熱(表2も参照)と比較するとその有用性が理解できる。
 以下の化学燃焼反応種は特に記載ない限りガス状態基準を表す。SiO(g)を基準にしているため、通常SiOは、固体として扱うが、ここでは、SiO(g)が存在可能な1860℃(2133K)付近での状態と思われる液体として取り扱う。但し、SiO(l)とSiO(s)の標準生成エンタルピーΔHfは、SiO(s)→SiO(l)の状態変化において、SiO(s)が結晶であれ、ガラスであれ、その状態変化熱(液化熱)が極めて小さいため、SiO(l)をSiO(s)と考えても結果に大差はなく、SiO(s)との燃焼熱比と考えても差し支えない。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 この表より、以下に例示する物質のΔHr(298)は以下の通りである。
Si(OCH+5.5O → SiO+4CO+6H
    ΔHr(298)=-1946kJ/mol
(CHSiOSi(CH[HMDS]+11O
  → 2SiO+6CO+9H
    ΔHr(298)=-3923kJ/mol
{(CHSiO}[OMCTS:D4]+16O
  → 4SiO+8CO+12H
    ΔHr(298)=-5172kJ/mol
 これに対して、メタン、プロパン等の可燃性ガスやSi(l)の場合は、
CH+2O → CO+2H
    ΔHr(298)=-802kJ/mol
+5O → 3CO+4H
    ΔHr(298)=-2044kJ/mol
Si(l)+0.5O → SiO
    ΔHr(298)=-149kJ/mol
となり(表2参照)、可燃性シリコン化合物は、可燃性ガスの燃焼熱に対して大きなアドバンテージを持つばかりでなく、Si源としても使用することができる。従ってSi源として、金属珪素粉末、金属珪素粉末とSiOx(x≦2)の混合物或いは可燃性シリコン化合物を選択することができるが、経済性、製造する一酸化珪素に求める性能などを考慮して選択することができる。
 但し、本発明は、Si源として金属珪素/SiOx(x≦2)と「可燃性シリコン化合物」の両方を選択することで驚くべきことに生成した一酸化珪素が固相反応や液固相反応で得た一酸化珪素に比較して、不均化しにくい性質があることが明らかとなった。
 可燃性シリコン化合物群での一酸化珪素の合成条件は、その発生熱量と火炎中の酸素分圧の関係から、調整によって見いだすことができる。
 操作Bで使用する可燃性シリコン化合物は主に火焔温度を維持し、Si源を持った熱源であることからその他のSi源(金属珪素粉末等)との配合を常に調整する必要がある。そのため、可燃性シリコン化合物は、従属的にその量を設定することができる。操作Bは、その火焔の中でSi源とOガスを反応させてより均一な一酸化珪素を生成するための重要な操作である。操作Bでは、Si源と支援性ガス、不活性ガスのバランスを調整し火焔の大きさをできるだけ長く大きくし、本火焔の中でできるだけゆっくりとSiの酸化反応を制御しながら一酸化珪素を生成することが望ましい。
 常温で液体の可燃性シリコン化合物を使用する場合は、燃焼の速度をガスの場合より抑えることができるため、操作(A)の金属珪素粉末やSiOx(x≦2)との混合物であった場合も、火炎を長くする効果が期待できる。その場合は酸水素火炎や可燃性ガスの量を調整し適正化することができる。
 本発明で用いられる可燃性シリコン化合物は、この説明を考慮して適宜選択することができ、特に限定されるものではないが、例えば、上記で列挙したアルコキシシラン等の低分子有機シリコン化合物単独或いはそれらの混合物を採用することができる。
[操作C]
 上記のように、操作Cは、可燃性ガスと酸素ガス(支燃性Oガス)と不活性ガスとを含む第3の混合流体を、燃焼装置に供給し、火焔を形成する操作である。この操作が金属珪素粉末又は、金属珪素粉末とSiOx(x≦2)粉末の混合物を一酸化珪素とするための第3の熱供給工程となる。このとき、操作Cで熱量を調整することが好ましい。例えば、操作Aや操作Bで混合流体(第1の混合流体と第2の混合流体)を空気や窒素リッチなガスとした場合などは、SiO生成のためのOが不足することが多いため、操作Cでは可燃性ガスと酸素ガス(支燃性Oガス)の混合流体(第3の混合流体)で熱量を調整することが好ましい。さらに、操作A、操作Bと同じように、操作Cでは、SiO生成速度を調整制御するため、不活性ガスも加える。ここでの不活性ガスは空気に含まれる窒素、アルゴン等でもよい。
 また、可燃性ガスは、CH、LPG(液化天然ガス)などの炭化水素ガスでよい。もちろん、用いることができる炭化水素ガスはこれらだけに限定されるものではない。ここでの可燃性ガスとして、メタン、エタン、プロパン、アセチレン、プロピレン等の炭化水素は十分な燃焼発熱が得られるので好ましいが、これらに限定されない。また、可燃性ガスは、水素(以下では、Hと記述することもある)あるいはHと炭化水素の混合流体であってもよい。火焔における発生熱量や火焔長さなどの形状は、一酸化珪素生成に適合できるように比率などを決めればよい。
 操作Cは火焔を形成し、その火焔の中で、金属珪素粉末、又は、金属珪素粉末とSiOx(x≦2)粉末の混合物、(操作Aで供給される)第1の混合流体、及び、可燃性シリコン化合物(操作Bで供給される)とOガスを反応させて安定的に一酸化珪素を生成するために必須の工程である。
 操作Cでも、操作B同様に火焔の大きさをできるだけ長く大きくし、その火焔の中でできるだけゆっくりとSiを制御しながら酸化させて一酸化珪素を生成する。Si成分と酸素ガスの反応を一酸化珪素粉末が生成するような条件で反応を行うことが好ましい。
 つまり火焔中のO濃度を一酸化珪素生成範囲に制御して、酸化反応を行わせることが必要である。酸化反応制御は、これまで述べてきたように燃焼装置に供給するSi原料の量と、酸素ガスの量(第1の混合流体、第2の混合流体に含まれる酸素ガス及び第3の混合流体に含まれる酸素ガスの合計量)との比を調整することにより行う。さらに、可燃性ガスの混合比率や種類(炭化水素ガス、H等)、可燃性ガスと酸素ガス(支燃性ガス)と不活性ガスの混合比率の最適化により酸化反応制御を行うことが好ましい。つまりSi源供給量と可燃性ガス種と流量等により、火焔中の適正O量は変化するため、これらの生成条件の調整は実験的に行うことができる。
[操作Cの補足説明]
 このような操作Cは、可燃性ガスと支燃性酸素ガスと不活性ガスの混合ガスを燃焼装置に供給し、火焔を補助的に形成する操作であり、Si源酸化領域を補完するための発熱源となる。
 これに、金属珪素粉末、又は、金属珪素粉末とSiOx(x≦2)粉末の混合物を、酸素ガスと不活性ガスとを含む第1の混合流体をキャリアとして、燃焼装置に供給する操作Aを、同じ燃焼装置に対して行うため、操作Bにおける可燃性シリコン化合物を含むSi源と酸素ガスの酸化発熱も付加しながら、前記で述べたSiOガス温度領域まで昇温して一酸化珪素を生成する。操作Aで酸素ガス以外に不活性ガスを含む混合ガスをキャリアとしているのは、Siの酸化反応を制御するためである。キャリアガスが酸素ガスのみであると、瞬時に爆発的酸化反応が起きて、SiOが生成してしまう可能性がある。
 そのため酸素ガスと不活性ガスとを含む混合ガスとして、酸素濃度を薄めて酸化発熱反応速度を制御し、SiOを生成し易くするものである。SiO生成まで至らずSiOで反応を停止させるには、火焔中の爆発限界酸素濃度10%を超えない様にする必要があると考えられる。該混合ガスとしては空気、酸素と窒素の混合ガス、酸素とArの混合ガスなどの量比を制御したものが望ましい。
 操作Cは可燃性ガスと酸素ガスと不活性ガスとを含む混合ガスを供給し、火焔形成や高温を維持・補助する工程で、本工程がSiを一酸化珪素とするための補助的熱供給工程となる。
 操作Aで混合ガスを空気とした場合、一酸化珪素生成のための酸素が不足するため、主たる熱量補給を一種或いは複数の可燃性シリコン化合物群から選ばれ、少なくともその酸素ガスとの混合ガスを燃焼装置に供給する操作Bで行いさらに、本操作Cでは可燃性ガスと酸素ガスの混合ガスで補足的に熱量を調整する。更に操作Aと同じようにSiO生成速度を調整制御するため、不活性ガスを加える。不活性ガスは空気に含まれる窒素でも良いし、窒素PSA(圧力変動吸着式窒素ガス発生装置)等で生成された濃度90~95%程度の窒素でもよい。
 操作Cにおける可燃性ガスはCH、LPGなどの炭化水素ガスでよく、もちろん炭化水素ガスがこれらだけに限定されるものではない また、可燃性ガスが水素あるいは水素と炭化水素の混合ガスであっても良い。操作Cは補助的に火焔を形成し、Si源を持たない熱源であることから独立的にその量を設定することが可能であると共にその火焔の中でSi源と酸素ガスを反応させてより均一な一酸化珪素を生成するために必要な工程である。本工程では、操作B同様に火焔の大きさをできるだけ長く大きくし、本火焔の中でできるだけゆっくりと金属珪素粉末を制御しながら酸化させて一酸化珪素を生成させることが望ましい。
 そのため可燃性ガスと水素の比率や種類、可燃性ガスと支燃性ガスと不活性ガスの混合比率の最適化による、酸化反応制御は操作Bでの調整と同様に重要な制御である。
 当然、供給金属珪素粉末の量に応じて、操作B、操作Cの可燃性シリコン化合物や可燃性ガスとの混合ガス比率は最適化する必要があるが、火焔の最適化と両立しない場合もある。火焔最適化とは火焔をできるだけ長くし、金属珪素粉末、又は、金属珪素粉末とSiOx(x≦2)粉末の混合物を火焔内に落下させながら、制御酸化してSiOを生成するが、火焔長さや温度分布と酸素量制御が両立しない場合がある。その場合、後述のように、金属珪素粉末、又は、金属珪素粉末とSiOx(x≦2)粉末の混合物への酸素拡散を制御する酸素と不活性ガスとを含む混合ガス又は不活性ガス単独を供給する操作Dにより、操作B、操作Cにおける酸化速度を制御することができる。金属珪素粉末供給量が少ない時は、当然必要とされる酸素量は少なくて良い。その場合、操作Cにおける酸素ガス量を少なくしてしまうと、火焔を最適化できなくなる。そこで操作Bの100%の可燃性シリコン化合物やそれを含む酸素-窒素混合流体は調整範囲で火焔を維持し、操作Dにおいて酸素と不活性ガスとを含む混合ガスの比率を酸素減少側に調整したものを供給する。
 逆に金属珪素粉末供給量が多い時は、操作Bを増加するか操作Cを増加するかは、任意に選択できる。その際も、後述の操作Dにおいて酸素と不活性ガスとを含む混合ガスの比率を酸素増加側にして調整することができる。
[操作D]
 上記のように、供給される金属珪素粉末、又は、金属珪素粉末とSiOx(x≦2)粉末の混合物と可燃性シリコン化合物の量に応じて、操作Dにおける第4の混合流体の供給比率は最適化することが好ましい。ただし、そのような供給比率の最適化と、火焔の最適化と両立しない場合もある。言い換えれば、火焔最適化とは火焔をできるだけ長くすることである。本発明では金属珪素粉末、又は、金属珪素粉末とSiOx(x≦2)粉末の混合物を可燃性シリコン化合物等とともに火焔内に落下させながら、酸化制御してSiOを生成するが、火焔長さや温度分布と酸素量制御が両立しない場合がある。
 その場合、金属珪素粉末、又は、金属珪素粉末とSiOx(x≦2)粉末の混合物への酸素拡散を制御する酸素ガスと不活性ガスとを含む第4の混合流体、又は、不活性ガスを供給する操作Dにより、操作A、B、Cにおける酸化速度を最終的に微調整制御することができるようになる。具体的には、本発明の一酸化珪素の製造方法において、燃焼装置に、金属珪素粉末、又は、金属珪素粉末とSiOx(x≦2)粉末の混合物への酸素拡散を制御するための、酸素ガスと不活性ガスを含む第4の混合流体又は不活性ガス単独を供給する操作Dをさらに有するものとすることができる。金属珪素粉末又は、金属珪素粉末とSiOx(x≦2)粉末の混合物と可燃性シリコン化合物の供給量が少ない時は、当然酸化(燃焼)に必要とされるO量は少なくてよい。その場合、操作Dにおける支燃性Oガス量を少なくしてしまうと、火焔を最適化できなくなる。そこで操作Cの混合ガスは調整範囲で火焔を維持し、操作DにおいてO/不活性ガス比率をOレス側(Oが少ない側)に調整したものを供給する。金属珪素粉末等と可燃性シリコン化合物の供給量が多い時は逆で、操作DにおいてO/不活性ガス比率をOリッチ側(Oが多い側)にして調整する。
 また、図1に示した第4のガス供給手段16、17等からのプロテクトガスの供給は、金属珪素粉末又は、金属珪素粉末とSiOx(x≦2)粉末への酸素拡散を制御するための、酸素ガスと不活性ガスを含む第4の混合流体又は不活性ガス単独を供給するという操作Dの一部でもある。
 本発明により、従来の固相接触反応法と比べて非常に生産性の高い珪素粉末と可燃性シリコン化合物の気流中酸化反応により、一酸化珪素を効率的に生成できるようになる。特に、低不均化一酸化珪素負極材を効率的に生成できるようになるので、LIB(リチウムイオン電池)用負極材として適した一酸化珪素材を得ることができる。本発明の製造方法によって製造した一酸化珪素はガラスやプラスチックコーティング用途やその他以外に、リチウムイオン二次電池の負極材として用いることができる。さらに、スマートフォンやスマートウォッチ等のモバイル機器、電気自動車の電池などの高容量化負極材として広く用いることができる。
[操作E]
 本発明の一酸化珪素の製造方法によれば、上述の方法により一酸化珪素を生産性良く製造することができるが、条件によって一酸化珪素以外の成分である未反応のSiやSiOとの混合物として生成物が得られる場合もある。その場合には、操作A~C(当然操作Dを行ってもよい)を行って製造した一酸化珪素の生成物を、1100℃以上1500℃以下の温度で加熱することにより、前記生成物に含まれる一酸化珪素を昇華抽出する操作Eをさらに含むことができる。生成物を、1100℃以上1500℃以下の温度で加熱することにより、生成物に含まれるSiOを昇華抽出することができる。SiやSiOが気化する温度はSiOよりもはるかに高いため、このような方法によりSiO成分のみを昇華抽出することができる。
 以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれら実施例に限定されるものではない。
[実施例1]
 図1に示した燃焼装置(燃焼反応装置)100を用いて、本発明の製造方法に従って、一酸化珪素を製造した。操作Bに用いる可燃性シリコン化合物はテトラメトキシシランSi(OCH(以下TMOSと呼称)、操作Cに用いる可燃性ガスはLPGとした。Oガスと不活性ガスを空気とし、操作Cに用いる第3の混合ガスは、空気(すなわち、酸素ガスを含み、不活性ガスとして窒素及びアルゴンを含む混合ガス)とした。
 先ず工程Bの第2の混合流体として、TMOSを蒸発器により気化し5.69Kg/hrおよびTMOS燃焼用空気を24.13Nm/hr供給しバーナー13で着火した(操作B)。
 次に第1の混合流体として、金属珪素粉末供給手段11より、2.50Kg/hrの金属珪素粉末を供給し、この金属珪素粉末は、空気と追加Nガスを混合したキャリアガス(O濃度8Vol%基準)1.01Nm/hrとArを0.86Nm/hrを第1のガス供給手段12から供給してこれに乗せて供給した(操作A)。
 第2混合流体の外周に第3のガス供給手段(バーナー)14より、LPGガス1.00Nm/hrと空気26.67Nm/hrを混合し燃焼させた(操作C)。
 燃焼容器10には炉内気流流れと火焔制御のためと、炉壁への輻射熱の軽減、炉内低酸素濃度維持、冷却等の目的で第4のガス供給手段16、17から空気+Nの気流カーテンを2段で2.5Nm/hr毎供給した。
 これは火焔制御のために空気:N比率を変えて制御する操作C(第3混合流体)の一部でもあり、これにより、炉内酸素濃度を制御した(操作Dでもある)。
 以上の操作A、B、C、Dにより、燃焼火焔21内でO量を制御しながら、一酸化珪素の粉末をおよそ5.55Kg/hrを生成させた。
 本実施例では捕集室23で生成した一酸化珪素粉末24を97.0%程度回収した。炉内圧は0~2000Paの範囲で減圧状態に保持された。生成した一酸化珪素粉末24の粉末XRD及びXPS分析からアモルファス状SiOであることが確認できた。
[実施例2]
 図2に示した一酸化珪素の製造装置200を用いて一酸化珪素を製造した。図2の一酸化珪素の製造装置200の構成は図1と基本的に同様であるが、第3のガス供給手段14から、Hガス(第3の混合ガス)を供給することが異なる。その他の同一の符号を付した構成は図1と同様である。操作Cでは、実施例1の可燃性ガスである炭化水素ガス(LPG)の代わりに第3のガス供給手段14からHガスおよび量論量のOガスを供給し主たる発熱源とした。また、操作Cで主に火焔を制御するが、空気を上記のHと混合しながら導入可能(ただし、この実施例では調整により、後述のように空気の導入量をゼロとした。)なものとし、火焔中の酸素量を調整した。
 本実施例では、プロテクトガスを空気+N(但し窒素は炉壁への付着状況や冷却状況によってその量は調整される)として、更に槽内(燃焼容器10内)の酸素量を調整制御するようにした。
 金属珪素粉末供給手段11からの金属珪素粉末の供給量は、実施例1と同じ2.50Kg/hrとし、同伴キャリアガス量は実施例1と同じとした(操作A)。テトラメトキシシランSi(OCH(以下でTMOS)を蒸発器で気化し5.69Kg/hrの速度で供給した(操作B)。また、Hガス8.45Nm/hrを第3のガス供給手段14から導入すると共に、空気及び酸素ガスを、同じ第3のガス供給手段14から、PSA装置から供給されたOガスの流速を4.86Nm/hrとしてノズルより100m/secまでの初速で同軸バーナーから導入して、H/O加水分解火焔を形成した(操作C)。操作DのプロテクトガスはO濃度5%のNガスを2箇所から2.2Nm/hr毎で流して、槽内(燃焼容器10内)の酸素量を調整した。生成した一酸化珪素粉末は同じく捕集室23で捕集し、特性を調べた。得られた一酸化珪素粉末をXRD及びXPS分析測定したところ、Siピークが観察されずブロードな反射のみのアモルファス状SiOであることが確認できた。
[実施例3]
 図3に示した一酸化珪素の製造装置300を用いて一酸化珪素を製造した。図3の一酸化珪素の製造装置300の構成は図1と略同様であるが、第2の混合流体(可燃性シラン化合物単独或いはその酸素ガスと不活性ガスを含む第2の混合流体)と第1の混合流体を供給する手段11、12が一体型となっている。さらに第2の混合流体供給手段35bからヘキサメチルジシロキサンHMDS:(CHSiOSi(CHを、2流体ノズルを形成する供給手段35aからドライ空気(Dry-Air)を供給することが異なる。また、プロテクトガス供給手段36a、36b、37a、37bとしてドライ空気及びPSA装置から供給された窒素を供給するようにした。その他の同一の符号を付した構成は図1と同様である。
 操作Cでは、実施例1の可燃性ガスである炭化水素ガス(LPG)の代わりに第3のガス供給手段14からHガスおよび量論量のOガスを供給し補助的な発熱源とした。また、操作Cで主に火焔を制御するが、空気を上記のHと混合しながら導入可能(ただし、この実施例では調整により、後述のように空気の導入量をゼロとした。)なものとし、火焔中の酸素量を調整した。
 本実施例でも、プロテクトガスを空気+N(但し窒素は炉壁への付着状況や冷却状況によってその量は調整される)として、更に槽内(燃焼容器10内)の酸素量を調整制御するようにした。
 金属珪素粉末供給手段11からの金属珪素粉末の供給量は、実施例1と同じ2.50Kg/hrとし、同伴キャリアガス量は実施例1と同じとした(操作A)。
 操作Aのエジェクター内に二流体ノズルを形成して装着されたアトマイザーノズルから操作Bを行った。即ちヘキサメチルジシロキサンHMDS:(CHSiOSi(CH液体を3.04Kg/hrの速度で供給しながら、ドライ空気を24.13Nm/hrで供給しHMDSマイクロ粒子を形成させた(操作B)。
 Hガス8.40Nm/hrを第3の供給手段14から導入すると共に、空気及び酸素ガスを同じ第3の供給手段14からPSA装置から供給されたOガス4.83Nm/hrとしてノズルより100m/secまでの初速で同軸バーナーから導入して、H/O加水分解火焔を形成した(操作C)。
 操作Dのプロテクトガスはドライ空気を2箇所(36a、36b)から2.2Nm/hr毎、さらに冷却強化のため95%濃度のNガスを2箇所(37a、37b)から0.5Nm/hr毎で流し、槽内(燃焼容器10内)の酸素量を調整した。生成した一酸化珪素粉末は同じく捕集室23で捕集し、特性を調べた。得られた一酸化珪素粉末をXRD及びXPS分析測定したところ、Siピークが観察されずブロードな反射のみのアモルファス状SiOであることが確認できた。
[比較例1]
 図1に示した実施例1の装置における操作Bを行わず、可燃性シラン化合物単独或いはその酸素ガスと不活性ガスを含む第2の混合流体は供給しなかった。
 操作Aの第1のガス供給手段12から補足Si源を含む金属珪素粉3.55Kg/hrを供給し、さらにこの金属粉末は、空気と追加Nガスを混合したキャリアーガス(O濃度8Vol%基準)1.44Nm/hrとAr1.22Nm/hrを第1のガス供給手段12から共に供給した。操作Bを行わなかったので熱量を補足するため、第3のガス供給手段14より、第3の混合ガスLPG1.8Nm/hrと空気49.93Nm3/hrを混合し燃焼させた。
 これら、第1、第2、第3の供給手段と供給流体条件以外は、実施堤1と同様に行った結果、灰色粉末5.3Kg/hrを得たが、生成物をXRD及びXPS分析測定したところ、僅かなSiピークが観測され、SiO由来の結合も約20%程観察された。同程度の熱量供給された火焔を形成したものの実施例1~3と同等な一酸化珪素粉末を得る事が出来なかった。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (8)

  1.  一酸化珪素を製造する方法であって、
     金属珪素粉末、又は、金属珪素粉末とSiOx(x≦2)粉末の混合物を、酸素ガスと不活性ガスとを含む第1の混合流体をキャリアとして、燃焼装置に供給する操作Aと、
     可燃性シリコン化合物の流体単独、又は、該可燃性シリコン化合物の流体と酸素ガスと不活性ガスとを含む第2の混合流体を前記燃焼装置に供給する操作Bと、
     可燃性ガスと酸素ガスと不活性ガスとを含む第3の混合流体を、前記燃焼装置に供給し、火焔を形成する操作Cと
     を有し、
     前記操作A、前記操作B及び前記操作Cを同時に行って、一酸化珪素の生成物を製造することを特徴とする一酸化珪素の製造方法。
  2.  前記金属珪素粉末、若しくは、前記金属珪素粉末とSiOx(x≦2)粉末の混合物への酸素拡散を制御する酸素ガスと不活性ガスとを含む第4の混合流体又は不活性ガス単独を供給する操作Dをさらに有し、
     前記操作A~Cを行う際に前記操作Dも同時に行うことを特徴とする請求項1に記載の一酸化珪素の製造方法。
  3.  前記第1の混合流体を、空気とすることを特徴とする請求項1又は請求項2に記載の一酸化珪素の製造方法。
  4.  前記可燃性ガスを、炭化水素を含む可燃性ガスとすることを特徴とする請求項1から請求項3のいずれか1項に記載の一酸化珪素の製造方法。
  5.  前記可燃性ガスを、水素を含む可燃性ガスとすることを特徴とする請求項1から請求項4のいずれか1項に記載の一酸化珪素の製造方法。
  6.  前記可燃性シリコン化合物の流体を、アルコキシシラン、シラン、アルキルシラン、アルキルシラノール、アルキルシクロシラン、アルキルシロキサン、アルキルシクロシロキサン、シラザン、シクロシラザンから選ばれる低分子有機シリコン化合物単独、又は、それらの混合物とすることを特徴とする請求項1から請求項5のいずれか1項に記載の一酸化珪素の製造方法。
  7.  前記操作Aにおける、金属珪素粉末、又は、金属珪素粉末とSiOx(x≦2)粉末の混合物の供給と、
     前記操作Bにおける、可燃性シリコン化合物の流体単独、又は、該可燃性シリコン化合物の流体と酸素ガスと不活性ガスとを含む第2の混合流体の供給を、
     前記燃焼装置の同一箇所において混合して行うことを特徴とする請求項1から請求項6のいずれか1項に記載の一酸化珪素の製造方法。
  8.  前記操作A~Cを行って製造した一酸化珪素の生成物を、1100℃以上1500℃以下の温度で加熱することにより、前記生成物に含まれる一酸化珪素を昇華抽出する操作Eをさらに含むことを特徴とする請求項1から請求項7のいずれか1項に記載の一酸化珪素の製造方法。
PCT/JP2023/007725 2022-03-03 2023-03-02 一酸化珪素の製造方法 WO2023167268A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022033005A JP2023128577A (ja) 2022-03-03 2022-03-03 一酸化珪素の製造方法
JP2022-033005 2022-03-03

Publications (1)

Publication Number Publication Date
WO2023167268A1 true WO2023167268A1 (ja) 2023-09-07

Family

ID=87883925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007725 WO2023167268A1 (ja) 2022-03-03 2023-03-02 一酸化珪素の製造方法

Country Status (3)

Country Link
JP (1) JP2023128577A (ja)
TW (1) TW202346206A (ja)
WO (1) WO2023167268A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05213606A (ja) * 1992-01-31 1993-08-24 Nichia Chem Ind Ltd 低級金属酸化物の製造方法
JP2011168412A (ja) * 2010-02-16 2011-09-01 Nisshin Engineering Co Ltd 一酸化珪素微粒子の製造方法および一酸化珪素微粒子
JP2011243535A (ja) * 2010-05-21 2011-12-01 Shin Etsu Chem Co Ltd 非水電解質二次電池負極材用珪素酸化物及びその製造方法、ならびに負極、リチウムイオン二次電池及び電気化学キャパシタ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05213606A (ja) * 1992-01-31 1993-08-24 Nichia Chem Ind Ltd 低級金属酸化物の製造方法
JP2011168412A (ja) * 2010-02-16 2011-09-01 Nisshin Engineering Co Ltd 一酸化珪素微粒子の製造方法および一酸化珪素微粒子
JP2011243535A (ja) * 2010-05-21 2011-12-01 Shin Etsu Chem Co Ltd 非水電解質二次電池負極材用珪素酸化物及びその製造方法、ならびに負極、リチウムイオン二次電池及び電気化学キャパシタ

Also Published As

Publication number Publication date
JP2023128577A (ja) 2023-09-14
TW202346206A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
US7635458B1 (en) Production of ultrafine boron carbide particles utilizing liquid feed materials
US2819151A (en) Process for burning silicon fluorides to form silica
US6387302B1 (en) Method of producing spherical silica powder
US20090093553A1 (en) Method for the production of suspensions of nanoparticulate solids
WO2015131755A1 (zh) 一种碳化硅的制备方法
US8147793B2 (en) Process for the manufacture of nano-sized powders
WO2023167268A1 (ja) 一酸化珪素の製造方法
JP2868039B2 (ja) 低級金属酸化物の製造方法
Li et al. Carbon dioxide laser synthesis of ultrafine silicon carbide powders from diethoxydimethylsilane
US4719095A (en) Production of silicon ceramic powders
WO2023032845A1 (ja) 一酸化珪素粉末及びリチウムイオン二次電池用負極活物質
WO2023282136A1 (ja) 一酸化珪素の製造方法
US5165916A (en) Method for producing carbide products
JP2929815B2 (ja) 炭化物粉末の製造方法
Park et al. Thermal plasma chemical vapour deposition for SiC powders from SiCH 3 Cl 3-H 2
JP3225073B2 (ja) 金属酸化物粉末の製造方法
WO2023013046A1 (ja) 粒子材料及びその製造方法並びに半導体実装材料用フィラー、スラリー材料及び半導体実装材料
KR101375900B1 (ko) 나노-크기 분말의 제조 방법
JPH0339988B2 (ja)
JPS6330368A (ja) 新規な複合炭化物
JPS58213621A (ja) 比表面積の広い炭化ケイ素粉の製法
JPH01103958A (ja) 炭化ケイ素焼結体の製造方法
JPH0372008B2 (ja)
JPH04198009A (ja) 炭化珪素粉末の製造方法
JPS6335590B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763525

Country of ref document: EP

Kind code of ref document: A1