WO2015131755A1 - 一种碳化硅的制备方法 - Google Patents

一种碳化硅的制备方法 Download PDF

Info

Publication number
WO2015131755A1
WO2015131755A1 PCT/CN2015/072942 CN2015072942W WO2015131755A1 WO 2015131755 A1 WO2015131755 A1 WO 2015131755A1 CN 2015072942 W CN2015072942 W CN 2015072942W WO 2015131755 A1 WO2015131755 A1 WO 2015131755A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
gas
raw material
silicon
carbon
Prior art date
Application number
PCT/CN2015/072942
Other languages
English (en)
French (fr)
Inventor
星野政宏
张乐年
Original Assignee
台州市一能科技有限公司
星野政宏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台州市一能科技有限公司, 星野政宏 filed Critical 台州市一能科技有限公司
Priority to US15/123,657 priority Critical patent/US10407307B2/en
Publication of WO2015131755A1 publication Critical patent/WO2015131755A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • C01B32/963Preparation from compounds containing silicon
    • C01B32/97Preparation from SiO or SiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • C01B32/963Preparation from compounds containing silicon
    • C01B32/984Preparation from elemental silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0869Feeding or evacuating the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0881Two or more materials
    • B01J2219/0883Gas-gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0881Two or more materials
    • B01J2219/0884Gas-liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0881Two or more materials
    • B01J2219/0886Gas-solid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0881Two or more materials
    • B01J2219/0888Liquid-liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • B01J2219/0898Hot plasma

Definitions

  • the invention belongs to the technical field of semiconductor preparation, and relates to a method for preparing high-purity silicon carbide as a raw material of a semiconductor device substrate.
  • the existing silicon carbide preparation method is to mix the silica raw material and the carbon raw material in proportion and to be prepared by heating in an Acheson electric furnace;
  • the carbon raw material refers to petroleum coke, resin, asphalt, ink, carbon fiber containing carbon element, Charcoal, charcoal, etc.
  • the silica in the silica reacts with the carbon in the carbon source to form silicon carbide, but these silica and carbon sources contain more metal impurity ash, and these impurities also undergo a chemical reaction in a high-temperature heating environment, for the silicon carbide itself.
  • the purity also has a great influence, so that the purity of silicon carbide is not high, and the market demand for high-purity silicon carbide cannot be met, and the exhaust gas generated by the reaction causes great pollution to the environment, and the existing preparation methods have many problems to be solved urgently.
  • the original silicon carbide is produced by simple equipment.
  • This simple open-air equipment mass produces low-purity silicon carbide, which will cause great pollution to the environment, low price, and does not meet environmental protection requirements. Demand.
  • the present invention solves the above problems in the prior art, and proposes a method for preparing silicon carbide.
  • the first technical problem to be solved by the present invention is to provide another type of petroleum coke, resin, asphalt, ink, carbon fiber, charcoal, A method for preparing high-purity silicon carbide by using a carbon material such as charcoal;
  • the second technical problem to be solved by the present invention is to provide a preparation apparatus for the preparation method.
  • the present invention is achieved by the following technical solutions: a method for preparing silicon carbide, characterized in that a silicon raw material for producing silicon carbide is melted in a high temperature environment exceeding 1300 ° C in a furnace under a vacuum environment or an inert gas protection. Evaporating and melting or evaporating silicon raw materials and containing carbon The gas or liquid reacts to form silicon carbide.
  • the present invention works as follows:
  • the present invention uses a carbon-containing gas to react with a silicon raw material because the carbon-containing gas can be made to have a high purity and is avoided. It is affected by the impurities of carbon raw materials such as petroleum coke, resin, asphalt, ink, carbon fiber, carbon charcoal, charcoal, etc., and the silicon raw material can also be made into a high purity.
  • the silicon raw material is over 1300. °C High temperature environment melts or further vaporizes gasification, while gas or liquid containing carbon in high temperature environment decomposes or cracks carbon to react with molten or further vaporized silicon raw material to produce high purity silicon carbide.
  • the silicon raw material is silicon.
  • Silicon is high-purity metal silicon or semiconductor silicon, also known as crystalline silicon.
  • the silicon raw material is silicon having a purity higher than 99.99%.
  • the purity of the silicon raw material can be used at 99.99%, and the semiconductor silicon of such purity is a common material on the market, and no further purification is required, making the implementation of the present invention acceptable on the market. If you want to get more pure silicon carbide, you can also use semiconductor grade silicon with a purity of up to 99.9999999999%.
  • the position at which the silicon raw material reacts with the gas containing carbon to form silicon carbide is in the air in the furnace body.
  • a silicon raw material is added to a furnace body to be melted or vaporized, and is sprayed into a gas containing carbon to react to form silicon carbide.
  • the silicon raw material can have sufficient energy to fully react and improve the utilization of silicon raw materials.
  • the spraying method can increase the contact area and distance between the silicon raw material and the gas containing carbon and improve the mixing uniformity of the two.
  • a gas or liquid containing carbon is sprayed into a silicon raw material which is melted or evaporated to vaporize, and reacts to form silicon carbide.
  • a high-purity liquid containing carbon such as alcohol or ether.
  • the silicon raw material can be placed before the ignition is heated, and then heated to melt or evaporate the silicon raw material.
  • a silicon raw material is mixed with a gas or a liquid containing carbon, and then added to the above-mentioned furnace body to react a silicon raw material with a gas containing carbon to form silicon carbide.
  • the silicon raw material can be made into a powder form, which is blown by a gas and mixed with a gas or mixed with a liquid and then added to the furnace body, which can precisely control the ratio and reduce the generation of exhaust gas.
  • the silicon raw material is a silicon-containing compound.
  • a silicon-containing compound such as quartz sand or silica can also be used.
  • the heat source generator for melting or evaporating the high temperature environment of the silicon raw material is a plasma generator, a combustible gas combustion furnace, a laser or a graphite electric heater. These four heating devices can provide temperatures above 2500 degrees Celsius to meet the melting or evaporation requirements of silicon raw materials.
  • silicon has a melting point of 1410 ° C and a boiling point of 2355 ° C, but in a vacuum environment, the melting point and boiling point of silicon are lowered.
  • the plasma high temperature heat source can reach temperatures of up to 10,000 degrees, far greater than the boiling point of silicon.
  • the position at which the silicon raw material reacts with the gas containing carbon to form silicon carbide is inside the plasma generator, the combustible gas combustion furnace or the graphite electric heater.
  • the carbon-containing gas is one of a carbon oxide compound, a hydrocarbon compound, a fluorocarbon compound, a chlorocarbon compound, or a gas compound containing a trifluorocarbon element or Several kinds of mixing.
  • the carbon-containing gas is supplied to the silicon carbide production apparatus in a concentric manner centering on the heat source supplied from the heat source generator.
  • the carbon-containing gas is supplied to several gases of the same or different compositions in the silicon carbide production apparatus.
  • the specific way may be to provide different components of the gas within the same concentric circle, or the same concentric circle to provide only one component gas, and different concentric circles provide gases of different compositions. In the latter case, it is possible to provide different constituent gases according to the distribution tendency of the heat source to weaken the outward radiation to maximize the carbonization reaction of the silicon raw material and to efficiently generate silicon carbide.
  • the flow rate of the gas is adjusted depending on the distance from the center point of the heat source. The farther the gas flow rate is from the center point, the closer the distance from the center point is, the faster the gas flow rate is.
  • the silicon raw material is mixed with silicon carbide in an amount of 0.1 to 10% by weight.
  • the addition of silicon carbide to the silicon raw material can prevent the newly formed silicon carbide from bonding to each other.
  • a silicon carbide preparation device comprises a furnace body and a crucible located in the furnace body, wherein a lifting seat is arranged at a bottom of the furnace body, and the crucible is placed on the lifting seat, wherein the top of the furnace body is provided with a jet
  • the mouth is facing the heat source generator of the crucible.
  • the inside of the heat source generator has an inner cavity connecting the outlet of the heat source generator, and an air guiding tube is arranged in the inner cavity, and a plurality of rings with the air guiding tube as an axis are arranged on the heat source generator.
  • the partition thus forms a concentric outlet at the outlet of the heat source generator, and an inlet for communication with each outlet is provided on the heat source generator, and an exhaust port is provided at the bottom of the furnace body.
  • the heat source generator is a plasma generator or a laser generator.
  • the plasma generator or the air tube of the laser generator is argon gas, and the outlet thereof generates a plasma flame or laser.
  • the plasma generator or the laser generator forms a plurality of concentric outlets through the partition plate.
  • the plasma flame or laser is at the center of each concentric outlet.
  • the carbon-containing gas can be pre-charged and kept from the inlet.
  • the particles of the silicon raw material can be added from the inlet or from the air tube and melted when falling into a plasma flame or laser. Or further evaporating gasification and carbonization reaction on the carbonaceous gas on the concentric circle, and the resulting high-purity silicon carbide falls into the crucible.
  • the inlet connected to the inner chamber is a silicon raw material inlet.
  • the separators are two, and are sequentially sleeved on the outer side of the inner cavity wall to form a gas inlet and an auxiliary inlet containing carbon.
  • Auxiliary inlets can be used for gases containing carbon or as an inlet for shielding gas.
  • the outer side wall of the crucible is further provided with an intake port for sucking the generated silicon carbide into the crucible.
  • the suction port is connected to an external vacuum pump through a conduit.
  • the top of the furnace body is provided with a shielding gas inlet.
  • the preparation method of the silicon carbide adopts a carbon-containing gas containing no metal impurities to replace the carbon raw materials such as petroleum coke, resin, asphalt, ink, carbon fiber, charcoal, charcoal in the existing preparation method,
  • the purity of the gas can be above 99.99999%, that is, 7 or more, and the purity of the silicon raw material such as silicon can reach 12 or more.
  • the carbonization reaction is carried out, the silicon raw material is in a state of melting or vaporization, and the reaction is carried out in the air.
  • the carrier is needed to reduce the incorporation of impurities, and the prepared silicon carbide has a high purity of 99.9999%.
  • This preparation method does not produce metal ash, avoids environmental pollution, and has a large market prospect.
  • FIG. 1 is a schematic view showing the structure of a silicon carbide preparation apparatus.
  • Figure 2 is a cross-sectional view of A-A of Figure 1.
  • Example 3 is a plasma flame temperature and flow rate map of the parameters set in Example 1.
  • the plasma generator 11, the air inlet and the electrode end; 12, the gas inlet containing carbon; 13, the auxiliary inlet; 14, the partition; 15, the concentric outlet; 151, the silicon raw material outlet; , gas outlet containing carbon; 153, auxiliary outlet; 16, silicon raw material import; 17, plasma flame; 18, inner cavity; 19, air duct; 20, cooling water inlet and outlet and electrode end; 2, protective gas inlet; 3, reaction furnace; 31, furnace body; 311, upper part of the furnace; 312, the middle of the furnace body; 313, the lower part of the furnace body; 32, sliding bearing; 33, drive rod; 4, ⁇ ; 41, suction port; Lifting seat; 6, exhaust port.
  • the preparation method of the silicon carbide is realized by the preparation device in FIG. 1, and FIG. 1 is a reaction furnace for preparing silicon carbide.
  • the silicon raw material for producing silicon carbide is at a high temperature exceeding 1300 ° C. Silicon raw materials and inclusions that melt or evaporate in the environment and melt or evaporate The gas or liquid of carbon reacts to form silicon carbide, and the specific steps are as follows:
  • the argon gas source for generating plasma is connected to the air inlet 11 of the plasma generator 1, and the air inlet 11 is also the electrode interface of the plasma generator, and the flow rate of the argon gas is set to 10 to 30 L/min, this embodiment was set to 20 L/min, and the plasma generator 1 was turned on, and the plasma current was set to 200 A and the arc ignition voltage was 20000 V.
  • a gas source containing carbon is connected to the gas inlet 12 and the auxiliary inlet 13 containing carbon, and the flow rate of the gas containing carbon is adjusted in the range of 0.3 to 30 L/min according to the process, and the carbon element on the auxiliary inlet 13 is contained.
  • the gas flow rate is adjusted within 0.5 to 50 L/min, and the gas can be used as a shielding gas in addition to carbon.
  • the shielding gas argon gas source is connected to the shielding gas inlet 2, and the argon gas flow rate of the reaction furnace 3 is maintained at 10 to 30 L/min, which is set to 20 L/min in this embodiment.
  • the concentric outlet 15 of the plasma generator 1 formed by the separator 14 is a silicon raw material outlet 151, a carbon-containing gas outlet 152, and an auxiliary outlet 153, in order to ensure sufficient reaction between the silicon raw material and the carbon-containing gas, the silicon raw material
  • the diameter is 10-20 mm, which is 15 mm in this embodiment, and the diameter of the gas outlet 152 containing carbon is 45 to 55 mm, which is 50 mm in this embodiment, and the diameter of the auxiliary outlet 153 is 5 to 15 mm, which is 10 mm in this embodiment.
  • the lifting seat below the ⁇ has a diameter of 200mm.
  • the silicon raw material After completing the A step, the high-purity metal silicon with a diameter of 1 mm or less is used as the silicon raw material, the silicon raw material is higher than 99.99%, and the silicon raw material is imported from the silicon raw material at a rate of 10 g/min. Join.
  • the silicon raw material is silicon, and in addition to silicon, it can be replaced by a silicon-containing compound such as silica or quartz sand.
  • the amount of input of the silicon raw material means that the plasma flame 17 generated by the plasma generator 1 can sufficiently dissolve or evaporate the silicon raw material regardless of the size of the raw material.
  • the flow rate of the gas containing carbon is a flow rate in which the carbon contained in the component containing the carbon element is sufficient to carbonize the silicon raw material after being mixed with the silicon raw material.
  • the flow rate of the shielding gas of the auxiliary inlet 13 is a gas for suppressing the expansion of the gas stream containing carbon in order to carry out the reaction sufficiently efficiently and efficiently.
  • the temperature generated by the plasma flame 17 is as shown in Fig. 3.
  • the jet velocity of the flame can be seen that the velocity of the center of the flame is 400 m/s, and the speed to the outside is higher.
  • the silicon raw material falls into the plasma flame 17, it is dropped from 12000 degrees, the silicon raw material is melted or further evaporated during the falling process and sprayed together with the flame, and the melted or evaporated silicon raw material is supplied to In the gas containing carbon, the gas containing carbon has been previously introduced.
  • the gas outlet 152 and the auxiliary outlet 153 containing carbon may be used.
  • the reaction is carried out in the air in the furnace body.
  • the possibility of mixing impurities is reduced, and the reaction generates silicon carbide to fall into the lower crucible; the position of the reaction can also be set inside the plasma generator, that is, the cavity above the flame outlet, and the internal setting can be further reduced. Impurities are mixed in and there are some thermal perturbations after falling into the furnace.
  • Spraying the silicon raw material into the gas containing carbon ensures that the silicon raw material has sufficient carbon to react, and the spraying method can increase the contact distance between the silicon raw material and the carbon-containing gas and improve the mixing uniformity of the two.
  • a combustible gas burner, a graphite electric heater or a laser can be used instead.
  • the gas containing carbon is one or a mixture of a carbon oxide, a hydrocarbon, a fluorocarbon, a chlorocarbon, or a gaseous compound containing a trifluorocarbon.
  • the carbon oxide compound may be CO or CO 2
  • the hydrocarbon compound may be a gas such as CH 4 , C 2 H 2 or C 3 H 6
  • the fluorocarbon may be CF 4 , C 2 F 2 or C 3 F.
  • the gas such as 6 may be a gas such as CCl 4 , C 2 Cl 2 or C 3 Cl 6 , or may be a gas compound containing a trifluorocarbon element such as CH 2 F 2 or the like.
  • a liquid containing carbon such as alcohol, diethyl ether or the like may be used in an amount sufficient to carbonize the silicon raw material.
  • the heat source of the present example is a plasma flame 17, and the gas containing carbon is supplied to the silicon carbide preparation device, that is, the reaction furnace 3, in a concentric manner. in.
  • the gas containing carbon is supplied to several gases of different compositions in the silicon carbide production apparatus. It is specifically a gas that provides different compositions within the same concentric circle. The flow rate of the gas is adjusted according to the distance from the center point of the heat source. It may also be a gas of the same composition.
  • silicon carbide containing 0.1 to 10% by weight of silicon carbide is mixed in the silicon raw material.
  • silicon carbide having a size of 10 times or more with respect to the silicon raw material so that the reaction product can be smoothly ejected without sticking to each other, and it is preferable to mix 1 to 5% of silicon carbide by weight.
  • the size of the silicon material is within the above range, and if any of the above gas flows is below the above range, the gas does not sufficiently react; if the flow rate of any of the above gases exceeds the above range, It will produce excess and waste.
  • the inside of the furnace body 31 is polished or the coating is added, the coating is a polymer polytetrafluoroethylene coating, and the flow rate of the shielding gas is set to a gas flow rate containing carbon. More than 2 times.
  • the working principle of the present invention is as follows: the silicon raw material falls into the plasma flame 17 and is melted in the plasma flame 17 or further vaporized and vaporized, and is contained in the plasma flame 17 as the plasma flame 17 is ejected into the gas containing carbon.
  • the carbon element gas decomposes carbon, which carbonizes with the melted or vaporized silicon raw material to form silicon carbide, and collects the generated silicon carbide to obtain high-purity silicon carbide. Since the gas containing carbon has a high purity and does not contain metal impurities, high-purity silicon carbide can be obtained without metal impurities and thus does not cause air pollution of metal ash.
  • the table is a component content analysis table of semiconductor grade silicon.
  • the high-purity silicon is used as a raw material, and the above-mentioned process conditions are used to test, and silicon carbide is obtained. After removing the influence of Ta on the purity, analysis is performed. Thereafter, silicon carbide having a purity of 99.9995% was obtained.
  • the preparation apparatus used in the preparation method of the silicon carbide is as shown in FIG. 1, and includes a furnace body 31 and a crucible 4 located in the furnace body 31.
  • a lifting seat 5 is disposed at the bottom of the furnace body 31, and the crucible 4 is placed on the lifting seat.
  • a plasma generator 1 having an ejection port facing the crucible 4 is provided at the top of the furnace body 31, and silicon carbide is prepared by a plasma flame 17 generated by the plasma generator 1. details as follows:
  • the furnace body 31 is divided into three parts, an upper portion 311 of the furnace body, a middle portion 312 of the furnace body, and a middle portion 313 of the furnace body.
  • the upper end of the upper portion 311 of the furnace body and the middle portion 312 of the furnace body are connected by flanges, and the lower end of the central portion 312 of the furnace body is connected to the central portion 313 of the furnace body through a flange to form a closed space, and a sliding bearing 32 is disposed on the central portion 313 of the furnace body.
  • the sliding bearing 32 is provided with a driving rod 33.
  • the crucible 4 is a structure having a large belly and a large belly, and a suction port 41 for sucking the generated silicon carbide into the crucible 4 is further provided on the side wall, and the suction port 41 is disposed in the lower half and obliquely downward.
  • the suction port 41 is connected to an external vacuum pump through a conduit.
  • An exhaust port 6 is provided at the bottom of the furnace body 31.
  • the plasma generator 1 is disposed in the upper portion 311 of the furnace body.
  • the inside of the plasma generator 1 has an inner cavity 18 that communicates with the outlet of the plasma generator 1, and an air guiding tube 19 is disposed in the inner cavity 18.
  • the air guiding tube 19 is in the middle text and occurs in the plasma.
  • the air conditioner 1 is provided with a plurality of annular partitions 14 with the air guide tube 19 as an axis to form a concentric circular outlet 15 at the outlet of the plasma generator 1, as shown in FIG. 2, and the plasma generator 1 is further connected to each outlet.
  • the inlet of the inlet, the inlet communicating with the inner chamber 18 is a silicon raw material inlet 16, and the partition 14 is two, which are sequentially sleeved outside the wall of the inner chamber 18 to form a gas inlet 12 and an auxiliary inlet 13 respectively containing carbon.
  • the concentric outlet 15 of the plasma generator 1 formed by the separator 14 is a silicon raw material outlet 151, a carbon-containing gas outlet 152, and an auxiliary outlet 153.
  • a cooling water inlet and outlet 20 is also provided at the side of the plasma generator 1, and the cooling water inlet and outlet 20 is also an electrode interface of the plasma generator.
  • the upper portion 311 of the furnace body has a top portion, and a protective gas inlet 2 is provided at the top, the protective gas inlet 2 is adjacent to the inner side wall of the furnace body 31, and an observation window for observing the inside of the furnace body 31 is also provided at the top.
  • the working principle of the silicon carbide preparation device is as follows: the air outlet tube 19 of the plasma generator 1 is argon gas, and the outlet thereof generates a plasma flame 17, and the plasma generator 1 forms a plurality of concentric outlets 15 through the partition plate 14, since The air guiding tube 19 is an axis, the plasma flame 17 is at the center of each concentric circular outlet 15, and a gas containing carbon can be previously added and kept from the inlet, and particles of the silicon raw material can be added from the inlet or from the air guiding tube 19, When it enters the plasma flame 17, it melts or further vaporizes and carbonizes with the carbon-containing gas on the concentric circles, and the resulting high-purity silicon carbide falls into the crucible 4.
  • Embodiment 2 The content of Embodiment 2 is basically the same as that of Embodiment 1, except that the silicon ingot is placed in the furnace body before heating and ignition, and then the silicon ingot in the furnace body is melted or evaporated and vaporized during ignition, and the carbon is contained in a high temperature environment.
  • the elemental gas or liquid is supplied to the molten or vaporized silicon raw material to form silicon carbide.
  • the working principle is as follows: the silicon raw material is melted in a high temperature environment or further evaporated and vaporized, and at the same time, the gas containing carbon element in the high temperature environment decomposes or cleaves the carbon element and is sprayed to melt or further evaporate the vaporized silicon raw material.
  • the content of the third embodiment is basically the same as that of the first embodiment, except that the silicon raw material is made into a powder form, and is mixed with a gas after being blown by a gas or mixed with a liquid, and then added to the furnace body at a high temperature environment exceeding 1300 degrees Celsius.
  • a reaction raw material in which a silicon raw material is mixed with a gas or a liquid containing carbon is added to the furnace body, and the reaction can be carried out by reacting a silicon raw material with a gas containing carbon in a vacuum environment or an environment containing an argon gas shielding gas. Silicon carbide. This method can precisely control the ratio and reduce the generation of exhaust gas.
  • Embodiment 4 is basically the same as Embodiment 1 or Embodiment 2, except that the embodiment adopts a vacuum environment to carry out the reaction.
  • silicon has a melting point of 1410 ° C and a boiling point of 2355 ° C, but in a vacuum environment, the melting point and boiling point of silicon are lowered.
  • the plasma high temperature heat source can reach temperatures of up to 10,000 degrees, far greater than the boiling point of silicon.
  • Embodiment 5 is substantially the same as Embodiment 1, 2, 3 or 4, except that the heat source generator is a combustible gas burner, a laser or a graphite electric heater.
  • the heat source generator is a combustible gas burner, a laser or a graphite electric heater.
  • the position where the silicon raw material reacts with the carbon-containing gas to form silicon carbide is inside the combustible gas burning furnace or the graphite electric heater

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Silicon Compounds (AREA)

Abstract

提供一种碳化硅的制备方法,包括:在真空环境或者惰性气体保护下的炉体内,将生产碳化硅的硅原材料在超过1300℃的高温环境中熔解或者蒸发并将熔解或者蒸发的硅原材料与含有碳元素的气体或液体反应生成碳化硅。还提供一种碳化硅的制备装置。

Description

一种碳化硅的制备方法 技术领域
本发明属于半导体制备技术领域,涉及一种作为半导体器件衬底原材料的高纯度碳化硅制备方法。
背景技术
现有的碳化硅制备方法是将硅石原料和碳素原料按比例混合,用艾奇逊电炉加热的方法来制备;碳素原料是指含有碳元素的石油焦、树脂、沥青、墨、碳纤维、石炭、木炭等。硅石中的二氧化硅和碳源中的碳反应形成碳化硅,但是这些硅石和碳源中含有较多的金属杂质灰分,在高温加热环境下这些杂质也发生了化学反应,对碳化硅本身的纯度也有较大影响,使碳化硅的纯度不高,满足不了高纯度化碳化硅的市场需求,而反应产生的废气对环境造成较大污染,现有的制备方法存在很多急需解决的问题。
另外,原来的碳化硅是由简单的设备来生产的,这种简单露天的设备大量生产纯度较低的碳化硅,会对环境造成很大的污染,价格低廉,不符合环保要求,满足不了市场的需求。
发明内容
本发明针对现有技术存在上述问题,提出了一种碳化硅的制备方法,本发明所要解决的第一个技术问题是提供另外一种不采用石油焦、树脂、沥青、墨、碳纤维、石炭、木炭等碳素原料制备高纯度碳化硅的制备方法;本发明所要解决的第二个技术问题是提供该制备方法的制备装置。
本发明通过下列技术方案来实现:一种碳化硅的制备方法,其特征在于,在真空环境或者惰性气体保护下的炉体内,将生产碳化硅的硅原材料在超过1300℃的高温环境中熔解或者蒸发并将熔解或者蒸发的硅原材料与含有碳元 素的气体或液体反应生成碳化硅。
熔解熔解含有碳元素的气体含有碳元素的气体熔解本发明的工作原理如下:本发明采用含有碳元素的气体与硅原材料进行反应,因为含有碳元素的气体可以做到很高的纯度,避免了采用石油焦、树脂、沥青、墨、碳纤维、石炭、木炭等碳素原料的杂质影响,而硅原材料也可以做成很高的纯度,在保证这两者纯度的基础上,硅原材料在超过1300℃高温环境中熔解或者进一步蒸发气化,同时在高温环境中含有碳元素的气体或者液体分解或者裂解出碳元素与熔解或者进一步蒸发气化的硅原材料进行反应,生成高纯度的碳化硅。
在上述的碳化硅的制备方法中,所述的硅原材料为硅。硅为高纯度的金属硅,或者为半导体硅,又称结晶硅。
在上述的碳化硅的制备方法中,所述的硅原材料为纯度高于99.99%的硅。硅原材料纯度在99.99%时就能使用,而这种纯度的半导体硅是市场上普通的材料,不需要进行进一步的提纯,使本发明的实施为市场所能接受。如果想得到纯度更高的碳化硅,也可以使用纯度高达99.9999999999%的半导体级别硅。
在上述的碳化硅的制备方法中,硅原材料与含有碳元素的气体反应生成碳化硅的位置处于炉体内的空中。将硅原材料和含有碳元素的气体在空中反应,就能避免坩埚等载体对反应的污染,进一步减少了杂质混入的可能,提高了生成碳化硅的纯度。
在上述的碳化硅的制备方法中,将硅原材料加入到炉体内使其熔解或者蒸发气化,并喷射到含有碳元素的气体中,反应生成碳化硅。采用这种方式可以使硅原材料拥有充足的能量进行充分的反应,提高硅原材料的利用率。并且采用喷射方式能够增加硅原材料与含有碳元素的气体的接触面积和距离以及提高两者的混合均匀度。
在上述的碳化硅的制备方法中,将含有碳元素的气体或者液体喷射到熔解或者蒸发气化的硅原材料中,反应生成碳化硅。采用这种方式除了含有碳 元素的气体外,还可以是采用含有碳元素的高纯度的液体,如酒精、乙醚等。硅原材料可以在点火加热前放入,其后加热使硅原材料熔解或蒸发。
在上述的碳化硅的制备方法中,把硅原材料与含有碳元素的气体或液体混合后加入到上述的炉体内使硅原材料与含有碳元素的气体反应生成碳化硅。硅原材料可以做成粉末状,由气体吹动后与气体混合一起或者与液体混合后一起加入到炉体内,这种方式可以是精确控制配比,减少废气的产生。
在上述的碳化硅的制备方法中,所述的硅原材料为含硅的化合物。除了直接使用硅外,还可以使用石英砂、硅石等含硅的化合物。
在上述的碳化硅的制备方法中,熔解或者蒸发气化所述硅原材料的高温环境的热源发生器为等离子发生器、可燃气体燃烧炉、激光器或者石墨电加热器。这四种加热设备都能提供2500摄氏度以上的温度,满足硅原材料的熔解或者蒸发气化的需求。在常温常压下,硅的熔点1410℃,沸点2355℃,但是在真空环境下,硅的熔点与沸点会降低。而等离子高温热源产生的温度能够到达10000度,远远大于硅的沸点。
在上述的碳化硅的制备方法中,硅原材料与含有碳元素的气体反应生成碳化硅的位置处于等离子发生器、可燃气体燃烧炉或者石墨电加热器的内部。
在上述的碳化硅的制备方法中,所述的含有碳元素的气体为碳氧化合物、碳氢化合物、碳氟化合物、碳氯化合物或者是含碳氢氟三元素的气体化合物中的一种或者几种混合。
在上述的碳化硅的制备方法中,以所述热源发生器提供的热源为中心,以同心圆的方式将上述含有碳元素的气体提供到碳化硅的制备装置中。
在上述的碳化硅的制备方法中,所述含有碳元素的气体提供到碳化硅的制备装置中为成分相同或者不同的几种气体。其具体方式可以为同一个同心圆范围内提供不同成分的气体,也可以是同一个同心圆只提供一种成分气体,不同的同心圆提供不同成分的气体。后一种情况能够根据热源的温度向外辐射减弱的分布趋势提供不同成分气体以便最大程度的实现硅原材料的碳化反应,高效率的生成碳化硅。
在上述的碳化硅的制备方法中,所述气体的流速依据与热源中心点的距离不同而调整。距离中心点的距离越远的气体流速越慢,距离中心点距离越近气体的流速越快。
在上述的碳化硅的制备方法中,所述的硅原材料中混有含重量百分比为0.1~10%的碳化硅。硅原材料中加入碳化硅能够起到防止新生成的碳化硅相互粘结的作用。
一种碳化硅的制备装置,包括炉体和位于炉体内的坩埚,在炉体的底部设有升降座,上述的坩埚放置在升降座上,其特征在于,所述的炉体顶部设有喷射口正对着坩埚的热源发生器,所述热源发生器的内部具有连通热源发生器出口的内腔,在内腔内设有导气管,在热源发生器上设置若干以导气管为轴线的环形隔板从而在热源发生器出口形成若个同心圆出口,在热源发生器上还设有与各个出口相连通的进口,在炉体的底部设有排气口。
碳化硅的制备装置的工作原理如下:热源发生器为等离子发生器或者激光发生器。等离子发生器或者激光发生器的导气管通入氩气后其出口产生了等离子火焰或激光,等离子发生器或者激光发生器通过隔板形成了若干个同心圆出口,由于以导气管为轴线,该等离子火焰或激光处于各个同心圆出口的中心,含有碳元素的气体可以从进口预先加入并保持输出,硅原材料的颗粒可以从进口加入或者从导气管加入,在落入等离子火焰或激光中时熔化或者进一步蒸发气化与同心圆上的含碳气体产生碳化反应,而生成的高纯度碳化硅落入坩埚中。
在上述碳化硅的制备装置中,与所述内腔相连通的进口为硅原材料进口。
在上述碳化硅的制备装置中,所述的隔板为两个,依次套设在内腔壁的外侧,分别形成含有碳元素的气体进口和辅助进口。辅助进口可用于含有碳元素的气体或者以及保护气体的进口。
在上述碳化硅的制备装置中,所述的坩埚外侧壁上还设有将生成的碳化硅吸入坩埚中的吸气口。所述的吸气口通过导管与外界的真空泵连接。
在上述碳化硅的制备装置中,所述的炉体顶部设有保护气体进口。
与现有技术相比,本碳化硅的制备方法采用不含金属杂质的含碳气体来代替现有制备方法中的石油焦、树脂、沥青、墨、碳纤维、石炭、木炭等碳素原料,由于气体的纯度可到99.99999%以上,即7个9以上,硅等硅原材料的纯度可以达到12个9以上,在进行碳化反应时硅原材料为熔化或者蒸发气化的状态以及在空中进行反应,不需要载体,减少了杂质的混入,制备的碳化硅纯度较高,达到99.9999%,这种制备方法不产生金属灰分,避免了对环境的污染,具有较大的市场前景。
附图说明
图1是碳化硅的制备装置的结构示意图。
图2是图1中A-A的剖视示意图。
图3是实施例1中设定的参数的等离子火焰温度和流速图谱。
图中,1、等离子发生器;11、导气管进口与电极端;12、含有碳元素的气体进口;13、辅助进口;14、隔板;15、同心圆出口;151、硅原材料出口;152、含有碳元素的气体出口;153、辅助出口;16、硅原材料进口;17、等离子火焰;18、内腔;19、导气管;20、冷却水进出水口与电极端;2、保护气体进口;3、反应炉;31、炉体;311、炉体上部;312、炉体中部;313、炉体下部;32、滑动轴承;33、驱动杆;4、坩埚;41、吸气口;5、升降座;6、排气口。
具体实施方式
以下是本发明的具体实施例,并结合附图对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。
实施例1:
本碳化硅的制备方法采用图1中的制备装置来实现,图1是制备碳化硅的反应炉,在惰性气体氩气保护下的炉体内,将生产碳化硅的硅原材料在超过1300℃的高温环境中熔解或者蒸发并将熔解或者蒸发的硅原材料与含有 碳元素的气体或液体反应生成碳化硅,其具体步骤如下:
A、连接以及设置制备装置的参数:将产生等离子的氩气源接入等离子发生器1的导气管进口11,导气管进口11同时也为等离子发生器的电极接口,设定氩气的流量为10~30L/分钟,本实施例设定为20L/分钟,等离子发生器1接通电源并设定等离子的电流为200A、电弧点火电压为20000V。将含有碳元素的气体源接入到含有碳元素的气体进口12和辅助进口13上,含有碳元素的气体的流量根据进程在0.3~30L/分钟内调整,辅助进口13上的含有碳元素的气体流量为0.5~50L/分钟内调整,该气体除了提供碳元素外,还可以作为保护气体使用。保护气体氩气源接入到保护气体进口2,并保持反应炉3的氩气流量为10~30L/分钟,本实施例设定为20L/分钟。通过隔板14形成的等离子发生器1的同心圆出口15为硅原材料出口151、含有碳元素的气体出口152和辅助出口153,为保证硅原材料和含有碳元素的气体有充分的反应,硅原材料出的直径为10~20mm,本实施例为15mm,含有碳元素的气体出口152的直径45~55mm,本实施例为50mm,辅助出口153的直径为5~15mm,本实施例为10mm,而坩埚下方的升降座的直径为200mm。
B、硅原材料投入:完成A步骤后,以直径为1mm以下的高纯度的金属硅为硅原材料,硅原材料为纯度高于99.99%,将硅原材料以10克/分钟的速度从硅原材料进口16加入。硅原材料为硅,除了硅还可以用含硅的化合物代替,如硅石、石英砂等。硅原材料的投入量是指等离子发生器1产生的等离子火焰17能够将硅原材料充分溶解或者蒸发的量,与原材料的的大小无关。含有碳元素的气体的流量是指与硅原材料混合投入后,在含有碳元素的气体的成分中含有的碳能够足够将硅原材料碳化的流量。辅助进口13的保护气体流量是指为了使原材料充分高效率的进行反应,对含有碳元素的气体流的扩大进行压制的气体。
在等离子火焰17产生的高温环境中,等离子火焰17所产生的温度如图3所示,距离出口越近温度越高,有12000度,并且向外逐渐减弱。并且火焰的喷射速度可以看出火焰中心的速度是400m/s,而越到外侧火焰速度越 慢,因此,在硅原材料落入到等离子火焰17中时,是从12000度向下落去,在下落过程中把硅原材料熔解或者进一步蒸发并随火焰一起喷射,将熔解或者蒸发的硅原材料提供到含有碳元素的气体中,含有碳元素的气体预先已经通入,在本实施例中可以从含有碳元素的气体出口152和辅助出口153都可以,因此,反应是在炉体内的空中进行的,减少了杂质混入的可能性,反应生成碳化硅会落入下方的坩埚中;还可以将反应的位置设定在等离子发生器的内部,即火焰出口上方一段的腔体内,设置在内部能进一步减少杂质的混入,并且落入炉体中后具有一些热扰动效果。将硅原材料喷射到含有碳元素的气体中能够保证硅原材料有充足的碳元素进行反应,并且采用喷射方式能够增加硅原材料与含有碳元素的气体的接触距离以及提高两者的混合均匀度。除了本例中使用的等离子发生器1,还可以用可燃气体燃烧炉、石墨电加热器或者激光器来代替。
含有碳元素的气体为碳氧化合物、碳氢化合物、碳氟化合物、碳氯化合物或者是含碳氢氟三元素的气体化合物中的一种或者几种混合。具体来说,碳氧化合物可以是CO、CO2,碳氢化合物可以是CH4、C2H2、C3H6等气体,碳氟化合物可以是CF4、C2F2、C3F6等气体,碳氯化合物可以是CCl4、C2Cl2、C3Cl6等气体,还可以是含碳氢氟三元素的气体化合物,如CH2F2等。将这些气体按比例进行混合也是可以的,只要满足含有碳元素的气体的成分中含有的碳能够足够将硅原材料碳化。除了气体外,还可以采用含有碳元素的液体,如酒精、乙醚等,加入的量为成分中含有的碳能够足够将硅原材料碳化。
在通入含有碳元素的气体时,以热源发生器提供的热源为中心,本例热源为等离子火焰17,以同心圆的方式将含有碳元素的气体提供到碳化硅的制备装置即反应炉3中。含有碳元素的气体提供到碳化硅的制备装置中为成分不同的几种气体。其具体为同一个同心圆范围内提供不同成分的气体。气体的流速依据与热源中心点的距离不同而调整。也可以是成分相同的一种气体。
为了能够起到防止新生成的碳化硅相互粘结的作用,在硅原材料中混有含重量百分比为0.1~10%的碳化硅。另外,不管硅原材料的大小,即使纳 米级别的程度,将相对于硅原材料10倍大小以上的碳化硅混入可以使反应生成物可以顺利的喷出,不会互相粘连,按重量百分比混有1~5%的碳化硅为最佳。
另外,硅原材料的大小在以上所述范围内,如果以上任意的气体流量在以上所述范围以下时,气体起不到充分反应的作用;如果以上任意气体的流量超过以上所述范围时,就会产生多余与浪费。
为了进一步提高纯度,防止二次污染,将炉体31的内侧进行抛光或者增加涂层,涂层为高分子聚四氟乙烯涂层,并且将保护气体的流量设定在含有碳元素的气体流量的2倍以上。
本发明的工作原理如下:硅原材料落入到等离子火焰17中并在等离子火焰17中熔解或者进一步蒸发气化,并随着等离子火焰17喷射到含有碳元素的气体中,在等离子火焰17中含有碳元素的气体分解出碳元素,该碳元素与熔解或者蒸发气化的硅原材料产生碳化反应从而生成碳化硅,将生成的碳化硅收集起来就能得到高纯度的碳化硅。因为含有碳元素的气体具有很高的纯度,不含有金属杂质,因此能够得到高纯度的碳化硅,而没有金属杂质因此不会造成金属灰分的空气污染。
如下表一所示,该表为半导体级硅的成分含量分析表,以高纯度硅为原材料,用上述的工艺条件,进行了试验,得到了碳化硅,在去除Ta对纯度的影响之后,分析后,得到纯度为99.9995%的碳化硅。
Figure PCTCN2015072942-appb-000001
使用C2H2气体作为含有碳元素的气体,用以上记载的工艺条件,进行了试验,得到了纯度为99.9999%的碳化硅。以上的试验结果可以证明,本发明对于生产高纯度的碳化硅来说,是极为有效的生产方法。
本碳化硅的制备方法所使用的制备装置如图1所示,其包括炉体31和位于炉体31内的坩埚4,在炉体31的底部设有升降座5,坩埚4放置在升降座5上,炉体31顶部设有喷射口正对着坩埚4的等离子发生器1,通过等离子发生器1产生的等离子火焰17来制备碳化硅。具体如下:
炉体31分为三个部分,炉体上部311、炉体中部312和炉体中部313, 炉体上部311和炉体中部312的上端通过法兰连接,炉体中部312的下端通过法兰与炉体中部313连接,从而形成一个封闭的空间,在炉体中部313上设有滑动轴承32,滑动轴承32上装有驱动杆33,驱动杆33一端伸入到炉体31内并在端部设置升降座5,坩埚4放置在升降座5上,通过这样就可以依据碳化硅喷出的范围以及等离子火焰17的温度来调整坩埚4的位置。坩埚4为口小肚大的结构,其侧壁上还设有将生成的碳化硅吸入坩埚4中的吸气口41,吸气口41设置在下半部并且斜向下。所述的吸气口41通过导管与外界的真空泵连接。在炉体31的底部设有排气口6。
等离子发生器1设置在炉体上部311,等离子发生器1的内部具有连通等离子发生器1出口的内腔18,在内腔18内设有导气管19,导气管19处于正中文字,在等离子发生器1上设置若干以导气管19为轴线的环形隔板14从而在等离子发生器1出口形成若个同心圆出口15,如图2所示,在等离子发生器1上还设有与各个出口相连通的进口,与内腔18相连通的进口为硅原材料进口16,隔板14为两个,依次套设在内腔18壁的外侧,分别形成含有碳元素的气体进口12和辅助进口13。通过隔板14形成的等离子发生器1的同心圆出口15为硅原材料出口151、含有碳元素的气体出口152和辅助出口153。在等离子发生器1侧部还设有冷却水进出水口20,冷却水进出水口20也为等离子发生器的电极接口。
炉体上部311具有顶部,在顶部设有保护气体进口2,保护气体进口2靠近炉体31的内侧壁,在顶部还设有用于观察炉体31内部情况的观察窗。
碳化硅的制备装置的工作原理如下:等离子发生器1的导气管19通入氩气后其出口产生了等离子火焰17,等离子发生器1通过隔板14形成了若干个同心圆出口15,由于以导气管19为轴线,该等离子火焰17处于各个同心圆出口15的中心,含有碳元素的气体可以从进口事先加入并保持输出,硅原材料的颗粒可以从进口加入或者从导气管19加入,在落入等离子火焰17中时熔化或者进一步蒸发气化与同心圆上的含碳气体产生碳化反应,而生成的高纯度碳化硅落入坩埚4中。
实施例2:
实施例2的内容基本与实施例1相同,不同点在于,在加热点火前将硅锭放入炉体内,之后点火时炉体内的硅锭熔解或者蒸发气化,在再高温环境下把含有碳元素的气体或者液体提供到熔解或者蒸发气化的硅原材料中,反应生成碳化硅。工作原理为:硅原材料在高温环境中熔解或者进一步蒸发气化,同时在高温环境中含有碳元素的气体分解或者裂解出碳元素并喷射到熔解或者进一步蒸发气化硅原材料中。
实施例3
实施例3的内容基本与实施例1相同,不同点在于,硅原材料做成粉末状,由气体吹动后与气体混合一起或者与液体混合后一起加入到炉体内,在超过1300摄氏度的高温环境中把硅原材料与含有碳元素的气体或液体混合的反应原料加入到炉体内,这是反应可以在真空环境中或者充有氩气保护气体的环境中使硅原材料与含有碳元素的气体反应生成碳化硅。这种方式可以是精确控制配比,减少废气的产生。
实施例4
实施例4与实施例1或者实施例2基本相同,不同点在于,实施例采用真空环境进反应。在常温常压下,硅的熔点1410℃,沸点2355℃,但是在真空环境下,硅的熔点与沸点会降低。而等离子高温热源产生的温度能够到达10000度,远远大于硅的沸点。
实施例5
实施例5与实施例1、2、3或4基本相同,不同点在于,热源发生器为可燃气体燃烧炉、激光器或者石墨电加热器。硅原材料与含有碳元素的气体反应生成碳化硅的位置处于可燃气体燃烧炉或者石墨电加热器的内部
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (20)

  1. 一种碳化硅的制备方法,其特征在于,在真空环境或者惰性气体保护下的炉体内,将生产碳化硅的硅原材料在超过1300℃的高温环境中熔解或者蒸发并将熔解或者蒸发的硅原材料与含有碳元素的气体或液体反应生成碳化硅。
  2. 根据权利要求1所述的碳化硅的制备方法,其特征在于,所述的硅原材料为硅。
  3. 根据权力要求2所述的碳化硅的制备方法,其特征在于,所述的硅原材料为纯度高于99.99%的硅。
  4. 根据权利要求1所述的碳化硅的制备方法,其特征在于,硅原材料与含有碳元素的气体反应生成碳化硅的位置处于炉体内的空中。
  5. 根据权利要求1所述的碳化硅的制备方法,其特征在于,将硅原材料加入到炉体内使其熔解或者蒸发气化,并喷射到含有碳元素的气体中,反应生成碳化硅。
  6. 根据权利要求1所述的碳化硅的制备方法,其特征在于,将含有碳元素的气体或者液体喷射到熔解或者蒸发气化的硅原材料中,反应生成碳化硅。
  7. 根据权利要求1所述的碳化硅的制备方法,其特征在于,把硅原材料与含有碳元素的气体或液体混合后加入到上述的炉体内使硅原材料与含有碳元素的气体反应生成碳化硅。
  8. 根据权利要求1或4或5或6或7所述的碳化硅的制备方法,其特征在于,所述的硅原材料为含硅的化合物。
  9. 根据权利要求1-7任意一项所述的碳化硅的制备方法,其特征在于,熔解或者蒸发气化所述硅原材料的高温环境的热源发生器为等离子发生器(1)、可燃气体燃烧炉或者激光器或者石墨电加热器。
  10. 根据权利要求9任意一项所述的碳化硅的制备方法,其特征在于,硅原材料与含有碳元素的气体反应生成碳化硅的位置处于等离子发生器(1)、可燃气体燃烧炉或者石墨电加热器的内部。
  11. 根据权利要求1-7任意一项所述的碳化硅的制备方法,其特征 在于,所述的含碳元素气体为碳氧化合物、碳氢化合物、碳氟化合物、碳氯化合物或者是含碳氢氟三元素的气体化合物中的一种或者几种混合。
  12. 根据权利要求9所述的碳化硅的制备方法,其特征在于,以所述热源发生器提供的热源为中心,以同心圆的方式将上述含碳元素气体提供到碳化硅的制备装置中。
  13. 根据权利要求12所述的碳化硅的制备方法,其特征在于,所述含碳元素气体提供到碳化硅的制备装置中为成分相同或者不同的几种气体。
  14. 根据权利要求13所述的碳化硅的制备方法,其特征在于,所述气体的流速依据与热源中心点的距离不同而调整。
  15. 根据权利要求1-7任意一项所述的碳化硅的制备方法,其特征在于,所述的硅原材料中混有含重量百分比为0.1~10%的碳化硅。
  16. 一种碳化硅的制备装置,包括炉体(31)和位于炉体(31)内的坩埚(4),在炉体(31)的底部设有升降座(5),上述的坩埚(4)放置在升降座(5)上,其特征在于,所述的炉体(31)顶部设有喷射口正对着坩埚(4)的等离子发生器(1),所述等离子发生器(1)的内部具有连通等离子发生器(1)出口的内腔(18),在内腔(18)内设有导气管(19),在等离子发生器(1)上设置若干以导气管(19)为轴线的环形隔板(14)从而在等离子发生器(1)出口形成若个同心圆出口(15),在等离子发生器(1)上还设有与各个出口相连通的进口,在炉体(31)的底部设有排气口(6)。
  17. 根据权利要求16所述的碳化硅的制备装置,其特征在于,与所述内腔(18)相连通的进口为硅原材料进口(16)。
  18. 根据权利要求16或17所述的碳化硅的制备装置,其特征在于,所述的隔板(14)为两个,依次套设在内腔(18)壁的外侧,分别形成含碳元素气体进口(12)和辅助进口(13)。
  19. 根据权利要求16或17所述的碳化硅的制备装置,其特征在于, 所述的坩埚(4)外侧壁上还设有将生成的碳化硅吸入坩埚(4)中的吸气口(41)。
  20. 根据权利要求16或17所述的碳化硅的制备装置,其特征在于,所述的炉体(31)顶部设有保护气体进口(2)。
PCT/CN2015/072942 2014-03-06 2015-02-12 一种碳化硅的制备方法 WO2015131755A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/123,657 US10407307B2 (en) 2014-03-06 2015-02-12 Production process for silicon carbide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410081038.6A CN103833035B (zh) 2014-03-06 2014-03-06 一种碳化硅的制备方法
CN201410081038.6 2014-03-06

Publications (1)

Publication Number Publication Date
WO2015131755A1 true WO2015131755A1 (zh) 2015-09-11

Family

ID=50796983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072942 WO2015131755A1 (zh) 2014-03-06 2015-02-12 一种碳化硅的制备方法

Country Status (3)

Country Link
US (1) US10407307B2 (zh)
CN (1) CN103833035B (zh)
WO (1) WO2015131755A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113697812A (zh) * 2021-09-30 2021-11-26 中国航发北京航空材料研究院 基于高频电磁场激发的碳化硅纳米管制备方法
CN115010134A (zh) * 2022-06-21 2022-09-06 浙江六方碳素科技有限公司 一种化学气相沉积制备碳化硅海绵的装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103833035B (zh) * 2014-03-06 2017-01-11 台州市一能科技有限公司 一种碳化硅的制备方法
KR101617167B1 (ko) * 2015-08-12 2016-05-03 한국수력원자력 주식회사 측면 배출게이트가 구비된 플라즈마 용융로
EP3353339A4 (en) * 2015-09-24 2019-05-08 Melior Innovations Inc. STEAM-VAPOR DEPOSITION APPARATUS AND TECHNIQUES USING SILICON CARBIDE DERIVED FROM HIGH-PURITY POLYMER
CN107512718B (zh) * 2017-08-07 2019-10-11 湖北工业大学 一种高金属含量的纳米碳化硅材料的制备方法和应用
CN108069422A (zh) * 2017-12-25 2018-05-25 凯盛石墨碳材料有限公司 一种石墨提纯的方法
CN108128777B (zh) * 2017-12-27 2021-07-30 江苏乐园新材料集团有限公司 一种动态悬浮摩擦式碳化硅制备方法及其加热装置
CN111663184A (zh) * 2020-06-23 2020-09-15 柯良节 一种新型等离子升华结晶炉及碳化硅晶体棒的制备方法
CN112978732B (zh) * 2021-02-02 2023-08-18 北京绿清科技有限公司 碳化硅的生产方法以及专用生产系统
CN112960672B (zh) * 2021-02-10 2022-08-05 北京交通大学 一种具有可见光响应的SiC颗粒及其制备方法
CN112978731B (zh) * 2021-05-20 2021-08-20 浙江大学杭州国际科创中心 一种高纯碳化硅颗粒的反应装置及制备方法
CN114768714A (zh) * 2022-04-01 2022-07-22 安徽华东光电技术研究所有限公司 非热电弧等离子体气化液体燃料装置及提高气化效率方法
CN115557502A (zh) * 2022-09-14 2023-01-03 宁波日晟新材料有限公司 一种单层二维碳化硅晶体制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077114A (ja) * 1983-10-05 1985-05-01 Nippon Steel Corp 球状SiC粉末の製造法
US20080056977A1 (en) * 2006-08-30 2008-03-06 Ppg Industries Ohio, Inc. Production of ultrafine metal carbide particles utilizing polymeric feed materials
WO2009051888A1 (en) * 2007-10-17 2009-04-23 Ppg Industries Ohio, Inc. Doped ultrafine metal carbide particles
US20100055017A1 (en) * 2008-09-03 2010-03-04 Ppg Industries Ohio, Inc. Methods for the production of ultrafine metal carbide particles and hydrogen
CN103833035A (zh) * 2014-03-06 2014-06-04 台州市一能科技有限公司 一种碳化硅的制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5010270Y1 (zh) * 1969-02-20 1975-04-01
JPS5010270B1 (zh) * 1969-05-13 1975-04-19
US4080508A (en) * 1976-03-17 1978-03-21 Greenewald Jr Herbert Manufacture of carbides and the like
US4428755A (en) * 1980-07-09 1984-01-31 General Electric Company Process for the production of silicone carbide composite
JPS6197126A (ja) * 1984-10-18 1986-05-15 Mitsubishi Heavy Ind Ltd 炭化ケイ素微粒子の製造方法
US5985024A (en) * 1997-12-11 1999-11-16 Northrop Grumman Corporation Method and apparatus for growing high purity single crystal silicon carbide
JP2013129558A (ja) * 2011-12-21 2013-07-04 Bridgestone Corp ケイ素微粒子の製造方法及び製造装置
FR3013991B1 (fr) * 2013-11-29 2019-04-26 Nanomakers Particules submicroniques comprenant de l'aluminium
JP6590203B2 (ja) * 2015-11-12 2019-10-16 パナソニックIpマネジメント株式会社 微粒子製造装置及び微粒子製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077114A (ja) * 1983-10-05 1985-05-01 Nippon Steel Corp 球状SiC粉末の製造法
US20080056977A1 (en) * 2006-08-30 2008-03-06 Ppg Industries Ohio, Inc. Production of ultrafine metal carbide particles utilizing polymeric feed materials
WO2009051888A1 (en) * 2007-10-17 2009-04-23 Ppg Industries Ohio, Inc. Doped ultrafine metal carbide particles
US20100055017A1 (en) * 2008-09-03 2010-03-04 Ppg Industries Ohio, Inc. Methods for the production of ultrafine metal carbide particles and hydrogen
CN103833035A (zh) * 2014-03-06 2014-06-04 台州市一能科技有限公司 一种碳化硅的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113697812A (zh) * 2021-09-30 2021-11-26 中国航发北京航空材料研究院 基于高频电磁场激发的碳化硅纳米管制备方法
CN113697812B (zh) * 2021-09-30 2023-01-13 中国航发北京航空材料研究院 基于高频电磁场激发的碳化硅纳米管制备方法
CN115010134A (zh) * 2022-06-21 2022-09-06 浙江六方碳素科技有限公司 一种化学气相沉积制备碳化硅海绵的装置
CN115010134B (zh) * 2022-06-21 2023-08-04 浙江六方碳素科技有限公司 一种化学气相沉积制备碳化硅海绵的装置

Also Published As

Publication number Publication date
US10407307B2 (en) 2019-09-10
US20170081198A1 (en) 2017-03-23
CN103833035B (zh) 2017-01-11
CN103833035A (zh) 2014-06-04

Similar Documents

Publication Publication Date Title
WO2015131755A1 (zh) 一种碳化硅的制备方法
CN101512042B (zh) 用于制造多晶硅的等离子体沉积装置和方法
CN1549877A (zh) 用于碳纳米材料生产的燃烧器和燃烧装置
JP5886831B2 (ja) 単結晶半導体材料の生成
CN105502897B (zh) 超纯石英玻璃的制备方法
JPWO2015015795A1 (ja) SiOX粉末製造法及びSiOX粉末製造装置
CN103011167B (zh) 一种硅球制备装置及其制备方法
KR20120089073A (ko) 열플라즈마를 이용한 산화규소분말의 제조방법 및 이에 의하여 제조되는 산화규소분말
KR101545201B1 (ko) 열 플라스마 유동층 반응장치 및 이를 이용한 실리콘의 제조방법
CN116177537A (zh) 高质量石墨烯粉体生长及同步制氢方法和装置
CN110124599A (zh) 微粒制造装置以及微粒制造方法
KR100985676B1 (ko) 산화아연 미분말 제조장치 및 방법
CN113371715A (zh) 一种太阳能电池材料纳米硅粉的生产装置
CN109128203A (zh) 快速制备金属基石墨烯复合材料的装置
CN105731480A (zh) 一种电弧放电制备硼纳米材料的方法
JPH10292126A (ja) カーボンブラックの製造方法
US20220306470A1 (en) Method and apparatus for producing silicon-containing materials
WO2023167268A1 (ja) 一酸化珪素の製造方法
JPH10168337A (ja) カーボンブラックの製造方法
JP3907515B2 (ja) 高純度窒化ケイ素微粉末の製造方法
WO2010067842A1 (ja) シリコンの製造方法
CN117205848A (zh) 一种基于气相分解法制备纳米硅的系统及方法
TW202237532A (zh) 用於製造SiC固體材料之方法及裝置
JPH09241528A (ja) カーボンブラックの製造方法および装置
CN102742034B (zh) 冶金硅的提纯方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15759061

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15123657

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15759061

Country of ref document: EP

Kind code of ref document: A1