WO2023164923A1 - 一种低温制备陶瓷膜的方法 - Google Patents
一种低温制备陶瓷膜的方法 Download PDFInfo
- Publication number
- WO2023164923A1 WO2023164923A1 PCT/CN2022/079260 CN2022079260W WO2023164923A1 WO 2023164923 A1 WO2023164923 A1 WO 2023164923A1 CN 2022079260 W CN2022079260 W CN 2022079260W WO 2023164923 A1 WO2023164923 A1 WO 2023164923A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- low
- ceramic membrane
- temperature
- ceramic
- binder
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0039—Inorganic membrane manufacture
- B01D67/0041—Inorganic membrane manufacture by agglomeration of particles in the dry state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/02—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/024—Oxides
- B01D71/025—Aluminium oxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/024—Oxides
- B01D71/027—Silicium oxide
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/16—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/6303—Inorganic additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63404—Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/63444—Nitrogen-containing polymers, e.g. polyacrylamides, polyacrylonitriles, polyvinylpyrrolidone [PVP], polyethylenimine [PEI]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/06—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
- C04B38/063—Preparing or treating the raw materials individually or as batches
- C04B38/0635—Compounding ingredients
- C04B38/0645—Burnable, meltable, sublimable materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3215—Barium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3284—Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3409—Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3427—Silicates other than clay, e.g. water glass
- C04B2235/3463—Alumino-silicates other than clay, e.g. mullite
- C04B2235/3472—Alkali metal alumino-silicates other than clay, e.g. spodumene, alkali feldspars such as albite or orthoclase, micas such as muscovite, zeolites such as natrolite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/349—Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Definitions
- the invention relates to a method for preparing a ceramic membrane at low temperature.
- the purpose of the present invention is to solve the problems that the sintering temperature of the existing ceramic membrane is too high, the amount of low-temperature binder added is large, the permeability of the membrane is poor, and the removal effect on organic matter is not good, and a low-temperature preparation of ceramic membrane is provided. Methods.
- a method for preparing a ceramic membrane at a low temperature specifically completed according to the following steps:
- the low-temperature nano binder described in step 1.2 is one or more combinations of potassium feldspar, zinc oxide, calcium oxide, magnesium oxide, barium carbonate, talc and borax;
- Low-temperature sintering Mix ceramic powder, high-dispersibility low-temperature nano-binder, porogen and water to obtain a ceramic membrane blend; mechanically stir the ceramic membrane blend to obtain mud; Low-temperature sintering is performed to obtain a ceramic membrane.
- the present invention has the advantages of:
- Low-temperature binder has attracted more and more attention from experts and scholars in the preparation process of ceramic nanofiltration membranes in recent years, but at present, it is easy to agglomerate, and the dosage is relatively large.
- the flux of the prepared membrane is relatively small, and the porosity is relatively low.
- the bionic coating form of the present invention increases the dispersion of low-temperature nano-binders; and then with ceramic powder
- the ceramic membrane blend is obtained by blending the body with the porogen; the blend can be formed after sintering; the ceramic membrane prepared by this method can significantly reduce the sintering temperature, increase the porosity and flexural strength, Improve membrane permeability and pollution resistance;
- the present invention modifies the low-temperature nano-adhesive by dopamine coating, which greatly improves the dispersibility of the low-temperature adhesive.
- the dopamine coating can decompose without affecting the film performance, reducing the use of low-temperature adhesive Increased porosity (above 60%) and flexural strength (above 80MPa), excellent permeability, water flux up to 6000Lm -2 h -1 bar -1 , turbidity removal rate above 99.9%, algae
- the removal rate can reach 100%, the removal rate of dissolved organic carbon (DOC) is more than 85%, the removal rate of total organic carbon is more than 85%, and the removal rate of CODMn is more than 85%; the flux recovery rate is more than 95%, and the cleaning cycle Up to 1d or more.
- DOC dissolved organic carbon
- the invention can obtain a method for preparing ceramic membrane at low temperature.
- Fig. 1 is the differential scanning-thermogravimetric curve of the ceramic film that embodiment 1 prepares
- Fig. 2 is the microscopic topography figure of the ceramic film that embodiment 1 prepares;
- Fig. 3 is the microscopic topography figure of the ceramic film that embodiment 2 prepares;
- FIG. 4 is a microscopic morphology diagram of the ceramic membrane prepared in Comparative Example 2.
- Specific implementation mode 1 In this implementation mode, a method for preparing a ceramic membrane at low temperature is specifically completed according to the following steps:
- the low-temperature nano binder described in step 1.2 is one or more combinations of potassium feldspar, zinc oxide, calcium oxide, magnesium oxide, barium carbonate, talc and borax;
- Low-temperature sintering Mix ceramic powder, high-dispersibility low-temperature nano-binder, porogen and water to obtain a ceramic membrane blend; mechanically stir the ceramic membrane blend to obtain mud; Low-temperature sintering is performed to obtain a ceramic membrane.
- Embodiment 3 The difference between this embodiment and Embodiment 1 or 2 is that the mass ratio of the low-temperature nano-binder described in step 2 to dopamine in the mixed solution is 20:1. Other steps are the same as those in Embodiment 1 or 2.
- Embodiment 4 The difference between this embodiment and Embodiment 1 to 3 is: the stirring time described in step 1.2 is 1h to 24h, the temperature of the vacuum drying is 100°C, and the time of vacuum drying is 10h ⁇ 20h. Other steps are the same as those in Embodiments 1 to 3.
- Embodiment 5 This embodiment differs from Embodiment 1 to Embodiment 4 in that the ceramic powder in Step 2 is alumina, kaolin, zirconia or titania. Other steps are the same as those in Embodiments 1 to 4.
- Embodiment 6 This embodiment differs from Embodiment 1 to Embodiment 5 in that the porogen described in step 2 is hydroxymethyl cellulose, yellow dextrin, polyethylene glycol or glycerin. Other steps are the same as those in Embodiments 1 to 5.
- Embodiment 7 The difference between this embodiment and Embodiments 1 to 6 is that the mass fraction of ceramic powder in the ceramic membrane blend described in step 2 is 40% to 80%, and the high-dispersibility low-temperature nano The mass fraction of the binder is 5%-15%, the mass fraction of the porogen is 10%-20%, and the mass fraction of water is 5%-10%. Other steps are the same as those in Embodiments 1 to 6.
- Embodiment 8 This embodiment differs from Embodiments 1 to 7 in that the temperature of the low-temperature sintering in step 2 is 350° C. to 800° C., and the time for low-temperature sintering is 6 hours to 8 hours. Other steps are the same as those in Embodiments 1 to 7.
- Embodiment 9 The difference between this embodiment and Embodiment 1 to Embodiment 8 is that the ceramic membrane obtained in step 2 is modified to obtain a ceramic membrane resistant to protein contamination; the modification is specifically completed according to the following steps of:
- the difference between this embodiment and one of specific embodiments one to nine is: the molar ratio of dopamine to ⁇ -gluconolactone is 1:1; the quality of ⁇ -gluconolactone and triethyl
- the volume ratio of amine is (0.5g ⁇ 1.5g): 1mL; the volume ratio of the mass of ⁇ -gluconolactone to deionized water is (0.5g ⁇ 1.5g):(20mL ⁇ 25mL);
- the time is 10h ⁇ 12h.
- Other steps are the same as those in Embodiments 1 to 9.
- Embodiment 1 a kind of method for preparing ceramic film at low temperature, specifically finish according to the following steps:
- the mass ratio of the low-temperature nano-binder described in step 1.2 to the dopamine in the mixed solution is 1:1;
- the low-temperature nano binder described in step one 2. is the mixture of potassium feldspar and borax, and wherein the mass ratio of potassium feldspar and borax is 1:1;
- Low-temperature sintering mix ceramic powder, high-dispersibility low-temperature nano-binder, porogen, and water to obtain a ceramic membrane blend; mechanically stir the ceramic membrane blend to obtain mud; mix the mud Raise the temperature to 720°C at a heating rate of 5°C/min, and bake at 720°C for 8 hours to obtain a ceramic film;
- the ceramic powder described in step 2 is alumina
- the porogen described in step 2 is yellow dextrin
- the mass fraction of the ceramic powder in the ceramic membrane blend described in step 2 is 70%, the mass fraction of the high-dispersibility low-temperature nano binder is 10%, the mass fraction of the porogen is 15%, and the mass fraction of water is The score is 5%.
- the pure water flux of the ceramic membrane prepared in Example 1 can reach 6927Lm -2 h -1 bar -1 , the turbidity removal rate reaches 99.97%, the algae removal rate reaches 100%, the porosity reaches 65%, and the flexural strength reaches 85MPa , The flux recovery rate reaches 97%.
- Example 2 The difference between this example and Example 1 is that the ceramic powder described in step 2 is titanium dioxide; Lower firing for 8 hours to obtain a ceramic membrane. Other steps and parameters are all different from Embodiment 1.
- Comparative example 1 a kind of method that adopts diatomaceous earth to prepare ceramic film as nano-bonding agent, specifically finish according to the following steps:
- the ceramic powder described in step 2 is alumina
- the porogen described in step 2 is yellow dextrin
- the mass fraction of ceramic powder in the ceramic membrane blend described in step 2 is 70%, the mass fraction of diatomaceous earth is 10%, the mass fraction of porogen is 15%, and the mass fraction of water is 5%.
- Comparative example 2 a kind of method that adopts unmodified borax and potassium feldspar to prepare ceramic film as nano-bonding agent, specifically finish according to the following steps:
- Described low-temperature nano binder is the mixture of potassium feldspar and borax, and wherein the mass ratio of potassium feldspar and borax is 1:1;
- the ceramic powder is alumina
- the porogen is yellow dextrin
- the mass fraction of ceramic powder in the ceramic membrane blend is 70%, the mass fraction of low-temperature nano binder is 10%, the mass fraction of porogen is 15%, and the mass fraction of water is 5%.
- Fig. 2 is the microscopic topography figure of the ceramic film that embodiment 1 prepares;
- Fig. 3 is the microscopic topography figure of the ceramic film that embodiment 2 prepares;
- FIG. 4 is a microscopic morphology diagram of the ceramic membrane prepared in Comparative Example 2.
- the ceramic membranes prepared in each example can be sintered at low temperature, have excellent low-temperature binder dispersion performance, and do not agglomerate.
- the prepared ceramic membranes have high porosity, high flexural strength, and water permeability. Excellent, high pollutant removal efficiency, excellent pollution resistance; while the ceramic membranes prepared in Comparative Example 1 and Comparative Example 2 have high sintering temperature, low pure water flux, small porosity, low strength and short cleaning time.
- Embodiment 3 modify the ceramic membrane obtained in Step 2 of Example 1 to obtain a ceramic membrane resistant to protein contamination; the modification is specifically completed according to the following steps:
- the mol ratio of described dopamine and ⁇ -gluconolactone is 1:1;
- the mass of ⁇ -gluconolactone and the volume ratio of triethylamine are 1g:1mL;
- the quality of ⁇ -gluconolactone and deionized The volume ratio of water is 1g:20mL; the time of heating to reflux is 10h ⁇ 12h.
- the ceramic membrane prepared in Example 1 and the anti-protein contamination ceramic membrane prepared in Example 3 adsorb fluorescently labeled bovine serum albumin, and then observe under a fluorescent microscope, the fluorescently labeled bovine serum albumin emits green light, and the intensity of fluorescence represents the amount of protein adsorbed.
- the results show that: the ceramic membrane prepared in Example 1 has a certain area of adsorption, while the protein-pollution-resistant ceramic membrane prepared in Example 3 has almost no fluorescence. It shows that the anti-protein pollution ceramic membrane prepared in Example 3 has a good anti-protein pollution effect.
- the test shows that the protein adsorption rate of the anti-protein pollution ceramic membrane prepared in Example 3 is lower than 0.3 mg/m 2 , and the flux recovery rate is high, which can reach more than 92%.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Composite Materials (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
一种低温制备陶瓷膜的方法,其目的是要解决现有陶瓷膜的烧结温度过高,添加低温粘结剂的量大,膜的渗透性能差和对有机物的去除效果不佳的问题。方法:一、制备高分散性低温纳米粘结剂;二、低温烧结,得到陶瓷膜。该方法仿生涂覆形式,增加低温纳米粘结剂分散性;然后与陶瓷粉体与致孔剂共混,制得陶瓷膜共混料;将所述共混料经过烧结后可以成型;使用该种方法制备的陶瓷膜可以明显降低烧结温度、增加孔隙率与抗折强度,提升膜的渗透性与耐污染性。
Description
本发明涉及一种低温制备陶瓷膜的方法。
随着我国经济快速发展与居民生活质量不断提高,居民对水质要求日益增加。传统絮凝-沉降-过滤工艺难以保障居民饮用水安全。近年来,以膜分离技术与高级氧化技术为代表的水深度处理技术逐渐受到关注。然而,目前高分子膜材料为市场主导,在高级氧化过程中会发生材料老化,导致膜性能产生较大损失,使用寿命下降,运行成本升高。
近年来,以陶瓷为基材的分离膜材料在水深度处理过程中备受关注。一方面,陶瓷膜材料具有优异的耐氧化特性,可以在高浓度高锰酸钾、臭氧条件下使用;另一方面,陶瓷膜材料经过修饰后容易带负电荷,并呈现出优异的催化性能。然而,陶瓷膜烧结温度过高,一般超过1000℃。已有报道中虽然有报道低温粘结剂进行烧结,但是低温粘结剂往往存在分散问题,导致低温粘结剂添加量较大,膜孔隙率有待提升,膜的渗透性仍有很大提升空间。此外,粘结剂的团聚容易造成陶瓷膜通量下降,存在对有机物的去除效果不佳等缺点。因此,高性能陶瓷膜的制备仍然是一个挑战。
因此,目前非常迫切需要提供了一种能够克服现有技术中所存在的上述技术问题,制备低温烧结陶瓷膜。
发明内容
本发明的目的是要解决现有陶瓷膜的烧结温度过高,添加低温粘结剂的量大,膜的渗透性能差和对有机物的去除效果不佳的问题,而提供一种低温制备陶瓷膜的方法。
一种低温制备陶瓷膜的方法,具体是按以下步骤完成的:
一、制备高分散性低温纳米粘结剂:
①、制备混合液:
将多巴胺、聚乙烯亚胺和pH=8.5的Tris-HCl缓冲溶液混合,得到混合溶液;
②、将低温纳米粘结剂加入到混合溶液中,搅拌,真空干燥,得到高分散性低温纳米粘结剂;
步骤一②中所述的低温纳米粘结剂为钾长石、氧化锌、氧化钙、氧化镁、碳酸钡、滑石和硼砂中的一种或两种以上的组合;
二、低温烧结:将陶瓷粉体、高分散性低温纳米粘结剂、致孔剂和水混合,得到陶瓷 膜共混料;对陶瓷膜共混料进行机械搅拌,得到泥料;对泥料进行低温烧结,得到陶瓷膜。
相对于现有技术,本发明的优势在于:
一、低温粘结剂近年来陶瓷纳滤膜制备过程中受到了专家学者们越来越多的关注,但是目前其容易团聚,用量较大,所制备的膜通量相对较小,孔隙率较低(<50%),抗折强度差(<50MPa),为规模化制备性能稳定陶瓷膜一个重要难点;但是,本发明仿生涂覆形式,增加低温纳米粘结剂分散性;然后与陶瓷粉体与致孔剂共混,制得陶瓷膜共混料;将所述共混料经过烧结后可以成型;使用该种方法制备的陶瓷膜可以明显降低烧结温度、增加孔隙率与抗折强度,提升膜的渗透性与耐污染性;
二、本发明通过多巴胺涂覆改性了低温纳米粘结剂,大幅度提升了低温粘结剂的分散性能,高温下,多巴胺涂层能够分解,不影响膜性能,降低了低温粘结剂使用量,增加了孔隙率(60%以上)与抗折强度(80MPa以上),渗透性能优异,水通量可达6000Lm
-2h
-1bar
-1以上,浊度去除率为99.9%以上,藻类去除率可达100%,溶解性有机碳(DOC)去除率为85%以上,总有机碳去除率为85%以上,CODMn去除率为85%以上;通量恢复率达95%以上,清洗周期达1d以上。
本发明可获得一种低温制备陶瓷膜的方法。
图1为实施例1制备的陶瓷膜的示差扫描-热失重曲线;
图2为实施例1制备的陶瓷膜的微观形貌图;
图3为实施例2制备的陶瓷膜的微观形貌图;
图4为对比例2制备的陶瓷膜的微观形貌图。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明实施例中的技术方案进行更加清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
具体实施方式一:本实施方式一种低温制备陶瓷膜的方法,具体是按以下步骤完成的:
一、制备高分散性低温纳米粘结剂:
①、制备混合液:
将多巴胺、聚乙烯亚胺和pH=8.5的Tris-HCl缓冲溶液混合,得到混合溶液;
②、将低温纳米粘结剂加入到混合溶液中,搅拌,真空干燥,得到高分散性低温纳米 粘结剂;
步骤一②中所述的低温纳米粘结剂为钾长石、氧化锌、氧化钙、氧化镁、碳酸钡、滑石和硼砂中的一种或两种以上的组合;
二、低温烧结:将陶瓷粉体、高分散性低温纳米粘结剂、致孔剂和水混合,得到陶瓷膜共混料;对陶瓷膜共混料进行机械搅拌,得到泥料;对泥料进行低温烧结,得到陶瓷膜。
具体实施方式二:本实施方式与具体实施方式一不同点是:步骤一①中所述的混合溶液中多巴胺的质量分数1%~5%,聚乙烯亚胺的质量分数为1%~5%,pH=8.5的Tris-HCl缓冲溶液的质量分数90%~98%。其它步骤与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二之一不同点是:步骤一②中所述的低温纳米粘结剂与混合溶液中多巴胺的质量比为20:1。其它步骤与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同点是:步骤一②中所述的搅拌时间为1h~24h,所述的真空干燥的温度为100℃,真空干燥的时间为10h~20h。其它步骤与具体实施方式一至三相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同点是:步骤二中所述的陶瓷粉体为氧化铝、高岭土、氧化锆或氧化钛。其它步骤与具体实施方式一至四相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同点是:步骤二中所述的致孔剂为羟甲基纤维素、黄糊精、聚乙二醇或甘油。其它步骤与具体实施方式一至五相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同点是:步骤二中所述的陶瓷膜共混料中陶瓷粉体的质量分数为40%~80%,高分散性低温纳米粘结剂的质量分数为5%~15%,致孔剂的质量分数为10%~20%,水的质量分数为5%~10%。其它步骤与具体实施方式一至六相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同点是:步骤二中所述的低温烧结的温度为350℃~800℃,低温烧结的时间为6h~8h。其它步骤与具体实施方式一至七相同。
具体实施方式九:本实施方式与具体实施方式一至八之一不同点是:对步骤二得到的陶瓷膜进行改性,得到抗蛋白污染的陶瓷膜;所述的改性具体是按以下步骤完成的:
将陶瓷膜浸入到多巴胺、δ-葡萄糖酸内酯、三乙胺和去离子水的混合溶液中,再升温至90℃~95℃加热回流,将陶瓷膜取出,干燥,得到抗蛋白污染的陶瓷膜。其它步骤与具体实施方式一至八相同。
具体实施方式十:本实施方式与具体实施方式一至九之一不同点是:所述的多巴胺与δ-葡萄糖酸内酯的摩尔比为1:1;δ-葡萄糖酸内酯的质量与三乙胺的体积比为(0.5g~1.5g):1mL;δ-葡萄糖酸内酯的质量与去离子水的体积比为(0.5g~1.5g):(20mL~25mL);所述的加热回流的时间为10h~12h。其它步骤与具体实施方式一至九相同。
采用以下实施例验证本发明的有益效果:
实施例1:一种低温制备陶瓷膜的方法,具体是按以下步骤完成的:
一、制备高分散性低温纳米粘结剂:
①、制备混合液:
将多巴胺、聚乙烯亚胺和pH=8.5的Tris-HCl缓冲溶液混合,得到混合溶液;
步骤一①中所述的混合溶液中多巴胺的质量分数2%,聚乙烯亚胺的质量分数为2%,pH=8.5的Tris-HCl缓冲溶液的质量分数96%;
②、将低温纳米粘结剂加入到混合溶液中,搅拌24h,再在真空100℃下干燥24h,得到高分散性低温纳米粘结剂;
步骤一②中所述的低温纳米粘结剂与混合溶液中多巴胺的质量比为1:1;
步骤一②中所述的低温纳米粘结剂为钾长石和硼砂的混合物,其中钾长石和硼砂的质量比为1:1;
二、低温烧结:将陶瓷粉体、高分散性低温纳米粘结剂、致孔剂和水混合,得到陶瓷膜共混料;对陶瓷膜共混料进行机械搅拌,得到泥料;将泥料以5℃/min的升温速率升温至720℃,在720℃下焙烧8h,得到陶瓷膜;
步骤二中所述的陶瓷粉体为氧化铝;
步骤二中所述的致孔剂为黄糊精;
步骤二中所述的陶瓷膜共混料中陶瓷粉体的质量分数为70%,高分散性低温纳米粘结剂的质量分数为10%,致孔剂的质量分数为15%,水的质量分数为5%。
实施例1制备的陶瓷膜的纯水通量可达6927Lm
-2h
-1bar
-1,对浊度去除率达99.97%,藻类去除率100%,孔隙率达65%,抗折强度达85MPa,通量恢复率达97%。
实施例2:本实施例与实施例1的不同点是:步骤二中所述的陶瓷粉体为二氧化钛;步骤二中将泥料以5℃/min的升温速率升温至590℃,在590℃下焙烧8h,得到陶瓷膜。其它步骤及参数与实施例1均不同。
对比例1:一种采用硅藻土作为纳米粘结剂制备陶瓷膜的方法,具体是按以下步骤完 成的:
将陶瓷粉体、硅藻土、致孔剂和水混合,得到陶瓷膜共混料;对陶瓷膜共混料进行机械搅拌,得到泥料;将泥料以5℃/min的升温速率升温至1200℃,在1200℃下焙烧8h,得到陶瓷膜;
步骤二中所述的陶瓷粉体为氧化铝;
步骤二中所述的致孔剂为黄糊精;
步骤二中所述的陶瓷膜共混料中陶瓷粉体的质量分数为70%,硅藻土的质量分数为10%,致孔剂的质量分数为15%,水的质量分数为5%。
对比例2:一种采用未改性的硼砂及钾长石为纳米粘结剂制备陶瓷膜的方法,具体是按以下步骤完成的:
将陶瓷粉体、低温纳米粘结剂、致孔剂和水混合,得到陶瓷膜共混料;对陶瓷膜共混料进行机械搅拌,得到泥料;将泥料以5℃/min的升温速率升温至820℃,在820℃下焙烧8h,得到陶瓷膜;
所述的低温纳米粘结剂为钾长石和硼砂的混合物,其中钾长石和硼砂的质量比为1:1;
所述的陶瓷粉体为氧化铝;
所述的致孔剂为黄糊精;
所述的陶瓷膜共混料中陶瓷粉体的质量分数为70%,低温纳米粘结剂的质量分数为10%,致孔剂的质量分数为15%,水的质量分数为5%。
图2为实施例1制备的陶瓷膜的微观形貌图;
图3为实施例2制备的陶瓷膜的微观形貌图;
图4为对比例2制备的陶瓷膜的微观形貌图。
从图2~图4可知,实施例1和实施例2制备的陶瓷膜分散均匀,对比例2制备的陶瓷膜明显团聚结构,分散不均匀。
将实施例1、实施例2、对比例1和对比例2制备的陶瓷膜的性能列于表1;
表1
从表1的结果可以看出,各实施例中制得的陶瓷膜可实现低温烧结,低温粘结剂分散性能优异,不发生团聚,所制备陶瓷膜孔隙率高、抗折强度高,透水性优异,对污染物去除效率高,耐污染性能优异;而对比例1和对比例2制备的陶瓷膜的烧结温度高,纯水通量低、空隙率小、强度低和需要清洗的时间短。
实施例3:对实施例1步骤二得到的陶瓷膜进行改性,得到抗蛋白污染的陶瓷膜;所述的改性具体是按以下步骤完成的:
将陶瓷膜浸入到多巴胺、δ-葡萄糖酸内酯、三乙胺和去离子水的混合溶液中,再升温至90℃~95℃加热回流,将陶瓷膜取出,干燥,得到抗蛋白污染的陶瓷膜;
所述的多巴胺与δ-葡萄糖酸内酯的摩尔比为1:1;δ-葡萄糖酸内酯的质量与三乙胺的体积比为1g:1mL;δ-葡萄糖酸内酯的质量与去离子水的体积比为1g:20mL;所述的加热回流的时间为10h~12h。
实施例1制备的陶瓷膜和实施例3制备的抗蛋白污染的陶瓷膜对荧光标记牛血清白蛋白进行吸附,然后在荧光显微镜下观察,荧光标记的牛血清白蛋白发出绿光,荧光的强度就代表着所吸附的蛋白质的量。结果表明:实施例1制备的陶瓷膜出现了一定面积的吸附,而实施例3制备的抗蛋白污染的陶瓷膜几乎看不到荧光存在。表明实施例3制备的抗蛋白污染的陶瓷膜抗蛋白污染效果好。经过试验可知,实施例3制备的抗蛋白污染的陶瓷膜的蛋白吸附率低于0.3mg/m
2,通量回复率高,可达92%以上。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换; 而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的主旨。
Claims (10)
- 一种低温制备陶瓷膜的方法,其特征在于一种低温制备陶瓷膜的方法具体是按以下步骤完成的:一、制备高分散性低温纳米粘结剂:①、制备混合液:将多巴胺、聚乙烯亚胺和pH=8.5的Tris-HCl缓冲溶液混合,得到混合溶液;②、将低温纳米粘结剂加入到混合溶液中,搅拌,真空干燥,得到高分散性低温纳米粘结剂;步骤一②中所述的低温纳米粘结剂为钾长石、氧化锌、氧化钙、氧化镁、碳酸钡、滑石和硼砂中的一种或两种以上的组合;二、低温烧结:将陶瓷粉体、高分散性低温纳米粘结剂、致孔剂和水混合,得到陶瓷膜共混料;对陶瓷膜共混料进行机械搅拌,得到泥料;对泥料进行低温烧结,得到陶瓷膜。
- 根据权利要求1所述的一种低温制备陶瓷膜的方法,其特征在于步骤一①中所述的混合溶液中多巴胺的质量分数1%~5%,聚乙烯亚胺的质量分数为1%~5%,pH=8.5的Tris-HCl缓冲溶液的质量分数90%~98%。
- 根据权利要求1或2所述的一种低温制备陶瓷膜的方法,其特征在于步骤一②中所述的低温纳米粘结剂与混合溶液中多巴胺的质量比为20:1。
- 根据权利要求1或2所述的一种低温制备陶瓷膜的方法,其特征在于步骤一②中所述的搅拌时间为1h~24h,所述的真空干燥的温度为100℃,真空干燥的时间为10h~20h。
- 根据权利要求1或2所述的一种低温制备陶瓷膜的方法,其特征在于步骤二中所述的陶瓷粉体为氧化铝、高岭土、氧化锆或氧化钛。
- 根据权利要求1或2所述的一种低温制备陶瓷膜的方法,其特征在于步骤二中所述的致孔剂为羟甲基纤维素、黄糊精、聚乙二醇或甘油。
- 根据权利要求1或2所述的一种低温制备陶瓷膜的方法,其特征在于步骤二中所述的陶瓷膜共混料中陶瓷粉体的质量分数为40%~80%,高分散性低温纳米粘结剂的质量分数为5%~15%,致孔剂的质量分数为10%~20%,水的质量分数为5%~10%。
- 根据权利要求1或2所述的一种低温制备陶瓷膜的方法,其特征在于步骤二中所述的低温烧结的温度为350℃~800℃,低温烧结的时间为6h~8h。
- 根据权利要求1所述的一种低温制备陶瓷膜的方法,其特征在于对步骤二得到的陶瓷膜进行改性,得到抗蛋白污染的陶瓷膜;所述的改性具体是按以下步骤完成的:将陶瓷膜浸入到多巴胺、δ-葡萄糖酸内酯、三乙胺和去离子水的混合溶液中,再升温 至90℃~95℃加热回流,将陶瓷膜取出,干燥,得到抗蛋白污染的陶瓷膜。
- 根据权利要求9所述的一种低温制备陶瓷膜的方法,其特征在于所述的多巴胺与δ-葡萄糖酸内酯的摩尔比为1:1;δ-葡萄糖酸内酯的质量与三乙胺的体积比为(0.5g~1.5g):1mL;δ-葡萄糖酸内酯的质量与去离子水的体积比为(0.5g~1.5g):(20mL~25mL);所述的加热回流的时间为10h~12h。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210203940.5A CN114573354B (zh) | 2022-03-02 | 2022-03-02 | 一种低温制备陶瓷膜的方法 |
CN202210203940.5 | 2022-03-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023164923A1 true WO2023164923A1 (zh) | 2023-09-07 |
Family
ID=81772421
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/079260 WO2023164923A1 (zh) | 2022-03-02 | 2022-03-04 | 一种低温制备陶瓷膜的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114573354B (zh) |
WO (1) | WO2023164923A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5326512A (en) * | 1992-12-16 | 1994-07-05 | Alliedsignal Inc. | Porous ceramic filter and preparation thereof |
CN101139206A (zh) * | 2007-08-13 | 2008-03-12 | 南京九思高科技有限公司 | 一种低温烧成多孔陶瓷支撑体的制备方法 |
CN102059059A (zh) * | 2010-11-16 | 2011-05-18 | 南京工业大学 | 一种抗蛋白吸附陶瓷复合膜的制备方法 |
CN108084451A (zh) * | 2018-01-04 | 2018-05-29 | 中南民族大学 | 水溶性富勒烯纳米材料及其制备方法与应用 |
CN109550408A (zh) * | 2019-01-11 | 2019-04-02 | 重庆理工大学 | 一种抗蛋白质污染陶瓷复合膜的制备方法 |
CN111056858A (zh) * | 2019-12-20 | 2020-04-24 | 上海巴安水务股份有限公司 | 一种平板陶瓷膜支撑体的制备方法及其陶瓷泥料 |
CN113648848A (zh) * | 2021-08-05 | 2021-11-16 | 河北工业大学 | 一种中空平板陶瓷膜及其制备方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105622162B (zh) * | 2016-01-11 | 2018-03-23 | 苏州大学 | 一种微/纳米银负载的钛酸钡泡沫陶瓷及其制备方法 |
CN106654125A (zh) * | 2017-01-24 | 2017-05-10 | 厦门大学 | 通过多巴胺复合粘结剂制备改性陶瓷隔膜的方法及其应用 |
CN110813104B (zh) * | 2019-10-31 | 2021-06-08 | 北京化工大学 | 一种超亲水炔碳复合纳滤膜及其制备方法 |
TWI752384B (zh) * | 2019-12-05 | 2022-01-11 | 明基材料股份有限公司 | 陶瓷隔離膜及其製備方法 |
CN111185103B (zh) * | 2020-01-09 | 2021-12-21 | 东华大学 | 一种纳米纤维基有机/无机复合纳滤膜及其制备方法 |
CN111672339B (zh) * | 2020-04-30 | 2022-01-25 | 重庆理工大学 | 一种用于染料去除的陶瓷复合纳滤膜及其制备方法 |
-
2022
- 2022-03-02 CN CN202210203940.5A patent/CN114573354B/zh active Active
- 2022-03-04 WO PCT/CN2022/079260 patent/WO2023164923A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5326512A (en) * | 1992-12-16 | 1994-07-05 | Alliedsignal Inc. | Porous ceramic filter and preparation thereof |
CN101139206A (zh) * | 2007-08-13 | 2008-03-12 | 南京九思高科技有限公司 | 一种低温烧成多孔陶瓷支撑体的制备方法 |
CN102059059A (zh) * | 2010-11-16 | 2011-05-18 | 南京工业大学 | 一种抗蛋白吸附陶瓷复合膜的制备方法 |
CN108084451A (zh) * | 2018-01-04 | 2018-05-29 | 中南民族大学 | 水溶性富勒烯纳米材料及其制备方法与应用 |
CN109550408A (zh) * | 2019-01-11 | 2019-04-02 | 重庆理工大学 | 一种抗蛋白质污染陶瓷复合膜的制备方法 |
CN111056858A (zh) * | 2019-12-20 | 2020-04-24 | 上海巴安水务股份有限公司 | 一种平板陶瓷膜支撑体的制备方法及其陶瓷泥料 |
CN113648848A (zh) * | 2021-08-05 | 2021-11-16 | 河北工业大学 | 一种中空平板陶瓷膜及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114573354A (zh) | 2022-06-03 |
CN114573354B (zh) | 2022-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109019745A (zh) | 一种提高多功能杂化膜颗粒负载量的制备方法 | |
CN103554831A (zh) | 磺化聚醚醚酮/氨基功能化TiO2杂化膜及制备和应用 | |
CN109181451B (zh) | 一种聚丙烯酸酯/MOFs复合皮革涂饰剂的制备方法 | |
CN112028180B (zh) | 一种催化功能性陶瓷膜及其制备方法和应用 | |
CN105561803A (zh) | 一种大通量、高精度高温凝结水除油除铁用陶瓷超滤膜的制备方法 | |
WO2018095277A1 (zh) | 板状刚玉陶瓷膜支撑体的制备方法 | |
CN110201556A (zh) | 一种轻度还原的氧化石墨烯纳滤膜、制备方法及其应用 | |
CN103495352A (zh) | 一种气-液膜接触器用改性聚醚砜基疏水性膜的制备方法 | |
CN113262645B (zh) | 一种自清洁复合超滤膜及其制备方法 | |
CN105126647A (zh) | 一种高效油水分离复合超滤膜的制备方法 | |
CN111036082B (zh) | 一种氧化石墨烯/TiO2复合膜的制备方法 | |
WO2023164923A1 (zh) | 一种低温制备陶瓷膜的方法 | |
WO2021248900A1 (zh) | 一种高通量改性氧化钛复合超滤膜及其应用 | |
CN112718000B (zh) | 有机-无机复合光催化膜及其制备方法和应用 | |
WO2020098273A1 (zh) | 一种高比表面积与高吸附voc型二氧化硅及其制备方法 | |
CN112295421B (zh) | 一种表面粘接式用于光催化的TiO2/PVDF超滤膜 | |
CN111001307B (zh) | 一种可更换活性层的复合膜的制备方法 | |
CN111153684B (zh) | 陶瓷膜及其制备方法和应用 | |
CN116444290A (zh) | 一种稀土改进粉煤灰陶瓷膜及其制备方法 | |
CN112808227B (zh) | 一种杂化气凝胶吸附剂及其制备方法以及在废水处理中的应用 | |
CN108905626B (zh) | 一种复合超滤膜及其制备方法和应用 | |
WO2023164924A1 (zh) | 一种荷负电耐污染陶瓷膜的制备方法 | |
CN112044288A (zh) | 基于F-TiO2/Fe-g-C3N4的自清洁PVDF中空纤维超滤膜及制备方法 | |
CN112604511B (zh) | 一种超滤陶瓷平板膜及制备方法 | |
CN117463290B (zh) | 一种以葡萄糖为碳源的甲醛吸收剂及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22929370 Country of ref document: EP Kind code of ref document: A1 |