WO2020098273A1 - 一种高比表面积与高吸附voc型二氧化硅及其制备方法 - Google Patents

一种高比表面积与高吸附voc型二氧化硅及其制备方法 Download PDF

Info

Publication number
WO2020098273A1
WO2020098273A1 PCT/CN2019/092111 CN2019092111W WO2020098273A1 WO 2020098273 A1 WO2020098273 A1 WO 2020098273A1 CN 2019092111 W CN2019092111 W CN 2019092111W WO 2020098273 A1 WO2020098273 A1 WO 2020098273A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface area
specific surface
voc
silica
sodium silicate
Prior art date
Application number
PCT/CN2019/092111
Other languages
English (en)
French (fr)
Inventor
黄真
任振雪
林英光
高文颖
张梦梅
Original Assignee
广州市飞雪材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州市飞雪材料科技有限公司 filed Critical 广州市飞雪材料科技有限公司
Publication of WO2020098273A1 publication Critical patent/WO2020098273A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/16Preparation of silica xerogels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter

Definitions

  • the invention belongs to the technical field of silica, in particular to a high specific surface area and high adsorption VOC type silica and a preparation method thereof.
  • VOC Volatile Organic Compouds
  • Conventional VOC purification methods mainly include: absorption method, adsorption method, catalytic method, combustion method, condensation method, biological method, etc. Compared with other methods, the adsorption method has the characteristics of low pollution, high efficiency, economy and practicality.
  • porous adsorbents include diatomaceous earth, activated carbon, bentonite and silica, etc. The silica adsorbent has the characteristics of non-toxic, odorless, non-polluting, good hydrodynamic properties, high mechanical strength and so on, so it is widely used.
  • silica used as an adsorbent uses organic silicon such as ethyl silicate as a silicon source.
  • organic silicon such as ethyl silicate
  • the pore volume is small, the adsorption effect of VOC gas is not obvious, and the preparation method is cumbersome.
  • the high cost is not conducive to actual production and promotion.
  • the precipitation method using sodium silicate as a silicon source is relatively simple, and has low energy consumption, low cost, and easy industrialization. However, in this method, the properties of silica are easily affected by the preparation conditions.
  • patent document CN107324346A discloses a method for preparing silica with high specific surface area and high oil absorption value.
  • the method includes S1, injecting a sodium sulfate solution with a concentration of 0.8 to 1.5 mol / L into the reaction kettle, and heating to 6 to 10 m 3 . 70 ⁇ 90 °C; S2.
  • the flow rate of the sulfuric acid solution is 1.5 ⁇ 2.5m 3 / h, and then add water glass solution at a rate of 10 ⁇ 15m 3 / h.
  • the silica prepared by this method has a specific surface area greater than 475.45m 2 / g, an oil absorption value greater than 322ml / 100g, and has a high loading capacity for the surfactant.
  • this method needs to be carried out at a high temperature of 70 to 90 ° C, which consumes a large amount of energy and is not conducive to industrialization.
  • Another example is the patent document CN105129806A, which discloses a method for preparing high specific surface area silica for washing powder.
  • the method includes S1, adding water to a reaction tank, heating to 65-75 ° C, then adding glycerin, and stirring evenly; S2 ⁇ Add water glass and sulfuric acid at the same time, stop adding sulfuric acid when the system pH value is 2.0 ⁇ 3.0, and age 1.5 ⁇ 2.5h; S3, press filter, wash, dry and crush the aged silica material.
  • the silica produced by this method has a specific surface area of 600-700 m 2 / g, a pore volume of 2.8-3.0 cm 3 / g, and a pore size of 16-20 nm.
  • the existing high specific surface area silica has limited adsorption effect on VOC, and its preparation method has large energy consumption and high cost. Therefore, it is urgent to develop a simple process, low cost, large specific surface area, moderate pore volume and pore size and Silica products with significant VOC adsorption effect to meet market demand.
  • the present invention provides a method for preparing high specific surface area and highly adsorbed VOC silica,
  • the preparation method is carried out at normal temperature, adopting the reaction method of alkali dropping acid, compounding ZSM-5 type zeolite molecular sieve, and strictly controlling the concentration of the reaction material, the feeding speed and the pH value, etc., to obtain high specific surface area and high adsorption VOC Type silica.
  • the preparation method of high specific surface area and high adsorption VOC silica provided by the present invention specifically includes the following steps:
  • the concentration of the sulfuric acid solution is 0.3-0.4 mol / L.
  • stirring speed is 30-40 Hz.
  • the amount of the ZSM-5 zeolite molecular sieve added is 12-27 kg.
  • the molar ratio of silicon to aluminum of the ZSM-5 zeolite molecular sieve is greater than 300, the specific surface area is greater than 300 m 2 / g, and the particle size is 5-20 ⁇ m.
  • the concentration of the sodium silicate solution is 0.6-0.8 mol / L, and the modulus of the sodium silicate is 3.0-3.5.
  • the present invention also provides silica prepared by the above-mentioned high specific surface area and high adsorption VOC type silica preparation method, the specific surface area of the silica is 360-420m 2 / g, and the pore volume is 0.6-2.0 cm 3 / g, pore size 7 ⁇ 10nm, purification concentration at 35 °C is 2mg / m 3 toluene purification rate ⁇ 90%, purification effect is remarkable, and the application range is wide.
  • the reaction mechanism of the present invention is as follows: In the present invention, dilute sulfuric acid is used as the reaction bottom liquid, a certain amount of silicoaluminum ZSM-5 zeolite molecular sieve is added to stir until uniform, and then a certain concentration of water glass is added dropwise at room temperature and stirred for reaction, by controlling The pH value of the end point makes the product form a gel, and finally the gel can be subjected to the steps of pressure filtration, drying, crushing, sieving, washing, etc. to obtain high specific surface area and high adsorption VOC silica.
  • the present invention uses a low-concentration 0.3-0.4 mol / L sulfuric acid solution to react with 0.6-0.8 mol / L sodium silicate solution, and the reaction is performed by adding alkali to the acid dropwise. Because in an acidic solution, the coordination number of silicic acid molecules is 6, at this time, the silicic acid molecules and the positive monovalent silicic acid ion undergo a hydroxyl link reaction to form disilicic acid, which consists of disilicic acid, trisilicic acid, and polysilicic acid. Upon polymerization, a silica sol is formed until a silica gel is formed. In the gel process of silica sol, the particles grow further.
  • the ZSM-5 zeolite molecular sieve with a silicon-to-aluminum ratio greater than 300 is incorporated before the reaction, and the incorporation amount is 10% to 20%, because the basic unit in the zeolite framework structure is composed of 4 oxygen atoms and 1
  • the tetrahedron made of silicon or aluminum atoms has a large cavity structure and can absorb water or gas molecules.
  • the zeolite framework will have Negative charge, this negative charge is compensated by monovalent or multivalent cations outside the framework, showing a higher affinity for polar molecules in adsorption performance, for molecules of similar size, the greater the polarity, the easier Adsorbed by molecular sieve.
  • the reason why the zeolite with a silicon-aluminum ratio greater than 300 is selected in the present invention is that in the structure of the zeolite, as the aluminum atoms desorb the zeolite framework structure, the pore volume and specific surface area of the zeolite surface increase, and the diameter of the VOC in the air is 0.2 ⁇ 0.6nm, the pore size of zeolite is within 2nm, the adsorption of VOC mainly depends on the adsorption of micropores, and the increase of the volume of micropores can effectively increase the adsorption amount of VOC.
  • the incorporation ratio of zeolite is greater than 20%, the hardness of the product is low, and it is easy to form a powder, which is not conducive to actual production and application. Therefore, when the zeolite incorporation ratio is 10% to 20%, the product has both good adsorption capacity and certain hardness.
  • the flow rate of the reaction material is controlled to be less than 0.6m 3 / h and the terminal pH value is 5.4 ⁇ 5.7, which can extend the reaction time, make the material fully react and grow, and have a higher specific surface area and a larger pore volume , Thereby improving the product's adsorption performance for VOC.
  • the preparation method of the high specific surface area and high adsorption VOC type silica of the present invention is carried out at normal temperature, without using an auxiliary agent, silica with high specific surface area and strong VOC adsorption performance can be prepared, and the steps are simple, The conditions are controllable, the process is stable, the production cost is low, and it is suitable for industrial production.
  • the specific surface area of the present invention's high specific surface area and highly adsorbed VOC-type silica is 360 to 420 m 2 / g, pore volume is 0.6 to 2.0 cm 3 / g, pore diameter is 7 to 10 nm, and the purification concentration is 2 mg / at 35 ° C.
  • the purification rate of m 3 toluene is ⁇ 90%, which has a significant effect on the purification of VOC, and has a certain hardness, and has a broad application prospect.
  • the raw materials used in the present invention are all conventional commercial products, for example, ZSM-5 type zeolite molecular sieve was purchased from Zibo Qichuang Chemical Technology Development Co., Ltd., and the trade name is micron-level ZSM-5 molecular sieve.
  • Embodiment 1 has a high specific surface area and high adsorption VOC silica and its preparation method
  • the stirring speed is 30 Hz; the silica-alumina molar ratio of the ZSM-5 zeolite molecular sieve is greater than 300, the specific surface area is greater than 300 m 2 / g, and the particle size is 5-20 ⁇ m.
  • Embodiment 2 High specific surface area and high adsorption VOC silica of the present invention and preparation method thereof
  • the stirring speed is 40 Hz; the silica-alumina molar ratio of the ZSM-5 zeolite molecular sieve is greater than 300, the specific surface area is greater than 300 m 2 / g, and the particle size is 5-20 ⁇ m.
  • Embodiment 3 The present invention has a high specific surface area and high adsorption VOC silica and its preparation method
  • the stirring speed is 35 Hz; the silica-alumina molar ratio of the ZSM-5 zeolite molecular sieve is greater than 300, the specific surface area is greater than 300 m 2 / g, and the particle size is 5-20 ⁇ m.
  • Embodiment 4 has a high specific surface area and high adsorption VOC silica and its preparation method
  • the stirring speed is 30 Hz; the silica-alumina molar ratio of the ZSM-5 zeolite molecular sieve is greater than 300, the specific surface area is greater than 300 m 2 / g, and the particle size is 5-20 ⁇ m.
  • Example 3 Compared with Example 3, the present invention differs only in that the concentration of the sulfuric acid solution is 0.7 mol / L.
  • the present invention differs only in that the concentration of the sodium silicate solution is 1.2 mol / L.
  • the difference of the present invention is only that: S2, the sodium silicate solution with a modulus of 3.2 and a concentration of 0.7 mol / L is continuously added dropwise with stirring, the drop acceleration is controlled to 0.8 m 3 / h, and the drop is added When the system pH value is 5.0, reduce the drop acceleration to 0.07m 3 / h, control the end point pH value to 5.5, stop adding sodium silicate solution, continue stirring until the solution forms a viscous gel, and rest for 90 minutes.
  • the difference of the present invention lies in: changing the way of adding materials, specifically:
  • Example 3 Compared with Example 3, the difference of the present invention is only that: the addition amount of the ZSM-5 type zeolite molecular sieve is increased to 35 kg.
  • Examples 1 to 4 of the present invention have a specific surface area of 360 to 420 m 2 / g of silica, a pore volume of 0.6 to 2.0 cm 3 / g, a pore size of 7 to 10 nm, and a purification concentration of 2 mg / m 3 toluene at 35 ° C.
  • the purification rate of ⁇ 90% is significant for the purification of VOC, and it has a certain hardness, has a granular feel, and is not easy to be crushed into powder, so it can be used in many fields and has good application prospects.
  • Comparative Examples 1 and 2 increased the concentration of the sulfuric acid solution and the sodium silicate solution, respectively, and Comparative Example 3 increased the drop rate of the sodium silicate solution.
  • the silica of Comparative Example 1 The specific surface area, pore volume and pore diameter were significantly reduced, and the purification rate of p-toluene was reduced; while the pore volume and pore diameter of silica of Comparative Example 2 and Comparative Example 3 were also significantly reduced, and the purification effect of toluene was weakened, while the comparative example 3 The hardness of silicon oxide decreases.
  • Comparative Example 4 changed the way of adding materials. As a result, the pore volume and pore size of silica decreased significantly, and the hardness decreased significantly; while Comparative Example 5 added ZSM-5 zeolite The amount of molecular sieve added, as a result, the pore volume and pore size of silica decreased, the hardness decreased significantly, and it was easy to form powder, which was not conducive to actual production and application.

Abstract

提供一种高比表面积、高吸附VOC型二氧化硅及其制备方法。该方法包括S1、向反应罐中注入硫酸溶液,常温下搅拌,再加入ZSM-5型沸石分子筛,继续搅拌;S2、在搅拌下继续滴加硅酸钠溶液,滴加至体系pH值为4.8~5.0时,减小滴加速度,控制终点pH值为5.4~5.7,这时停止滴加硅酸钠溶液,继续搅拌至溶液形成粘稠状凝胶后,静止;S3、将粘稠状凝胶取出后,用抽滤机将水分排出,烘干,取出破碎、洗涤、烘干,制得二氧化硅。该二氧化硅的比表面积为360~420m 2/g,孔体积为0.6~2.0cm 3/g,孔径为7~10nm,甲苯的净化率大于等于90%。该方法简单可控,工艺稳定,成本低,适合工业化生产,对VOC净化效果显著。

Description

一种高比表面积与高吸附VOC型二氧化硅及其制备方法 技术领域
本发明属于二氧化硅技术领域,具体涉及一种高比表面积与高吸附VOC型二氧化硅及其制备方法。
背景技术
近年来,随着生活水平的不断提高,居住条件的不断改善,人们越来越注重可挥发性有机化合物(Volatile Organic Compouds,VOC)污染问题。常规的VOC净化方法主要包括:吸收法、吸附法、催化法、燃烧法、冷凝法、生物法等。与其它方法相比,吸附法具有低污染、高效、经济实用等特点。目前常用的多孔吸附剂包括硅藻土、活性炭、膨润土和二氧化硅等,而二氧化硅吸附剂具有无毒、无味、无污染、流体力学性能好、机械强度高等特点,因而被广泛应用。
目前,传统的二氧化硅产品大多表观密度低,比较面积和内部孔体积小,不利于用于吸附VOC气体。而作为吸附剂用的二氧化硅大多采用硅酸乙酯等有机硅作为硅源,虽然使得比较面积有所提升,但是孔体积较小,对VOC气体的吸附效果不明显,且制备方法繁琐,成本高昂,不利于实际的生产和推广使用。而以硅酸钠作为硅源的沉淀法相对简单,且能耗小、成本低,易于工业化,可是在该方法中,二氧化硅的性状容易受到制备条件的影响。
例如专利文献CN107324346A公开了一种高比表面积高吸油值二氧化硅的制备方法,该方法包括S1、往反应釜中注入浓度为0.8~1.5mol/L的硫酸钠溶液6~10m 3,加热至70~90℃;S2、加入浓度为3.0~5.0mol/L的硫酸溶液,所述硫酸溶液的流速为1.5~2.5m 3/h,接着以10~15m 3/h的速度加入水玻璃溶液,并调节硫酸溶液的流速为1.5~2.5m 3/h,以控制反应过程的pH值为5.5~6.5,并流反应10~20min后,调节硫酸溶液的流速为1.0~2.0m 3/h,控制反应过程的pH值为8.5~9.5,并流反应10~20min;S3、调节步骤S2的反应终点的pH值为7.0,在温度为70~90℃,搅拌下陈化反应10~30min后,压滤,洗涤,除去硫酸盐,干燥、粉碎,即得。该方法制得的二氧化硅的比表面积大于475.45m 2/g,吸油值大于322ml/100g,对表面活性剂具有较高的负载量。可是该方法需要在70~90℃下高温进行,能耗大,不利于工业化。
再如专利文献CN105129806A公开了一种洗衣粉用高比表面积二氧化硅的制备方法,该方法包括S1、往反应罐中加入水,加热升温至65~75℃,然后加入甘油,搅拌均匀;S2、 同时加入水玻璃和硫酸,当体系pH值为2.0~3.0时停止加硫酸,陈化1.5~2.5h;S3、将陈化后的二氧化硅物料进行压滤洗涤、干燥破碎,即得。该方法制得二氧化硅的比表面积为600~700m 2/g,孔容为2.8~3.0cm 3/g,孔径为16~20nm。该二氧化硅的比表面积、孔体积及孔径均较大,可是实际应用中对VOC的吸附效果不佳,这是因为中介孔(12~50nm)内发生毛细管凝缩现象,导致吸附能力减弱;同时该方法同样需要加热,能耗大,还需要使用甘油作为助剂。
因此,现有高比表面积二氧化硅对VOC的吸附效果有限,并且其制备方法能耗大、成本高,故急需研发一种工艺简单、成本低廉,比表面积大、孔体积和孔径适中且对VOC吸附效果显著的二氧化硅产品以满足市场需求。
发明内容
为了解决现有技术中存在的问题(如工艺能耗大、成本高,产品对VOC的吸附效果差等),本发明提供了一种高比表面积与高吸附VOC型二氧化硅的制备方法,该制备方法在常温下进行,采用碱滴加酸的反应方式,复合ZSM-5型沸石分子筛,并且严格控制反应物料的浓度、加料速度和pH值等条件,制得高比表面积与高吸附VOC型二氧化硅。
本发明提供的高比表面积与高吸附VOC型二氧化硅的制备方法,具体包括以下步骤:
S1、往反应罐中注入硫酸溶液1.5~2.5m 3,常温下搅拌,再加入ZSM-5型沸石分子筛,继续搅拌10~20min;
S2、搅拌下继续滴加硅酸钠溶液,控制滴加速度为0.4~0.6m 3/h,滴加至体系pH值为4.8~5.0时,减小滴加速度至0.02~0.03m 3/h,控制终点pH值为5.4~5.7,停止滴加硅酸钠溶液,继续搅拌至溶液形成粘稠状凝胶后,静止80~120min;
S3、将粘稠状凝胶取出后,用抽滤机将水分排出,置于90~120℃下烘干8~12h,再取出进行破碎、洗涤、烘干,制得高比表面积与高吸附VOC型二氧化硅。
进一步地,所述硫酸溶液的浓度为0.3~0.4mol/L。
进一步地,所述搅拌的速度为30~40Hz。
进一步地,所述ZSM-5型沸石分子筛的加入量为12~27kg。
进一步地,所述ZSM-5型沸石分子筛的硅铝摩尔比大于300,比表面积大于300m 2/g,粒径为5~20μm。
进一步地,所述硅酸钠溶液的浓度为0.6~0.8mol/L,所述硅酸钠的模数为3.0~3.5。
相应地,本发明还提供了由上述高比表面积与高吸附VOC型二氧化硅的制备方法制得 的二氧化硅,该二氧化硅的比表面积360~420m 2/g,孔体积0.6~2.0cm 3/g,孔径7~10nm,在35℃下净化浓度为2mg/m 3甲苯的净化率≥90%,净化效果显著,应用范围广泛。
本发明的反应机理如下:本发明以稀硫酸为反应底液,加入一定量的硅铝ZSM-5型沸石分子筛搅拌至均匀,再在常温下滴加一定浓度的水玻璃并搅拌反应,通过控制终点pH值使产物形成凝胶,最后将凝胶经过压滤、烘干、破碎、过筛、洗涤等步骤后即可得到高比表面积与高吸附VOC二氧化硅。
更具体地,本发明使用浓度较低的0.3~0.4mol/L硫酸溶液与0.6~0.8mol/L硅酸钠溶液进行反应,且采用往酸滴加碱的方式进行反应。因为在酸性溶液中,硅酸分子的配位数为6,此时硅酸分子和正一价硅酸离子进行羟联反应,形成双硅酸,由双硅酸、三硅酸、多硅酸一直聚合下去便形成了硅溶胶,直至形成硅凝胶。硅溶胶在凝胶过程中,粒子进一步长大,当溶胶中SiO 2的含量超过一定量时,这些初级粒子相互凝结形成开放而连续的凝胶网络结构,在此凝胶中粒子可以断续缩合形成Si-O-Si键,使体系具有一定的刚性。且低浓度的酸与碱反应可以有效延长反应时间,使反应完全进行,并使成核的粒子能够充分长大,有较大的孔体积,进一步增大其比表面积。
其次,本发明在反应前掺入硅铝比大于300的ZSM-5型沸石分子筛,掺入量为10%~20%,因为沸石骨架结构中的基本单元是由4个氧原于和1个硅或铝原子堆砌而成的四面体,因此具有很大的空腔结构,能吸附水或气体分子,且ZSM-5型的沸石分子筛骨架中Si原子被Al原子代替时,沸石骨架将带有负电荷,这种负电荷由处在骨架外的单价或多价阳离子来补偿,在吸附性能上呈现出对极性分子有较高的亲和力,对于大小相近的分子,极性越大则越易被分子筛吸附。VOC中的气体大多含有极性键,例如:OH-、=CO 2、-NH 4和一些能够给极化的分子(如=C=C<、C 6H 5-),因此加入沸石可以有效吸附VOC。而本发明选用硅铝比大于300的沸石的原因在于,在沸石的结构中,随着铝原子脱附沸石骨架结构,使得沸石表面的微孔体积和比表面积增加,空气中的VOC的直径在0.2~0.6nm,沸石孔径在2nm内,吸附VOC主要靠微孔吸附,而微孔体积的增大可以有效增加VOC的吸附量。同时,沸石的掺入比例大于20%时,产品硬度偏低,易形成粉末,不利于实际生产应用。因此,当沸石掺入比例为10%~20%时,产品既具有较好的吸附能力又具有一定的硬度。
最后,控制反应物料的流速低于0.6m 3/h和终点pH值为5.4~5.7,可延长反应时间,使物料充分反应和长大,并具有较高的比表面积和较大的微孔体积,从而提高了产品对VOC的吸附性能。
因此,与现有技术相比,本发明的优势在于:
(1)本发明高比表面积与高吸附VOC型二氧化硅的制备方法在常温下进行,无需使用助剂,即可制得比表面积高、VOC吸附性能强的二氧化硅,且步骤简单,条件可控,工艺稳定,生产成本低,适合工业化生产。
(2)本发明高比表面积与高吸附VOC型二氧化硅的比表面积360~420m 2/g,孔体积0.6~2.0cm 3/g,孔径7~10nm,在35℃下净化浓度为2mg/m 3甲苯的净化率≥90%,对VOC净化效果显著,并且具备一定的硬度,具有广泛的应用前景。
具体实施方式
下面将结合具体实施例来详细说明本发明,在此本发明的示意性实施例以及说明用来解释本发明,但并不作为对本发明的限定。
本发明所用原料均为常规市售商品,例如ZSM-5型沸石分子筛购自淄博齐创化工科技开发有限公司,商品名为微米级ZSM-5分子筛。
实施例1、本发明高比表面积与高吸附VOC型二氧化硅及其制备方法
S1、往反应罐中注入浓度为0.3mol/L的硫酸溶液1.5m 3,常温(20~30℃)下搅拌,再加入ZSM-5型沸石分子筛12kg,继续搅拌10min;
S2、搅拌下继续滴加模数为3.0、浓度为0.6mol/L的硅酸钠溶液,控制滴加速度为0.4m 3/h,滴加至体系pH值为4.8时,减小滴加速度至0.02m 3/h,控制终点pH值为5.4,停止滴加硅酸钠溶液,继续搅拌至溶液形成粘稠状凝胶后,静止80min;
S3、将粘稠状凝胶取出后,用抽滤机将水分排出,置于90℃下烘干12h,再取出进行破碎,用25目过筛取筛下物和用140目过筛取筛上物至产品中粒径大于710微米的样品小于5%,粒径小于45微米的样品小于2%,再将过筛后的产品用自来水洗涤至硫酸钠含量小于4%,取出置于100℃烘箱中烘干后,制得高比表面积与高吸附VOC型二氧化硅。
所述搅拌的速度为30Hz;所述ZSM-5型沸石分子筛的硅铝摩尔比大于300,比表面积大于300m 2/g,粒径为5~20μm。
实施例2、本发明高比表面积与高吸附VOC型二氧化硅及其制备方法
S1、往反应罐中注入浓度为0.4mol/L的硫酸溶液2.5m 3,常温(20~30℃)下搅拌,再加入ZSM-5型沸石分子筛27kg,继续搅拌20min;
S2、搅拌下继续滴加模数为3.5、浓度为0.8mol/L的硅酸钠溶液,控制滴加速度为0.6m 3/h,滴加至体系pH值为5.0时,减小滴加速度至0.03m 3/h,控制终点pH值为5.7,停 止滴加硅酸钠溶液,继续搅拌至溶液形成粘稠状凝胶后,静止120min;
S3、将粘稠状凝胶取出后,用抽滤机将水分排出,置于120℃下烘干8h,再取出进行破碎,用25目过筛取筛下物和用140目过筛取筛上物至产品中粒径大于710微米的样品小于5%,粒径小于45微米的样品小于2%,再将过筛后的产品用自来水洗涤至硫酸钠含量小于4%,取出置于100℃烘箱中烘干后,制得高比表面积与高吸附VOC型二氧化硅。
所述搅拌的速度为40Hz;所述ZSM-5型沸石分子筛的硅铝摩尔比大于300,比表面积大于300m 2/g,粒径为5~20μm。
实施例3、本发明高比表面积与高吸附VOC型二氧化硅及其制备方法
S1、往反应罐中注入浓度为0.32mol/L的硫酸溶液2.0m 3,常温(20~30℃)下搅拌,再加入ZSM-5型沸石分子筛23kg,继续搅拌15min;
S2、搅拌下继续滴加模数为3.2、浓度为0.7mol/L的硅酸钠溶液,控制滴加速度为0.5m 3/h,滴加至体系pH值为5.0时,减小滴加速度至0.02m 3/h,控制终点pH值为5.5,停止滴加硅酸钠溶液,继续搅拌至溶液形成粘稠状凝胶后,静止90min;
S3、将粘稠状凝胶取出后,用抽滤机将水分排出,置于100℃下烘干10h,再取出进行破碎,用25目过筛取筛下物和用140目过筛取筛上物至产品中粒径大于710微米的样品小于5%,粒径小于45微米的样品小于2%,再将过筛后的产品用自来水洗涤至硫酸钠含量小于4%,取出置于100℃烘箱中烘干后,制得高比表面积与高吸附VOC型二氧化硅。
所述搅拌的速度为35Hz;所述ZSM-5型沸石分子筛的硅铝摩尔比大于300,比表面积大于300m 2/g,粒径为5~20μm。
实施例4、本发明高比表面积与高吸附VOC型二氧化硅及其制备方法
S1、往反应罐中注入浓度为0.4mol/L的硫酸溶液1.5m 3,常温(20~30℃)下搅拌,再加入ZSM-5型沸石分子筛23kg,继续搅拌15min;
S2、搅拌下继续滴加模数为3.2、浓度为0.8mol/L的硅酸钠溶液,控制滴加速度为0.4m 3/h,滴加至体系pH值为5.0时,减小滴加速度至0.02m 3/h,控制终点pH值为5.4,停止滴加硅酸钠溶液,继续搅拌至溶液形成粘稠状凝胶后,静止120min;
S3、将粘稠状凝胶取出后,用抽滤机将水分排出,置于100℃下烘干10h,再取出进行破碎,用25目过筛取筛下物和用140目过筛取筛上物至产品中粒径大于710微米的样品小于5%,粒径小于45微米的样品小于2%,再将过筛后的产品用自来水洗涤至硫酸钠含量小 于4%,取出置于100℃烘箱中烘干后,制得高比表面积与高吸附VOC型二氧化硅。
所述搅拌的速度为30Hz;所述ZSM-5型沸石分子筛的硅铝摩尔比大于300,比表面积大于300m 2/g,粒径为5~20μm。
对比例1
与实施例3相比,本发明的区别仅在于:所述硫酸溶液的浓度为0.7mol/L。
对比例2
与实施例3相比,本发明的区别仅在于:所述硅酸钠溶液的浓度为1.2mol/L。
对比例3
与实施例3相比,本发明的区别仅在于:S2、搅拌下继续滴加模数为3.2、浓度为0.7mol/L的硅酸钠溶液,控制滴加速度为0.8m 3/h,滴加至体系pH值为5.0时,减小滴加速度至0.07m 3/h,控制终点pH值为5.5,停止滴加硅酸钠溶液,继续搅拌至溶液形成粘稠状凝胶后,静止90min。
对比例4
与实施例3相比,本发明的区别在于:改变物料的添加方式,具体地:
S1、取浓度为0.32mol/L的硫酸溶液2.0m 3,加入ZSM-5型沸石分子筛23kg,常温下搅拌15min,制得混合液;
S2、在常温、搅拌下,往反应罐中同时滴加模数为3.2、浓度为0.7mol/L的硅酸钠溶液和混合液,控制硅酸钠溶液的滴加速度为0.5m 3/h,并调节混合液流速使体系pH值为5.0,混合液滴加完毕后,静止90min;
S3、将产物取出后,用抽滤机将水分排出,置于100℃下烘干10h,再取出进行破碎,用25目过筛取筛下物和用140目过筛取筛上物至产品中粒径大于710微米的样品小于5%,粒径小于45微米的样品小于2%,再将过筛后的产品用自来水洗涤至硫酸钠含量小于4%,取出置于100℃烘箱中烘干后,制得二氧化硅。
对比例5
与实施例3相比,本发明的区别仅在于:所述ZSM-5型沸石分子筛的加入量提高至35kg。
试验例、本发明高比表面积与高吸附VOC型二氧化硅的性能检测
(1)使用高性能比表面分析仪(品牌为精微高博,型号为JW-BK200)对实施例1~4及对比例1~5二氧化硅的比表面积、孔体积和孔径进行检测。
(2)使用气相色谱仪(购自山东金普分析仪器有限公司,型号为GC2010)测试实施例1~4及对比例1~5制备的二氧化硅,在35℃下,对浓度为2mg/m 3的甲苯(VOC最具代表性的是甲苯)进行净化的效率,从而考察其净化率。
试验结果如下表1所示。
表1
Figure PCTCN2019092111-appb-000001
由上表1可知:
(1)本发明实施例1~4二氧化硅的比表面积360~420m 2/g,孔体积0.6~2.0cm 3/g,孔径7~10nm,在35℃下净化浓度为2mg/m 3甲苯的净化率≥90%,对VOC的净化效果显著,并且具有一定的硬度,具备颗粒感,不容易被碾成粉末,因而可在多个领域使用,具备良好的应用前景。
(2)与实施例3相比,对比例1和2分别提高了硫酸溶液和硅酸钠溶液的浓度,对比例3则提高了硅酸钠溶液的滴加速度,结果对比例1二氧化硅的比表面积、孔体积及孔径明显减少,对甲苯的净化率降低;而对比例2和对比例3二氧化硅的孔体积和孔径也均明显减少,对甲苯的净化效果减弱,同时对比例3二氧化硅的硬度下降。
(3)与实施例3相比,对比例4改变了物料的添加方式,结果其二氧化硅的孔体积和孔径显著减少,并且硬度明显下降;而对比例5则增加了ZSM-5型沸石分子筛的加入量,结果其二氧化硅的孔体积和孔径减少,硬度明显下降,易形成粉末,不利于实际生产和应用。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (7)

  1. 一种高比表面积与高吸附VOC型二氧化硅的制备方法,其特征在于,包括以下步骤:
    S1、往反应罐中注入硫酸溶液1.5~2.5m 3,常温下搅拌,再加入ZSM-5型沸石分子筛,继续搅拌10~20min;
    S2、搅拌下继续滴加硅酸钠溶液,控制滴加速度为0.4~0.6m 3/h,滴加至体系pH值为4.8~5.0时,减小滴加速度至0.02~0.03m 3/h,控制终点pH值为5.4~5.7,停止滴加硅酸钠溶液,继续搅拌至溶液形成粘稠状凝胶后,静止80~120min;
    S3、将粘稠状凝胶取出后,用抽滤机将水分排出,置于90~120℃下烘干8~12h,再取出进行破碎、洗涤、烘干,制得高比表面积与高吸附VOC型二氧化硅。
  2. 如权利要求1所述高比表面积与高吸附VOC型二氧化硅的制备方法,其特征在于,所述硫酸溶液的浓度为0.3~0.4mol/L。
  3. 如权利要求1所述高比表面积与高吸附VOC型二氧化硅的制备方法,其特征在于,所述搅拌的速度为30~40Hz。
  4. 如权利要求1所述高比表面积与高吸附VOC型二氧化硅的制备方法,其特征在于,所述ZSM-5型沸石分子筛的加入量为12~27kg。
  5. 如权利要求1所述高比表面积与高吸附VOC型二氧化硅的制备方法,其特征在于,所述ZSM-5型沸石分子筛的硅铝摩尔比大于300,比表面积大于300m 2/g,粒径为5~20μm。
  6. 如权利要求4所述高比表面积与高吸附VOC型二氧化硅的制备方法,其特征在于,所述硅酸钠溶液的浓度为0.6~0.8mol/L,所述硅酸钠的模数为3.0~3.5。
  7. 如权利要求1~6任一项所述高比表面积与高吸附VOC型二氧化硅的制备方法制得的二氧化硅,其特征在于,所述二氧化硅的比表面积360~420m 2/g,孔体积0.6~2.0cm 3/g,孔径7~10nm,在35℃下净化浓度为2mg/m 3甲苯的净化率≥90%。
PCT/CN2019/092111 2018-11-14 2019-06-20 一种高比表面积与高吸附voc型二氧化硅及其制备方法 WO2020098273A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811357764.0A CN109437211B (zh) 2018-11-14 2018-11-14 一种高比表面积与高吸附voc型二氧化硅及其制备方法
CN201811357764.0 2018-11-14

Publications (1)

Publication Number Publication Date
WO2020098273A1 true WO2020098273A1 (zh) 2020-05-22

Family

ID=65552991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092111 WO2020098273A1 (zh) 2018-11-14 2019-06-20 一种高比表面积与高吸附voc型二氧化硅及其制备方法

Country Status (2)

Country Link
CN (1) CN109437211B (zh)
WO (1) WO2020098273A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109437211B (zh) * 2018-11-14 2019-06-25 广州市飞雪材料科技有限公司 一种高比表面积与高吸附voc型二氧化硅及其制备方法
CN112897539B (zh) * 2021-02-03 2023-06-09 华东理工大学 球形二氧化硅粉末及其制备方法、应用
CN114702839B (zh) * 2022-03-31 2023-01-24 安徽江淮汽车集团股份有限公司 一种聚烯烃voc改进填料的制备方法以及包含该聚烯烃voc改进填料的复合材料

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3311882B2 (ja) * 1994-12-20 2002-08-05 日本シリカ工業株式会社 高い比表面積とコントロールされた低い構造性を有するシリカゲルおよびその製造方法
JP2004182492A (ja) * 2002-11-29 2004-07-02 National Institute Of Advanced Industrial & Technology 球状マイクロポアシリカ多孔質粒子及びその製造方法
CN104888694A (zh) * 2015-05-28 2015-09-09 同济大学 一种高效吸附室内甲醛甲苯气体的吸附材料
CN107128932A (zh) * 2017-05-04 2017-09-05 德清美联新材料科技有限公司 一种用于voc吸附的疏水二氧化硅的制备方法
CN108046273A (zh) * 2018-01-29 2018-05-18 广州市飞雪材料科技有限公司 一种高吸附性二氧化硅的制备方法
CN109437211A (zh) * 2018-11-14 2019-03-08 广州市飞雪材料科技有限公司 一种高比表面积与高吸附voc型二氧化硅及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070249493A1 (en) * 2006-04-25 2007-10-25 Sharp Kabushiki Kaisha Functionalized porous honeycomb structure, manufacturing method thereof and air cleaner using the same
CN100569641C (zh) * 2006-07-21 2009-12-16 中国石油化工股份有限公司 一种疏水硅胶及其制备方法
CN107324346B (zh) * 2017-07-27 2018-08-07 广州市飞雪材料科技有限公司 一种高比表面积高吸油值二氧化硅的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3311882B2 (ja) * 1994-12-20 2002-08-05 日本シリカ工業株式会社 高い比表面積とコントロールされた低い構造性を有するシリカゲルおよびその製造方法
JP2004182492A (ja) * 2002-11-29 2004-07-02 National Institute Of Advanced Industrial & Technology 球状マイクロポアシリカ多孔質粒子及びその製造方法
CN104888694A (zh) * 2015-05-28 2015-09-09 同济大学 一种高效吸附室内甲醛甲苯气体的吸附材料
CN107128932A (zh) * 2017-05-04 2017-09-05 德清美联新材料科技有限公司 一种用于voc吸附的疏水二氧化硅的制备方法
CN108046273A (zh) * 2018-01-29 2018-05-18 广州市飞雪材料科技有限公司 一种高吸附性二氧化硅的制备方法
CN109437211A (zh) * 2018-11-14 2019-03-08 广州市飞雪材料科技有限公司 一种高比表面积与高吸附voc型二氧化硅及其制备方法

Also Published As

Publication number Publication date
CN109437211B (zh) 2019-06-25
CN109437211A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
WO2020098273A1 (zh) 一种高比表面积与高吸附voc型二氧化硅及其制备方法
CN106745010B (zh) 一种木质素基生物碳/二氧化硅多尺度纳米杂化材料及其制备方法和应用
CN108671905B (zh) 一种用于污水处理的光催化剂的制备方法
CN103934008B (zh) 一种埃洛石负载磷酸银光催化剂的制备方法
WO2020140401A1 (zh) 一种低吸油值高比表面积磨擦型二氧化硅及其制备方法
CN108579721B (zh) 一种用于空气voc处理的光催化剂的制备方法
CN101961641B (zh) 多孔氧化物干凝胶吸附材料及其制备方法
CN110540210B (zh) 一种低能耗大孔容硅胶及其生产方法
CN114538452B (zh) 一种粒径分布窄的二氧化硅湿凝胶及其制备方法和应用
WO2011127737A1 (zh) 一种对废水中氨氮具有高选择性的改性分子筛及其制备方法
CN104623973B (zh) 一种改性石英砂及其改性方法
CN104941584A (zh) 一种吸附水体中重金属离子SiO2/C复合材料及其应用
CN114162828A (zh) 一种石墨烯/二氧化硅复合气凝胶的制备方法
CN103342367B (zh) 一种亲水型SiO2气凝胶的制备方法
CN1278933C (zh) 以稻壳灰为原料常压干燥制备二氧化硅气凝胶的方法
CN114380297B (zh) 一种食品用二氧化硅抗结剂及其制备方法和应用
CN110975833A (zh) 二氧化硅/纤维素复合多孔材料的制备方法及应用
CN111072034A (zh) 一种表面枝接乙烯基改性白炭黑的制备方法
CN116999598B (zh) 一种无机除臭剂及其制备工艺
CN111508726B (zh) 超级电容器用树枝状纤维形空心氮掺杂碳纳米笼的制备方法
CN114426300A (zh) 一种大孔氧化铝载体的制备方法
CN115010155A (zh) 一种载体二氧化硅表面改性的方法
CN101780396B (zh) 一种水体中痕量有机氯农药的吸附剂及其制备方法
CN110041012B (zh) 一种具有降解汽车尾气功能的高性能沥青路面材料及其制备方法
CN103028367B (zh) 气体脱硫吸附剂及其制备方法和含硫气体的脱硫方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19884481

Country of ref document: EP

Kind code of ref document: A1