CN112295421B - 一种表面粘接式用于光催化的TiO2/PVDF超滤膜 - Google Patents

一种表面粘接式用于光催化的TiO2/PVDF超滤膜 Download PDF

Info

Publication number
CN112295421B
CN112295421B CN202011121811.9A CN202011121811A CN112295421B CN 112295421 B CN112295421 B CN 112295421B CN 202011121811 A CN202011121811 A CN 202011121811A CN 112295421 B CN112295421 B CN 112295421B
Authority
CN
China
Prior art keywords
membrane
pvdf
tio
preparation
ultrafiltration membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011121811.9A
Other languages
English (en)
Other versions
CN112295421A (zh
Inventor
张铭
李佳聪
宋越
孙永跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology
Original Assignee
Tianjin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology filed Critical Tianjin University of Technology
Priority to CN202011121811.9A priority Critical patent/CN112295421B/zh
Publication of CN112295421A publication Critical patent/CN112295421A/zh
Application granted granted Critical
Publication of CN112295421B publication Critical patent/CN112295421B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • B01J35/59Membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/10Catalysts being present on the surface of the membrane or in the pores

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Water Treatments (AREA)

Abstract

本发明涉及膜分离领域,具体涉及一种表面粘接式用于光催化的TiO2/PVDF超滤膜的制备方法,包括以下步骤:将PVDF与PVP、氯化锂和DMAc混合制成铸膜液。然后在准备制膜的玻璃板上均匀的铺满纳米TiO2,再在其上制膜。后将玻璃板浸入含有硅烷和乙醇的凝固浴中,得到表面负载TiO2的PVDF超滤膜。本发明成功的将TiO2颗粒固定在PVDF超滤膜表面,在保证膜光催化效能的基础上还提升了膜的分离性能。

Description

一种表面粘接式用于光催化的TiO2/PVDF超滤膜
技术领域:
本发明涉及到膜分离领域,具体而言,涉及到一种表面粘接式用于光催化的TiO2/PVDF超滤膜的制备方法。
背景技术:
膜分离技术具有操作简便、能耗低、不易造成二次污染等优点,是水处理领域极具潜力的技术之一。然而,膜分离技术仅仅是单纯的污染物分离作用,膜污染、浓差极化等问题会导致膜通量下降,造成了膜的使用时间大大缩短,增加了膜工艺运行的成本,限制了膜分离技术的应用与发展。聚偏氟乙烯(PVDF)具有良好的化学稳定性,热稳定性和机械性能,而且成本适中、制备方便、可以反复清洗等优点,能满足在污水处理中的长期使用要求,在众多的高分子分离膜中受到了广泛的关注。但PVDF疏水性强,在用于水基体系的分离时,容易沉积或膜污染严重。因此,PVDF的亲水性改性已成为一个重要的研究方向。将亲水性的纳米氧化物粒子引入到PVDF膜基体或表面中,可以改善PVDF膜表面的抗污染性能及提高膜的强度,这已经成为提高PVDF膜性能,拓宽其在水处理等领域应用的研究热点。
二氧化钛(TiO2)无毒无味、易于获得、化学稳定性好、光催化活性强,是一种常用的光催化剂。现有关于光催化超滤膜的制备技术基本都是将TiO2颗粒与铸膜液共混铸膜,专利CN111530504A将纳米TiO2颗粒与PVDF混合形成铸膜液,制得TiO2共混PVDF超滤膜;专利CN110917905A以含钛亲水改性剂为钛源,并将含钛亲水改性剂与铸膜液进行共混,使其反应生成TiO2和溶解的高分子聚合物,保证TiO2可以在相转化成膜的过程中不会从膜材料中游离出来。但是镶嵌在膜内部的颗粒难以接受到光照导致光催化的效能较低,如何在保证光催化效能的基础上还能将TiO2颗粒负载到PVDF膜的表面是一个研究重点。 HassanYounas等(RSC Adv.2018,8,24961-24969)选择将亲水性纳米材料溶入适量乙醇中,再将悬浮液到在玻璃板中间,风干后在其上刮膜,但由于TiO2粘附不牢固,容易在使用过程中受高压水流的冲刷脱落。因此,如何在保证光催化效能的基础上还能保持光催化颗粒的粘附率、提高超滤膜的截留能力是一个亟待解决的问题。
发明内容:
针对目前制备PVDF超滤膜进行光催化过滤所存在的问题,本发明提供了一种用于光催化的抗污染PVDF超滤膜的制备方法。目的是PVDF超滤膜与光催化有效结合,提高截流率和抗污染性能。
本发明的目的可以通过以下技术方案实现的:
用于光催化的抗污染PVDF超滤膜的制备方法,包括以下步骤:
(1)将一定量的PVDF、PVP、DMAc、氯化锂、丙酮、磷酸按照不同比例进行混合,水浴加热,并使用机械搅拌至完全溶解,得到铸膜液;
(2)将搅拌好的铸膜液再放脱泡箱中静置保存;
(3)在玻璃板上均匀的铺满纳米级TiO2
(4)然后将静置好的铸膜液在步骤(3)中的玻璃板上刮膜;
(5)将步骤(4)中的玻璃板浸入含有硅烷的乙醇凝胶浴中,成膜;
(6)将步骤(5)中的膜片转移到去离子水中;
(7)在使用步骤(6)制备好的膜片时,需要将膜片用紫外灯光照,并且在使用过程中继续光照。
优选的,步骤(1)所述原料组成为PVDF质量分数15-20%,N,N-二甲基乙酰胺(DMAc)质量分数为75-85%,聚乙烯吡咯烷酮(PVP)质量分数为0.5-2%,氯化锂质量分数为0.3-1%,丙酮质量分数为3-8%,磷酸质量分数为2-5%;
优选的,步骤(1)所述水浴加热温度为50-70℃,机械搅拌速率为50-70r/min,搅拌时间为12-24h;
优选的,步骤(2)所述脱泡箱温度为50-70%,脱气时间为12-24h;
优选的,步骤(3)所述制膜时,玻璃板上平铺的纳米级TiO2膜层的组成为: TiO2∶1,4-丁内酯∶乙醇质量比为1∶(3-10)∶(30-70);
优选的,步骤(4)所述制膜时,刮膜速率为15-35mm/s匀速;
优选的,步骤(5)所述凝胶浴为硅烷与乙醇质量比为1∶(30-70),
优选的,步骤(6)所述制膜后,在去离子水中浸泡12-24h;
优选的,步骤(7)所述膜片使用时,需提前用紫外光照射0.5-2h。
与现有技术相比,本发明具有以下特点:
(1)本发明提供的表面粘接式用于光催化的TiO2/PVDF超滤膜与传统的 PVDF超滤膜相比,TiO2更加成功的附着在PVDF膜上,且附着更加牢固。膜表面从光滑变成致密的皮层,且皮层上存在少量凹点。铸膜液中由于添加了TiO2和氯化锂导致粘度增加,在相转换过程中速率减慢,且倾向于延迟混合,抑制了大孔隙的生成。
(2)本发明提供的表面粘接式用于光催化的TiO2/PVDF超滤膜与传统的 PVDF超滤膜相比,亲水性提升,膜表面接触角降低,增加水的扩散效果。在紫外灯光的照射下,TiO2颗粒被激活,膜通量和截留率都有显著提高。增加了PVDF 膜的使用效率,显著降低了能耗和成本。
(3)本发明提供的表面粘接式用于光催化的TiO2/PVDF超滤膜制备方法简单易行,选用添加剂也方便易得,无毒无污染。所用设备均为本领域常用设备,工艺周期短,对工艺环境的要求较低,成本廉价,可广泛应用。
附图说明
图1为本发明实施例1中得到的表面粘接式TiO2/PVDF膜的扫描电镜图。
图2为本发明对比例2中得到的共混式TiO2/PVDF膜的扫描电镜图。
具体实施方式:
下述实施例是对本发明内容的进一步说明以作为对本发明技术内容的阐释,但是本发明的实质内容并不仅限于下述具体实施例所述,任何对制备过程的简单变化均属于本发明所要求的保护范围。
实施例1:
(1)将19g的PVDF加入到盛有70mL的DMAc的锥形瓶中,充分搅拌后,超声溶解30min,然后依次将0.6g PVP、0.4g氯化锂、6g丙酮、4g磷酸加入到锥形瓶中,在70℃的水浴锅中加热,并且用机械搅拌,转速保持55r/min,持续加热搅拌12h至完全溶解后得到铸膜液;
(2)铸膜液在65℃温度下的脱泡箱内静置脱气24h;
(3)将纳米级TiO2∶1,4-丁内酯∶乙醇按照质量比为1∶5∶20混合,充分搅拌后超声震荡15min,然后将液体倾倒在玻璃板上,将玻璃板烘干,得到铺满 TiO2的玻璃板;
(4)将静置脱泡的铸膜液均匀的倒在铺满TiO2的玻璃板上,刮膜机以30 mm/s匀速进行刮膜;
(5)将玻璃板放入硅烷与乙醇质量比为1∶50的凝胶浴中,成膜后继续浸泡 30min;
(6)将凝胶浴中的膜转移到去离子水中,继续浸泡24h。
本实施例的用于光催化的抗污染PVDF超滤膜的性能研究按照以下步骤进行:
进行死端过滤实验,考察光催化下用HA模拟污染物PVDF超滤膜的过滤效果。使用紫外光照射PVDF膜0.5h后过滤HA。使用紫外分光光度计,分别测定在波长245nm处HA溶液的滤液和原液的吸光度,参照HA标准曲线分别计算滤液和原液的浓度,计算截留率。
对比例1:
(1)将19g的PVDF加入到盛有70mL的DMAc的锥形瓶中,充分搅拌后,超声溶解30min,然后依次将0.6g PVP、0.4g氯化锂、6g丙酮、4g磷酸加入到锥形瓶中,在70℃的水浴锅中加热,并且用机械搅拌,转速保持55r/min,持续加热搅拌12h至完全溶解后得到铸膜液;
(2)铸膜液在65℃温度下的脱泡箱内静置脱气24h;
(3)将纳米级TiO2∶1,4-丁内酯∶乙醇按照质量比为1∶5∶20混合,充分搅拌后超声震荡15min,然后将液体倾倒在玻璃板上,将玻璃板烘干,得到铺满 TiO2的玻璃板;
(4)将静置脱泡的铸膜液均匀的倒在铺满TiO2的玻璃板上,刮膜机以30 mm/s匀速进行刮膜;
(5)将玻璃板放入硅烷与乙醇质量比为1∶50的凝胶浴中,成膜后继续浸泡 30min;
(6)将凝胶浴中的膜转移到去离子水中,继续浸泡24h。
本实施例的用于光催化的抗污染PVDF超滤膜的性能研究按照以下步骤进行:
进行死端过滤实验,考察光催化下用HA模拟污染物PVDF超滤膜的过滤效果。使用紫外分光光度计,分别测定在波长245nm处HA溶液的滤液和原液的吸光度,参照HA标准曲线分别计算滤液和原液的浓度,计算截留率。
对比例2:
(1)将19g的PVDF加入到盛有70mL的DMAc的锥形瓶中,充分搅拌后,超声溶解30min,然后依次将0.6g PVP、0.4g氯化锂、4g TiO2、6g丙酮、 4g磷酸加入到锥形瓶中,在70℃的水浴锅中加热,并且用机械搅拌,转速保持 55r/min,持续加热搅拌12h至完全溶解后得到铸膜液;
(2)铸膜液在65℃温度下的脱泡箱内静置脱气24h;
(4)将静置脱泡的铸膜液均匀的倒在干净的玻璃板上,刮膜机以30mm/s 匀速进行刮膜;
(5)将玻璃板放入硅烷与乙醇质量比为1∶50的凝胶浴中,成膜后继续浸泡 30min;
(6)将凝胶浴中的膜转移到去离子水中,继续浸泡24h。
本实施例的用于光催化的抗污染PVDF超滤膜的性能研究按照以下步骤进行:
进行死端过滤实验,考察光催化下用HA模拟污染物PVDF超滤膜的过滤效果。使用紫外光照射PVDF膜0.5h后过滤HA。使用紫外分光光度计,分别测定在波长245nm处HA溶液的滤液和原液的吸光度,参照HA标准曲线分别计算滤液和原液的浓度,计算截留率。
具体检测结果如表1
表1各实施例和对比例的测试性能
Figure BSA0000222126240000051

Claims (6)

1.一种表面粘接式用于光催化的TiO2/PVDF超滤膜的制备方法,包括以下步骤:
(1)将一定量的PVDF、PVP、DMAc、氯化锂、丙酮、磷酸按照不同比例进行混合,水浴加热,并使用机械搅拌至完全溶解,得到铸膜液;
(2)将搅拌好的铸膜液再放脱泡箱中静置保存;
(3)在玻璃板上均匀的铺满纳米级TiO2
(4)将静置好的铸膜液在步骤(3)中的玻璃板上刮膜;
(5)将步骤(4)中的玻璃板浸入含有硅烷的乙醇凝胶浴中,成膜;
(6)将步骤(5)中的膜片转移到去离子水中;
(7)在使用步骤(6)制备好的膜片时,需要将膜片用紫外灯光照,并且在使用过程中继续光照;
所述原料组成为PVDF质量分数15-20%,N,N-二甲基乙酰胺(DMAc)质量分数为75-85%,聚乙烯吡咯烷酮(PVP)质量分数为0.5-2%,氯化锂质量分数为0.3-1%,丙酮质量分数为3-8%,磷酸质量分数为2-5%;
所述制膜时,玻璃板上平铺的纳米级TiO2膜层的组成为:TiO2∶1,4-丁内酯∶乙醇质量比为1∶(3-10)∶(30-70);
所述凝胶浴为硅烷与乙醇质量比为1∶(30-70)。
2.根据权利要求1所述的表面粘接式用于光催化的TiO2/PVDF超滤膜的制备方法,其特征在于,所述水浴加热温度为50-70℃,机械搅拌速率为50-70r/min,搅拌时间为12-24h。
3.根据权利要求1所述的表面粘接式用于光催化的TiO2/PVDF超滤膜的制备方法,其特征在于,所述脱泡箱温度为50-70℃,脱气时间为12-24h。
4.根据权利要求1所述的表面粘接式用于光催化的TiO2/PVDF超滤膜的制备方法,其特征在于,所述制膜时,刮膜速率为15-35mm/s匀速。
5.根据权利要求1所述的表面粘接式用于光催化的TiO2/PVDF超滤膜的制备方法,其特征在于,所述制膜后,在去离子水中浸泡12-24h。
6.根据权利要求1所述的表面粘接式用于光催化的TiO2/PVDF超滤膜的制备方法,其特征在于,所述膜片使用时,需提前用紫外光照射0.5-2h。
CN202011121811.9A 2020-10-20 2020-10-20 一种表面粘接式用于光催化的TiO2/PVDF超滤膜 Active CN112295421B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011121811.9A CN112295421B (zh) 2020-10-20 2020-10-20 一种表面粘接式用于光催化的TiO2/PVDF超滤膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011121811.9A CN112295421B (zh) 2020-10-20 2020-10-20 一种表面粘接式用于光催化的TiO2/PVDF超滤膜

Publications (2)

Publication Number Publication Date
CN112295421A CN112295421A (zh) 2021-02-02
CN112295421B true CN112295421B (zh) 2022-11-15

Family

ID=74328429

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011121811.9A Active CN112295421B (zh) 2020-10-20 2020-10-20 一种表面粘接式用于光催化的TiO2/PVDF超滤膜

Country Status (1)

Country Link
CN (1) CN112295421B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112999889A (zh) * 2021-02-25 2021-06-22 上海应用技术大学 自粘贴制备光催化性能pmia混合基质膜的方法与应用
CN114849476A (zh) * 2022-05-30 2022-08-05 上海电气集团股份有限公司 一种渗透汽化膜及其制备方法、组件和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1312779A (zh) * 1998-06-10 2001-09-12 圣戈班研究公司 具有光催化涂层的底材

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004107573A (ja) * 2002-09-20 2004-04-08 Nippon Carbide Ind Co Inc 親水性フイルム
CN101468847A (zh) * 2007-12-29 2009-07-01 上海同济科蓝环保设备工程有限公司 膜材料改性的膜生物反应器
WO2010010600A1 (ja) * 2008-07-24 2010-01-28 株式会社ピアレックス・テクノロジーズ 光触媒コーティング組成物
CN102000608B (zh) * 2010-11-04 2012-05-30 哈尔滨工业大学 高分子多相类芬顿催化剂-pvdf催化膜的制备方法
CN109248711B (zh) * 2018-10-15 2021-08-13 天津工业大学 一种负载TiO2的PPS光催化膜的制备方法
CN111186881B (zh) * 2020-03-03 2021-05-28 泰州九润环保科技有限公司 一种壳聚糖改性的纳米TiO2光催化超滤膜的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1312779A (zh) * 1998-06-10 2001-09-12 圣戈班研究公司 具有光催化涂层的底材

Also Published As

Publication number Publication date
CN112295421A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
RU2751513C1 (ru) Способ получения сверхгидрофильной ультрафильтрационной мембраны с фотокаталитическими свойствами
CN109847586B (zh) 高通量反渗透膜及其制备方法和用途
CN112295421B (zh) 一种表面粘接式用于光催化的TiO2/PVDF超滤膜
Mu et al. Combined strategy of blending and surface modification as an effective route to prepare antifouling ultrafiltration membranes
Mingliang et al. Fabrication of SPES/nano-TiO2 composite ultrafiltration membrane and its anti-fouling mechanism
CN114471200B (zh) 一种中间修饰层改善Zr基MOF膜制备的方法及其正渗透应用
CN102764596B (zh) 一种亲水性超滤膜的制备方法
CN102114391A (zh) 一种聚间苯二甲酰间苯二胺纳滤膜的制备方法
Zhang et al. Single-walled carbon nanotubes grafted with dextran as additive to improve separation performance of polymer membranes
Li et al. Formation of macrovoid-free PMDA-MDA polyimide membranes using a gelation/non-solvent-induced phase separation method for organic solvent nanofiltration
CN101224392A (zh) 纤维粉体改性聚合物微孔膜的制备方法
CN110813103A (zh) 一种抗菌抗污染中空纤维膜的制备方法
Zhang et al. Smart TFC membrane for simulated textile wastewater concentration at elevated temperature enabled by thermal-responsive microgels
CN104248915B (zh) 一种提高亲水性的增强型平板复合微孔膜的制备方法
Gao et al. A double anti-fouling mechanism established by self-assembly of TiO2 on F127 chains for improving the hydrophilicity of PES membrane based on RTIPS method
Woo et al. Preparation method of crack-free PVDF microfiltration membrane with enhanced antifouling characteristics
Gao et al. Superhydrophilic polyethersulfone (PES) membranes with high scale inhibition properties obtained through bionic mineralization and RTIPS
Zhai et al. Fabrication and modification of PVDF membrane by PDA@ ZnO for enhancing hydrophilic and antifouling property
CN101850217B (zh) 一种无皮层均一结构聚偏氟乙烯转印膜的制备方法
CN114797473A (zh) 一种亲水性多功能有机超滤膜制备方法
Rojjanapinun et al. Rice husk ash and Zr-MOF nanoparticles improve the properties and ultrafiltration performance of PVDF nanomembranes
CN112755814B (zh) 一种黑滑石纳米颗粒改性的聚酰胺复合纳滤膜
Abdullah et al. Removal of Organic Dye in Wastewater Using Polyethersulfone Hollow Fiber Membrane
CN115350589A (zh) 一种聚合纳滤膜及其制备与应用
CN108993172A (zh) 一种聚偏氟乙烯复合分离膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant