WO2018095277A1 - 板状刚玉陶瓷膜支撑体的制备方法 - Google Patents
板状刚玉陶瓷膜支撑体的制备方法 Download PDFInfo
- Publication number
- WO2018095277A1 WO2018095277A1 PCT/CN2017/111546 CN2017111546W WO2018095277A1 WO 2018095277 A1 WO2018095277 A1 WO 2018095277A1 CN 2017111546 W CN2017111546 W CN 2017111546W WO 2018095277 A1 WO2018095277 A1 WO 2018095277A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plate
- corundum
- ceramic film
- film support
- corundum ceramic
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/0038—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by superficial sintering or bonding of particulate matter
- C04B38/0041—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by superficial sintering or bonding of particulate matter the particulate matter having preselected particle sizes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5445—Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Definitions
- the invention relates to a preparation method of a plate-shaped corundum ceramic membrane support body, belonging to the technical field of ceramic membranes.
- Inorganic ceramic membranes can be used in gas separation, liquid separation and purification, and membrane reactors. They are widely used in the food industry, pharmaceutical and bioengineering, chemical and petrochemical industries, and environmental protection. At present, with the increasing demand for process industry energy conservation and emission reduction technologies worldwide, ceramic nanofiltration membranes, pervaporation membranes and gas separation membranes with nanostructures have become the research hotspots in the field of ceramic membranes and the important development direction in the future. One.
- the porous ceramic membrane generally has a three-layer asymmetric structure, that is, a top layer, a transition layer, and a support layer that function as separation.
- As the support layer it must have sufficient mechanical strength, high permeability, smooth surface and good acid and alkali resistance. The performance of the support directly affects the preparation of the subsequent porous ceramic membrane.
- the support body is mainly prepared by osmosis corundum (particle size 10 to 80 ⁇ m) which has been subjected to plastic surface treatment as aggregate (providing permeability).
- the fused silica particles treated by the shaped surface have low sintering activity. This results in a relatively high sintering temperature of the inorganic ceramic membrane support.
- the firing temperature of the Japanese NGK company is 1700 ° C, and the baking temperature of the American Pall Company reaches 1800 ° C; on the other hand, the shaped surface treated electrofusion
- the price of corundum is relatively high ( ⁇ 20,000 yuan/ton), which is high in the formulation of inorganic ceramic membrane support (70-85% by mass). Therefore, the price of inorganic ceramic membrane products is high, which affects the large-scale promotion and application of the product.
- the object of the present invention is to provide a method for preparing a plate-shaped corundum ceramic film support, which is simple and easy, low in cost, low in sintering temperature, and energy-saving and emission-reducing.
- the preparation method of the plate-shaped corundum ceramic film support body of the invention is that the alumina micropowder, the sintering inhibitor and the pretreated slab corundum are used as raw materials, stirred to form a mud material, and then the mud material is extruded and formed. Sintering to obtain the plate-shaped corundum ceramic film support; the pretreatment is to modify the surface of the slab corundum particles with a surface modifier.
- the surface modifier is hydraulic oil, engine oil or tung oil, and the amount added is 2-7% of the mass of the slab corundum powder.
- the specific process of the pretreatment is as follows: the surface modifier is continuously added slowly to the platy corundum powder, and the mixture is thoroughly stirred until the surface modifier is in a permeated state of the granule surface of the platy corundum.
- the platy corundum has a particle diameter of 30 to 50 ⁇ m; the alumina fine powder has a particle diameter of 0.5 to 1 ⁇ m.
- the mass percentage of the pretreated slab corundum is 70-85%
- the mass percentage of the alumina fine powder is 13-25%
- the mass percentage of the sintering inhibitor is 0.5-5%.
- the sintering inhibitor is magnesium oxide, titanium oxide or cerium oxide.
- the organic binder is polyvinyl alcohol, cellulose or dextrin; the lubricant is one or two of glycerin or white oil.
- the deionized water is added in an amount of 5-20% by mass of the raw material; the organic binder is added in an amount of 1-10% by mass of the raw material; and the lubricant is added in an amount of 1-10% by mass of the raw material.
- the slurry is extruded into a sheet-shaped, single-tube and multi-channel support.
- the temperature is 1580-1620 ° C
- the heating rate is 0.5-3 ° C / min
- the holding time is 1-3 hours.
- the invention overcomes the problems of high raw material cost ( ⁇ 20,000 yuan/ton), high sintering temperature (1650-1800 °C) and high energy consumption which are prevalent in the industry, and provides a low-cost preparation of ceramic membrane support. method.
- the invention adopts a plate-shaped corundum with stable high temperature performance, and the particles are nearly spherical particles with a diameter of 30-50 ⁇ m, and the flow properties and dispersion properties of the particles in the mud are good, so there is a chance of generating more contact points between the particles and the particles. During the sintering process, these contact points increase the power of solid phase sintering, promote the formation of neck sintering, and effectively reduce the firing temperature.
- the invention adopts the surface modifier for the surface pretreatment of the above-mentioned plate-shaped corundum, and overcomes the problems of loose particles, poor plasticity of the mud, dry cracking and the like which are commonly existing in the preparation of the material by the surface modification, thereby making the problem
- the qualification rate of the support extrusion molding and the green drying is greatly improved.
- the present invention has the following beneficial effects:
- the invention prepares a low raw material cost (lower cost of raw materials by 60-70%), low sintering temperature (1580-1620 °C), and high mechanical strength (20-50 MPa) by surface modification of slab corundum.
- High-permeability pure water flux: 5-10m 3 ⁇ m -2 ⁇ h -1 ⁇ bar -1
- ceramic membrane support with excellent corrosion resistance, porosity of 30-40%, average pore diameter It is 10 ⁇ m.
- the prepared ceramic membrane support body is of great significance for the large-scale promotion of the ceramic membrane series products in China, the sustainable reduction of the cost of the industry, the energy conservation and consumption reduction, and the continuous reduction of environmental treatment costs.
- the hydraulic oil is continuously added slowly in the platy corundum powder, and the mixture is fully stirred and mixed to the hydraulic oil to infiltrate the surface of the platy corundum particles.
- the amount of hydraulic oil added is based on the mass of the slab corundum powder, and the mass percentage added is 2%.
- step (3) Add 10% of deionized water, 1% of polyvinyl alcohol and 5% of glycerin to make a slurry based on the powder quality of step (2), and form a sheet, single tube and multi-channel support by an extruder. body.
- the support was sintered at a high temperature of 1580 ° C, and the heating rate was 0.5 ° C / min, and the holding time was 1 hour.
- the mechanical strength of the support prepared by the three-point bending method is 29.8 MPa
- the pure water flux is 7 m 3 ⁇ m -2 ⁇ h -1 ⁇ bar -1
- the porosity is 34%.
- the average pore diameter is 10 ⁇ m.
- the slab-shaped corundum powder is continuously added slowly to the oil, and the mixture is thoroughly stirred and mixed to the engine oil to infiltrate the surface of the platy corundum particles.
- the amount of oil added was based on the mass of the slab corundum powder, and the mass percentage added was 7%.
- step (3) Adding 20% of deionized water, 10% of polyvinyl alcohol and 1% of glycerin to make a slurry based on the powder quality of step (2), and forming a sheet-like, single-tube and multi-channel support by an extruder .
- the support was obtained by sintering at a high temperature of 1620 ° C, and the heating rate was 1 ° C / min, and the holding time was 2 hours.
- the mechanical strength of the support prepared by the plate-like corundum was 31.5 MPa
- the pure water flux was 10 m 3 ⁇ m -2 ⁇ h -1 ⁇ bar -1
- the porosity was 38%.
- the average pore diameter is 10 ⁇ m.
- Tung oil is continuously added slowly in the platy corundum powder, and the mixture is stirred and mixed until the tung oil is used to infiltrate the surface of the platy corundum particles.
- the amount of tung oil added is based on the mass of the slab corundum powder, and the mass percentage added is 5%.
- step (3) adding 5% of deionized water, 3% of cellulose, 5% of glycerin and 5% of white oil to make a slurry based on the powder quality of step (2), and extruding a sheet, a single tube and an extruder Multi-channel support.
- the support was sintered at a high temperature of 1610 ° C, and the heating rate was 0.5 ° C / min, and the holding time was 3 hours.
- the mechanical strength of the support prepared by the three-point bending method is 50 MPa
- the pure water flux is 5 m 3 ⁇ m -2 ⁇ h -1 ⁇ bar -1
- the porosity is 30%.
- the average pore diameter is 10 ⁇ m.
- the hydraulic oil is continuously added slowly in the platy corundum powder, and the mixture is fully stirred and mixed to the hydraulic oil to infiltrate the surface of the platy corundum particles.
- the amount of hydraulic oil added is based on the mass of the slab corundum powder, and the mass percentage added is 3%.
- step (3) Adding 8% of deionized water, 4% of dextrin and 5% of white oil to the base of the powder of step (2), and forming a sheet, single tube and multi-channel support by extruder body.
- the support was obtained by sintering at a high temperature of 1590 ° C, and the heating rate was 3 ° C / min, and the holding time was 1 hour.
- the mechanical strength of the support prepared by the plate-like corundum was measured by the three-point bending method to be 20 MPa, the pure water flux was 9 m 3 ⁇ m -2 ⁇ h -1 ⁇ bar -1 , and the porosity was 40%.
- the average pore diameter is 10 ⁇ m.
- Tung oil is continuously added slowly in the platy corundum powder, and the mixture is stirred and mixed until the tung oil is used to infiltrate the surface of the platy corundum particles.
- the amount of tung oil added is based on the mass of the slab corundum powder, and the mass percentage added is 6%.
- step (3) Adding 11% of deionized water, 3% of cellulose and 3% of glycerin to make a slurry based on the powder quality of the step (2), and forming a sheet-like, single-tube and multi-channel support by an extruder .
- the support was obtained by sintering at a high temperature of 1600 ° C, and the heating rate was 2 ° C / min, and the holding time was 2 hours.
- the mechanical strength of the support prepared from the slab corundum was 42 MPa by the three-point bending method, the pure water flux was 7 m 3 ⁇ m -2 ⁇ h -1 ⁇ bar -1 , and the porosity was 36%.
- the average pore diameter is 10 ⁇ m.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Press-Shaping Or Shaping Using Conveyers (AREA)
Abstract
一种板状刚玉陶瓷膜支撑体的制备方法,包括以氧化铝微粉、促烧结剂和预处理的板状刚玉为原料,搅拌后制成泥料,然后将泥料挤出成型和烧结,得到板状刚玉陶瓷膜支撑体;该预处理为采用表面改性剂对板状刚玉的颗粒表面进行改性。
Description
本发明涉及一种板状刚玉陶瓷膜支撑体的制备方法,属于陶瓷膜技术领域。
自从20世纪80年代多孔陶瓷膜首先在法国工业化应用以来,其所具有的高分离效率、耐高温、耐溶剂、抗微生物、耐酸碱性、高机械强度及易清洗可再生等优异性能逐渐被工业界接受并已得到了广泛应用。无机陶瓷膜可用于气体分离、液体分离净化和膜反应器,在食品工业、制药与生物工程、化学与石油化工工业以及环境保护等领域均有广泛的应用。当前,随着世界范围对过程工业节能减排技术需求的日益提高,具有纳米结构的陶瓷纳滤膜、渗透气化膜和气体分离膜已成为陶瓷膜领域的研究热点和未来重要的发展方向之一。
多孔陶瓷膜一般具有三层非对称结构,即由起分离作用的顶层、过渡层和支撑层。作为支撑层须具有足够的机械强度、较高的渗透性能、表面光滑和较好的耐酸碱性能。支撑体性能的好坏直接影响后续多孔陶瓷膜的制备。
目前支撑体主要是由经过整形表面处理的电熔刚玉(粒径10~80μm)作为骨料(提供渗透性能)来制备,一方面,经过整形表面处理的电熔刚玉大颗粒烧结活性较低,这就导致无机陶瓷膜支撑体烧结温度比较高,例如日本NGK公司其烧成温度是1700℃,而美国Pall公司其烧成温度达到1800℃;另一方面,这种经过整形表面处理的电熔刚玉价格较高(≥20000元/吨),其在无机陶瓷膜支撑体配方中的占比高(质量百分比达到70-85%)。因此,造成无机陶瓷膜产品价格居高不下,影响了该产品的大面积推广应用。
由于板状刚玉煅烧温度比电熔刚玉温度略低,有微小气孔率存在,其颗粒对水的吸附作用使该材料极难制成性能优良的挤出泥料,且泥料在干燥过程中容易产生开裂等缺陷,这就使得板状刚玉虽然价格比目前支撑体普遍使用的经过整形表面处理的电熔刚玉价格低60-70%,但业内尚无该材料的技术应用。
发明内容
本发明的目的是提供一种板状刚玉陶瓷膜支撑体的制备方法,其简单易行,成本低,烧结温度低,节能减排。
本发明所述的板状刚玉陶瓷膜支撑体的制备方法,是以氧化铝微粉、促烧结剂和预处理的板状刚玉为原料,搅拌后制成泥料,然后将泥料挤出成型和烧结,得到所述的板状刚玉陶瓷膜支撑体;所述预处理为采用表面改性剂对板状刚玉的颗粒表面进行改性。
所述表面改性剂为液压油、机油或桐油,加入量为板状刚玉粉体质量的2-7%。
所述预处理的具体过程如下:向板状刚玉粉体中持续缓慢加入表面改性剂,充分搅拌混合,至表面改性剂将板状刚玉的颗粒表面处于渗透包裹状态。
所述板状刚玉的颗粒直径为30-50μm;氧化铝微粉的颗粒直径为0.5-1μm。
所述原料中,预处理的板状刚玉的质量百分比为70-85%,氧化铝微粉的质量百分比为13-25%,促烧结剂的质量百分比为0.5-5%。
所述促烧结剂为氧化镁、氧化钛或氧化镧。
所述搅拌1h后,加入去离子水、有机黏合剂和润滑剂制成泥料。
所述有机黏合剂为聚乙烯醇、纤维素或糊精;润滑剂为甘油或白油中的一种或两种。
所述去离子水的加入量为原料质量的5-20%;有机黏合剂的加入量为原料质量的1-10%;润滑剂的加入量为原料质量的1-10%。
所述挤出成型时,将泥料挤成片状、单管及多通道的支撑体。
所述烧结时,温度为1580-1620℃,升温速率为0.5-3℃/min,保温时间为1-3小时。
本发明克服了行业内普遍存在的原材料成本高(≥20000元/吨)、烧结温度高(1650-1800℃)、能耗大等问题,提供了一种低成本的制备陶瓷膜支撑体的制备方法。
本发明采用高温性能稳定的板状刚玉,其颗粒为直径30-50μm的近球状颗粒,颗粒在泥料中流动性能和分散性能好,因此,颗粒与颗粒之间有机会产生较多的接触点,在烧结过程中,这些接触点提高了固相烧结的动力,促进了颈部烧结的形成,有效降低了烧成温度。
本发明对以上板状刚玉采用表面改性剂进行颗粒表面预处理,通过表面改性,克服了目前该材料制备支撑体普遍存在的颗粒松散、泥料塑性极差、干燥开裂等问题,从而使支撑体挤出成型和青坯干燥合格率大幅度提高。
与现有技术相比,本发明具有以下有益效果:
(1)本发明通过板状刚玉表面改性预处理,制备了一种原料成本低(原料成本降低60-70%)、烧结温度低(1580-1620℃)、机械强度高(20-50MPa)、渗透性能高(纯水通量为5-10m3·m-2·h-1·bar-1)、耐腐蚀性能优良的的陶瓷膜支撑体,其孔隙率为30-40%,平均孔径为10μm。
(2)制备方法简单易行,利于工业化生产。
(3)制备的陶瓷膜支撑体,对于陶瓷膜系列产品在国内的大规模推广、业内成本的可持续降低、节能降耗和环境治理成本持续降低意义重大。
下面结合实施例对本发明作进一步的说明,但其并不限制本发明的实施。
实施例1
(1)板状刚玉粉体中持续缓慢加入液压油,充分搅拌混合至液压油将板状刚玉颗粒表面渗透包裹。液压油加入量以板状刚玉粉体质量为基准,其加入的质量百分比为2%。
(2)按板状刚玉70%、氧化铝微粉25%、氧化镁3%、氧化钛2%的质量比例配料,加入混料机,搅拌预混1小时。
(3)以步骤(2)的粉体质量为基准加入去离子水10%、聚乙烯醇1%和甘油5%制成泥料,采用挤出机成型片状、单管和多通道的支撑体。
(4)在1580℃高温烧结得到支撑体,升温速率0.5℃/min,保温时间1小时。
(5)用三点弯曲法测出板状刚玉制备出的支撑体的机械强度为29.8MPa,纯水通量为7m3·m-2·h-1·bar-1,孔隙率为34%,平均孔径为10μm。
实施例2
(1)板状刚玉粉体中持续缓慢加入机油,充分搅拌混合至机油将板状刚玉颗粒表面渗透包裹。机油加入量以板状刚玉粉体质量为基准,其加入的质量百分比为7%。
(2)按板状刚玉85%、氧化铝微粉13%、氧化镧2%的质量比例配料,加入混料机,搅拌预混1小时。
(3)以步骤(2)粉体质量为基准加入去离子水20%、聚乙烯醇10%和甘油1%制成泥料,采用挤出机成型片状、单管和多通道的支撑体。
(4)在1620℃高温烧结得到支撑体,升温速率1℃/min,保温时间2小时。
(5)用三点弯曲法测出板状刚玉制备出的支撑体的机械强度为31.5MPa,纯水通量为10m3·m-2·h-1·bar-1,孔隙率为38%,平均孔径为10μm。
实施例3
(1)板状刚玉粉体中持续缓慢加入桐油,充分搅拌混合至桐油将板状刚玉颗粒表面渗透包裹。桐油加入量以板状刚玉粉体质量为基准,其加入的质量百分比为5%。
(2)按板状刚玉80%、氧化铝微粉16%、氧化镁3%、氧化镧1%的质量比例配料,加入混料机,搅拌预混1小时。
(3)以步骤(2)的粉体质量为基准加入去离子水5%、纤维素3%、甘油5%和白油5%制成泥料,采用挤出机成型片状、单管和多通道的支撑体。
(4)在1610℃高温烧结得到支撑体,升温速率0.5℃/min,保温时间3小时。
(5)用三点弯曲法测出板状刚玉制备出的支撑体的机械强度为50MPa,纯水通量为5m3·m-2·h-1·bar-1,孔隙率为30%,平均孔径为10μm。
实施例4
(1)板状刚玉粉体中持续缓慢加入液压油,充分搅拌混合至液压油将板状刚玉颗粒表面渗透包裹。液压油加入量以板状刚玉粉体质量为基准,其加入的质量百分比为3%。
(2)按板状刚玉78%、氧化铝微粉21.5%、氧化镁0.5%的质量比例配料,加入混料机,搅拌预混1小时。
(3)以步骤(2)的粉体质量为基准加入去离子水8%、糊精4%和白油5%制成泥料,采用挤出机成型片状、单管和多通道的支撑体。
(4)在1590℃高温烧结得到支撑体,升温速率3℃/min,保温时间1小时。
(5)用三点弯曲法测出板状刚玉制备出的支撑体的机械强度为20MPa,纯水通量为9m3·m-2·h-1·bar-1,孔隙率为40%,平均孔径为10μm。
实施例5
(1)板状刚玉粉体中持续缓慢加入桐油,充分搅拌混合至桐油将板状刚玉颗粒表面渗透包裹。桐油加入量以板状刚玉粉体质量为基准,其加入的质量百分比为6%。
(2)按板状刚玉82%、氧化铝微粉15%、氧化钛2%、氧化镧1%的质量比例配料,加入混料机,搅拌预混1小时。
(3)以步骤(2)的粉体质量为基准加入去离子水11%、纤维素3%和甘油3%制成泥料,采用挤出机成型片状、单管和多通道的支撑体。
(4)在1600℃高温烧结得到支撑体,升温速率2℃/min,保温时间2小时。
(5)用三点弯曲法测出板状刚玉制备出的支撑体的机械强度为42MPa,纯水通量为7m3·m-2·h-1·bar-1,孔隙率为36%,平均孔径为10μm。
Claims (10)
- 一种板状刚玉陶瓷膜支撑体的制备方法,其特征在于:以氧化铝微粉、促烧结剂和预处理的板状刚玉为原料,搅拌后制成泥料,然后将泥料挤出成型和烧结,得到所述的板状刚玉陶瓷膜支撑体;所述预处理为采用表面改性剂对板状刚玉的颗粒表面进行改性。
- 根据权利要求1所述的板状刚玉陶瓷膜支撑体的制备方法,其特征在于:表面改性剂为液压油、机油或桐油,加入量为板状刚玉粉体质量的2-7%。
- 根据权利要求1所述的板状刚玉陶瓷膜支撑体的制备方法,其特征在于:板状刚玉的颗粒直径为30-50μm;氧化铝微粉的颗粒直径为0.5-1μm。
- 根据权利要求1所述的板状刚玉陶瓷膜支撑体的制备方法,其特征在于:所述原料中,预处理的板状刚玉的质量百分比为70-85%,氧化铝微粉的质量百分比为13-25%,促烧结剂的质量百分比为0.5-5%。
- 根据权利要求1所述的板状刚玉陶瓷膜支撑体的制备方法,其特征在于:促烧结剂为氧化镁、氧化钛或氧化镧中的一种或者多种。
- 根据权利要求1所述的板状刚玉陶瓷膜支撑体的制备方法,其特征在于:搅拌1h后,加入去离子水、有机黏合剂和润滑剂制成泥料。
- 根据权利要求6所述的板状刚玉陶瓷膜支撑体的制备方法,其特征在于:有机黏合剂为聚乙烯醇、纤维素或糊精;润滑剂为甘油或白油中的一种或两种。
- 根据权利要求6所述的板状刚玉陶瓷膜支撑体的制备方法,其特征在于:去离子水的加入量为原料质量的5-20%;有机黏合剂的加入量为原料质量的1-10%;润滑剂的加入量为原料质量的1-10%。
- 根据权利要求1所述的板状刚玉陶瓷膜支撑体的制备方法,其特征在于:挤出成型时,将泥料挤成片状、单管及多通道的支撑体。
- 根据权利要求1所述的板状刚玉陶瓷膜支撑体的制备方法,其特征在于:烧结时,温度为1580-1620℃,升温速率为0.5-3℃/min,保温时间为1-3小时。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611055785.8A CN106747557A (zh) | 2016-11-25 | 2016-11-25 | 板状刚玉陶瓷膜支撑体的制备方法 |
CN201611055785.8 | 2016-11-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018095277A1 true WO2018095277A1 (zh) | 2018-05-31 |
Family
ID=58910830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/111546 WO2018095277A1 (zh) | 2016-11-25 | 2017-11-17 | 板状刚玉陶瓷膜支撑体的制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106747557A (zh) |
WO (1) | WO2018095277A1 (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109265148A (zh) * | 2018-09-19 | 2019-01-25 | 洛阳科创新材料股份有限公司 | 一种透气砖用高性能陶瓷板的制备方法 |
CN112661520A (zh) * | 2019-10-16 | 2021-04-16 | 国家能源投资集团有限责任公司 | 粉煤灰-氧化铝复合陶瓷膜及其制备方法和应用 |
CN113648848A (zh) * | 2021-08-05 | 2021-11-16 | 河北工业大学 | 一种中空平板陶瓷膜及其制备方法 |
CN114249582A (zh) * | 2020-09-25 | 2022-03-29 | 三达膜科技(厦门)有限公司 | 一种内部多流道碟式氧化铝陶瓷膜及其制备方法 |
CN114311232A (zh) * | 2020-09-29 | 2022-04-12 | 三达膜科技(厦门)有限公司 | 一种大直径组合式蜂窝陶瓷过滤膜的制备方法 |
CN116375453A (zh) * | 2023-04-10 | 2023-07-04 | 河北工业大学 | 自洁型无掺混高铝粉煤灰陶瓷膜支撑体的制备方法 |
CN116477923A (zh) * | 2023-03-22 | 2023-07-25 | 雅安沃克林环保科技有限公司 | 一种利用陶瓷膜废品制备陶瓷接板的方法及陶瓷接板 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106747557A (zh) * | 2016-11-25 | 2017-05-31 | 山东硅元新型材料有限责任公司 | 板状刚玉陶瓷膜支撑体的制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101558025A (zh) * | 2006-12-11 | 2009-10-14 | 康宁股份有限公司 | α-氧化铝无机膜载体及其制备方法 |
CN103304223A (zh) * | 2013-06-13 | 2013-09-18 | 景德镇陶瓷学院 | 一种高纯氧化铝陶瓷的制备方法 |
CN103755328A (zh) * | 2014-02-07 | 2014-04-30 | 刘旭红 | 一种管式陶瓷膜支撑体的制备方法 |
CN104014252A (zh) * | 2014-05-06 | 2014-09-03 | 三达膜科技(厦门)有限公司 | 一种陶瓷膜支撑体的制备方法 |
CN106747557A (zh) * | 2016-11-25 | 2017-05-31 | 山东硅元新型材料有限责任公司 | 板状刚玉陶瓷膜支撑体的制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105254323B (zh) * | 2015-11-28 | 2018-02-09 | 郑州大学 | 一种微孔刚玉‑莫来石陶瓷分离膜支撑体及其制备方法 |
-
2016
- 2016-11-25 CN CN201611055785.8A patent/CN106747557A/zh active Pending
-
2017
- 2017-11-17 WO PCT/CN2017/111546 patent/WO2018095277A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101558025A (zh) * | 2006-12-11 | 2009-10-14 | 康宁股份有限公司 | α-氧化铝无机膜载体及其制备方法 |
CN103304223A (zh) * | 2013-06-13 | 2013-09-18 | 景德镇陶瓷学院 | 一种高纯氧化铝陶瓷的制备方法 |
CN103755328A (zh) * | 2014-02-07 | 2014-04-30 | 刘旭红 | 一种管式陶瓷膜支撑体的制备方法 |
CN104014252A (zh) * | 2014-05-06 | 2014-09-03 | 三达膜科技(厦门)有限公司 | 一种陶瓷膜支撑体的制备方法 |
CN106747557A (zh) * | 2016-11-25 | 2017-05-31 | 山东硅元新型材料有限责任公司 | 板状刚玉陶瓷膜支撑体的制备方法 |
Non-Patent Citations (2)
Title |
---|
DONG, ZHEHAI ET AL.: "Features and Reasonable Use of Capacitance Plated Corundum", REFRACTORIES, 30 June 1995 (1995-06-30) * |
ZHOU, JIANER ET AL.: "Effect of Particle Size Matching on the Diameter and Flexural Strength of Alumina Porous Ceramic Membrane Supports", JOURNAL OF SYNTHETIC CRYSTALS, vol. 43, no. 8, 31 August 2014 (2014-08-31), pages 2126 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109265148A (zh) * | 2018-09-19 | 2019-01-25 | 洛阳科创新材料股份有限公司 | 一种透气砖用高性能陶瓷板的制备方法 |
CN109265148B (zh) * | 2018-09-19 | 2023-10-24 | 洛阳科创新材料股份有限公司 | 一种透气砖用高性能陶瓷板的制备方法 |
CN112661520A (zh) * | 2019-10-16 | 2021-04-16 | 国家能源投资集团有限责任公司 | 粉煤灰-氧化铝复合陶瓷膜及其制备方法和应用 |
CN114249582A (zh) * | 2020-09-25 | 2022-03-29 | 三达膜科技(厦门)有限公司 | 一种内部多流道碟式氧化铝陶瓷膜及其制备方法 |
CN114249582B (zh) * | 2020-09-25 | 2023-01-10 | 三达膜科技(厦门)有限公司 | 一种内部多流道碟式氧化铝陶瓷膜及其制备方法 |
CN114311232A (zh) * | 2020-09-29 | 2022-04-12 | 三达膜科技(厦门)有限公司 | 一种大直径组合式蜂窝陶瓷过滤膜的制备方法 |
CN114311232B (zh) * | 2020-09-29 | 2023-02-10 | 三达膜科技(厦门)有限公司 | 一种大直径组合式蜂窝陶瓷过滤膜的制备方法 |
CN113648848A (zh) * | 2021-08-05 | 2021-11-16 | 河北工业大学 | 一种中空平板陶瓷膜及其制备方法 |
CN113648848B (zh) * | 2021-08-05 | 2023-12-08 | 河北工业大学 | 一种中空平板陶瓷膜及其制备方法 |
CN116477923A (zh) * | 2023-03-22 | 2023-07-25 | 雅安沃克林环保科技有限公司 | 一种利用陶瓷膜废品制备陶瓷接板的方法及陶瓷接板 |
CN116477923B (zh) * | 2023-03-22 | 2024-04-05 | 雅安沃克林环保科技有限公司 | 一种利用陶瓷膜废品制备陶瓷接板的方法及陶瓷接板 |
CN116375453A (zh) * | 2023-04-10 | 2023-07-04 | 河北工业大学 | 自洁型无掺混高铝粉煤灰陶瓷膜支撑体的制备方法 |
CN116375453B (zh) * | 2023-04-10 | 2024-04-26 | 河北工业大学 | 自洁型无掺混高铝粉煤灰陶瓷膜支撑体的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106747557A (zh) | 2017-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018095277A1 (zh) | 板状刚玉陶瓷膜支撑体的制备方法 | |
CN110256059B (zh) | 一种高通量陶瓷平板膜及其制备方法 | |
CN102389719A (zh) | 一种碳化硅陶瓷膜支撑体及其制备方法 | |
CN104258737A (zh) | 大尺寸薄壁中空平板陶瓷膜的制备方法 | |
CN104174298A (zh) | 一种净水用梯度碳化硅陶瓷膜的制备方法 | |
CN108329033A (zh) | 液相烧结多通道碳化硅陶瓷膜元件及其制备方法 | |
WO2021073100A1 (zh) | 一种高强度陶瓷过滤膜的制备方法 | |
CN108261928A (zh) | 纯碳化硅陶瓷膜元件及其制备方法 | |
CN108484149B (zh) | 一种NaA分子筛膜支撑体制备方法 | |
CN106045487A (zh) | 一种Al2O3、SiO2多孔陶瓷膜支撑体的制备方法 | |
CN111545078A (zh) | 平板陶瓷膜及其制备方法 | |
CN102836642A (zh) | 一种多孔陶瓷—金属复合膜材料的制备方法 | |
CN111056858A (zh) | 一种平板陶瓷膜支撑体的制备方法及其陶瓷泥料 | |
WO2023077709A1 (zh) | 一种固相烧结碳化硅制品及其制备方法 | |
CN108395252A (zh) | 液相烧结多通道碳化硅陶瓷膜支撑体及其制备方法 | |
CN110559872B (zh) | 一种轴盘式旋转陶瓷膜的制备方法 | |
CN105000871B (zh) | 一种多功能平板陶瓷膜及其制备工艺 | |
CN106810212B (zh) | 一种高效平板陶瓷膜的制作工艺 | |
CN103691330A (zh) | 一种多孔不锈钢膜的制备工艺 | |
CN105771675A (zh) | 一种非对称结构陶瓷膜及其制备方法 | |
Wang et al. | Recent progress in the pore size control of silicon carbide ceramic membranes | |
CN107234236B (zh) | 一种具有梯度孔径的Ni-Cr-Fe多孔材料及其制备方法 | |
CN113999046B (zh) | 一种低温反应烧结碳化硅陶瓷膜的制备方法 | |
CN105503233A (zh) | 一种大规格薄壁堇青石蜂窝陶瓷载体泥料及其制备方法 | |
CN106268334B (zh) | 一种陶瓷分离膜元件及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17873103 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17873103 Country of ref document: EP Kind code of ref document: A1 |