WO2021073100A1 - 一种高强度陶瓷过滤膜的制备方法 - Google Patents

一种高强度陶瓷过滤膜的制备方法 Download PDF

Info

Publication number
WO2021073100A1
WO2021073100A1 PCT/CN2020/092216 CN2020092216W WO2021073100A1 WO 2021073100 A1 WO2021073100 A1 WO 2021073100A1 CN 2020092216 W CN2020092216 W CN 2020092216W WO 2021073100 A1 WO2021073100 A1 WO 2021073100A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
nano
support
filter membrane
sintering aid
Prior art date
Application number
PCT/CN2020/092216
Other languages
English (en)
French (fr)
Inventor
丘助国
洪昱斌
方富林
蓝伟光
Original Assignee
三达膜科技(厦门)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三达膜科技(厦门)有限公司 filed Critical 三达膜科技(厦门)有限公司
Publication of WO2021073100A1 publication Critical patent/WO2021073100A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/0215Silicon carbide; Silicon nitride; Silicon oxycarbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/027Silicium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the invention belongs to the technical field of ceramic membrane preparation, and specifically relates to a method for preparing a high-strength ceramic filter membrane.
  • Membrane and membrane process is a high-tech field that began to develop rapidly in the 1960s. countries all over the world attach great importance to it and place it in an important position in technological innovation and national economic development. Compared with traditional polymer separation membrane materials, ceramic membranes have good chemical stability, resistance to acids, alkalis, and organic solvents; high mechanical strength and reverse washing; strong anti-microbial ability; high temperature resistance; narrow pore size distribution and separation High efficiency and other advantages have been widely used in the food industry, biological engineering, environmental engineering, chemical industry, petrochemical industry, metallurgical industry and other fields.
  • the ceramic membrane is mainly made of inorganic ceramic materials such as alumina, zirconia, titania, and silicon oxide of different specifications as the support, which is formed by surface coating and high temperature firing.
  • Commercial ceramic membranes usually have a three-layer structure (porous support layer, transition layer and separation layer), which are distributed asymmetrically.
  • the pore size ranges from 0.8nm to 1 ⁇ m, and the filtration accuracy covers microfiltration, ultrafiltration, and nanofiltration levels. .
  • the preparation of the ceramic membrane support adopts solid alumina, silicon carbide or silicon oxide and other ceramic particles as the framework particles, and assists in adding a small amount of fine metal oxide particles and various sintering aids that reduce the sintering temperature, and mixes it with a molding colloid. Sintering is carried out through various molding methods and sintering processes, and finally a ceramic membrane support structure with a certain porosity and strength is formed. Ceramic aggregate particles such as alumina, silicon carbide, or silicon oxide currently on the market as ceramic membrane supports undergo a process of crushing and sieving during the preparation process. During the crushing process, most of the particles are broken into independent particles without macroscopic internal defects.
  • the sintering aid is added by direct mechanical mixing under normal temperature and normal pressure. Because the above-mentioned ceramic aggregate particles have relatively narrow defects and cracks, and the surface will absorb air and moisture after the cracks are broken, the agglomerated sintering aid cannot penetrate into the cracks at all, nor can it be adhered to the surface of the internal cracks. During the sintering process of the support, the cracks inside the aggregate particles are not covered by the sintering aid and the sintering temperature cannot reach the melting temperature, so the cracks cannot be repaired or sintered together. This becomes the internal crack defect of the support finished product (see Figure 1).
  • the purpose of the present invention is to overcome the defects of the prior art and provide a method for preparing a high-strength ceramic filter membrane.
  • a method for preparing a high-strength ceramic filter membrane includes the following steps:
  • step (3) In a vacuum state, thoroughly mix and infiltrate the material obtained in step (2) with the nano sintering aid dispersion obtained in step (1) at a mass ratio of 10-99:1 to obtain a mixed solution;
  • step (4) After uniformly mixing the dried solid obtained in step (4) with the forming aid, forming the support body;
  • step (6) Coating at least one filter membrane on the support obtained in step (6) to obtain the high-strength ceramic filter membrane.
  • the particle size of the nano sintering aid is 1-50 nm.
  • the particle size of the ceramic aggregate particles of the support is 10-60 um.
  • the concentration of the nano sintering aid dispersion is 1-10 wt%.
  • the method of solid-liquid separation in step (4) is precipitation or sieving.
  • the method used for forming the support body in the step (5) is an extrusion molding method or a gel injection molding method.
  • the coating method in the step (7) is a dipping method or a spraying method.
  • the nano sintering aid is nano titanium oxide or nano magnesium oxide.
  • the support ceramic aggregate particles are silicon oxide micropowder, silicon carbide micropowder or aluminum oxide micropowder.
  • the beneficial effect of the present invention is: the high-strength ceramic membrane prepared by the present invention has the same formula of flexural strength, but the strength of the ceramic membrane without mixing and infiltration of the nano sintering aid dispersion liquid can be increased by 20-100%, and the product strength is qualified.
  • the rate is as high as 100%, and the deviation of the strength test value is within ⁇ 3%, which is far lower than the ⁇ 25% deviation of conventional products (sintering aids and aggregates are only mechanically mixed under normal temperature and pressure), and the product stability is greatly improved.
  • Figure 1 is a scanning electron micrograph of a ceramic membrane support in the background of the present invention.
  • Figure 2 is a scanning electron micrograph of the support prepared in Example 1 of the present invention.
  • Figure 3 is a scanning electron micrograph of the support prepared in Example 2 of the present invention.
  • Figure 4 is a scanning electron micrograph of the support prepared in Example 3 of the present invention.
  • Alumina powder (45um) and a pre-prepared titanium oxide dispersion (10nm3nm, 5wt%, RO water as solvent) are stirred and mixed at a mass ratio of 11:1 under normal temperature and pressure, and then dried for use.
  • the aging mud is vacuum (-0.1 MPa) mud mulled with a vacuum mud mill, the ceramic membrane support body is formed by extrusion molding.
  • the wet body After the wet body is formed, it is dried in the shade at room temperature for 20 hours, and then heated to 120°C in an oven at a rate of 1°C/min for 2 hours. Finally, a high-temperature sintering kiln is used at 1750°C for 2h to sinter into a support body. Subsequent coating of one or more layers of filter membranes on the support body through ceramic filter membrane manufacturing processes such as dipping or spraying, etc., to finally prepare a ceramic membrane product with a flexural strength of 15-38 MPa and a product strength qualification rate of 89%.
  • the alumina micropowder (45um) is heated to 200°C for 24h in a vacuum state (-0.1Mpa), and then the pre-prepared titanium oxide dispersion (3nm, 5wt%, RO water is the solvent) while maintaining the vacuum Fully mix and infiltrate the dried alumina powder at a mass ratio of 11:1, then pressurize the mixed solution to 10Mpa, keep the pressure stale for 24h, and then sieve out the powder in the slurry and dry it for use.
  • the ceramic membrane support body is formed by extrusion molding. After the wet body is formed, it is dried in the shade at room temperature for 20 hours, and then heated to 120°C in an oven at a rate of 1°C/min for 2 hours.
  • a high-temperature sintering kiln is used at 1750°C for 2h to sinter the support body as shown in Figure 2.
  • this support body is coated with one or more layers of filter membranes by dipping or spraying or other ceramic filter membrane manufacturing processes, and finally prepared into ceramic membrane products.
  • the flexural strength is increased by 34% to 51MPa, and the product strength qualification rate is 100%. .
  • the silicon carbide powder (60um) and the pre-prepared titanium oxide dispersion (5nm2nm, 5wt%, RO water as solvent) are stirred and mixed at a mass ratio of 19:1 under normal temperature and normal pressure and then dried for use. Take the dried silicon carbide and titanium oxide mixed powder (90wt%), activated carbon powder (20 ⁇ m, 3wt%), PVA powder (molecular weight 2000, 3wt%), gelatin powder (purity 98%, 4wt%) and mix it evenly by ball milling for 2h .
  • the silicon carbide powder (60um) was heated to 150°C for 48h under vacuum (-0.1Mpa), and then the pre-prepared titanium oxide dispersion (2nm, 5wt%, RO water as solvent) was kept in vacuum. Fully mix and infiltrate the dried silicon carbide powder at a mass ratio of 19:1, and then pressurize the mixed solution to 15Mpa. After maintaining the pressure for 24 hours, the powder in the slurry is sieved out and dried for use. Take the dried silicon carbide and titanium oxide mixed powder (90wt%), activated carbon powder (20 ⁇ m, 3wt%), PVA powder (molecular weight 2000, 3wt%), gelatin powder (purity 98%, 4wt%) and mix it evenly by ball milling for 2h .
  • the silicon oxide micropowder (30um) and the pre-prepared magnesium oxide dispersion (20nm10nm, 5wt%, RO water as solvent) are stirred and mixed at a mass ratio of 32:1 under normal temperature and pressure, and then dried for later use. Take the dried silica and titanium oxide mixed powder (85wt%), add corn starch (1um, 2wt%), PVA (1um, 2wt%) and mix with a mixer for 6h, and add RO to the mixed powder Water (10wt%) and glycerin (3wt%) were mixed again for 6 hours to form ceramic mud and aged for 72 hours. After the aging mud is vacuum (-0.1 MPa) mud mulled with a vacuum mud mill, the ceramic membrane support body is formed by extrusion molding.
  • the wet body After the wet body is formed, it is dried in the shade at room temperature for 24 hours, and then heated to 105°C in an oven at a rate of 1°C/min for 4 hours. Finally, a high-temperature sintering kiln is used at 1550°C for 6h to sinter the support body. Subsequently, one or more layers of filter membranes are coated on the support body through ceramic filter membrane manufacturing processes such as dipping or spraying, and finally a ceramic membrane product is prepared with a flexural strength of 12-25 MPa and a product strength qualification rate of 73%.
  • the silica powder (30um) was heated to 250°C for 72h under vacuum (-0.1Mpa), and then the pre-prepared magnesium oxide dispersion (10nm, 5wt%, RO water as solvent) was kept under vacuum. Fully mix and infiltrate the dried silica powder at a mass ratio of 32:1, and then pressurize the mixed solution to 20Mpa. After maintaining the pressure for 72 hours, the powder in the slurry is sieved out and dried for later use.
  • a high-temperature sintering kiln was used at 1550°C for 6h to sinter into a support body as shown in Figure 4.
  • the invention discloses a method for preparing a high-strength ceramic filter membrane.
  • the ceramic aggregate particles of a support body are heated to 100-300°C in a vacuum state and dried for 24-72h, and then pre-prepared and dispersed nano sintering aids are placed in a vacuum Mix and infiltrate with ceramic aggregate particles in the state, then pressurize the mixture to 10-20Mpa, keep the pressure stale for 12-48h, separate the powder from the slurry and dry it, add the forming aids and mix it evenly.
  • the support body is formed into a green body, the green body is dried in the shade and then dried and sintered, and then at least one layer of filter membrane is coated on the support body to finally prepare a ceramic membrane product.
  • the high-strength ceramic membrane prepared by the present invention has the same formula as the flexural strength ratio, but the strength of the ceramic membrane that is not mixed and infiltrated by the nano-sintering aid dispersion under high temperature and high pressure can be increased by 20-100%, and the product strength qualification rate is as high as 100 %, and the deviation of the strength test value is within ⁇ 3%, which is far lower than the ⁇ 25% deviation of conventional products.
  • the product stability is greatly improved, and it has industrial practicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtering Materials (AREA)

Abstract

一种高强度陶瓷过滤膜的制备方法,支撑体陶瓷骨料颗粒在真空状态下升温至100-300℃烘干24-72h,再将预先配制分散好的纳米烧结助剂在真空状态下与陶瓷骨料颗粒进行混合、浸润,再对混合液加压至10-20Mpa,保持压力陈腐12-48h,将粉料从浆料中分离后烘干,加入成型助剂混合均匀后,再进行支撑体坯体成型,坯体阴干后再进行烘干烧结,后续在此支撑体上涂覆至少一层过滤膜,最终制备成陶瓷膜产品。

Description

一种高强度陶瓷过滤膜的制备方法 技术领域
本发明属于陶瓷膜制备技术领域,具体涉及一种高强度陶瓷过滤膜的制备方法。
背景技术
膜与膜过程是20世纪60年代开始快速发展起来的高新技术领域。世界各国都高度重视,将其放在科技创新和国民经济发展的重要地位。相较于传统聚合物分离膜材料,陶瓷膜具有化学稳定性好,能耐酸、耐碱、耐有机溶剂;机械强度大,可反向冲洗;抗微生物能力强;耐高温;孔径分布窄、分离效率高等优点,在食品工业、生物工程、环境工程、化学工业、石油化工、冶金工业等领域得到了广泛的应用。
陶瓷膜主要以不同规格的氧化铝、氧化锆、氧化钛和氧化硅等无机陶瓷材料作为支撑体,经表面涂膜、高温烧制而成。商品化的陶瓷膜通常具有三层结构(多孔支撑层、过渡层及分离层),呈非对称分布,其孔径规格为0.8nm~1μm不等,过滤精度涵盖微滤、超滤、纳滤级别。
其中,陶瓷膜支撑体的制备采用实心氧化铝、碳化硅或者氧化硅等陶瓷颗粒作为骨架颗粒,并辅助添加少量金属氧化物细颗粒以及各种降低烧结温度的烧结助剂,混以成型胶体后通过各种成型方式和烧结工艺进行烧结,最终形成具有一定孔隙率和强度的陶瓷膜支撑体结构。目前市场上的作为陶瓷膜支撑体的氧化铝、碳化硅或者氧化硅等陶瓷骨料颗粒在制备过程中,都会经历破碎、筛分的过程。破碎过程中,大部分颗粒破碎为无宏观内部缺陷的独立颗粒体。但仍有一些陶瓷颗粒虽受外力冲击内部产生裂纹,但因为裂纹过短或者过小,颗粒并未沿着裂纹断裂开来,而是产生了一个带裂纹缺陷的陶瓷颗粒。受不同陶瓷原材料厂家产品不同纯度、不同制备方式、不同破碎和筛分方法的影响,这些有宏观缺陷的骨料颗粒含量从1%-50%不等。
现有的陶瓷支撑体的制备工艺中,其烧结助剂的添加方式为在常温常压下直接机械混合。由于上述陶瓷骨料颗粒缺陷裂纹较狭窄,且裂纹破碎后表面会吸附空气和水分,呈团聚状态的烧结助剂根本无法渗入裂纹内部,也无法进行内部裂纹表面的附着。在支撑体烧结过程中,这些骨料颗粒内部的裂纹因为没有烧结助剂覆盖,烧结温度又无法达到熔融温度,故其裂纹无法修复或者烧结在一起。由此成为支撑体成品的内部裂纹缺陷(见图1)。这些裂纹缺陷在膜管运输使用过程中,非常容易受外力震动影 响产生裂纹扩展,并使陶瓷膜管断裂报废。且这些颗粒内部的裂纹缺陷在使用过程中也容易受化学腐蚀,严重影响陶瓷膜管的使用安全和使用寿命。
发明内容
本发明的目的在于克服现有技术缺陷,提供一种高强度陶瓷过滤膜的制备方法。
本发明的技术方案如下:
一种高强度陶瓷过滤膜的制备方法,包括如下步骤:
(1)将纳米烧结助剂与水混合制成固含量1-50wt%纳米烧结助剂分散液;
(2)将支撑体陶瓷骨料颗粒在真空状态下升温至100-300℃,保温烘干24-72h,以将支撑体陶瓷骨料颗粒中的裂纹表面吸附的水分和气体排除;
(3)在真空状态下,将步骤(2)所得的物料与步骤(1)所得的纳米烧结助剂分散液按质量比10-99:1充分混合浸润,得混合液;
(4)将上述混合液置于10-20MPa的压力下,保压陈腐12-48h至支撑体陶瓷骨料颗粒所有外表面及裂纹充分粘附纳米烧结助剂后,进行固液分离,所得固体进行烘干;
(5)将步骤(4)所得的烘干后的固体与成型助剂混合均匀后,进行支撑体坯体成型;
(6)将所得的支撑体坯体阴干后再进行烘干烧结,获得支撑体;
(7)在步骤(6)获得的支撑体上涂覆至少一层过滤膜,即得所述高强度陶瓷过滤膜。
在本发明的一个优选实施方案中,所述纳米烧结助剂的粒径为1-50nm。
在本发明的一个优选实施方案中,所述支撑体陶瓷骨料颗粒的粒径为10-60um。
在本发明的一个优选实施方案中,所述纳米烧结助剂分散液的浓度为1-10wt%。
在本发明的一个优选实施方案中,所述步骤(4)中的固液分离的方法为沉淀法或过筛网。
在本发明的一个优选实施方案中,所述步骤(5)中的支撑体坯体成型所用的方法为挤出成型法或者凝胶注模成型法。
在本发明的一个优选实施方案中,所述步骤(7)中的涂覆的方法为浸渍法或者喷涂法。
在本发明的一个优选实施方案中,所述纳米烧结助剂为纳米氧化钛或纳米氧化镁。
在本发明的一个优选实施方案中,所述支撑体陶瓷骨料颗粒为氧化硅微粉、碳化硅微粉或氧化铝微粉。
本发明的有益效果是:本发明制得的高强度陶瓷膜,其抗折强度比同配方,但未经纳米烧结助剂分散液混合浸润的陶瓷膜强度可以提高20-100%,产品强度合格率高达100%,且强度测试值偏差在±3%以内,远低于常规产品(烧结助剂与骨料仅常温常压下机械混合)的±25%偏差,产品稳定性大幅度提高。
附图说明
图1为本发明背景技术中的陶瓷膜支撑体的扫描电镜照片。
图2为本发明实施例1制得的支撑体的扫描电镜照片。
图3为本发明实施例2制得的支撑体的扫描电镜照片。
图4为本发明实施例3制得的支撑体的扫描电镜照片。
具体实施方式
以下通过具体实施方式对本发明的技术方案进行进一步的说明和描述。
对比例1:
将氧化铝微粉(45um)与预先配制的氧化钛分散液(10nm3nm,5wt%,RO水为溶剂)按质量比11:1在常温常压下搅拌混合后烘干备用。取烘干后的氧化铝与氧化钛混合粉(80wt%),加入玉米淀粉(1um,3wt%)、PVA(1um,2wt%)用混料机混合4h,往混合好的粉料中加入RO水(13wt%)、甘油(2wt%),再次混合4h后形成陶瓷泥料并陈腐48h。用真空练泥机对陈腐后的泥料进行真空(-0.1MPa)练泥后,采用挤出成型的方式成型陶瓷膜支撑体坯体。湿坯成型后室温阴干20h,然后用烘箱以1℃/min的速度升温至120℃烘干2h。最后采用高温烧结窑炉1750℃保温2h烧结成支撑体。后续在此支撑体上通过浸渍或者喷涂等陶瓷过滤膜制膜工艺涂覆一层或者多层过滤膜,最终制备成陶瓷膜产品,其抗折强度15-38MPa,产品强度合格率89%。
实施例1:
将氧化铝微粉(45um)在真空状态(-0.1Mpa)下升温至200℃烘干24h,然后 在保持真空的状态下将预先配制的氧化钛分散液(3nm,5wt%,RO水为溶剂)与烘干后的氧化铝微粉按质量比11:1进行充分混合、浸润,再对混合液加压至10Mpa,保持压力陈腐24h后将浆料中的粉体筛出并烘干备用。取烘干后的氧化铝与氧化钛混合粉(80wt%),加入玉米淀粉(1um,3wt%)、PVA(1um,2wt%)用混料机混合4h,往混合好的粉料中加入RO水(13wt%)、甘油(2wt%),再次混合4h后形成陶瓷泥料并陈腐48h。用真空练泥机对陈腐后的泥料进行真空(-0.1MPa)练泥后,采用挤出成型的方式成型陶瓷膜支撑体坯体。湿坯成型后室温阴干20h,然后用烘箱以1℃/min的速度升温至120℃烘干2h。最后采用高温烧结窑炉1750℃保温2h烧结成如图2所示的支撑体。后续在此支撑体上通过浸渍或者喷涂等陶瓷过滤膜制膜工艺涂覆一层或者多层过滤膜,最终制备成陶瓷膜产品,其抗折强度提高34%至51MPa,产品强度合格率100%。
类别 强度MPa 泡压MPa 纯水通量LMH 强度合格率%
对比例1陶瓷膜 15-38 ≥0.30 ≥2000 89
本实施例陶瓷膜 51-52 ≥0.35 ≥2000 100
对比例2:
将碳化硅微粉(60um)与预先配制的氧化钛分散液(5nm2nm,5wt%,RO水为溶剂)按质量比19:1在常温常压下搅拌混合后烘干备用。取烘干后的碳化硅与氧化钛混合粉(90wt%)、活性炭粉(20μm,3wt%)、PVA粉末(分子量2000,3wt%)、明胶粉末(纯度98%,4wt%)球磨2h混合均匀。加入RO水(混合粉末与RO水溶液的体积比为2.2∶1),85℃水浴加温的条件下球磨分散20h制成分散均匀的浆料。浆料80℃保温状态下真空(-0.1MPa)除泡后立即浇注在模具中,坯体物理降温至20℃后原位凝固为具有一定强度的湿坯。湿坯脱模后室温阴干72h,80℃烘干72h。在空气气氛中,于1850℃保温烧结6h。后续在此支撑体上通过浸渍或者喷涂等陶瓷过滤膜制膜工艺涂覆一层或者多层过滤膜,最终制备成陶瓷膜产品,其抗折强度26-46MPa,产品强度合格率92%。
实施例2:
将碳化硅微粉(60um)在真空状态(-0.1Mpa)下升温至150℃烘干48h,然后在保持真空的状态下将预先配制的氧化钛分散液(2nm,5wt%,RO水为溶剂)与烘干后的碳化硅微粉按质量比19:1进行充分混合、浸润,再对混合液加压至15Mpa,保持压力陈腐24h后将浆料中的粉体筛出并烘干备用。取烘干后的碳化硅与氧化钛混合粉(90wt%)、活性炭粉(20μm,3wt%)、PVA粉末(分子量2000,3wt%)、明胶粉末(纯度98%,4wt%)球磨2h混合均匀。加入RO水(混合粉末与RO水溶液的体积比为2.2∶1),85℃水浴加温的条件下球磨分散20h制成分散均匀的浆料。浆料80℃保温状态下真空(-0.1MPa)除泡后立即浇注在模具中,坯体物理降温至20℃后原位凝固为具有一定强度的湿坯。湿坯脱模后室温阴干72h,80℃烘干72h。在空气气氛中,于1850℃保温烧结6h,制得如图3所示的支撑体。后续在此支撑体上通过浸渍或者喷涂等陶瓷过滤膜制膜工艺涂覆一层或者多层过滤膜,最终制备成陶瓷膜产品,其抗折强度提高41%至65MPa,产品强度合格率100%。
类别 强度MPa 泡压MPa 纯水通量LMH 强度合格率%
对比例2陶瓷膜 26-46 ≥0.25 ≥2600 92
本实施例陶瓷膜 65-67 ≥0.35 ≥2800 100
对比例3:
将氧化硅微粉(30um)与预先配制的氧化镁分散液(20nm10nm,5wt%,RO水为溶剂)按质量比32:1在常温常压下搅拌混合后烘干备用。取烘干后的氧化硅与氧化钛混合粉(85wt%),加入玉米淀粉(1um,2wt%)、PVA(1um,2wt%)用混料机混合6h,往混合好的粉料中加入RO水(10wt%)、甘油(3wt%),再次混合6h后形成陶瓷泥料并陈腐72h。用真空练泥机对陈腐后的泥料进行真空(-0.1MPa)练泥后,采用挤出成型的方式成型陶瓷膜支撑体坯体。湿坯成型后室温阴干24h,然后用烘箱以1℃/min的速度升温至105℃烘干4h。最后采用高温烧结窑炉1550℃保温6h烧结成支撑体。后续在此支撑体上通过浸渍或者喷涂等陶瓷过滤膜制膜工艺涂覆一层或者多层过滤膜,最终制备成陶瓷膜产品,其抗折强度12-25MPa,产品强度合格率73%。
实施例3:
将氧化硅微粉(30um)在真空状态(-0.1Mpa)下升温至250℃烘干72h,然后 在保持真空的状态下将预先配制的氧化镁分散液(10nm,5wt%,RO水为溶剂)与烘干后的氧化硅微粉按质量比32:1进行充分混合、浸润,再对混合液加压至20Mpa,保持压力陈腐72h后将浆料中的粉体筛出并烘干备用。取烘干后的氧化硅与氧化钛混合粉(85wt%),加入玉米淀粉(1um,2wt%)、PVA(1um,2wt%)用混料机混合6h,往混合好的粉料中加入RO水(10wt%)、甘油(3wt%),再次混合6h后形成陶瓷泥料并陈腐72h。用真空练泥机对陈腐后的泥料进行真空(-0.1MPa)练泥后,采用挤出成型的方式成型陶瓷膜支撑体坯体。湿坯成型后室温阴干24h,然后用烘箱以1℃/min的速度升温至105℃烘干4h。最后采用高温烧结窑炉1550℃保温6h烧结成如图4所示的支撑体。后续在此支撑体上通过浸渍或者喷涂等陶瓷过滤膜制膜工艺涂覆一层或者多层过滤膜,最终制备成陶瓷膜产品,其抗折强度提高64%至41MPa,产品强度合格率100%。
类别 强度MPa 泡压MPa 纯水通量LMH 强度合格率%
对比例3陶瓷膜 12-25 ≥0.20 ≥1800 73
本实施例陶瓷膜 41-42 ≥0.25 ≥1800 100
以上所述,仅为本发明的较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。
工业实用性
本发明公开了一种高强度陶瓷过滤膜的制备方法,支撑体陶瓷骨料颗粒在真空状态下升温至100-300℃烘干24-72h,再将预先配制分散好的纳米烧结助剂在真空状态下与陶瓷骨料颗粒进行混合、浸润,再对混合液加压至10-20Mpa,保持压力陈腐12-48h,将粉料从浆料中分离后烘干,加入成型助剂混合均匀后,再进行支撑体坯体成型,坯体阴干后再进行烘干烧结,后续在此支撑体上涂覆至少一层过滤膜,最终制备成陶瓷膜产品。本发明制得的高强度陶瓷膜,其抗折强度比同配方,但未经纳米烧结助剂分散液在高温高压下混合浸润的陶瓷膜强度可以提高20-100%,产品强度合格率高达100%,且强度测试值偏差在±3%以内,远低于常规产品的±25%偏差,产品稳定性大幅度提高,具有工业实用性。

Claims (4)

  1. 一种高强度陶瓷过滤膜的制备方法,其特征在于:包括如下步骤:
    (1)将纳米烧结助剂与水混合制成固含量1-50wt%纳米烧结助剂分散液,所述纳米烧结助剂的粒径为1-50nm;
    (2)将支撑体陶瓷骨料颗粒在真空状态下升温至100-300℃,保温烘干24-72h,,所述支撑体陶瓷骨料颗粒的粒径为10-60um;
    (3)在真空状态下,将步骤(2)所得的物料与步骤(1)所得的纳米烧结助剂分散液按质量比10-99:1混合浸润;
    (4)将上述混合液置于10-20MPa的压力下,保压陈腐12-48h进行固液分离,所得固体进行烘干;
    (5)将步骤(4)所得的烘干后的固体与成型助剂混合,进行支撑体坯体成型;
    (6)将所得的支撑体坯体阴干后再进行烘干烧结,获得支撑体;
    (7)在步骤(6)获得的支撑体上涂覆至少一层过滤膜,即得所述高强度陶瓷过滤膜。
  2. 如权利要求1所述的制备方法,其特征在于:所述纳米烧结助剂分散液的浓度为1-10wt%。
  3. 如权利要求1或2中任一权利要求所述的制备方法,其特征在于:所述纳米烧结助剂为纳米氧化钛或纳米氧化镁。
  4. 如权利要求1或2或3中任一权利要求所述的制备方法,其特征在于:所述支撑体陶瓷骨料颗粒为氧化硅微粉、碳化硅微粉或氧化铝微粉。
PCT/CN2020/092216 2019-10-18 2020-05-26 一种高强度陶瓷过滤膜的制备方法 WO2021073100A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910993045.6A CN112759370A (zh) 2019-10-18 2019-10-18 一种高强度陶瓷过滤膜的制备方法
CN201910993045.6 2019-10-18

Publications (1)

Publication Number Publication Date
WO2021073100A1 true WO2021073100A1 (zh) 2021-04-22

Family

ID=75538301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092216 WO2021073100A1 (zh) 2019-10-18 2020-05-26 一种高强度陶瓷过滤膜的制备方法

Country Status (2)

Country Link
CN (1) CN112759370A (zh)
WO (1) WO2021073100A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114225715A (zh) * 2021-11-17 2022-03-25 华南理工大学 一种高性能非对称陶瓷过滤膜及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114452834B (zh) * 2022-01-18 2023-11-03 重庆兀盾纳米科技有限公司 碟式陶瓷膜
CN114920564A (zh) * 2022-05-07 2022-08-19 刘峻廷 一种高纯碳化硼管式陶瓷过滤膜制备方法
CN115231902A (zh) * 2022-07-10 2022-10-25 上海熊猫机械(集团)有限公司 W型氧化铝支撑碳化硅陶瓷膜及其制备方法
CN115894072B (zh) * 2022-12-29 2024-03-08 江苏省宜兴非金属化工机械厂有限公司 一种耐腐蚀陶瓷过滤板及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19857590B4 (de) * 1998-12-14 2004-09-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Keramische Flachmembran und Verfahren zu ihrer Herstellung
CN104587846A (zh) * 2014-12-24 2015-05-06 长安大学 一种低温烧结制备多孔陶瓷滤膜的方法
CN107337442A (zh) * 2017-07-11 2017-11-10 芜湖市宝艺游乐科技设备有限公司 一种颗粒稳定发泡工艺制备氧化铝陶瓷支撑体及其制备方法
CN107619281A (zh) * 2017-08-03 2018-01-23 浙江理工大学 一种低温烧结耐酸碱多孔碳化硅陶瓷支撑体的制备方法
CN108392990A (zh) * 2018-02-24 2018-08-14 江苏新时高温材料股份有限公司 一种中空平板全陶瓷过滤膜元件

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101913884A (zh) * 2010-07-16 2010-12-15 西安电子科技大学 利用柠檬酸盐溶胶处理铝质耐火材料颗粒的方法
CN102010187B (zh) * 2010-10-01 2013-03-13 江苏省陶瓷研究所有限公司 一种多孔陶瓷过滤管用的陶瓷膜及其改性制备方法
CN102092993A (zh) * 2010-11-25 2011-06-15 浙江大学 一种再生骨料混凝土的纳米强化方法
CN102408250A (zh) * 2011-07-25 2012-04-11 三达膜科技(厦门)有限公司 一种陶瓷膜支撑体及其制备方法
CN102380321A (zh) * 2011-09-07 2012-03-21 三达膜科技(厦门)有限公司 一种氧化铝陶瓷膜膜层的制备方法
CN102584269A (zh) * 2012-01-11 2012-07-18 浙江大学 一种有钛酸铝涂层的耐火材料颗粒及其制备方法
CN102806018B (zh) * 2012-07-12 2014-11-05 三达膜环境技术股份有限公司 一种低温烧结制备耐酸碱二氧化钛陶瓷超滤膜的方法
CN105561803B (zh) * 2015-12-29 2017-10-17 安徽名创新材料科技有限公司 一种大通量、高精度高温凝结水除油除铁用陶瓷超滤膜的制备方法
CN106242624A (zh) * 2016-08-02 2016-12-21 山东华瓷环保设备科技有限公司 一种氧化铝多通道陶瓷膜支撑体的制备方法
CN107793158A (zh) * 2017-11-22 2018-03-13 山东华瓷环保设备科技有限公司 一种碳化硅多通道陶瓷膜的制备工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19857590B4 (de) * 1998-12-14 2004-09-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Keramische Flachmembran und Verfahren zu ihrer Herstellung
CN104587846A (zh) * 2014-12-24 2015-05-06 长安大学 一种低温烧结制备多孔陶瓷滤膜的方法
CN107337442A (zh) * 2017-07-11 2017-11-10 芜湖市宝艺游乐科技设备有限公司 一种颗粒稳定发泡工艺制备氧化铝陶瓷支撑体及其制备方法
CN107619281A (zh) * 2017-08-03 2018-01-23 浙江理工大学 一种低温烧结耐酸碱多孔碳化硅陶瓷支撑体的制备方法
CN108392990A (zh) * 2018-02-24 2018-08-14 江苏新时高温材料股份有限公司 一种中空平板全陶瓷过滤膜元件

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114225715A (zh) * 2021-11-17 2022-03-25 华南理工大学 一种高性能非对称陶瓷过滤膜及其制备方法
CN114225715B (zh) * 2021-11-17 2022-09-20 华南理工大学 一种高性能非对称陶瓷过滤膜及其制备方法

Also Published As

Publication number Publication date
CN112759370A (zh) 2021-05-07

Similar Documents

Publication Publication Date Title
WO2021073100A1 (zh) 一种高强度陶瓷过滤膜的制备方法
CN107200599B (zh) 多孔氧化铝陶瓷及其制备方法和应用
CN108585810B (zh) 微孔陶瓷及其制备方法和雾化芯
WO2017004776A1 (zh) 多孔氧化铝陶瓷及其制备方法
JP6171023B2 (ja) 多層セメント皮膜を含んでなるハニカム構造
CN111545078A (zh) 平板陶瓷膜及其制备方法
CN108176249B (zh) 一种碳化硅纳米纤维膜的制备方法
US10807914B2 (en) Skinning of ceramic honeycomb bodies
WO2018095277A1 (zh) 板状刚玉陶瓷膜支撑体的制备方法
CN105884394A (zh) 一种低温制备多孔碳化硅支撑体的方法
CN108440008B (zh) 一种高孔隙率陶瓷过滤材料及其制备方法
CN113842787B (zh) 一种埃洛石纳米管增强的超薄陶瓷膜及其制备方法
US8303889B2 (en) Method for making a SiC based ceramic porous body
CN108392990A (zh) 一种中空平板全陶瓷过滤膜元件
WO2022142168A1 (zh) 一种低熔点多孔陶瓷材料及其制备方法
CN113999046B (zh) 一种低温反应烧结碳化硅陶瓷膜的制备方法
CN110981453B (zh) 一种轻质陶瓷过滤膜的制备方法
CN115592120B (zh) 一种金属基陶瓷复合膜的修补工艺
WO2022068109A1 (zh) 一种高通量抗污染陶瓷过滤膜及其制备方法
CN1821181A (zh) 微孔陶瓷的制备方法
CN115521158B (zh) 一种高透气性陶瓷纤维过滤管的制备方法
CN108046834B (zh) 一种具有镶嵌结构的多孔陶瓷加热体的制备工艺
CN110743387A (zh) 管式陶瓷膜的封端方法
CN113651633B (zh) 一种莫来石纤维增强碳化硅陶瓷过滤管及其制备方法
CN106698451B (zh) 一种dd3r分子筛膜的合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20876714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20876714

Country of ref document: EP

Kind code of ref document: A1