CN114249582B - 一种内部多流道碟式氧化铝陶瓷膜及其制备方法 - Google Patents
一种内部多流道碟式氧化铝陶瓷膜及其制备方法 Download PDFInfo
- Publication number
- CN114249582B CN114249582B CN202011027158.XA CN202011027158A CN114249582B CN 114249582 B CN114249582 B CN 114249582B CN 202011027158 A CN202011027158 A CN 202011027158A CN 114249582 B CN114249582 B CN 114249582B
- Authority
- CN
- China
- Prior art keywords
- ceramic membrane
- internal multi
- alumina ceramic
- heating
- channel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
- C04B35/111—Fine ceramics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0039—Inorganic membrane manufacture
- B01D67/0046—Inorganic membrane manufacture by slurry techniques, e.g. die or slip-casting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/024—Oxides
- B01D71/025—Aluminium oxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
- B28B1/30—Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon
- B28B1/32—Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon by projecting, e.g. spraying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B7/00—Moulds; Cores; Mandrels
- B28B7/16—Moulds for making shaped articles with cavities or holes open to the surface, e.g. with blind holes
- B28B7/18—Moulds for making shaped articles with cavities or holes open to the surface, e.g. with blind holes the holes passing completely through the article
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B7/00—Moulds; Cores; Mandrels
- B28B7/34—Moulds, cores, or mandrels of special material, e.g. destructible materials
- B28B7/342—Moulds, cores, or mandrels of special material, e.g. destructible materials which are at least partially destroyed, e.g. broken, molten, before demoulding; Moulding surfaces or spaces shaped by, or in, the ground, or sand or soil, whether bound or not; Cores consisting at least mainly of sand or soil, whether bound or not
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63404—Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/63416—Polyvinylalcohols [PVA]; Polyvinylacetates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63448—Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/63488—Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/636—Polysaccharides or derivatives thereof
- C04B35/6365—Cellulose or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/06—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
- C04B38/063—Preparing or treating the raw materials individually or as batches
- C04B38/0635—Compounding ingredients
- C04B38/0645—Burnable, meltable, sublimable materials
- C04B38/067—Macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5445—Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
本发明公开了一种内部多流道碟式氧化铝陶瓷膜及其制备方法,采用直接凝固注模成型工艺并结合消失模法,可以一步成型内部多流道的碟式氧化铝陶瓷膜支撑体,且通过调节制备工艺能够加速浆料凝固,显著减短脱模时间,同时不影响陶瓷膜性能。
Description
技术领域
本发明属于水处理技术领域,具体涉及碟式陶瓷膜。
背景技术
用于动态错流过滤的碟式陶瓷膜,在自身旋转时产生离心力,且与过滤液会在膜面上形成一个平行于膜面的剪切应力,使膜面不易形成截留物隔离层,有效减缓膜表面的浓差极化或滤饼层等污染物,降低了过滤阻力和膜污染。碟式陶瓷膜在过滤过程中不容易堵塞,浓缩倍数及过滤效果高、系统运行成本低、使用寿命长,特别适用于高粘度、高浓度、高固含量料液的过滤,具有静态管式陶瓷膜不可比拟的优势。在碟式陶瓷膜饼的中间开设直线型或曲线形的流道,可降低膜的渗透阻力以及有利于膜渗透液的流通。
采用陶瓷干法成型制备的碟式陶瓷膜材料具有微观结构不均匀、易团聚、形状单一等诸多缺点,因此采用干法工艺成型内部多流道的碟式陶瓷膜会大大增加膜制造工艺的难度、工艺复杂性和制造成本。目前还有用于动态错流过滤的内部多流道的碟式陶瓷膜的液压成型方法,该工艺需要带有通道槽的模具,模具加工难、成本高,其在脱模时的难度也很高,并且需要将两块素坯扣合成一个完整的圆饼,扣合处还需要高温结合剂粘合,很容易产生不规则品,或存在泄露风险。
陶瓷湿法成型可有效控制颗粒团聚以及杂质、减少缺陷,易获得组织成分均一、形状复杂的陶瓷坯体。传统的湿法成型,如普通的注浆成型、离心注浆成型以及压滤铸造成型等,主要依靠多孔模具的毛细吸力、离心力及外加压力来成型,使坯体密度和强度提高,但所成型的坯体密度不均匀且生产效率低。注射成型虽可成型尺寸精度高、形状复杂的陶瓷坯体,但由于大量有机物的加入使脱脂过程耗时耗能,且脱脂所需时间随坯体体积的增大而延长,易产生开裂、坍塌等缺陷。
直接凝固注模成型(简称DCC)是一种新的胶态成型陶瓷部件的方法。DCC成型采用高固含量的陶瓷浆料,通过改变浆料的pH值使其移至等电点IEP或增加离子浓度压缩双电层,从而减少或消除离子间的静电斥力,利用范德华作用力原位凝固,可一次成型制备各种形状复杂的陶瓷部件。与其他湿法成型相比,DCC具有显著的优势:接近净尺寸的原位凝固,成型和烧结过程中尺寸和形状变化都很小;可通过浆料固含量、pH值、电解质浓度、温度等来调节浆料粘度及凝固速度,成型过程便于控制;湿坯体有足够脱模强度,可避免脱模及后续干燥引起的开裂变形;不添加或仅需要极少量的有机添加剂,不需要脱脂过程;可成型各种密度高、均匀性好、形状复杂的陶瓷坯体;采用非吸水性无孔模具,成本低廉。目前有三类典型的DCC体系,酶催化体系、高价离子体系和有机物体系,但这些凝固体系目前的应用只局限于部分陶瓷的成型,如以Al2O3、SiC、Si3N4为代表的氧化物和非氧化物,而对多相陶瓷、多孔陶瓷等研究很少。脱模时间偏长是限制其应用的主要问题。
发明内容
本发明的目的在于克服现有技术的不足之处,提供了一种内部多流道碟式氧化铝陶瓷膜及其制备方法。本发明有效缩短了陶瓷膜支撑体的脱模时间,且不影响陶瓷膜的性能和过滤效果。
本发明解决其技术问题所采用的技术方案之一是:
一种内部多流道碟式氧化铝陶瓷膜的制备方法,包括:
1)将平均粒径为4~12μm的氧化铝粉I按照体积比50~70%与水混合,添加适量硝酸至pH值为3.5~4.5,按照不高于0.2mol/L的离子浓度添加NH4NO3,混合制成悬浮液形式的浆料;将浆料在50~70℃加热5~30min后注入常温的模具中,在空气中放置一段时间,待浆料转变为具有一定强度和弹性的固态后脱模;得到的生坯烘干后进行烧结:先升温至300~450℃保温1~3小时,然后升温至800~1000℃保温1~3小时,继续升温至1400~1600℃保温1~3小时,升温速率为1~5℃/min,得到内部多流道碟式氧化铝陶瓷膜支撑体;
2)将平均粒径为0.1~1μm的氧化铝粉II、分散剂、粘结剂与水混合研磨得到涂膜液;将涂膜液均匀喷涂到支撑体外表面,干燥(烘干或自然干燥)后进行烧结:以1~5℃/min的升温速率升温至1000~1300℃保温1~3小时,得到所述内部多流道碟式氧化铝陶瓷膜。
其中,所述步骤1)中,“氧化铝粉I按照体积比50~70%与水混合”指的是氧化铝粉I与水的体积比为50~70:100。所述步骤1)中,“按照不高于0.2mol/L的离子浓度添加NH4NO3”中的“离子浓度”为终离子浓度,指的是添加NH4NO3后,体系中包括NO3 —在内的离子的浓度为0~0.2mol/L且不为0。
一实施例中:所述氧化铝粉I的纯度>99%;所述氧化铝粉II的纯度>99%。
一实施例中:所述硝酸为质量浓度64~66%的浓硝酸。
一实施例中:所述步骤1)中,烘干为65~75℃烘干22~26h。
一实施例中:所述粘结剂包括甲基纤维素、羟丙基甲基纤维素、聚乙二醇或聚乙烯醇中的至少一种。
一实施例中:所述甲基纤维素的取代度为1.7~2.2;所述羟丙基甲基纤维素的粘度为100~50000cps;所述聚乙二醇的分子量为200~600;聚乙烯醇的分子量为1800~2200。
一实施例中:所述分散剂包括聚乙烯醇,分子量为1800~2200,纯度大于99%。
一实施例中:所述涂膜液的研磨以氧化铝球为研磨介质,高速研磨2~5小时。所述“高速”指的是300~500rpm
一实施例中:所述模具包括第一分型模块和第二分型模块,所述第一分型模块上设有定位槽和中心定位孔;所述第二分型模块上设有定位销和中心定位通孔;所述第一分型模块和所述第二分型模块通过所述定位槽和所述定位销配合装接并形成碟状的型腔;所述模具还设有注浆孔;消失模的模样通过其中心设置的第一定位杆和第二定位杆装接在所述模具的中心定位孔和中心定位通孔并位于所述型腔中。
一实施例中:所述消失模的模样为涡形叶片状。
一实施例中:所述模具和消失模模样的材质包括聚苯乙烯(EPS)、聚甲基丙烯酸甲酯(PMMA)、EPS-PMMA共聚物、PP、PE、HDPE、ABS、PA塑料(尼龙)或聚碳酸酯中的一种。
本发明解决其技术问题所采用的技术方案之二是:
一种根据上述制备方法制备的内部多流道碟式氧化铝陶瓷膜。
本发明所涉及的设备、试剂、工艺、参数等,除有特别说明外,均为常规设备、试剂、工艺、参数等,不再作实施例。
本发明所列举的所有范围包括该范围内的所有点值。
本发明中,除有特别说明外,所述“份”均为重量份数,单位可以为吨、千克或克。
本发明所述“大约”、“约”或“左右”等指的是所述范围或数值的±10%范围内。
本发明中,所述“常温”“室温”均指常规环境温度,可以为10~30℃。
本技术方案与背景技术相比,它具有如下优点:
本发明采用直接凝固注模成型工艺并结合消失模法,可以一步成型内部多流道的碟式氧化铝陶瓷膜支撑体;选择合适粒径及粒度分布范围窄的氧化铝粉,并通过控制支撑体生坯的烧结温度,即低于生坯的致密化烧结温度,来制备多孔支撑体;通过同时调节高浓度浆料的pH值和离子浓度来加速浆料凝固,显著减短脱模时间,同时不影响陶瓷膜性能。
附图说明
图1为本发明实施例和对比例中采用的模具和消失模的模样的装配方式的立体分解示意图。
图2为本发明实施例和对比例中脱模后得到的生坯和生坯内部的消失模的模样的组合示意图。
图3a~图3d为本发明实施例和对比例中烧结后得到的支撑体示意图。其中,图3a为支撑体整体示意图,图3b为图3a中的A-A向的剖面图,即支撑体整体剖面图,图3c为支撑体流道和中心孔道示意图,图3d为图3c中的B-B向的剖面图,即为支撑体流道和中心孔道剖面图。
附图标记:第一分型模块10,定位槽11,中心定位孔12,注浆孔13;第二分型模块20,定位销21,中心定位通孔22;消失模的模样30,第一定位杆31,第二定位杆32;陶瓷膜支撑体40,流道41,中心孔道42。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
以下实施例和对比例采用的模具,包括第一分型模块10和第二分型模块20,第一分型模块10上设有定位槽11和中心定位孔12,第二分型模块20上设有定位销21和中心定位通孔22;第一分型模块10和第二分型模块20通过定位槽11和定位销21相结合进行定位,并通过左右对称挤压靠紧的方式完成模具咬合,并在内部形成碟状的型腔,同时形成连通外界和型腔的注浆孔13。
以下实施例和对比例采用的消失模的模样30为待成型的流道形状,例如为涡形叶片状,但并不以此为限。流道形状及大小可以根据需要设置。消失模的模样30的中心的两侧设有第一定位杆31和第二定位杆32,分别与第一分型模块10的中心定位孔12和第二分型模块20的中心定位通孔22相匹配。消失模的模样30通过第一定位杆31适配装接在第一分型模块10的中心定位孔12,通过第二定位杆32适配装接在第二分型模块20的中心定位通孔22,并悬空地位于所述碟状的型腔中,如图1所示。通过消失模的模样30成型流道41,且通过第二定位杆32成型中心孔道42。
模具与消失模的模样30采用的材质可以为聚苯乙烯(EPS)、聚甲基丙烯酸甲酯(PMMA)、EPS-PMMA共聚物、PP、PE、HDPE、ABS、PA塑料或聚碳酸酯中的一种。消失模的模样30采用高温下可气化的材质,脱模得到的生坯(如图2)进行烧结的过程中,内部的消失模的模样30在高温下气化,从而形成内部具有流道41、流道41通过中心孔道42与外界连通的陶瓷膜支撑体40(如图3a~图3d)。
实施例1
1)内部多流道碟式氧化铝陶瓷膜支撑体的制备
将平均粒径为10μm的氧化铝粉I按照体积比65%与2升去离子水混合,并添加1mL浓度为65%的硝酸,充分搅拌后测得料液的pH值为3.85;按照0.1mol/L的离子浓度添加NH4NO3;用行星式球磨机球磨混合0.5h制成浆料;将浆料在60℃水浴加热15min后,从如图1所示的注浆孔中注入常温的模具中;在空气中放置1h后即可脱模,生坯如图2所示,厚度约5mm;将生坯放置在65℃烘箱中24h烘干后进行烧结:先以2℃/min的速率升温至450℃保温2小时,然后以3℃/min的速率升温至900℃保温2小时,再以2℃/min的速率升温至1580℃保温2小时,得内部多流道碟式氧化铝陶瓷膜支撑体,流道的结构示意图如图3a和图3d。
2)内部多流道碟式氧化铝陶瓷膜膜层的制备
称取平均粒径为0.6μm的氧化铝粉II 100份、分子量2000的聚乙烯醇5份、粘度为4000cps的羟丙基甲基纤维素15份,然后加入去离子水,并放入行星式球磨机中,以氧化铝球为研磨介质,高速研磨3小时得涂膜液,涂膜液的固含量为25%;用喷枪将涂膜液均匀喷涂到支撑体外表面,室温放置3h后烧结:以3℃/min的速率升温至1300℃保温2小时,得到内部多流道碟式氧化铝陶瓷膜成品。
本实施例所制备的内部多流道碟式氧化铝陶瓷膜支撑体,脱模时间短、烧结线收缩率小、强度高,抗折强度为41MPa。膜层由平均粒径为0.6μm的氧化铝颗粒组成,颗粒均匀性较好,过滤精度约为0.2μm。该实施例制得的内部多流道碟式陶瓷膜的孔隙率为37.9%,过滤通量可达1.53m3/(m2h)。
实施例2
1)内部多流道碟式氧化铝陶瓷膜支撑体的制备
将平均粒径为7μm的氧化铝粉I按照体积比65%与2升去离子水混合,并添加0.8mL浓度为65%的硝酸,充分搅拌后测得料液的pH值为4.02;按照0.1mol/L的离子浓度添加NH4NO3;用行星式球磨机球磨混合0.5h制成浆料;将浆料在60℃水浴加热15min后,从如图1所示的注浆孔中注入常温的模具中;在空气中放置1h后即可脱模,生坯如图2所示,厚度约5mm;将生坯放置在65℃烘箱中24h烘干后进行烧结:先以2℃/min的速率升温至450℃保温2小时,然后以3℃/min的速率升温至900℃保温2小时,再以2℃/min的速率升温至1530℃保温2小时,得内部多流道碟式氧化铝陶瓷膜支撑体,流道的结构示意图如图3a和图3d。
2)内部多流道碟式氧化铝陶瓷膜膜层的制备
称取平均粒径为0.3μm的氧化铝粉II 100份、分子量2000的聚乙烯醇5份、粘度为4000cps的羟丙基甲基纤维素15份,然后加入去离子水,并放入行星式球磨机中,以氧化铝球为研磨介质,高速研磨3小时得涂膜液,涂膜液的固含量为20%;用喷枪将涂膜液均匀喷涂到支撑体外表面,室温放置5h后烧结:以3℃/min的速率升温至1200℃保温2小时,得内部多流道碟式氧化铝陶瓷膜成品。
本实施例所制备的内部多流道碟式氧化铝陶瓷膜支撑体,脱模时间短、烧结线收缩率小、强度高,抗折强度为39MPa。膜层由平均粒径为0.3μm的氧化铝颗粒组成,颗粒均匀性较好,过滤精度约为0.1μm。该实施例制得的内部多流道碟式陶瓷膜的孔隙率为39.3%,过滤通量可达1.3m3/(m2h)。
实施例3
1)内部多流道碟式氧化铝陶瓷膜支撑体的制备
将平均粒径为4μm的氧化铝粉I按照体积比65%与2升去离子水混合,并添加0.7mL浓度为65%的硝酸,充分搅拌后测得料液的pH值为3.93;按照0.1mol/L的离子浓度添加NH4NO3;用行星式球磨机球磨混合0.5h制成浆料;将浆料在60℃水浴加热15min后,从如图1所示的注浆孔中注入常温的模具中;在空气中放置1h后即可脱模,生坯如图2所示,厚度约5mm;将生坯放置在65℃烘箱中24h烘干后进行烧结:先以2℃/min的速率升温至450℃保温2小时,然后以3℃/min的速率升温至900℃保温2小时,再以2℃/min的速率升温至1500℃保温2小时,得内部多流道碟式氧化铝陶瓷膜支撑体,流道的结构示意图如图3a和图3d。
2)内部多流道碟式氧化铝陶瓷膜膜层的制备
称取平均粒径为0.15μm的氧化铝粉II 100份、分子量2000的聚乙烯醇5份、粘度为4000cps的羟丙基甲基纤维素15份,然后加入去离子水,并放入行星式球磨机中,以氧化铝球为研磨介质,高速研磨3小时得涂膜液,涂膜液的固含量为18%;用喷枪将涂膜液均匀喷涂到支撑体外表面,室温放置10h后烧结:以3℃/min的速率升温至1080℃保温2小时,得内部多流道碟式氧化铝陶瓷膜成品。
本实施例所制备的内部多流道碟式氧化铝陶瓷膜支撑体,脱模时间短、烧结线收缩率小、强度高,抗折强度为36MPa。膜层由平均粒径为0.15μm的氧化铝颗粒组成,颗粒均匀性较好,过滤精度约为80nm。该实施例制得的内部多流道碟式陶瓷膜的孔隙率为40.7%,过滤通量可达0.92m3/(m2h)。
对比例1:未水浴加热浆料
1)内部多流道碟式氧化铝陶瓷膜支撑体的制备
将平均粒径在4μm的氧化铝粉I按照体积比65%与2升去离子水混合,并添加0.7mL浓度为65%的硝酸,充分搅拌后测得料液的pH值为3.95;按照0.1mol/L的离子浓度添加NH4NO3;用行星式球磨机球磨混合0.5h制成悬浮液;将悬浮液从如图1所示的注浆孔中注入常温的模具中;在空气中放置8h后方可脱模,生坯如图2所示,厚度约5mm;将生坯放置在65℃烘箱中24h烘干后进行烧结:先以2℃/min的速率升温至450℃保温2小时,然后以3℃/min的速率升温至900℃保温2小时,再以2℃/min的速率升温至1500℃保温2小时,得内部多流道碟式氧化铝陶瓷膜支撑体,流道的结构示意图如图3a和图3d。
2)内部多流道碟式氧化铝陶瓷膜膜层的制备
称取平均粒径为0.15μm的氧化铝粉II 100份、分子量2000的聚乙烯醇5份、粘度为4000cps的羟丙基甲基纤维素15份,然后加入去离子水,并放入行星式球磨机中,以氧化铝球为研磨介质,高速研磨3小时得涂膜液,涂膜液的固含量为18%;用喷枪将涂膜液均匀喷涂到支撑体外表面,室温放置10h后烧结:以3℃/min的速率升温至1080℃保温2小时,得内部多流道碟式氧化铝陶瓷膜成品。
本对比例所制备的内部多流道碟式氧化铝陶瓷膜支撑体,与实施例3对比,脱模时间较长、其余性能相差不大。烧结线收缩率小、强度高,抗折强度为35MPa。膜层由平均粒径为0.15μm的氧化铝颗粒组成,颗粒均匀性较好,过滤精度约为80nm。该实施例制得的内部多流道碟式陶瓷膜的孔隙率为40.8%,过滤通量可达0.91m3/(m2h)。
对比例2:不添加NH4NO3
1)内部多流道碟式氧化铝陶瓷膜支撑体的制备
将平均粒径在4μm的氧化铝粉I按照体积比65%与2升去离子水混合,并添加0.7mL浓度为65%的硝酸,充分搅拌后测得料液的pH值为3.94;用行星式球磨机球磨混合0.5h制成悬浮液;将悬浮液在60℃水浴加热15min后,从如图1所示的注浆孔中注入常温的模具中;在空气中放置13h后方可脱模,生坯如图2所示,厚度约5mm;将生坯放置在65℃烘箱中24h烘干后进行烧结:先以2℃/min的速率升温至450℃保温2小时,然后以3℃/min的速率升温至900℃保温2小时,再以2℃/min的速率升温至1500℃保温2小时,得内部多流道碟式氧化铝陶瓷膜支撑体,流道的结构示意图如图3a和图3d。
2)内部多流道碟式氧化铝陶瓷膜膜层的制备
称取平均粒径为0.15μm的氧化铝粉II 100份、分子量2000的聚乙烯醇5份、粘度为4000cps的羟丙基甲基纤维素15份,然后加入去离子水,并放入行星式球磨机中,以氧化铝球为研磨介质,高速研磨3小时得涂膜液,涂膜液的固含量为18%;用喷枪将涂膜液均匀喷涂到支撑体外表面,室温放置10h后烧结:以3℃/min的速率升温至1080℃保温2小时,得内部多流道碟式氧化铝陶瓷膜成品。
本对比例所制备的内部多流道碟式氧化铝陶瓷膜支撑体,与实施例3对比,脱模时间长、其余性能相差不大。烧结线收缩率小、强度高,抗折强度为35MPa。膜层由平均粒径为0.15μm的氧化铝颗粒组成,颗粒均匀性较好,过滤精度约为80nm。该实施例制得的内部多流道碟式陶瓷膜的孔隙率为40.4%,过滤通量可达0.92m3/(m2h)。
以上所述,仅为本发明较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。
Claims (8)
1.一种内部多流道碟式氧化铝陶瓷膜的制备方法,其特征在于:包括:
1)将平均粒径为4~12μm的氧化铝粉I按照体积比50~70%与水混合,添加硝酸至pH值为3.5~4.5,按照不高于0.2mol/L的离子浓度添加NH4NO3,混合制成浆料;将浆料在50~70℃加热5~30min后注入常温的模具中,在空气中放置一段时间,待浆料转变为固态后脱模;得到的生坯在65~75℃烘干22~26h后进行烧结:先升温至300~450℃保温1~3小时,然后升温至800~1000℃保温1~3小时,继续升温至1400~1600℃保温1~3小时,升温速率为1~5℃/min,得到内部多流道碟式氧化铝陶瓷膜支撑体;
所述模具包括第一分型模块和第二分型模块,所述第一分型模块上设有定位槽和中心定位孔;所述第二分型模块上设有定位销和中心定位通孔;所述第一分型模块和所述第二分型模块通过所述定位槽和所述定位销配合装接并形成碟状的型腔;所述模具还设有注浆孔;消失模的模样通过其上设置的第一定位杆和第二定位杆装接在所述模具的中心定位孔和中心定位通孔并位于所述型腔中;所述消失模的模样采用高温下可气化的材质,包括聚苯乙烯、聚甲基丙烯酸甲酯、EPS-PMMA共聚物、PP、PE、HDPE、ABS、PA塑料或聚碳酸酯中的一种;
2)将平均粒径为0.1~1μm的氧化铝粉II、分散剂、粘结剂与水混合研磨得到涂膜液;将涂膜液均匀喷涂到支撑体外表面,干燥后进行烧结:以1~5℃/min的升温速率升温至1000~1300℃保温1~3小时,得到所述内部多流道碟式氧化铝陶瓷膜。
2.根据权利要求1所述的内部多流道碟式氧化铝陶瓷膜的制备方法,其特征在于:所述氧化铝粉I的纯度>99%;所述氧化铝粉II的纯度>99%。
3.根据权利要求1所述的内部多流道碟式氧化铝陶瓷膜的制备方法,其特征在于:所述硝酸为质量浓度64~66%的浓硝酸。
4.根据权利要求1所述的内部多流道碟式氧化铝陶瓷膜的制备方法,其特征在于:所述粘结剂包括甲基纤维素、羟丙基甲基纤维素、聚乙二醇或聚乙烯醇中的至少一种;所述分散剂包括聚乙烯醇。
5.根据权利要求4所述的内部多流道碟式氧化铝陶瓷膜的制备方法,其特征在于:所述甲基纤维素的取代度为1.7~2.2;所述羟丙基甲基纤维素的粘度为100~50000cps;所述聚乙二醇的分子量为200~600;所述聚乙烯醇的分子量为1800~2200。
6.根据权利要求1所述的内部多流道碟式氧化铝陶瓷膜的制备方法,其特征在于:所述消失模的模样为涡形叶片状。
7.根据权利要求1所述的内部多流道碟式氧化铝陶瓷膜的制备方法,其特征在于:所述模具的材质包括聚苯乙烯、聚甲基丙烯酸甲酯、EPS-PMMA共聚物、PP、PE、HDPE、ABS、PA塑料或聚碳酸酯中的一种。
8.一种根据权利要求1至7中任一项所述的制备方法制备的内部多流道碟式氧化铝陶瓷膜。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011027158.XA CN114249582B (zh) | 2020-09-25 | 2020-09-25 | 一种内部多流道碟式氧化铝陶瓷膜及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011027158.XA CN114249582B (zh) | 2020-09-25 | 2020-09-25 | 一种内部多流道碟式氧化铝陶瓷膜及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114249582A CN114249582A (zh) | 2022-03-29 |
CN114249582B true CN114249582B (zh) | 2023-01-10 |
Family
ID=80790670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011027158.XA Active CN114249582B (zh) | 2020-09-25 | 2020-09-25 | 一种内部多流道碟式氧化铝陶瓷膜及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114249582B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117754687A (zh) * | 2024-01-23 | 2024-03-26 | 长春长光精瓷复合材料有限公司 | 一种具有内部连通结构的陶瓷结构件成型方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102757228A (zh) * | 2011-04-26 | 2012-10-31 | 中国科学院声学研究所 | 一种压电陶瓷球壳的制备方法 |
CN106512751A (zh) * | 2016-12-01 | 2017-03-22 | 三达膜科技(厦门)有限公司 | 一种圆盘式多通道平板陶瓷膜的制备方法 |
CN107602091A (zh) * | 2017-09-22 | 2018-01-19 | 山东理工大学 | 一种碟式氧化铝过滤膜的制备方法 |
WO2018095277A1 (zh) * | 2016-11-25 | 2018-05-31 | 山东硅元新型材料股份有限公司 | 板状刚玉陶瓷膜支撑体的制备方法 |
CN110922204A (zh) * | 2019-12-08 | 2020-03-27 | 浙江理工大学 | 一种低温烧结氧化铝陶瓷膜的制备方法 |
-
2020
- 2020-09-25 CN CN202011027158.XA patent/CN114249582B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102757228A (zh) * | 2011-04-26 | 2012-10-31 | 中国科学院声学研究所 | 一种压电陶瓷球壳的制备方法 |
WO2018095277A1 (zh) * | 2016-11-25 | 2018-05-31 | 山东硅元新型材料股份有限公司 | 板状刚玉陶瓷膜支撑体的制备方法 |
CN106512751A (zh) * | 2016-12-01 | 2017-03-22 | 三达膜科技(厦门)有限公司 | 一种圆盘式多通道平板陶瓷膜的制备方法 |
CN107602091A (zh) * | 2017-09-22 | 2018-01-19 | 山东理工大学 | 一种碟式氧化铝过滤膜的制备方法 |
CN110922204A (zh) * | 2019-12-08 | 2020-03-27 | 浙江理工大学 | 一种低温烧结氧化铝陶瓷膜的制备方法 |
Non-Patent Citations (1)
Title |
---|
氧化铝陶瓷直接凝固注模成型(DCC)工艺参数的研究;石磊等;《材料科学与工艺》;20081031;第16卷(第5期);第688-691页 * |
Also Published As
Publication number | Publication date |
---|---|
CN114249582A (zh) | 2022-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108748611B (zh) | 一种陶瓷坯体的成型方法 | |
CN107200597B (zh) | 一种高孔隙率复杂多孔陶瓷的直接凝固注模成型制备方法 | |
US20090159853A1 (en) | Colloidal templating process for manufacture of highly porous ceramics | |
CN108069720B (zh) | 一种环路热管用氮化硅梯度多孔毛细芯及其制备方法 | |
CN106512751A (zh) | 一种圆盘式多通道平板陶瓷膜的制备方法 | |
CN110950651A (zh) | 一种基于墨水直书写3d打印技术制备多级多孔陶瓷的方法 | |
US4976903A (en) | Shaping molds and shaping of ceramic bodies by using such shaping molds | |
CN114249582B (zh) | 一种内部多流道碟式氧化铝陶瓷膜及其制备方法 | |
CN115521158B (zh) | 一种高透气性陶瓷纤维过滤管的制备方法 | |
CN107696235A (zh) | 一种氧化锆陶瓷手机后盖的成型制备方法 | |
CN110141972A (zh) | 碟盘式平板陶瓷过滤膜的制备方法 | |
CN105479585A (zh) | 三维打印制备具有立体通道的蜂窝型陶瓷膜组件的方法 | |
CN111825448B (zh) | 湿纺浸渍法制备具有致密孔壁的直通孔氧化锆陶瓷的方法 | |
CN112500141A (zh) | 光固化成型制备多孔石英陶瓷的方法 | |
CN111605037A (zh) | 一种高压注浆成型装置以及一种ito旋转靶材的制备方法 | |
CN114028953B (zh) | 一种外支撑碟式陶瓷膜及其制备方法 | |
CN113270591B (zh) | 一种阳极支撑sofc电解质薄膜的制备方法 | |
CN103482981A (zh) | 一种多孔氮化硅陶瓷材料的制备方法 | |
KR100879127B1 (ko) | 동결성형을 이용한 다공체의 기공 제어방법 및 그에 의해제조된 다공체 | |
CN111013403A (zh) | 中空平板陶瓷膜的制备方法 | |
US4126653A (en) | Method of manufacturing silicon nitride products | |
CN111848158B (zh) | 湿纺共挤出制备具有致密孔壁的直通孔氧化锆陶瓷的方法 | |
CN102581993A (zh) | 一种调控硅橡胶模具尺寸的方法 | |
JPH01210306A (ja) | スラリー状材料成形用型およびその製造方法 | |
CN110898683B (zh) | 一种陶瓷过滤膜的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |