WO2023160057A1 - 柔性灯条的制备方法、柔性灯条以及显示装置 - Google Patents

柔性灯条的制备方法、柔性灯条以及显示装置 Download PDF

Info

Publication number
WO2023160057A1
WO2023160057A1 PCT/CN2022/134282 CN2022134282W WO2023160057A1 WO 2023160057 A1 WO2023160057 A1 WO 2023160057A1 CN 2022134282 W CN2022134282 W CN 2022134282W WO 2023160057 A1 WO2023160057 A1 WO 2023160057A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible
light
circuit structure
reflective sheet
chip
Prior art date
Application number
PCT/CN2022/134282
Other languages
English (en)
French (fr)
Inventor
岳春波
李健林
张汝楠
Original Assignee
深圳Tcl新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳Tcl新技术有限公司 filed Critical 深圳Tcl新技术有限公司
Publication of WO2023160057A1 publication Critical patent/WO2023160057A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body

Definitions

  • the present application belongs to the field of display devices, and in particular relates to a method for preparing a flexible light bar, a flexible light bar and a display device.
  • Liquid crystal display devices are widely used in electronic display devices.
  • Most of the display devices currently on the market are backlit liquid crystal displays, which include a liquid crystal display panel and a backlight module. Since the liquid crystal display panel itself does not emit light, the light source provided by the backlight module is needed to display images normally. Therefore, the backlight module becomes one of the key components of the liquid crystal display device.
  • Backlight modules are divided into side-type backlight modules and direct-type backlight modules according to the incident position of the backlight. At present, direct-type backlight modules are widely used in the market. Lamps (light emitting diodes) are arranged behind the liquid crystal display panel to directly form a surface light source for the liquid crystal display panel.
  • the current direct-lit backlight module includes a backplane and an LED light bar arranged on one side of the backplane.
  • the existing LED light bar has a long production process line and low production efficiency of the LED light bar.
  • Embodiments of the present application provide a method for preparing a flexible light bar, a flexible light bar, and a display device, so as to simplify the production process of the flexible light bar and improve the production efficiency of the flexible light bar.
  • the embodiment of the present application provides a method for preparing a flexible light bar, including:
  • a flexible reflection sheet is provided, and the material of the flexible reflection sheet includes polyethylene terephthalate and titanium dioxide;
  • An encapsulation layer covering each of the light-emitting chips is formed on the flexible reflection sheet.
  • the forming a circuit structure on the flexible reflective sheet includes:
  • the circuit structure is printed on the flexible reflection sheet by using a screen printing process or a nanoimprinting process.
  • the fixing a plurality of light-emitting chips on the circuit structure, and realizing the circuit connection between the plurality of light-emitting chips and the circuit structure includes:
  • the light-emitting chip is a MiniLED chip, and the MiniLED chip is fixed on the circuit structure by using a MiniLED die-bonding machine;
  • the forming a circuit structure on the flexible reflective sheet includes:
  • a screen printing screen is provided; wherein, a pattern corresponding to the circuit structure is printed on the screen printing screen;
  • the material of the conductive paste is nano-silver or nano-copper material
  • the conductive paste is baked to solidify the conductive paste, and the circuit structure is formed after the conductive paste is cured.
  • the forming a circuit structure on the flexible reflective sheet includes:
  • the circuit structure is etched on the copper foil by using a photolithography process.
  • the cladding copper foil on the flexible reflection sheet; and etching the circuit structure on the copper foil by photolithography include:
  • the fixing a plurality of light-emitting chips on the circuit structure, and realizing the circuit connection between the plurality of light-emitting chips and the circuit structure includes:
  • the material of the electrical connectors is nano-conductive material or low-temperature sintered solder paste.
  • the light-emitting chip is a MiniLED chip, and the MiniLED chip is connected to the electrical connector by wire sintering, so as to realize the electrical connection between the MiniLED chip and the circuit structure.
  • the sintering temperature is less than 150°C.
  • forming an encapsulation layer covering each of the light-emitting chips on the flexible reflective sheet includes:
  • the encapsulation glue is sprayed onto each of the light-emitting chips by a spraying device to form the encapsulation layer.
  • the embodiment of the present application also provides a flexible light bar, including:
  • a circuit board including a flexible reflective sheet and a circuit structure arranged on one side of the flexible reflective sheet;
  • the flexible reflective sheet includes polyethylene terephthalate and titanium dioxide, and the flexible reflective sheet can reflect the light emitted by the light-emitting chip.
  • the reflectivity of the flexible reflective sheet is greater than 90%.
  • the packaging layer includes a plurality of sub-packaging parts arranged at intervals, and each of the sub-packaging parts covers one of the light-emitting chips.
  • each of the subpackages is a convex lens structure.
  • the material of the encapsulation layer is a light-transmitting material, so that the light emitted by the plurality of light-emitting chips can pass through.
  • the embodiment of the present application also provides a display device, including a display module and a backlight module arranged on one side of the display module, and the backlight module includes the flexible Light.
  • the material of the flexible reflective sheet includes polyethylene terephthalate (PET) and titanium dioxide, and by forming a circuit on the flexible reflective sheet structure, and fix multiple light-emitting chips on the circuit structure, and electrically connect multiple light-emitting chips to the circuit structure; It is prepared from ethylene glycol ester and titanium dioxide, which has a reflective effect, so that the light irradiated by the light-emitting chip on the flexible reflective sheet can be reflected by the flexible reflective sheet itself, that is, the flexible light bar of the embodiment of the application contains the light emitted by the light-emitting chip And the light reflected by the flexible reflector enhances the luminous brightness.
  • PET polyethylene terephthalate
  • titanium dioxide titanium dioxide
  • the circuit board is formed by directly placing the circuit structure on the flexible reflective sheet. Since the flexible reflective sheet itself has reflective properties, the circuit board in the embodiment of the present application itself has reflective properties. Compared with the LED lamps currently on the market There is no need to coat the reflective coating on the circuit board, which saves the process steps of coating the reflective coating, thereby simplifying the production process of the flexible light bar, improving the production efficiency of the flexible light bar, and saving the cost of coating The material cost of the reflective coating.
  • FIG. 1 is a flow chart of a method for preparing a flexible light bar provided in an embodiment of the present application.
  • Fig. 2 is a schematic structural diagram of the manufacturing process of the flexible light bar according to the embodiment of the present application.
  • FIG. 3 is a specific flowchart of an embodiment of step 30 in FIG. 1 .
  • FIG. 4 is a schematic structural diagram of performing step 20 of the flexible light bar according to the embodiment of the present application.
  • FIG. 5 is a specific flowchart of another embodiment of step 30 in FIG. 1 .
  • FIG. 6 is a schematic structural diagram of an embodiment of a flexible light bar provided in an embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of another embodiment of the flexible light bar provided by the embodiment of the present application.
  • a display device includes a display panel and a backlight module.
  • the backlight module includes a backplane and an LED light bar arranged on one side of the backplane.
  • the luminance of the LED light bar determines the brightness of the backlight.
  • the brightness of the module determines the display effect of the display device.
  • most light strip manufacturers currently manually apply reflective coatings on the surface of circuit boards to increase the brightness by reflecting the light emitted by LED lights.
  • the luminous brightness of the large LED light bar means that a process step is added to the original production process route of the LED light bar, which leads to the extension of the production process line of the light bar and affects the production efficiency of the light bar.
  • the embodiment of the present application provides a method for preparing a flexible light bar, so as to ensure sufficient luminance of the flexible light bar, simplify the production process of the flexible light bar, and improve the production efficiency of the flexible light bar.
  • Fig. 1 is a flow chart of a method for preparing a flexible light bar 100 provided in the embodiment of the present application
  • Fig. 2 is a schematic structural diagram of the manufacturing process of the flexible light bar in the embodiment of the present application
  • the preparation method of the flexible light bar 100 includes:
  • the material of the flexible reflective sheet 11 includes polyethylene terephthalate (PET) and titanium dioxide; wherein the flexible reflective sheet 11 passes Made of polyethylene terephthalate (PET) and titanium dioxide, it has a reflective effect and can reflect the light irradiated by the external light-emitting structure to itself.
  • PET polyethylene terephthalate
  • titanium dioxide titanium dioxide
  • S20 Form a circuit structure 12 on the flexible reflective sheet 11, as shown in stage b in FIG. 2; by forming the circuit structure 12 on the flexible reflective sheet 11, the flexible reflective sheet 11 and the circuit structure 12 are integrally combined to form a circuit board 10.
  • the flexible reflection sheet 11 supports and insulates the circuit structure 12 .
  • S30 Fix a plurality of light emitting chips 20 on the circuit structure 12, and electrically connect the plurality of light emitting chips 20 to the circuit structure 12, as shown in stage c in FIG. 2 ;
  • S40 Form an encapsulation layer 30 covering each of the light-emitting chips 20 on the flexible reflective sheet 11, as shown in stage d in FIG.
  • the material of the layer 30 is a transparent material, so as to transmit the light emitted by the light-emitting chip 20 when it is energized.
  • the circuit structure 12 by disposing the circuit structure 12 on the flexible reflective sheet 11 and electrically connecting the light-emitting chip 20 to the circuit structure 12, when the circuit structure 12 is energized, the light-emitting chip 20 emits light in all directions.
  • the flexible reflective sheet 11 has a reflective effect, and the light emitted by the light-emitting chip 20 to the flexible reflective sheet 11 can be reflected by the flexible reflective sheet 11 itself, so the light emitted by the flexible light bar 100 in the embodiment of the present application includes the light emitted by the light-emitting chip 20 itself. light and the light reflected by the flexible reflection sheet 11, thereby enhancing the luminous brightness.
  • this application adopts the flexible reflection sheet 11 prepared by polyethylene terephthalate (PET) and titanium dioxide, and its reflectance to light is greater than 90%, which is higher than that of the existing reflective coating (white oil) Therefore, compared with the current LED light bar on the market by coating a reflective coating on the circuit board, the flexible light bar 100 of the embodiment of the present application can emit higher brightness.
  • PET polyethylene terephthalate
  • titanium dioxide titanium dioxide
  • the embodiment of the present application forms the circuit board 10 by directly disposing the circuit structure 12 on the flexible reflective sheet 11. Since the flexible reflective sheet 11 itself has reflective properties, the circuit of the embodiment of the present application The board 10 itself has reflective properties. Compared with the LED light strips currently on the market, there is no need to coat the circuit board 10 with a reflective coating, that is, the process steps of coating the reflective coating are omitted, thereby simplifying the flexibility of the flexible light strip.
  • the production process of 100 improves the production efficiency of the flexible light strip 100, and at the same time saves the material cost of coating the reflective coating.
  • forming the circuit structure 12 on the flexible reflective sheet 11 includes: using a screen printing process or nanometer The embossing process prints the circuit structure 12 on the flexible reflective sheet 11 .
  • a screen printing screen is provided; wherein, a pattern corresponding to the circuit structure 12 is printed on the screen printing screen;
  • Brush the conductive paste on the screen printing screen, and the material of the conductive paste is nano-silver or nano-copper;
  • the conductive paste is baked to solidify the conductive paste, and the circuit structure 12 is formed after the conductive paste is cured.
  • the light-emitting chip 20 adopts a Mini LED chip.
  • the MiniLED chips due to the small size of the MiniLED chips and the small distance between adjacent MiniLED chips, more MiniLED chips can be arranged on the same area of the circuit board 10, which not only can enhance the luminous brightness of the flexible light bar 100, but also can ensure the emission of light.
  • the light is uniform, so that the display device using the flexible light bar 100 has a delicate display effect and high display brightness.
  • fixing multiple light-emitting chips 20 on the circuit structure 12 and electrically connecting the multiple light-emitting chips 20 to the circuit structure 12 include:
  • the light-emitting chip 20 is a MiniLED chip, and the MiniLED chip is fixed on the circuit structure 12 by using a MiniLED die-bonding machine;
  • S32 Perform wire sintering to realize the electrical connection between the Mini LED chip and the circuit structure 12; wherein, the sintering temperature is less than 150° C.
  • forming the circuit structure 12 on the flexible reflective sheet 11 may also include: coating the flexible reflective sheet 11 with copper foil 12a, and etching on the copper foil 12a by photolithography. Out of the circuit structure 12.
  • Copper foil 12a is adhered to the entire surface of the flexible reflective sheet, as shown in stage a in Figure 4;
  • the photoresist structure 13 on the circuit structure 12 is removed by using a photoresist solvent, as shown in stage d of FIG. 4 .
  • fixing multiple light-emitting chips 20 on the circuit structure 12 and electrically connecting the multiple light-emitting chips 20 to the circuit structure 12 include:
  • the light-emitting chip 20 is a MiniLED chip, and the MiniLED chip is connected to an electrical connector through wire sintering, so as to realize the electrical connection between the MiniLED chip and the circuit structure 12; wherein, the sintering temperature is less than 150°C.
  • forming the encapsulation layer 30 covering each light-emitting chip 20 on the flexible reflective sheet 11 includes: spraying encapsulation glue on each light-emitting chip 20 by a spraying device.
  • a light-emitting chip 20 forms the encapsulation layer 30 .
  • the encapsulation glue can be sprayed only on the light-emitting chips 20, so that the encapsulation glue only covers each light-emitting chip 20; the encapsulation glue can also be sprayed on the entire circuit board 10, so that the encapsulation glue covers the entire circuit board Each light-emitting chip 20 is coated on the surface.
  • the embodiment of the present application also provides a flexible light bar 100, please refer to FIG. 6, which is a schematic structural diagram of a flexible light bar 100 provided in the embodiment of the present application; It includes a circuit board 10 , a light emitting chip 20 and an encapsulation layer 30 .
  • the circuit board 10 includes a flexible reflective sheet 11 and a circuit structure 12 disposed on one side of the flexible reflective sheet 11 .
  • the circuit structure 12 can be printed on the flexible reflective sheet 11 by screen printing process, nanoimprint process, or printed on the flexible reflective sheet 11 by photolithography process.
  • the flexible reflective sheet 11 is made of a composite material of polyethylene terephthalate and titanium dioxide, so that the flexible reflective sheet 11 has a reflective effect and can reflect light irradiated by the light-emitting structure itself.
  • the plurality of light-emitting chips 20 are electrically connected to the circuit structure 12 , and when the circuit structure 12 is energized, the plurality of light-emitting chips 20 are energized to emit light.
  • the light emitting chip 20 in the embodiment of the present application is a Mini LED chip.
  • MiniLED chips in the embodiment of the present application, since the MiniLED chip particles are small and the distance between adjacent MiniLED chips is small, more MiniLED chips can be arranged on the circuit board 10 with the same area, which can not only enhance the flexibility
  • the luminous brightness of the light bar 100 can also ensure that the emitted light is uniform, so that the display device using the flexible light bar 100 has a delicate display effect and high display brightness.
  • the encapsulation layer 30 covers each light-emitting chip 20, and the encapsulation layer 30 is used to isolate the light-emitting chip 20 from the external environment.
  • the material of the encapsulation layer 30 is a light-transmitting material, so as to transmit the light emitted by the light-emitting chip 20 .
  • the encapsulation layer 30 is formed by curing the encapsulation glue, specifically, the encapsulation layer 30 is formed by spraying the encapsulation glue on each light-emitting chip 20 by a spraying device.
  • the light-emitting chip 20 when the circuit structure 12 is powered on, the light-emitting chip 20 is powered on and emits light in all directions, and part of the light is irradiated on the flexible reflective sheet 11. Since the flexible reflective sheet 11 itself has a reflective effect, it emits light. The light irradiated by the chip 20 onto the flexible reflective sheet 11 can be reflected by the flexible reflective sheet 11 itself, that is, the light emitted by the flexible light bar 100 includes the light emitted by the light-emitting chip 20 itself and the light reflected by the flexible reflective sheet 11, thereby enhancing the Luminous brightness.
  • the circuit board 10 is formed by directly disposing the circuit structure 12 on the flexible reflective sheet 11. Since the flexible reflective sheet 11 itself has a reflective effect, the circuit board 10 itself in the embodiment of the present application has a reflective effect. Compared with the LED light bar currently on the market, there is no need to coat the reflective coating on the circuit board 10, that is, the process steps of coating the reflective coating are omitted, thereby simplifying the production process of the flexible light bar 100 and improving the flexibility. The production efficiency of the light bar 100; moreover, because the reflective coating is omitted, that is, the cost of materials for coating the reflective coating is saved, thereby reducing the production cost of the flexible light bar 100 .
  • the reflective coating is coated on the circuit board 10, and the encapsulation layer 30 is directly arranged on the reflective coating, that is, the encapsulation layer 30 and the circuit board 10 are not directly connected.
  • the encapsulation layer 30 is easy to degumming, which makes the LED lamp and the conductive circuit exposed and affects the service life of the light bar; in the embodiment of the present application, the encapsulation layer 30 is directly sprayed on the circuit board 10, compared with the existing In some LED light bars, the encapsulation layer 30 is in direct contact with the circuit structure 12. Since the circuit structure 12 is uneven, the tightness of the connection of the encapsulation layer 30 can be enhanced to avoid easy degumming of the encapsulation layer 30 and ensure the service life of the light bar.
  • the reflectivity of the flexible reflection sheet 11 is greater than 90%.
  • the reflectivity refers to the ratio of the reflected light intensity projected on the object to the total light intensity projected on the object.
  • the reflectivity of the flexible reflective sheet 11 in the embodiment of the present application is greater than 90%, that is, it absorbs less light and reflects less light. There is a lot of light, and compared with the existing reflective coating (the reflectivity of white oil is between 80% and 85%), it has a strong ability to reflect light, thereby significantly improving the luminance of the flexible light bar 100 .
  • the encapsulation layer 30 includes a plurality of sub-package parts 30 a arranged at intervals, and each sub-package part 30 a covers a light-emitting chip 20 .
  • the sub-package 30a is formed by dispensing glue at each light-emitting chip 20 by a spraying device.
  • each sub-package 30a is shaped like a convex mirror structure, which has the function of diverging light. , the light emitted by the light-emitting chip 20 is diffused to the surroundings through the sub-package part 30a, so that the light emitted by the flexible light bar 100 is uniform.
  • the encapsulation layer 30 may also be formed by spraying the encapsulation glue on the entire circuit board 10 by a spraying device.
  • the light-emitting chip 20 is packaged on the circuit board 10 through a chip-on-board packaging technology (ie, COB packaging technology).
  • a chip-on-board packaging technology ie, COB packaging technology
  • Chip-on-board packaging technology that is, COB packaging technology, specifically adheres the bare chip to the circuit board with conductive or non-conductive adhesive, then performs wire bonding to realize its electrical connection, and encapsulates the chip and the bonding wire with adhesive. technology.
  • the chip-on-board packaging process saves the process steps of reflow soldering and chip placement, greatly improves the packaging efficiency, and further improves the overall production efficiency of the flexible light bar 100 .
  • An embodiment of the present application also provides a display device, including a display module and a backlight module disposed on one side of the display module, and the backlight module includes a flexible light bar based on the above-mentioned inventive concept.
  • the display device may be a product or device having a display function such as a television, a computer, and a monitor.
  • the circuit board of the flexible light bar includes a flexible reflective sheet and a circuit structure arranged on one side of the flexible reflective sheet, and the light-emitting chip is electrically connected to the circuit structure.
  • the light-emitting chip When the light-emitting chip is powered on, it emits light.
  • the flexible reflector can reflect the light emitted by the light-emitting chip to itself, that is, the circuit board itself has a reflective effect. The process step of coating the reflective coating is eliminated, the production process of the flexible light bar is saved, and the production efficiency of the flexible light bar is improved, thereby improving the overall production efficiency of the display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Planar Illumination Modules (AREA)

Abstract

本申请公开了一种柔性灯条的制备方法;其中,柔性灯条的制备方法包括:提供一柔性反射片,柔性反射片的材料包括聚对苯二甲酸乙二醇酯和钛白粉;在柔性反射片上形成电路结构;在电路结构上固定多个发光芯片,并将多个发光芯片与电路结构电性连接;在柔性反射片上形成包覆每一发光芯片的封装层。

Description

柔性灯条的制备方法、柔性灯条以及显示装置
本申请要求于2022年02月28日提交中国专利局、申请号为202210187586.1、申请名称为“柔性灯条的制备方法、柔性灯条以及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于显示装置领域,尤其涉及一种柔性灯条的制备方法、柔性灯条以及显示装置。
背景技术
液晶显示装置广泛应用于电子显示设备中,目前市场上的显示装置大多为为背光式液晶显示器,其包括液晶显示面板及背光模组。由于液晶显示面板本身不发光,需要借由背光模组提供的光源来正常显示影像,因此,背光模组成为液晶显示装置的关键零组件之一。背光模组依照背光源入射位置的不同分成侧入式背光模组与直下式背光模组两种,目前市场上广泛使用的为直下式背光模组,直下式背光模组是将背光源例如LED灯(发光二极管)设置在液晶显示面板后方,直接形成面光源提供给液晶显示面板。
技术问题
相关技术中,目前的直下式背光模组包括背板以及设置于背板一侧的LED灯条,而目前现有的LED灯条生产工艺线路长,LED灯条的生产效率低。
技术解决方案
本申请实施例提供一种柔性灯条的制备方法、柔性灯条以及显示装置,以简化柔性灯条的生产工艺,提升柔性灯条的生产效率。
第一方面,本申请实施例提供一种柔性灯条的制备方法,包括:
提供一柔性反射片,所述柔性反射片的材料包括聚对苯二甲酸乙二醇酯和钛白粉;
在所述柔性反射片上形成电路结构;
在所述电路结构上固定多个发光芯片,并将所述多个发光芯片与所述电路结构电性连接;
在所述柔性反射片上形成包覆每一所述发光芯片的封装层。
可选的,所述在所述柔性反射片上形成电路结构包括:
采用丝网印刷工艺或纳米压印工艺在所述柔性反射片上印刷出所述电路结构。
可选的,所述在所述电路结构上固定多个发光芯片,并实现所述多个发光芯片与所述电路结构的电路连接包括:
所述发光芯片为MiniLED芯片,采用MiniLED固晶机将所述MiniLED芯片固定在所述电路结构上;以及
进行线路烧结以实现所述MiniLED芯片与所述电路结构电性连接。
可选的,所述在所述柔性反射片上形成电路结构包括:
提供一丝印网板;其中,所述丝印网板上印有与所述电路结构相对应的图案;
在所述丝印网板上涂刷导电浆,所述导电浆的材料为纳米银或纳米铜材料;
通过刮板挤压所述丝印网板上的所述导电浆,使得所述导电浆通过所述丝印网板上的网孔漏印至所述柔性反射片上;
对所述导电浆进行烘烤使所述导电浆固化,所述导电浆固化后形成所述电路结构。
可选的,所述在所述柔性反射片上形成电路结构包括:
在所述柔性反射片上覆铜箔;以及
采用光刻工艺在所述铜箔上蚀刻出所述电路结构。
可选的,所述在所述柔性反射片上覆铜箔;以及采用光刻工艺在所述铜箔上蚀刻出所述电路结构包括:
在所述柔性反射料片整面粘附铜箔;
在所述铜箔上涂覆光刻胶,并通过曝光显影形成固化的光刻胶结构;
采用蚀刻溶剂去除未被所述光刻胶结构覆盖的铜箔,形成所述电路结构;
采用光刻胶溶剂溶解去除所述电路结构上的光刻胶结构。
可选的,所述在所述电路结构上固定多个发光芯片,并实现所述多个发光芯片与所述电路结构的电路连接包括:
在所述电路结构印刷电连接件,所述电连接件的材料为纳米导电材料或者低温烧结锡膏;以及
所述发光芯片为MiniLED芯片,通过线路烧结将所述MiniLED芯片与所述电连接件连接,以实现所述MiniLED芯片与所述电路结构电性连接。
可选的,所述烧结温度小于150℃。
可选的,所述在所述柔性反射片上形成包覆每一所述发光芯片的封装层包括:
通过喷涂装置将封装胶喷涂至每一所述发光芯片以形成所述封装层。
第二方面,本申请实施例还提供一种柔性灯条,包括:
电路板,包括柔性反射片和设置于所述柔性反射片一侧的电路结构;
多个发光芯片,与所述电路结构电性连接;以及
封装层,包覆于每一所述发光芯片;
其中,所述柔性反射片包括聚对苯二甲酸乙二醇酯和钛白粉,所述柔性反射片可反射所述发光芯片发出的光线。
可选的,所述柔性反射片的反射率大于90%。
可选的,所述封装层包括间隔设置的多个子封装部,每一所述子封装部包覆于一个所述发光芯片。
可选的,每一所述子封装部为凸透镜结构。
可选的,所述封装层的材料为透光材料,以使所述多个发光芯片发出的光线透出。
第三方面,本申请实施例还提供一种显示装置,包括显示模组以及设于所述显示模组一侧的背光模组,所述背光模组包括如上述任一实施例所述的柔性灯条。
有益效果
本申请实施例的柔性的灯条的制备方法中,通过提供一柔性反射片,柔性反射片的材料包括聚对苯二甲酸乙二醇酯(PET)和钛白粉,通过在柔性反射片上形成电路结构,并在电路结构上固定多个发光芯片,并将多个发光芯片与电路结构电性连接;当电路结构通电时,发光芯片朝向四面八方发出光线,由于柔性反射片通过采用聚对苯二甲酸乙二醇酯和钛白粉制备形成,其具有反光作用,使得发光芯片照射至柔性反射片上的光线可通过柔性反射片自身反射出去,即本申请实施例的柔性灯条包含了发光芯片发出的光线以及柔性反射片反射的光线,增强了发光亮度。本申请实施例通过将电路结构直接设置于柔性反射片上而形成电路板,由于柔性反射片本身具有反光特性,因此本申请实施例的电路板本身具有反光特性,相比于目前市场上的LED灯条,无需在电路板上再涂覆反光涂层,即省去了涂覆反光涂层的工艺步骤,从而简化了柔性灯条的生产工艺,提高了柔性灯条的生产效率,同时节省了涂覆反光涂层的材料成本。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其有益效果显而易见。
图1为本申请实施例提供的一种柔性灯条的制备方法的流程图。
图2为本申请实施例的柔性灯条制备过程的结构示意图。
图3为图1中步骤30一实施例的具体流程图。
图4为本申请实施例的柔性灯条进行步骤20的结构示意图。
图5为图1中步骤30另一实施例的具体流程图。
图6为本申请实施例提供的柔性灯条一实施例的结构示意图。
图7为本申请实施例提供的柔性灯条另一实施例的结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
相关技术中,显示装置包括显示面板以及背光模组,以直下式背光模组为例,背光模组包括背板以及设置于背板一侧的LED灯条,LED灯条的发光亮度决定了背光模组的亮度,进而决定显示装置的显示效果。在现有的LED灯条生产工艺过程中,为了提升LED灯条的发光亮度,目前大部分灯条生产厂商通过人工在电路板表面涂覆反光涂层,以通过反射LED灯发出的光线而增大LED灯条的发光亮度,即在LED灯条原有的生产工艺路线中增加了一个工艺步骤,导致灯条的生产工艺线路延长,影响灯条的生产效率。
为解决上述问题,本申请实施例提供一种柔性灯条的制备方法,以保证柔性灯条具有足够的发光亮度的同时,简化柔性灯条的生产工艺,提升柔性灯条的生产效率。
请结合参考图1和图2,图1为本申请实施例提供的一种柔性灯条100的制备方法的流程图,图2为本申请实施例的柔性灯条制备过程的结构示意图;在本申请实施例中,柔性灯条100的制备方法包括:
S10:提供一柔性反射片11,如图2中a阶段所示,所述柔性反射片11的材料包括聚对苯二甲酸乙二醇酯(PET)和钛白粉;其中,柔性反射片11通过聚对苯二甲酸乙二醇酯(PET)和钛白粉制备,使其具有反光作用,可以反射外部发光结构照射至自身的光线。
S20:在所述柔性反射片11上形成电路结构12,如图2中b阶段所示;通过在柔性反射片11上形成电路结构12,使得柔性反射片11与电路结构12整体组合形成电路板10,柔性反射片11对电路结构12起支撑和绝缘作用。
S30:在所述电路结构12上固定多个发光芯片20,并将所述多个发光芯片20与所述电路结构12电性连接,如图2中c阶段所示;
S40:在所述柔性反射片11上形成包覆每一所述发光芯片20的封装层30,如图2中d阶段所示;其中,封装层30用于将发光芯片20与外界隔离,封装层30的材料为透明材料,以使发光芯片20通电时发出的光线透过。
可以理解的,本申请实施例通过将电路结构12设置于柔性反射片11上,并将发光芯片20与电路结构12电性连接,当电路结构12通电时,发光芯片20朝向四面八方发出光线,由于柔性反射片11具有反光作用,发光芯片20发射至柔性反射片11上的光线可通过柔性反射片11自身反射出去,因此本申请实施例的柔性灯条100发出的光线包含了发光芯片20自身发出的光线以及柔性反射片11反射的光线,从而增强了发光亮度。而且,本申请通过采用聚对苯二甲酸乙二醇酯(PET)和钛白粉制备的柔性反射片11,其对光线的反射率大于90%,高于现有的反射涂层(白油)的反射率,具有较优的反光效果,因此相比于目前市场上通过在电路板上涂覆反射涂层的LED灯条,本申请实施例的柔性灯条100可发出更高的亮度。
在上述柔性灯条的制备方法中,本申请实施例通过将电路结构12直接设置于柔性反射片11上而形成电路板10,由于柔性反射片11本身具有反光特性,因此本申请实施例的电路板10本身具有反光特性,相比于目前市场上的LED灯条,无需在电路板10上再涂覆反光涂层,即省去了涂覆反光涂层的工艺步骤,从而简化了柔性灯条100的生产工艺,提高了柔性灯条100的生产效率,同时节省了涂覆反光涂层的材料成本。
具体而言,在柔性反射片11上形成电路结构12可以有多种工艺技术,例如,在本申请一实施例中,在柔性反射片11上形成电路结构12包括:采用丝网印刷工艺或纳米压印工艺在柔性反射片11上印刷出电路结构12。
其中,以采用丝网印刷工艺为例,在柔性反射片11上印刷电路结构12的具体步骤为:
提供一丝印网板;其中,丝印网板上印有与电路结构12相对应的图案;
在丝印网板上涂刷导电浆,导电浆的材料为纳米银或纳米铜材料;
通过刮板挤压丝印网板上的导电浆,使得导电浆通过丝印网板上的网孔漏印至柔性反射片11上;
对导电浆进行烘烤使导电浆固化,导电浆固化后形成电路结构12。
进一步的,为了进一步提升柔性灯条100的发光亮度,在本申请实施例中,发光芯片20采用MiniLED芯片。其中,由于MiniLED芯片颗粒小,相邻MiniLED芯片之间的间距小,在相同面积的电路板10上可以排布更多的MiniLED芯片,不仅可以增强柔性灯条100的发光亮度,还可以保证发出的光线均匀,使得采用该柔性灯条100的显示装置的显示效果细腻,显示亮度高。
请参考图3,当采用丝网印刷工艺或者纳米压印工艺在柔性反射片11后,在电路结构12上固定多个发光芯片20并将多个发光芯片20与电路结构12电性连接包括:
S31:发光芯片20为MiniLED芯片,采用MiniLED固晶机将MiniLED芯片固定在电路结构12上;以及
S32:进行线路烧结以实现MiniLED芯片与电路结构12电性连接;其中,烧结温度小于150℃。
请参考图4,在本申请另一实施例中,在柔性反射片11上形成电路结构12还可以包括:在柔性反射片11上覆铜箔12a,并采用光刻工艺在铜箔12a上蚀刻出电路结构12。
如图4所示,在该实施例中,上述“在柔性反射片11上覆铜箔12a,并采用光刻工艺在铜箔12a上蚀刻出电路结构12”具体工艺步骤如下:
在柔性反射料片整面粘附铜箔12a,如图4中a阶段所示;
在铜箔12a上涂覆光刻胶,并通过曝光显影形成固化的光刻胶结构13,如图4中b阶段所示;
采用蚀刻溶剂去除未被光刻胶结构13覆盖的铜箔12a,形成电路结构12,如图4中c阶段所示;
采用光刻胶溶剂溶解去除电路结构12上的光刻胶结构13,如图4中d阶段所示。
请参考图5,当采用光刻工艺在柔性反射片11上蚀刻出电路结构12后,在电路结构12上固定多个发光芯片20并将多个发光芯片20与电路结构12电性连接包括:
S33:在电路结构12印刷电连接件,电连接件的材料为纳米导电材料或者低温烧结锡膏;以及
S34:发光芯片20为MiniLED芯片,通过线路烧结将MiniLED芯片与电连接件连接,以实现MiniLED芯片与电路结构12电性连接;其中,烧结温度小于150℃。
进一步的,为了进一步提升柔性灯条100的生产效率,在本申请实施例中,在柔性反射片11上形成包覆每一发光芯片20的封装层30包括:通过喷涂装置将封装胶喷涂至每一发光芯片20以形成封装层30。
其中,封装胶可以是仅喷涂于发光芯片20上,使得封装胶仅包覆每一发光芯片20;封装胶也可以是喷涂于整个电路板10板面,使得封装胶包覆于整个电路板板面而将每一发光芯片20包覆。
本申请实施例还提供一种柔性灯条100,请参考图6,图6为本申请实施例提供的一种柔性灯条100的结构示意图;在本申请实施例中,所述柔性灯条100包括电路板10、发光芯片20以及封装层30。
如图6所示,电路板10包括柔性反射片11和设置于柔性反射片11一侧的电路结构12。其中,电路结构12可以通过丝网印刷工艺、纳米压印工艺印刷在柔性反射片11上,也可以通过光刻工艺印刷在柔性反射片11上。
具体的,柔性反射片11通过聚对苯二甲酸乙二醇酯和钛白粉的复合材料制备形成,使得柔性反射片11具有反光作用,可以反射发光结构照射于自身的光线。
多个发光芯片20与电路结构12电性连接,当电路结构12通电时,多个发光芯片20通电发出光线。在本申请实施例中,为了进一步提升柔性灯条100的发光亮度,本申请实施例的发光芯片20为MiniLED芯片。
可以理解的,本申请实施例通过采用MiniLED芯片,由于MiniLED芯片颗粒小,相邻MiniLED芯片之间的间距小,在相同面积的电路板10上可以排布更多的MiniLED芯片,不仅可以增强柔性灯条100的发光亮度,还可以保证发出的光线均匀,使得采用该柔性灯条100的显示装置的显示效果细腻,显示亮度高。
封装层30包覆于每一发光芯片20,封装层30用于将发光芯片20与外界环境隔离。其中,封装层30的材料为透光材料,以使发光芯片20发出的光线透过。在本申请实施例中,封装层30通过封装胶固化形成,具体而言,通过喷涂装置对每一发光芯片20喷涂封装胶而形成所述封装层30。
可以理解的,在本申请实施例中,当电路结构12通电时,发光芯片20通电并朝向四面八方发出光线,其中部分光线照射至柔性反射片11上,由于柔性反射片11本身具有反光作用,发光芯片20照射至柔性反射片11上的光线可通过柔性反射片11自身反射出去,即柔性灯条100发出的光线包含了发光芯片20自身发出的光线以及柔性反射片11反射的光线,从而增强了发光亮度。
本申请实施例中,通过将电路结构12直接设置于柔性反射片11上而形成电路板10,由于柔性反射片11本身具有反光作用,因此本申请实施例的电路板10本身具有反光作用,相比于目前市场上的LED灯条,无需在电路板10上再涂覆反光涂层,即省去了涂覆反光涂层的工艺步骤,从而简化了柔性灯条100的生产工艺,提高了柔性灯条100的生产效率;而且,由于省去了反射涂层,即节省了涂覆反光涂层的材料成本,进而降低了柔性灯条100的生产成本。
还需要指出的是,在现有LED灯条的生产过程中,反射涂层涂覆在电路板10上,而封装层30直接设置在反射涂层上,即封装层30与电路板10未直接接触,在长期工作过程中,封装层30容易脱胶,使得LED灯和导电线路暴露而影响灯条的使用寿命;本申请实施例通过将封装层30直接喷涂在电路板10上,相比于现有的LED灯条,封装层30直接与电路结构12接触,由于电路结构12凹凸不平,可以增强封装层30连接的紧密性,避免封装层30轻易脱胶,保证灯条的使用寿命。
进一步的,在本申请实施例中,柔性反射片11的反射率大于90%。
其中,反射率是指投射至物体上被反射的光强度与投射至物体的总光强度的比值,本申请实施例的柔性反射片11的反射率大于90%,即其吸收的光线少,反射光线多,相比于现有的反射涂层(白油的反射率在80%-85%之间),反射光线的能力强,从而显著提高了柔性灯条100的发光亮度。
请参考图6,在本申请实施例中,封装层30包括间隔设置的多个子封装部30a,每一子封装部30a包覆于一个发光芯片20。具体而言,通过喷涂装置对每一发光芯片20处进行点胶而形成所述子封装部30a,如图6所示,每一个子封装部30a形如凸面镜结构,其具有发散光线的作用,发光芯片20发出的光线通过子封装部30a向四周发散,使得柔性灯条100发出的光线均匀。
当然,在本申请的另一些实施例中,请参考图7,封装层30也可以通过喷涂装置将封装胶喷涂于于整个电路板10而形成。
为进一步提高柔性灯条100的生产效率,在本申请实施例中,发光芯片20通过板上芯片封装技术(即COB封装技术)封装在电路板10上。
板上芯片封装技术,即COB封装技术,具体是将裸芯片用导电或非导电胶粘附在电路板上,然后进行引线键合实现其电气连接,并用胶把芯片和键合引线包封的技术。板上芯片封装工艺与传统的芯片封装技术相比,省去了回流焊和贴片的工艺步骤,极大的提高了封装效率,进而提升了柔性灯条100的整个生产效率。
本申请实施例还提供一种显示装置,包括显示模组以及设置于显示模组一侧的背光模组,背光模组包括基于上述发明构思的柔性灯条。具体而言,该显示装置可以是电视机、电脑、显示器等具有显示功能的产品或设备。
由于该显示装置包括基于上述发明构思的柔性灯条,柔性灯条的电路板包括柔性反射片和设置于柔性反射片一侧的电路结构,发光芯片与电路结构电性连接,当发光芯片通电发光时,柔性反射片可将发光芯片发射至自身的光线反射出去,即电路板本身具有反光作用,相比于目前市场上的LED灯条,无需在电路板上再涂覆反光涂层,省去了涂覆反光涂层的工艺步骤,节省了柔性灯条的生产工艺,提高了柔性灯条的生产效率,从而提高了显示装置整体的生产效率。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本申请实施例所提供的柔性灯条的制备方法、柔性灯条以及显示装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种柔性灯条的制备方法,其中,包括:
    提供一柔性反射片,所述柔性反射片的材料包括聚对苯二甲酸乙二醇酯和钛白粉;
    在所述柔性反射片上形成电路结构;
    在所述电路结构上固定多个发光芯片,并将所述多个发光芯片与所述电路结构电性连接;
    在所述柔性反射片上形成包覆每一所述发光芯片的封装层。
  2. 根据权利要求1所述的柔性灯条的制备方法,其中,所述在所述柔性反射片上形成电路结构包括:
    采用丝网印刷工艺或纳米压印工艺在所述柔性反射片上印刷出所述电路结构。
  3. 根据权利要求2所述的柔性灯条的制备方法,其中,所述在所述电路结构上固定多个发光芯片,并将所述多个发光芯片与所述电路结构电性连接包括:
    所述发光芯片为MiniLED芯片,采用MiniLED固晶机将所述MiniLED芯片固定在所述电路结构上;以及
    进行线路烧结以实现所述MiniLED芯片与所述电路结构电性连接。
  4. 根据权利要求2所述的柔性灯条的制备方法,其中,所述在所述柔性反射片上形成电路结构包括:
    提供一丝印网板;其中,所述丝印网板上印有与所述电路结构相对应的图案;
    在所述丝印网板上涂刷导电浆,所述导电浆的材料为纳米银或纳米铜材料;
    通过刮板挤压所述丝印网板上的所述导电浆,使得所述导电浆通过所述丝印网板上的网孔漏印至所述柔性反射片上;
    对所述导电浆进行烘烤使所述导电浆固化,所述导电浆固化后形成所述电路结构。
  5. 根据权利要求1所述的柔性灯条的制备方法,其中,所述在所述柔性反射片上形成电路结构包括:
    在所述柔性反射片上覆铜箔;以及
    采用光刻工艺在所述铜箔上蚀刻出所述电路结构。
  6. 根据权利要求5所述的柔性灯条的制备方法,其中,所述在所述柔性反射片上覆铜箔;以及采用光刻工艺在所述铜箔上蚀刻出所述电路结构包括:
    在所述柔性反射料片整面粘附铜箔;
    在所述铜箔上涂覆光刻胶,并通过曝光显影形成固化的光刻胶结构;
    采用蚀刻溶剂去除未被所述光刻胶结构覆盖的铜箔,形成所述电路结构;
    采用光刻胶溶剂溶解去除所述电路结构上的光刻胶结构。
  7. 根据权利要求5所述的柔性灯条的制备方法,其中,所述在所述电路结构上固定多个发光芯片,将所述多个发光芯片与所述电路结构电性连接包括:
    在所述电路结构印刷电连接件,所述电连接件的材料为纳米导电材料或者低温烧结锡膏;以及
    所述芯片为MiniLED芯片,通过线路烧结将所述MiniLED芯片与所述电连接件连接,以实现所述MiniLED芯片与所述电路结构电性连接。
  8. 根据权利要求7所述的柔性灯条的制备方法,其中,所述烧结温度小于150℃。
  9. 根据权利要求1所述的柔性灯条的制备方法,其中,所述在所述柔性反射片上形成包覆每一所述发光芯片的封装层包括:
    通过喷涂装置将封装胶喷涂至每一所述发光芯片以形成所述封装层。
  10. 一种柔性灯条,其中,包括:
    电路板,包括柔性反射片和设置于所述柔性反射片一侧的电路结构;
    多个发光芯片,与所述电路结构电性连接;以及
    封装层,包覆于每一所述发光芯片;
    其中,所述柔性反射片包括聚对苯二甲酸乙二醇酯和钛白粉,所述柔性反射片可反射所述发光芯片发出的光线。
  11. 根据权利要求10所述的柔性灯条,其中,所述柔性反射片的反射率大于90%。
  12. 根据权利要求10所述的柔性灯条,其中,所述封装层包括间隔设置的多个子封装部,每一所述子封装部包覆于一个所述发光芯片。
  13. 根据权利要求12所述的柔性灯条,其中,每一所述子封装部为凸透镜结构。
  14. 根据权利要求10所述的柔性灯条,其中,所述发光芯片为MiniLED芯片,采用MiniLED固晶机将所述MiniLED芯片固定在所述电路结构上。
  15. 根据权利要求10所述的柔性灯光,其中,所述封装层的材料为透光材料,以使所述多个发光芯片发出的光线透出。
  16. 一种显示装置,其中,包括显示模组以及设于所述显示模组一侧的背光模组,所述背光模组包括柔性灯条,所述柔性灯条包括:
    电路板,包括柔性反射片和设置于所述柔性反射片一侧的电路结构;
    多个发光芯片,与所述电路结构电性连接;以及
    封装层,包覆于每一所述发光芯片;
    其中,所述柔性反射片包括聚对苯二甲酸乙二醇酯和钛白粉,所述柔性反射片可反射所述发光芯片发出的光线。
  17. 根据权利要求16所述的显示装置,其中,所述柔性反射片的反射率大于90%。
  18. 根据权利要求16所述的显示装置,其中,所述封装层包括间隔设置的多个子封装部,每一所述子封装部包覆于一个所述发光芯片。
  19. 根据权利要求18所述的显示装置,其中,每一所述子封装部为凸透镜结构。
  20. 根据权利要求16所述的显示装置,其中,所述发光芯片为MiniLED芯片,采用MiniLED固晶机将所述MiniLED芯片固定在所述电路结构上。
PCT/CN2022/134282 2022-02-28 2022-11-25 柔性灯条的制备方法、柔性灯条以及显示装置 WO2023160057A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210187586.1 2022-02-28
CN202210187586.1A CN114551418A (zh) 2022-02-28 2022-02-28 柔性灯条的制备方法、柔性灯条以及显示装置

Publications (1)

Publication Number Publication Date
WO2023160057A1 true WO2023160057A1 (zh) 2023-08-31

Family

ID=81680212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/134282 WO2023160057A1 (zh) 2022-02-28 2022-11-25 柔性灯条的制备方法、柔性灯条以及显示装置

Country Status (2)

Country Link
CN (1) CN114551418A (zh)
WO (1) WO2023160057A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114551418A (zh) * 2022-02-28 2022-05-27 深圳Tcl新技术有限公司 柔性灯条的制备方法、柔性灯条以及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120051855A (ko) * 2010-11-15 2012-05-23 엘지이노텍 주식회사 발광소자 패키지 및 이를 포함하는 광원 장치, 백라이트 유닛
CN109975903A (zh) * 2017-12-27 2019-07-05 宁波长阳科技股份有限公司 一种反射膜及一种液晶显示器用背光源
CN110398857A (zh) * 2019-07-15 2019-11-01 青岛海信电器股份有限公司 微型发光二极管灯板、其制作方法、背光模组及显示装置
CN111752045A (zh) * 2020-07-15 2020-10-09 武汉华星光电技术有限公司 背光模组及显示装置
CN112764264A (zh) * 2019-10-21 2021-05-07 三星电子株式会社 直下式背光装置和具有该背光装置的显示设备
CN113270437A (zh) * 2020-02-17 2021-08-17 京东方科技集团股份有限公司 背板及其制备方法、显示装置
CN114551418A (zh) * 2022-02-28 2022-05-27 深圳Tcl新技术有限公司 柔性灯条的制备方法、柔性灯条以及显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120051855A (ko) * 2010-11-15 2012-05-23 엘지이노텍 주식회사 발광소자 패키지 및 이를 포함하는 광원 장치, 백라이트 유닛
CN109975903A (zh) * 2017-12-27 2019-07-05 宁波长阳科技股份有限公司 一种反射膜及一种液晶显示器用背光源
CN110398857A (zh) * 2019-07-15 2019-11-01 青岛海信电器股份有限公司 微型发光二极管灯板、其制作方法、背光模组及显示装置
CN112764264A (zh) * 2019-10-21 2021-05-07 三星电子株式会社 直下式背光装置和具有该背光装置的显示设备
CN113270437A (zh) * 2020-02-17 2021-08-17 京东方科技集团股份有限公司 背板及其制备方法、显示装置
CN111752045A (zh) * 2020-07-15 2020-10-09 武汉华星光电技术有限公司 背光模组及显示装置
CN114551418A (zh) * 2022-02-28 2022-05-27 深圳Tcl新技术有限公司 柔性灯条的制备方法、柔性灯条以及显示装置

Also Published As

Publication number Publication date
CN114551418A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
JP4757477B2 (ja) 光源ユニット、それを用いた照明装置及びそれを用いた表示装置
CN211979375U (zh) 一种显示装置
CN108983497A (zh) Mini LED背光源及其制备方法和背光源模组
WO2012172967A1 (ja) 光源回路ユニットおよび照明装置、並びに表示装置
US20060131602A1 (en) Illumination assembly and method of making same
CN213399142U (zh) 一种显示装置
JP2007279480A (ja) 液晶表示装置
JP2011249536A (ja) 折り曲げ可能配線基板、発光モジュール、発光モジュールの製造方法、折り曲げ可能配線基板の製造方法
JP2011165434A (ja) 光源、バックライトユニット及び液晶表示装置
KR100862454B1 (ko) Led를 구비한 백라이트 유닛 및 그 제조방법
CN213240753U (zh) 一种背光模组及其显示装置
CN213718310U (zh) 电路板、灯板、背光模组及显示装置
WO2023160057A1 (zh) 柔性灯条的制备方法、柔性灯条以及显示装置
CN111682094B (zh) 一种led发光背板及其生产方法
CN112856263A (zh) 拼接式灯板及其制备方法、显示装置
CN109188768A (zh) 背光模组和显示装置
KR100699161B1 (ko) 발광 소자 패키지 및 그의 제조 방법
CN112291923A (zh) 电路板、灯板、背光模组及显示装置
CN109600910B (zh) 一种反光电路板及其制作方法
CN215067626U (zh) 一种灯板以及拼接显示屏
CN217405423U (zh) 薄膜倒装LED芯片结构以及Mini-LED显示装置
CN109638137A (zh) 倒装led芯片及直下式背光模组
CN113703223B (zh) 一种背光模组及其制备方法、显示面板
JP2002232015A (ja) 半導体発光装置
CN114779525A (zh) 背光模组及其制备方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928317

Country of ref document: EP

Kind code of ref document: A1