WO2023155543A1 - 一种回收锂离子电池电解液的方法 - Google Patents

一种回收锂离子电池电解液的方法 Download PDF

Info

Publication number
WO2023155543A1
WO2023155543A1 PCT/CN2022/135992 CN2022135992W WO2023155543A1 WO 2023155543 A1 WO2023155543 A1 WO 2023155543A1 CN 2022135992 W CN2022135992 W CN 2022135992W WO 2023155543 A1 WO2023155543 A1 WO 2023155543A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
electrolyte
ion battery
recovering
solution
Prior art date
Application number
PCT/CN2022/135992
Other languages
English (en)
French (fr)
Inventor
余海军
谢英豪
李爱霞
张学梅
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to MX2024001665A priority Critical patent/MX2024001665A/es
Priority to GB2318396.5A priority patent/GB2621298A/en
Priority to HU2400125A priority patent/HUP2400125A1/hu
Priority to DE112022003354.1T priority patent/DE112022003354T5/de
Publication of WO2023155543A1 publication Critical patent/WO2023155543A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/005Lithium hexafluorophosphate
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/04Halides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the embodiment of the present application relates to the field of battery recycling, for example, a method for recycling the electrolyte of a lithium-ion battery.
  • the commonly used positive electrode materials for lithium-ion batteries include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFePO 4 and ternary materials.
  • the positive electrode material, acetylene black conductive agent and organic binder are coated on the aluminum foil to form the positive electrode. It is composed of sheet carbon material and amorphous carbon material coated on copper foil.
  • the electrolyte salt in the electrolyte solution is generally lithium salts such as LiPF 6 , LiCF 3 SO 3 and LiBF 4 , and commonly used solvents include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), methyl Ethyl carbonate (EMC), etc.
  • Lithium-ion battery recycling technology can be divided into fire method, wet method and biological method.
  • fire and wet treatment processes most of the processes do not consider electrolyte recovery and treatment, which brings great safety hazards to production and relatively serious environmental pollution.
  • the organic solvent of the electrolyte will volatilize or burn and decompose into water vapor and CO 2 emissions, while LiPF 6 will be rapidly decomposed into PF 5 gas when heated in the air, and finally form fluorine-containing fumes and smoke dust to be emitted.
  • HF and PF 5 can easily form soluble fluoride, causing fluorine pollution in water.
  • Fluorine-containing waste gas and waste water are directly or indirectly harmful to human health through transformation and migration in the environment.
  • biological methods namely microbial leaching methods, can also be used to treat waste lithium batteries, using microorganisms to convert useful components of the system into soluble compounds and selectively dissolving them to obtain a metal-containing solution to achieve target components and impurity components.
  • the separation of metals, and the final recovery of useful metals Specifically, the metabolic process of microorganisms is mainly used to achieve selective leaching of cobalt, lithium and other metal elements, but the electrolyte cannot be effectively recovered and disposed of at the same time.
  • the research on the recycling of waste lithium-ion batteries mainly focuses on electrode materials containing non-ferrous metals such as cobalt, lithium, nickel, and copper, which have high value.
  • the electrolyte is volatile and difficult to recycle, so there are few researches and treatments on electrolyte recovery.
  • the volatilization of the electrolyte an unpleasant pungent smell will be produced, and the lithium salt in the electrolyte will be hydrolyzed to produce toxic arsenic, phosphide and fluoride, which are very harmful to the human body and the environment, and have become an unavoidable problem.
  • the electrolyte accounts for about 12% of the total cost of the battery.
  • an embodiment of the present application provides a method for recycling the electrolyte of the lithium-ion battery.
  • a method for reclaiming lithium-ion battery electrolyte comprising the following steps:
  • step 2) The electric core of step 1) is soaked in the lithium hydroxide solution containing catalyst to react;
  • step 4) filtering the mixed solution of step 3) to obtain filtrate and filter residue;
  • step 5) mixing the filter residue of step 4) with hydrofluoric acid solution, heating and evaporating to dryness, and calcining to obtain anhydrous lithium salt;
  • step 6) mixing the anhydrous lithium salt in step 5) with an organic solvent, feeding PF5 gas, reacting, and filtering to obtain an organic liquid;
  • step 6) The organic liquid in step 6) is frozen and filtered to obtain lithium hexafluorophosphate.
  • the components of the electrolyte include at least one of ethylene carbonate, propylene carbonate, dimethyl carbonate, and methyl ethyl carbonate.
  • the disassembled cell is placed in a lithium hydroxide solution containing a catalyst.
  • the electrolyte solvent such as dimethyl carbonate
  • the electrolyte solvent is decomposed into alcohols and carbon dioxide under the action of the catalyst, and carbon dioxide reacts with lithium hydroxide to form Lithium carbonate precipitates;
  • the electrolyte solute lithium hexafluorophosphate reacts with lithium hydroxide, and the equation is as follows:
  • LiPF 6 +14LiOH 6LiOH ⁇ LiF ⁇ +Li 3 PO 4 ⁇ +4H 2 O
  • LiHF2 is decomposed into lithium fluoride and hydrogen fluoride, thereby obtaining anhydrous lithium salt with only lithium fluoride and lithium phosphate; and then reacting anhydrous lithium salt with phosphorus pentafluoride in an organic solvent to obtain
  • the process is as follows, taking acetonitrile as an example:
  • the freezing temperature is ⁇ -50°C; more preferably, the freezing temperature is ⁇ -55°C; still more preferably, the freezing temperature is ⁇ -60°C.
  • the catalyst includes at least one of quaternary ammonium salt and methylaminodiethanol; further preferably, the quaternary ammonium salt is a chloride salt or a bromide salt , the total number of carbon atoms on the hydrocarbon group ⁇ 12; in some preferred embodiments of the present application, the catalyst is [(CH 3 ) 3 NCH 2 CH 2 Cl]Cl or [(CH 3 CH 2 )3NCH 2 CH 2 OH]Cl at least one of the
  • the concentration of the catalyst is 5 to 60 g/L; more preferably, the concentration of the catalyst is 8 to 55 g/L; further preferably, the concentration of the catalyst The concentration is 10-50g/L.
  • the concentration of lithium hydroxide is 0.1-4 mol/L.
  • the reaction time is 0.3 to 3 hours; more preferably, the reaction time is 0.4 to 2.5 hours; still more preferably, the reaction time is 0.5 hours ⁇ 2h.
  • the amount of the liquid solution should not exceed the cell.
  • the concentration of the lithium hydroxide solution is 0.1-4 mol/L.
  • the hydrogen fluoride is recovered by heating and evaporating to dryness; more preferably, the hydrogen fluoride is recovered by heating at 50-70°C.
  • the calcination temperature is 500-800°C; more preferably, the calcination temperature is 550-750°C; still more preferably, the calcination temperature is 600-700°C °C.
  • the calcination time is 0.3-3 h; more preferably, the calcination time is 0.4-2.5 h; still more preferably, the calcination time is 0.5-2 h.
  • the organic solvent includes at least one of acetonitrile, ether, pyrrole, and pyridine; further preferably, the organic solvent includes one of acetonitrile, ether, and pyrrole. species; still further preferably, the organic solvent is a kind of in acetonitrile, ether.
  • the liquid-solid ratio of the organic solvent to the anhydrous lithium salt is (30-60) mL: 1g; further preferably, the organic solvent and the anhydrous lithium salt
  • the liquid-solid ratio of the salt is (35-55)mL:1g; still more preferably, the liquid-solid ratio of the organic solvent to the anhydrous lithium salt is (40-50)mL:1g.
  • the reaction pressure is 0.2-0.8 MPa; more preferably, the reaction pressure is 0.25-0.75 MPa; still more preferably, the reaction pressure is 0.3-0.7 MPa MPa.
  • the reaction time is 0.5-3 hours; more preferably, the reaction time is 0.8-2.5 hours; still more preferably, the reaction time is 1-2 hours.
  • the temperature during filtration is 40-80°C; more preferably, the temperature during filtration is 45-75°C; still more preferably, during filtration The temperature is 50 ⁇ 70 °C.
  • the freezing temperature is -40 to -10°C; more preferably, the freezing temperature is -35 to -15°C; still more preferably, the freezing temperature is It is -30 ⁇ -20°C.
  • the method for recovering lithium-ion battery electrolyte, in step 7), also includes a drying step of the filter cake obtained by filtering, and drying in a nitrogen atmosphere; more preferably, the drying temperature is 0-8 ° C, and the drying time is 10-26 hours; more preferably, the drying temperature is 0-5°C, and the drying time is 12-24 hours.
  • the waste lithium-ion battery is frozen and then disassembled to avoid the volatilization and decomposition of the electrolyte to pollute the environment;
  • the lithium hexafluorophosphate prepared by the method of the present application has high purity and meets the requirements of "HG/T 4066-2015 Lithium hexafluorophosphate electrolysis Liquid" standard requirements.
  • the method of catalytic decomposition makes it generate water-soluble alcohols and carbon dioxide, avoids aggregation and fire when it is insoluble in water, and further promotes the reaction under the action of lithium hydroxide.
  • Both fluorine and lithium in the electrolyte solute lithium hexafluorophosphate have high economic value.
  • Lithium hydroxide is used to precipitate it, and then the regenerated lithium hexafluorophosphate is obtained through a series of reactions. The whole process only consumes lithium hydroxide, and the recovery cost is low.
  • lithium fluoride and phosphorus pentafluoride are used to generate lithium hexafluorophosphate, thereby separating lithium phosphate and obtaining pure lithium hexafluorophosphate.
  • Fig. 1 is the schematic diagram of the method for reclaiming lithium-ion battery electrolyte of the embodiment.
  • the method for reclaiming lithium-ion battery electrolyte of the present embodiment comprises the following steps:
  • the prepared lithium hexafluorophosphate meets the standard requirements of "HG/T 4066-2015 Lithium Hexafluorophosphate Electrolyte”.
  • the method for reclaiming lithium-ion battery electrolyte of the present embodiment comprises the following steps:
  • the prepared lithium hexafluorophosphate meets the standard requirements of "HG/T 4066-2015 Lithium Hexafluorophosphate Electrolyte”.
  • the method for reclaiming lithium-ion battery electrolyte of the present embodiment comprises the following steps:
  • the prepared lithium hexafluorophosphate meets the standard requirements of "HG/T 4066-2015 Lithium Hexafluorophosphate Electrolyte”.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Primary Cells (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本文公布一种回收锂离子电池电解液的方法。废旧锂离子电池放电后冷冻拆解得到含有电解液的电芯,电芯浸泡在含催化剂的氢氧化锂溶液中反应,取出反应后的电芯并洗涤,洗涤液与反应后的氢氧化锂溶液混合得到混合液,混合液过滤得到滤液和滤渣;滤渣与氢氟酸溶液反应得到无水锂盐,无水锂盐与有机溶液混合通入PF 5气体,反应,过滤,得到有机液;有机液进行冷冻,过滤,得到六氟磷酸锂。本申请通过冷冻废旧锂离子电池,再进行拆解,避免电解液的挥发和分解污染环境;本申请的方法制得的六氟磷酸锂的纯度高,满足《HG/T4066-2015六氟磷酸锂电解液》标准要求。

Description

一种回收锂离子电池电解液的方法 技术领域
本申请实施例涉及电池回收领域,例如一种回收锂离子电池电解液的方法。
背景技术
目前常用的锂离子电池正极材料有LiCoO 2、LiNiO 2、LiMn 2O 4、LiFePO 4和三元材料等,正极材料、乙炔黑导电剂与有机黏合剂涂覆于铝箔上构成正极,负极主要是由片状碳材料、无定形碳材料涂覆于铜箔上构成。电解质溶液中的电解质盐一般为LiPF 6、LiCF 3SO 3和LiBF 4等锂盐,常用的溶剂有碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯(DMC)、甲基乙基碳酸酯(EMC)等。
我国锂离子电池产量保持强劲的增长态势,超过使用年限而报废的锂离子电池将逐年增长。报废锂离子电池中不仅含有极具回收价值的钴,还含有铁、铝、铜等金属,以及有机电解液,有潜在的经济价值,且有极大的污染隐患。回收处置废旧锂离子电池不仅可以消除污染源,而且可实现资源的回收再利用。
锂离子电池的回收技术可以分为火法、湿法和生物法等。火法和湿法处理工艺中,绝大部分工艺未考虑电解液回收处理,给生产带来极大的安全隐患,还会产生较为严重的环境污染。火法处理时电解液有机溶剂将挥发或燃烧分解为水气和CO 2排放,而LiPF 6在空气中加热,会迅速分解出PF 5气体,最终形成含氟烟气和烟尘向外排放。湿法处理废旧电池时,以电解质锂盐LiPF 6分解为例,HF和PF 5极易形成可溶性氟化物,造成水体的氟污染。含氟废气与废水通过环境中的转化和迁移,直接或间接危害人体健康。此外,也可利用生物法即微生物浸出法处理废旧锂电池,用微生物将体系的有用组分转化为可溶化合物并选择性地溶解出来,得到含金属的溶液,实现目标组分与杂质组分的分离,最终回收有用金属,具体来说,主要是利用微生物菌类的代谢过程来实现对钴、锂等金属元素的选择性浸出,但是无法同时对电解液进行有效的回收处置。
目前对废旧锂离子电池的回收研究主要集中于含有钴、锂、镍、铜等有色金属,具有较高价值的电极材料。而电解液易挥发,回收难度较大,很少专门针对电解液回收进行研究和处理。但由于电解液的挥发会产生难闻的刺激性气味,电解液中的锂盐水解产生有毒的砷化物、磷化物及氟化物,对人体及环境 危害很大,成为一个难以回避的问题。一方面电解液在电池中约占全部成本12%,但由于现阶段电解液的生产能力不足以及高纯锂盐的生产技术被外企所垄断,回收电解液再次利用,具有较高的经济价值;另一方面,电解液本身对环境和人体有毒害,从安全与环保角度考虑必须进行有效处理。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
为了克服相关技术存在无法环保、高效回收锂离子电池电解液的问题,本申请实施例提供一种回收锂离子电池电解液的方法。
一种回收锂离子电池电解液的方法,包括以下步骤:
1)废旧锂离子电池放电后冷冻处理;将冷冻后的废旧锂离子电池拆解,得到含有电解液的电芯;
2)步骤1)的电芯浸泡在含有催化剂的氢氧化锂溶液中进行反应;
3)取出步骤2)反应后的电芯,用氢氧化锂溶液进行洗涤,得到洗涤液;将洗涤液与步骤2)反应后的氢氧化锂溶液混合,得到混合液;
4)将步骤3)的混合液过滤,得到滤液和滤渣;
5)将步骤4)的滤渣与氢氟酸溶液混合,加热蒸干后煅烧,得到无水锂盐;
6)将步骤5)的无水锂盐与有机溶剂混合,通入PF5气体,反应,过滤,得到有机液;
7)将步骤6)的有机液进行冷冻,过滤,得到六氟磷酸锂。
优选的,这种回收锂离子电池电解液的方法,步骤1)中,电解液的组分包括碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、甲基乙基碳酸酯中的至少一种。
拆解后的电芯置于含有催化剂的氢氧化锂溶液中,一方面,电解液溶剂(如碳酸二甲酯)在催化剂的作用下,分解为醇类和二氧化碳,二氧化碳与氢氧化锂反应生成碳酸锂沉淀;另一方面,电解液溶质六氟磷酸锂与氢氧化锂反应,方程式如下:
LiPF 6+14LiOH=6LiOH·LiF↓+Li 3PO 4↓+4H 2O
通过将沉淀物与氢氟酸反应,去除沉淀物中的氢氧根和碳酸根,并发生如下反应:
LiOH+HF=LiF+H2O
Li 2CO 3+2HF=2LiF+H 2O+CO 2
LiF+HF=LiHF 2
进一步通过煅烧,LiHF2分解为氟化锂和氟化氢,从而得到仅有氟化锂和磷酸锂的无水锂盐;再通过将无水锂盐在有机溶剂中与五氟化磷反应,从而制得再生磷酸锂,过程如下,以乙腈为例:
LiF+PF 5+4CH 3CN→Li(CH 3CN) 4PF 6→LiPF 6
优选的,这种回收锂离子电池电解液的方法,步骤1)中,冷冻温度≤-50℃;进一步优选的,冷冻温度≤-55℃;再进一步优选的,冷冻温度≤-60℃。
优选的,这种回收锂离子电池电解液的方法,步骤2)中,催化剂包括季铵盐、甲氨基二乙醇中的至少一种;进一步优选的,季铵盐为氯化盐或溴化盐,烃基上的碳原子总数≤12;在本申请的一些优选实施例中,催化剂为[(CH 3) 3NCH 2CH 2Cl]Cl或[(CH 3CH 2)3NCH 2CH 2OH]Cl中的至少一种。
优选的,这种回收锂离子电池电解液的方法,步骤2)中,催化剂的浓度为5~60g/L;进一步优选的,催化剂的浓度为8~55g/L;再进一步优选的,催化剂的浓度为10~50g/L。
优选的,这种回收锂离子电池电解液的方法,步骤2)中,氢氧化锂的浓度为0.1~4mol/L。
优选的,这种回收锂离子电池电解液的方法,步骤2)中,反应的时间为0.3~3h;进一步优选的,反应的时间为0.4~2.5h;再进一步优选的,反应的时间为0.5~2h。
优选的,这种回收锂离子电池电解液的方法,步骤2)中,液体溶液用量没过电芯即可。
优选的,这种回收锂离子电池电解液的方法,步骤3)中,氢氧化锂溶液的浓度为0.1~4mol/L。
优选的,这种回收锂离子电池电解液的方法,步骤5)中,加热蒸干回收氟化氢;进一步优选的,在50~70℃条件下加热回收氟化氢。
优选的,这种回收锂离子电池电解液的方法,步骤5)中,煅烧温度为500~800℃;进一步优选的,煅烧温度为550~750℃;再进一步优选的,煅烧温度为600~700℃。
优选的,这种回收锂离子电池电解液的方法,步骤5)中,煅烧时间为0.3~3h; 进一步优选的,煅烧时间为0.4~2.5h;再进一步优选的,煅烧时间为0.5~2h。
优选的,这种回收锂离子电池电解液的方法,步骤6)中,有机溶剂包括乙腈、乙醚、吡咯、吡啶中的至少一种;进一步优选的,有机溶剂包括乙腈、乙醚、吡咯中的一种;再进一步优选的,有机溶剂为乙腈、乙醚中的一种。
优选的,这种回收锂离子电池电解液的方法,步骤6)中,有机溶剂与无水锂盐的液固比为(30~60)mL:1g;进一步优选的,有机溶剂与无水锂盐的液固比为(35~55)mL:1g;再进一步优选的,有机溶剂与无水锂盐的液固比为(40~50)mL:1g。
优选的,这种回收锂离子电池电解液的方法,步骤6)中,反应压力为0.2~0.8MPa;进一步优选的,反应压力为0.25~0.75MPa;再进一步优选的,反应压力为0.3~0.7MPa。
优选的,这种回收锂离子电池电解液的方法,步骤6)中,反应时间为0.5~3h;进一步优选的,反应时间为0.8~2.5h;再进一步优选的,反应时间为1~2h。
优选的,这种回收锂离子电池电解液的方法,步骤6)中,过滤时的温度为40~80℃;进一步优选的,过滤时的温度为45~75℃;再进一步优选的,过滤时的温度为50~70℃。
优选的,这种回收锂离子电池电解液的方法,步骤7)中,冷冻温度为-40~-10℃;进一步优选的,冷冻温度为-35~-15℃;再进一步优选的,冷冻温度为-30~-20℃。
优选的,这种回收锂离子电池电解液的方法,步骤7)中,还包括过滤得到的滤饼的干燥步骤,干燥在氮气气氛下;进一步优选的,干燥温度为0~8℃,干燥时间为10~26h;再进一步优选的,干燥温度为0~5℃,干燥时间为12~24h。
本申请实施例的有益效果是:
1、本申请实施例通过冷冻废旧锂离子电池,再进行拆解,避免电解液的挥发和分解污染环境;本申请的方法制得的六氟磷酸锂的纯度高,满足《HG/T 4066-2015六氟磷酸锂电解液》标准要求。
2、由于废旧电池的电解液经过长时间的使用,内部含有杂质较多,已很难继续回用,尤其是溶剂中各酯类发生的副反应,溶剂基本无法回用,本申请实施例通过催化分解的方式,使其生成易溶于水的醇类和二氧化碳,避免其与水不溶产生聚集、出现着火等情况,并且在氢氧化锂的作用下进一步促进反应的 进行。电解液溶质六氟磷酸锂中的氟与锂均具有较高的经济价值,采用氢氧化锂使其沉淀,再经一系列反应得到再生的六氟磷酸锂,整个过程仅消耗氢氧化锂,回收成本低。
3、利用磷酸锂不溶于有机溶剂的方法,通过氟化锂与五氟化磷生成六氟磷酸锂,从而分离出磷酸锂,得到纯净的六氟磷酸锂。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本文技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本文的技术方案,并不构成对本文技术方案的限制。
图1为实施例的回收锂离子电池电解液的方法的示意图。
具体实施方式
以下通过具体的实施例对本申请的内容作进一步详细的说明。实施例中所用的原料或装置如无特殊说明,均可从常规商业途径得到,或者可以通过相关技术方法得到。除非特别说明,试验或测试方法均为本领域的常规方法。
实施例1
参照附图1的示意图,本实施例的回收锂离子电池电解液的方法,包括以下步骤:
1)废旧锂离子电池经放电后,采用液氮冷冻至-60℃以下;
2)将冷冻后的废旧锂离子电池拆解,取出含有电解液的电芯;
3)将电芯置于含有催化剂的氢氧化锂溶液中浸泡2h,液体没过电芯,氢氧化锂溶液的浓度为0.1mol/L,催化剂为甲氨基二乙醇,浓度为10g/L;
4)取出步骤3)反应后的电芯,并用浓度为0.1mol/L的氢氧化锂溶液冲洗,得到洗涤液;洗涤液与步骤3)反应后的氢氧化锂溶液混合,得到混合液;
5)将混合液过滤,得到滤液和滤渣;
6)将滤渣加入到足量的氢氟酸溶液中,加热蒸干回收多余的氟化氢,在温度为600℃下煅烧2h,得到无水锂盐;
7)按照液固比为40mL:1g,将无水锂盐加入到无水乙腈中,置于密闭环境中,并缓慢通入PF 5气体,使反应系统压力为0.3MPa,反应时间2h,反应完成 后,加热到50℃并过滤,得到有机液;
8)将有机液冷冻至-30℃,析出结晶,过滤,得到滤饼;
9)将滤饼在氮气氛围下0℃下干燥24h,制得六氟磷酸锂。
制得的六氟磷酸锂满足《HG/T 4066-2015六氟磷酸锂电解液》标准要求。
实施例2
参照附图1的示意图,本实施例的回收锂离子电池电解液的方法,包括以下步骤:
1)废旧锂离子电池经放电后,采用液氮冷冻至-60℃以下;
2)将冷冻后的废旧锂离子电池拆解,取出含有电解液的电芯;
3)将电芯置于含有催化剂的氢氧化锂溶液中浸泡1h,液体没过电芯,氢氧化锂溶液的浓度为2mol/L,催化剂为[(CH 3) 3NCH 2CH 2Cl]Cl,浓度为30g/L;
4)取出步骤3)反应后的电芯,并用浓度为2mol/L的氢氧化锂溶液冲洗,得到洗涤液;洗涤液与步骤3)反应后的氢氧化锂溶液混合,得到混合液;
5)将混合液过滤,得到滤液和滤渣;
6)将滤渣加入到足量的氢氟酸溶液中,加热蒸干回收多余的氟化氢,在温度为650℃下煅烧1h,得到无水锂盐;
7)按照液固比为45mL:1g,将无水锂盐加入到无水乙腈中,置于密闭环境中,并缓慢通入PF 5气体,使反应系统压力为0.5MPa,反应时间1.5h,反应完成后,加热到60℃并过滤,得到有机液;
8)将有机液冷冻至-25℃,析出结晶,过滤,得到滤饼;
9)将滤饼在氮气氛围下3℃下干燥18h,制得六氟磷酸锂。
制得的六氟磷酸锂满足《HG/T 4066-2015六氟磷酸锂电解液》标准要求。
实施例3
参照附图1的示意图,本实施例的回收锂离子电池电解液的方法,包括以下步骤:
1)废旧锂离子电池经放电后,采用液氮冷冻至-60℃以下;
2)将冷冻后的废旧锂离子电池拆解,取出含有电解液的电芯;
3)将电芯置于含有催化剂的氢氧化锂溶液中浸泡0.5h,液体没过电芯,氢氧化锂溶液的浓度为4mol/L,催化剂为[(CH 3CH 2) 3NCH 2CH 2OH]Cl,浓度为50g/L;
4)取出步骤3)反应后的电芯,并用浓度为4mol/L的氢氧化锂溶液冲洗, 得到洗涤液;洗涤液与步骤3)反应后的氢氧化锂溶液混合,得到混合液;
5)混合液过滤,得到滤液和滤渣;
6)将滤渣加入到足量的氢氟酸溶液中,加热蒸干回收多余的氟化氢,在温度为700℃下煅烧0.5h,得到无水锂盐;
7)按照液固比为50mL:1g,将无水锂盐加入到无水乙醚中,置于密闭环境中,并缓慢通入PF 5气体,使反应系统压力为0.7MPa,反应时间1h,反应完成后,加热到70℃并过滤,得到有机液;
8)将有机液冷冻至-20℃,析出结晶,过滤,得到滤饼;
9)将滤饼在氮气氛围下5℃下干燥24h,制得六氟磷酸锂。
制得的六氟磷酸锂满足《HG/T 4066-2015六氟磷酸锂电解液》标准要求。

Claims (10)

  1. 一种回收锂离子电池电解液的方法,其包括以下步骤:
    1)废旧锂离子电池放电后冷冻处理;将冷冻后的废旧锂离子电池拆解,得到含有电解液的电芯;
    2)步骤1)所述的电芯浸泡在含有催化剂的氢氧化锂溶液中进行反应;
    3)取出步骤2)反应后的电芯,用氢氧化锂溶液进行洗涤,得到洗涤液;将所述洗涤液与步骤2)反应后的氢氧化锂溶液混合,得到混合液;
    4)将步骤3)所述的混合液过滤,得到滤液和滤渣;
    5)将步骤4)所述的滤渣与氢氟酸溶液混合,加热蒸干后煅烧,得到无水锂盐;
    6)将步骤5)所述的无水锂盐与有机溶剂混合,通入PF 5气体,反应,过滤,得到有机液;
    7)将步骤6)所述的有机液进行冷冻,过滤,得到六氟磷酸锂。
  2. 根据权利要求1所述的回收锂离子电池电解液的方法,其中,步骤1)中,所述的电解液的组分包括碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、甲基乙基碳酸酯中的至少一种。
  3. 根据权利要求1所述的回收锂离子电池电解液的方法,其中,步骤2)中,所述的催化剂包括季铵盐、甲氨基二乙醇中的至少一种。
  4. 根据权利要求1所述的回收锂离子电池电解液的方法,其中,步骤2)中,所述的反应的时间为0.3~3h。
  5. 根据权利要求1所述的回收锂离子电池电解液的方法,其中,步骤5)中,所述的煅烧温度为500~800℃;所述的煅烧时间为0.3~3h。
  6. 根据权利要求1所述的回收锂离子电池电解液的方法,其中,步骤6)中,所述的有机溶剂包括乙腈、乙醚、吡咯、吡啶中的至少一种。
  7. 根据权利要求1所述的回收锂离子电池电解液的方法,其中,步骤6)中,所述的有机溶剂与无水锂盐的液固比为(30~60)mL:1g。
  8. 根据权利要求1所述的回收锂离子电池电解液的方法,其中,步骤6)中,所述的反应压力为0.2~0.8MPa;所述的反应时间为0.5~3h。
  9. 根据权利要求1所述的回收锂离子电池电解液的方法,其中,步骤6)中,所述的过滤时的温度为40~80℃。
  10. 根据权利要求1所述的回收锂离子电池电解液的方法,其中,步骤7) 中,所述的冷冻温度为-40~-10℃。
PCT/CN2022/135992 2022-02-18 2022-12-01 一种回收锂离子电池电解液的方法 WO2023155543A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
MX2024001665A MX2024001665A (es) 2022-02-18 2022-12-01 Metodo para reciclar electrolito de bateria de iones de litio.
GB2318396.5A GB2621298A (en) 2022-02-18 2022-12-01 Method for recycling electrolyte of lithium-ion battery
HU2400125A HUP2400125A1 (hu) 2022-02-18 2022-12-01 Eljárás lítiumion-akkumulátor elektrolitoldatának újrahasznosítására
DE112022003354.1T DE112022003354T5 (de) 2022-02-18 2022-12-01 Verfahren zum recyceln des elektrolyten einer lithium-ionen-batterie

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210150550.6A CN114715922B (zh) 2022-02-18 2022-02-18 一种回收锂离子电池电解液的方法
CN202210150550.6 2022-02-18

Publications (1)

Publication Number Publication Date
WO2023155543A1 true WO2023155543A1 (zh) 2023-08-24

Family

ID=82236262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135992 WO2023155543A1 (zh) 2022-02-18 2022-12-01 一种回收锂离子电池电解液的方法

Country Status (6)

Country Link
CN (1) CN114715922B (zh)
DE (1) DE112022003354T5 (zh)
GB (1) GB2621298A (zh)
HU (1) HUP2400125A1 (zh)
MX (1) MX2024001665A (zh)
WO (1) WO2023155543A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114715922B (zh) * 2022-02-18 2024-01-05 广东邦普循环科技有限公司 一种回收锂离子电池电解液的方法
CN115771906A (zh) * 2022-11-29 2023-03-10 湖北犇星新能源材料有限公司 一种固固反应制备六氟磷酸锂的方法
CN116231137A (zh) * 2023-02-16 2023-06-06 广东邦普循环科技有限公司 一种废旧锂电池电解液回收资源化利用的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009292724A (ja) * 2009-09-18 2009-12-17 Kanto Denka Kogyo Co Ltd 低水分六フッ化リン酸リチウムの製造方法
CN106025420A (zh) * 2016-08-11 2016-10-12 合肥国轩高科动力能源有限公司 一种废旧锂离子电池中六氟磷酸锂回收方法
CN109193062A (zh) * 2018-10-29 2019-01-11 山西根复科技有限公司 一种废旧电池电解液回收利用方法
CN114715922A (zh) * 2022-02-18 2022-07-08 广东邦普循环科技有限公司 一种回收锂离子电池电解液的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6097111B2 (ja) * 2013-03-27 2017-03-15 三井化学株式会社 フッ化リチウム粉末の製造方法及び六フッ化リン酸リチウムの製造方法
WO2015046232A1 (ja) * 2013-09-30 2015-04-02 三菱マテリアル株式会社 フッ素含有電解液の処理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009292724A (ja) * 2009-09-18 2009-12-17 Kanto Denka Kogyo Co Ltd 低水分六フッ化リン酸リチウムの製造方法
CN106025420A (zh) * 2016-08-11 2016-10-12 合肥国轩高科动力能源有限公司 一种废旧锂离子电池中六氟磷酸锂回收方法
CN109193062A (zh) * 2018-10-29 2019-01-11 山西根复科技有限公司 一种废旧电池电解液回收利用方法
CN114715922A (zh) * 2022-02-18 2022-07-08 广东邦普循环科技有限公司 一种回收锂离子电池电解液的方法

Also Published As

Publication number Publication date
CN114715922B (zh) 2024-01-05
GB2621298A (en) 2024-02-07
DE112022003354T5 (de) 2024-04-11
GB202318396D0 (en) 2024-01-17
MX2024001665A (es) 2024-02-27
CN114715922A (zh) 2022-07-08
HUP2400125A1 (hu) 2024-07-28

Similar Documents

Publication Publication Date Title
WO2023155543A1 (zh) 一种回收锂离子电池电解液的方法
CN106997975B (zh) 一种废旧磷酸铁锂电池和锰酸锂电池再生利用的方法
CN111392750B (zh) 一种从废旧锂离子电池中除杂回收锂的方法
CN105932351A (zh) 废旧锂电池的资源化回收处理方法
CN111270072B (zh) 一种废旧磷酸铁锂电池正极材料的回收利用方法
CN106910889A (zh) 一种从废旧磷酸铁锂电池中再生正极活性物质的方法
CN111463475A (zh) 一种选择性回收废旧动力锂电池正极材料的方法
CN102390863B (zh) 一种废旧锂离子电池负极材料钛酸锂的再生方法
CN106276842B (zh) 将废旧锂离子电池中的磷酸铁锂回收再生的方法
CN112164834B (zh) 一种废旧磷酸铁锂电池正极材料的再生方法
CN112271349A (zh) 一种锂离子正极再利用的方法和再利用锂离子正极材料
CN114229816B (zh) 一种从废旧磷酸铁锂电池中回收制备正极材料的方法
CN113097591B (zh) 磷酸铁锂电池正极材料的回收方法
CN114195203B (zh) 一种废弃磷酸铁锂电池和废弃镍钴锰锂系电池协同回收与再生方法
CN109678213A (zh) 一种锂离子电池磷酸铁锂废料的回收和再利用方法
CN112310502A (zh) 废旧锰酸锂锂离子电池正极材料的回收及再利用方法
Zhang et al. The foreseeable future of spent lithium-ion batteries: Advanced upcycling for toxic electrolyte, cathode, and anode from environmental and technological perspectives
CN114317968A (zh) 废旧磷酸铁锂电池的回收利用方法及其应用
Qiu et al. Challenges and perspectives towards direct regeneration of spent LiFePO4 cathode
Yang et al. Direct regeneration of spent LiFePO4 materials via a green and economical one-step hydrothermal process
CN117185319A (zh) 一种硫酸盐空气焙烧回收磷酸铁锂电池的方法
KR102650913B1 (ko) 리튬철인 산화물로부터 리튬의 선택적인 회수 방법
Apriliyani et al. Li-ion Batteries Waste Processing and Utilization Progress: A Review
KR102627665B1 (ko) 리튬망간철인 산화물로부터 리튬의 선택적인 회수 방법
WO2024169010A1 (zh) 一种废旧锂电池电解液回收资源化利用的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926847

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202318396

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20221201

WWE Wipo information: entry into national phase

Ref document number: P202490007

Country of ref document: ES

WWE Wipo information: entry into national phase

Ref document number: P2400125

Country of ref document: HU

WWE Wipo information: entry into national phase

Ref document number: 112022003354

Country of ref document: DE