WO2023155543A1 - 一种回收锂离子电池电解液的方法 - Google Patents
一种回收锂离子电池电解液的方法 Download PDFInfo
- Publication number
- WO2023155543A1 WO2023155543A1 PCT/CN2022/135992 CN2022135992W WO2023155543A1 WO 2023155543 A1 WO2023155543 A1 WO 2023155543A1 CN 2022135992 W CN2022135992 W CN 2022135992W WO 2023155543 A1 WO2023155543 A1 WO 2023155543A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium
- electrolyte
- ion battery
- recovering
- solution
- Prior art date
Links
- 239000003792 electrolyte Substances 0.000 title claims abstract description 68
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 58
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 58
- 238000000034 method Methods 0.000 title claims abstract description 52
- 238000004064 recycling Methods 0.000 title abstract description 11
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims abstract description 86
- 239000000243 solution Substances 0.000 claims abstract description 44
- 238000006243 chemical reaction Methods 0.000 claims abstract description 24
- -1 lithium hexafluorophosphate Chemical compound 0.000 claims abstract description 23
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 22
- 159000000002 lithium salts Chemical class 0.000 claims abstract description 22
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000003054 catalyst Substances 0.000 claims abstract description 17
- 239000002699 waste material Substances 0.000 claims abstract description 15
- 239000003960 organic solvent Substances 0.000 claims abstract description 14
- 238000005406 washing Methods 0.000 claims abstract description 14
- 238000001914 filtration Methods 0.000 claims abstract description 13
- 239000011259 mixed solution Substances 0.000 claims abstract description 12
- 230000008014 freezing Effects 0.000 claims abstract description 10
- 238000007710 freezing Methods 0.000 claims abstract description 10
- 238000002156 mixing Methods 0.000 claims abstract description 7
- 239000000706 filtrate Substances 0.000 claims abstract description 6
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 21
- 239000007788 liquid Substances 0.000 claims description 17
- 238000001354 calcination Methods 0.000 claims description 14
- 230000035484 reaction time Effects 0.000 claims description 11
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 7
- 239000007787 solid Substances 0.000 claims description 7
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims description 6
- 238000001704 evaporation Methods 0.000 claims description 6
- 238000011282 treatment Methods 0.000 claims description 6
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 claims description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 4
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 claims description 4
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims description 4
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 claims description 3
- 150000003242 quaternary ammonium salts Chemical class 0.000 claims description 3
- 150000002148 esters Chemical class 0.000 claims description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims 1
- 238000000354 decomposition reaction Methods 0.000 abstract description 3
- 238000011109 contamination Methods 0.000 abstract 1
- 238000002791 soaking Methods 0.000 abstract 1
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 14
- 239000012065 filter cake Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002244 precipitate Substances 0.000 description 6
- 229910013870 LiPF 6 Inorganic materials 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000011737 fluorine Substances 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- 229910001386 lithium phosphate Inorganic materials 0.000 description 4
- 239000012299 nitrogen atmosphere Substances 0.000 description 4
- OBCUTHMOOONNBS-UHFFFAOYSA-N phosphorus pentafluoride Chemical compound FP(F)(F)(F)F OBCUTHMOOONNBS-UHFFFAOYSA-N 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000010170 biological method Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000002386 leaching Methods 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 239000010926 waste battery Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910018119 Li 3 PO 4 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 239000002194 amorphous carbon material Substances 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 150000003842 bromide salts Chemical class 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 125000005587 carbonate group Chemical group 0.000 description 1
- 238000003421 catalytic decomposition reaction Methods 0.000 description 1
- 150000003841 chloride salts Chemical group 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D15/00—Lithium compounds
- C01D15/005—Lithium hexafluorophosphate
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D15/00—Lithium compounds
- C01D15/04—Halides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/54—Reclaiming serviceable parts of waste accumulators
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/84—Recycling of batteries or fuel cells
Definitions
- the embodiment of the present application relates to the field of battery recycling, for example, a method for recycling the electrolyte of a lithium-ion battery.
- the commonly used positive electrode materials for lithium-ion batteries include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFePO 4 and ternary materials.
- the positive electrode material, acetylene black conductive agent and organic binder are coated on the aluminum foil to form the positive electrode. It is composed of sheet carbon material and amorphous carbon material coated on copper foil.
- the electrolyte salt in the electrolyte solution is generally lithium salts such as LiPF 6 , LiCF 3 SO 3 and LiBF 4 , and commonly used solvents include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), methyl Ethyl carbonate (EMC), etc.
- Lithium-ion battery recycling technology can be divided into fire method, wet method and biological method.
- fire and wet treatment processes most of the processes do not consider electrolyte recovery and treatment, which brings great safety hazards to production and relatively serious environmental pollution.
- the organic solvent of the electrolyte will volatilize or burn and decompose into water vapor and CO 2 emissions, while LiPF 6 will be rapidly decomposed into PF 5 gas when heated in the air, and finally form fluorine-containing fumes and smoke dust to be emitted.
- HF and PF 5 can easily form soluble fluoride, causing fluorine pollution in water.
- Fluorine-containing waste gas and waste water are directly or indirectly harmful to human health through transformation and migration in the environment.
- biological methods namely microbial leaching methods, can also be used to treat waste lithium batteries, using microorganisms to convert useful components of the system into soluble compounds and selectively dissolving them to obtain a metal-containing solution to achieve target components and impurity components.
- the separation of metals, and the final recovery of useful metals Specifically, the metabolic process of microorganisms is mainly used to achieve selective leaching of cobalt, lithium and other metal elements, but the electrolyte cannot be effectively recovered and disposed of at the same time.
- the research on the recycling of waste lithium-ion batteries mainly focuses on electrode materials containing non-ferrous metals such as cobalt, lithium, nickel, and copper, which have high value.
- the electrolyte is volatile and difficult to recycle, so there are few researches and treatments on electrolyte recovery.
- the volatilization of the electrolyte an unpleasant pungent smell will be produced, and the lithium salt in the electrolyte will be hydrolyzed to produce toxic arsenic, phosphide and fluoride, which are very harmful to the human body and the environment, and have become an unavoidable problem.
- the electrolyte accounts for about 12% of the total cost of the battery.
- an embodiment of the present application provides a method for recycling the electrolyte of the lithium-ion battery.
- a method for reclaiming lithium-ion battery electrolyte comprising the following steps:
- step 2) The electric core of step 1) is soaked in the lithium hydroxide solution containing catalyst to react;
- step 4) filtering the mixed solution of step 3) to obtain filtrate and filter residue;
- step 5) mixing the filter residue of step 4) with hydrofluoric acid solution, heating and evaporating to dryness, and calcining to obtain anhydrous lithium salt;
- step 6) mixing the anhydrous lithium salt in step 5) with an organic solvent, feeding PF5 gas, reacting, and filtering to obtain an organic liquid;
- step 6) The organic liquid in step 6) is frozen and filtered to obtain lithium hexafluorophosphate.
- the components of the electrolyte include at least one of ethylene carbonate, propylene carbonate, dimethyl carbonate, and methyl ethyl carbonate.
- the disassembled cell is placed in a lithium hydroxide solution containing a catalyst.
- the electrolyte solvent such as dimethyl carbonate
- the electrolyte solvent is decomposed into alcohols and carbon dioxide under the action of the catalyst, and carbon dioxide reacts with lithium hydroxide to form Lithium carbonate precipitates;
- the electrolyte solute lithium hexafluorophosphate reacts with lithium hydroxide, and the equation is as follows:
- LiPF 6 +14LiOH 6LiOH ⁇ LiF ⁇ +Li 3 PO 4 ⁇ +4H 2 O
- LiHF2 is decomposed into lithium fluoride and hydrogen fluoride, thereby obtaining anhydrous lithium salt with only lithium fluoride and lithium phosphate; and then reacting anhydrous lithium salt with phosphorus pentafluoride in an organic solvent to obtain
- the process is as follows, taking acetonitrile as an example:
- the freezing temperature is ⁇ -50°C; more preferably, the freezing temperature is ⁇ -55°C; still more preferably, the freezing temperature is ⁇ -60°C.
- the catalyst includes at least one of quaternary ammonium salt and methylaminodiethanol; further preferably, the quaternary ammonium salt is a chloride salt or a bromide salt , the total number of carbon atoms on the hydrocarbon group ⁇ 12; in some preferred embodiments of the present application, the catalyst is [(CH 3 ) 3 NCH 2 CH 2 Cl]Cl or [(CH 3 CH 2 )3NCH 2 CH 2 OH]Cl at least one of the
- the concentration of the catalyst is 5 to 60 g/L; more preferably, the concentration of the catalyst is 8 to 55 g/L; further preferably, the concentration of the catalyst The concentration is 10-50g/L.
- the concentration of lithium hydroxide is 0.1-4 mol/L.
- the reaction time is 0.3 to 3 hours; more preferably, the reaction time is 0.4 to 2.5 hours; still more preferably, the reaction time is 0.5 hours ⁇ 2h.
- the amount of the liquid solution should not exceed the cell.
- the concentration of the lithium hydroxide solution is 0.1-4 mol/L.
- the hydrogen fluoride is recovered by heating and evaporating to dryness; more preferably, the hydrogen fluoride is recovered by heating at 50-70°C.
- the calcination temperature is 500-800°C; more preferably, the calcination temperature is 550-750°C; still more preferably, the calcination temperature is 600-700°C °C.
- the calcination time is 0.3-3 h; more preferably, the calcination time is 0.4-2.5 h; still more preferably, the calcination time is 0.5-2 h.
- the organic solvent includes at least one of acetonitrile, ether, pyrrole, and pyridine; further preferably, the organic solvent includes one of acetonitrile, ether, and pyrrole. species; still further preferably, the organic solvent is a kind of in acetonitrile, ether.
- the liquid-solid ratio of the organic solvent to the anhydrous lithium salt is (30-60) mL: 1g; further preferably, the organic solvent and the anhydrous lithium salt
- the liquid-solid ratio of the salt is (35-55)mL:1g; still more preferably, the liquid-solid ratio of the organic solvent to the anhydrous lithium salt is (40-50)mL:1g.
- the reaction pressure is 0.2-0.8 MPa; more preferably, the reaction pressure is 0.25-0.75 MPa; still more preferably, the reaction pressure is 0.3-0.7 MPa MPa.
- the reaction time is 0.5-3 hours; more preferably, the reaction time is 0.8-2.5 hours; still more preferably, the reaction time is 1-2 hours.
- the temperature during filtration is 40-80°C; more preferably, the temperature during filtration is 45-75°C; still more preferably, during filtration The temperature is 50 ⁇ 70 °C.
- the freezing temperature is -40 to -10°C; more preferably, the freezing temperature is -35 to -15°C; still more preferably, the freezing temperature is It is -30 ⁇ -20°C.
- the method for recovering lithium-ion battery electrolyte, in step 7), also includes a drying step of the filter cake obtained by filtering, and drying in a nitrogen atmosphere; more preferably, the drying temperature is 0-8 ° C, and the drying time is 10-26 hours; more preferably, the drying temperature is 0-5°C, and the drying time is 12-24 hours.
- the waste lithium-ion battery is frozen and then disassembled to avoid the volatilization and decomposition of the electrolyte to pollute the environment;
- the lithium hexafluorophosphate prepared by the method of the present application has high purity and meets the requirements of "HG/T 4066-2015 Lithium hexafluorophosphate electrolysis Liquid" standard requirements.
- the method of catalytic decomposition makes it generate water-soluble alcohols and carbon dioxide, avoids aggregation and fire when it is insoluble in water, and further promotes the reaction under the action of lithium hydroxide.
- Both fluorine and lithium in the electrolyte solute lithium hexafluorophosphate have high economic value.
- Lithium hydroxide is used to precipitate it, and then the regenerated lithium hexafluorophosphate is obtained through a series of reactions. The whole process only consumes lithium hydroxide, and the recovery cost is low.
- lithium fluoride and phosphorus pentafluoride are used to generate lithium hexafluorophosphate, thereby separating lithium phosphate and obtaining pure lithium hexafluorophosphate.
- Fig. 1 is the schematic diagram of the method for reclaiming lithium-ion battery electrolyte of the embodiment.
- the method for reclaiming lithium-ion battery electrolyte of the present embodiment comprises the following steps:
- the prepared lithium hexafluorophosphate meets the standard requirements of "HG/T 4066-2015 Lithium Hexafluorophosphate Electrolyte”.
- the method for reclaiming lithium-ion battery electrolyte of the present embodiment comprises the following steps:
- the prepared lithium hexafluorophosphate meets the standard requirements of "HG/T 4066-2015 Lithium Hexafluorophosphate Electrolyte”.
- the method for reclaiming lithium-ion battery electrolyte of the present embodiment comprises the following steps:
- the prepared lithium hexafluorophosphate meets the standard requirements of "HG/T 4066-2015 Lithium Hexafluorophosphate Electrolyte”.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Primary Cells (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Description
Claims (10)
- 一种回收锂离子电池电解液的方法,其包括以下步骤:1)废旧锂离子电池放电后冷冻处理;将冷冻后的废旧锂离子电池拆解,得到含有电解液的电芯;2)步骤1)所述的电芯浸泡在含有催化剂的氢氧化锂溶液中进行反应;3)取出步骤2)反应后的电芯,用氢氧化锂溶液进行洗涤,得到洗涤液;将所述洗涤液与步骤2)反应后的氢氧化锂溶液混合,得到混合液;4)将步骤3)所述的混合液过滤,得到滤液和滤渣;5)将步骤4)所述的滤渣与氢氟酸溶液混合,加热蒸干后煅烧,得到无水锂盐;6)将步骤5)所述的无水锂盐与有机溶剂混合,通入PF 5气体,反应,过滤,得到有机液;7)将步骤6)所述的有机液进行冷冻,过滤,得到六氟磷酸锂。
- 根据权利要求1所述的回收锂离子电池电解液的方法,其中,步骤1)中,所述的电解液的组分包括碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、甲基乙基碳酸酯中的至少一种。
- 根据权利要求1所述的回收锂离子电池电解液的方法,其中,步骤2)中,所述的催化剂包括季铵盐、甲氨基二乙醇中的至少一种。
- 根据权利要求1所述的回收锂离子电池电解液的方法,其中,步骤2)中,所述的反应的时间为0.3~3h。
- 根据权利要求1所述的回收锂离子电池电解液的方法,其中,步骤5)中,所述的煅烧温度为500~800℃;所述的煅烧时间为0.3~3h。
- 根据权利要求1所述的回收锂离子电池电解液的方法,其中,步骤6)中,所述的有机溶剂包括乙腈、乙醚、吡咯、吡啶中的至少一种。
- 根据权利要求1所述的回收锂离子电池电解液的方法,其中,步骤6)中,所述的有机溶剂与无水锂盐的液固比为(30~60)mL:1g。
- 根据权利要求1所述的回收锂离子电池电解液的方法,其中,步骤6)中,所述的反应压力为0.2~0.8MPa;所述的反应时间为0.5~3h。
- 根据权利要求1所述的回收锂离子电池电解液的方法,其中,步骤6)中,所述的过滤时的温度为40~80℃。
- 根据权利要求1所述的回收锂离子电池电解液的方法,其中,步骤7) 中,所述的冷冻温度为-40~-10℃。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2024001665A MX2024001665A (es) | 2022-02-18 | 2022-12-01 | Metodo para reciclar electrolito de bateria de iones de litio. |
GB2318396.5A GB2621298A (en) | 2022-02-18 | 2022-12-01 | Method for recycling electrolyte of lithium-ion battery |
HU2400125A HUP2400125A1 (hu) | 2022-02-18 | 2022-12-01 | Eljárás lítiumion-akkumulátor elektrolitoldatának újrahasznosítására |
DE112022003354.1T DE112022003354T5 (de) | 2022-02-18 | 2022-12-01 | Verfahren zum recyceln des elektrolyten einer lithium-ionen-batterie |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210150550.6A CN114715922B (zh) | 2022-02-18 | 2022-02-18 | 一种回收锂离子电池电解液的方法 |
CN202210150550.6 | 2022-02-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023155543A1 true WO2023155543A1 (zh) | 2023-08-24 |
Family
ID=82236262
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/135992 WO2023155543A1 (zh) | 2022-02-18 | 2022-12-01 | 一种回收锂离子电池电解液的方法 |
Country Status (6)
Country | Link |
---|---|
CN (1) | CN114715922B (zh) |
DE (1) | DE112022003354T5 (zh) |
GB (1) | GB2621298A (zh) |
HU (1) | HUP2400125A1 (zh) |
MX (1) | MX2024001665A (zh) |
WO (1) | WO2023155543A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114715922B (zh) * | 2022-02-18 | 2024-01-05 | 广东邦普循环科技有限公司 | 一种回收锂离子电池电解液的方法 |
CN115771906A (zh) * | 2022-11-29 | 2023-03-10 | 湖北犇星新能源材料有限公司 | 一种固固反应制备六氟磷酸锂的方法 |
CN116231137A (zh) * | 2023-02-16 | 2023-06-06 | 广东邦普循环科技有限公司 | 一种废旧锂电池电解液回收资源化利用的方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009292724A (ja) * | 2009-09-18 | 2009-12-17 | Kanto Denka Kogyo Co Ltd | 低水分六フッ化リン酸リチウムの製造方法 |
CN106025420A (zh) * | 2016-08-11 | 2016-10-12 | 合肥国轩高科动力能源有限公司 | 一种废旧锂离子电池中六氟磷酸锂回收方法 |
CN109193062A (zh) * | 2018-10-29 | 2019-01-11 | 山西根复科技有限公司 | 一种废旧电池电解液回收利用方法 |
CN114715922A (zh) * | 2022-02-18 | 2022-07-08 | 广东邦普循环科技有限公司 | 一种回收锂离子电池电解液的方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6097111B2 (ja) * | 2013-03-27 | 2017-03-15 | 三井化学株式会社 | フッ化リチウム粉末の製造方法及び六フッ化リン酸リチウムの製造方法 |
WO2015046232A1 (ja) * | 2013-09-30 | 2015-04-02 | 三菱マテリアル株式会社 | フッ素含有電解液の処理方法 |
-
2022
- 2022-02-18 CN CN202210150550.6A patent/CN114715922B/zh active Active
- 2022-12-01 WO PCT/CN2022/135992 patent/WO2023155543A1/zh active Application Filing
- 2022-12-01 HU HU2400125A patent/HUP2400125A1/hu unknown
- 2022-12-01 MX MX2024001665A patent/MX2024001665A/es unknown
- 2022-12-01 GB GB2318396.5A patent/GB2621298A/en active Pending
- 2022-12-01 DE DE112022003354.1T patent/DE112022003354T5/de active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009292724A (ja) * | 2009-09-18 | 2009-12-17 | Kanto Denka Kogyo Co Ltd | 低水分六フッ化リン酸リチウムの製造方法 |
CN106025420A (zh) * | 2016-08-11 | 2016-10-12 | 合肥国轩高科动力能源有限公司 | 一种废旧锂离子电池中六氟磷酸锂回收方法 |
CN109193062A (zh) * | 2018-10-29 | 2019-01-11 | 山西根复科技有限公司 | 一种废旧电池电解液回收利用方法 |
CN114715922A (zh) * | 2022-02-18 | 2022-07-08 | 广东邦普循环科技有限公司 | 一种回收锂离子电池电解液的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114715922B (zh) | 2024-01-05 |
GB2621298A (en) | 2024-02-07 |
DE112022003354T5 (de) | 2024-04-11 |
GB202318396D0 (en) | 2024-01-17 |
MX2024001665A (es) | 2024-02-27 |
CN114715922A (zh) | 2022-07-08 |
HUP2400125A1 (hu) | 2024-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023155543A1 (zh) | 一种回收锂离子电池电解液的方法 | |
CN106997975B (zh) | 一种废旧磷酸铁锂电池和锰酸锂电池再生利用的方法 | |
CN111392750B (zh) | 一种从废旧锂离子电池中除杂回收锂的方法 | |
CN105932351A (zh) | 废旧锂电池的资源化回收处理方法 | |
CN111270072B (zh) | 一种废旧磷酸铁锂电池正极材料的回收利用方法 | |
CN106910889A (zh) | 一种从废旧磷酸铁锂电池中再生正极活性物质的方法 | |
CN111463475A (zh) | 一种选择性回收废旧动力锂电池正极材料的方法 | |
CN102390863B (zh) | 一种废旧锂离子电池负极材料钛酸锂的再生方法 | |
CN106276842B (zh) | 将废旧锂离子电池中的磷酸铁锂回收再生的方法 | |
CN112164834B (zh) | 一种废旧磷酸铁锂电池正极材料的再生方法 | |
CN112271349A (zh) | 一种锂离子正极再利用的方法和再利用锂离子正极材料 | |
CN114229816B (zh) | 一种从废旧磷酸铁锂电池中回收制备正极材料的方法 | |
CN113097591B (zh) | 磷酸铁锂电池正极材料的回收方法 | |
CN114195203B (zh) | 一种废弃磷酸铁锂电池和废弃镍钴锰锂系电池协同回收与再生方法 | |
CN109678213A (zh) | 一种锂离子电池磷酸铁锂废料的回收和再利用方法 | |
CN112310502A (zh) | 废旧锰酸锂锂离子电池正极材料的回收及再利用方法 | |
Zhang et al. | The foreseeable future of spent lithium-ion batteries: Advanced upcycling for toxic electrolyte, cathode, and anode from environmental and technological perspectives | |
CN114317968A (zh) | 废旧磷酸铁锂电池的回收利用方法及其应用 | |
Qiu et al. | Challenges and perspectives towards direct regeneration of spent LiFePO4 cathode | |
Yang et al. | Direct regeneration of spent LiFePO4 materials via a green and economical one-step hydrothermal process | |
CN117185319A (zh) | 一种硫酸盐空气焙烧回收磷酸铁锂电池的方法 | |
KR102650913B1 (ko) | 리튬철인 산화물로부터 리튬의 선택적인 회수 방법 | |
Apriliyani et al. | Li-ion Batteries Waste Processing and Utilization Progress: A Review | |
KR102627665B1 (ko) | 리튬망간철인 산화물로부터 리튬의 선택적인 회수 방법 | |
WO2024169010A1 (zh) | 一种废旧锂电池电解液回收资源化利用的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22926847 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 202318396 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20221201 |
|
WWE | Wipo information: entry into national phase |
Ref document number: P202490007 Country of ref document: ES |
|
WWE | Wipo information: entry into national phase |
Ref document number: P2400125 Country of ref document: HU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112022003354 Country of ref document: DE |