WO2023155190A1 - 电池、电池的隔膜,以及隔膜制备方法 - Google Patents

电池、电池的隔膜,以及隔膜制备方法 Download PDF

Info

Publication number
WO2023155190A1
WO2023155190A1 PCT/CN2022/077087 CN2022077087W WO2023155190A1 WO 2023155190 A1 WO2023155190 A1 WO 2023155190A1 CN 2022077087 W CN2022077087 W CN 2022077087W WO 2023155190 A1 WO2023155190 A1 WO 2023155190A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
length
nanomaterials
nanomaterial
material layer
Prior art date
Application number
PCT/CN2022/077087
Other languages
English (en)
French (fr)
Inventor
王艳杰
陈泽林
林陆菁
沈剑强
陈秀峰
Original Assignee
深圳市星源材质科技股份有限公司
星源材质(欧洲)有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市星源材质科技股份有限公司, 星源材质(欧洲)有限责任公司 filed Critical 深圳市星源材质科技股份有限公司
Priority to CN202280032570.1A priority Critical patent/CN117397113A/zh
Priority to PCT/CN2022/077087 priority patent/WO2023155190A1/zh
Priority to KR1020237040835A priority patent/KR20240001228A/ko
Priority to JP2023573579A priority patent/JP2024520109A/ja
Priority to EP22926517.8A priority patent/EP4329078A1/en
Priority to PCT/CN2022/108551 priority patent/WO2023155382A1/zh
Priority to PCT/CN2022/121422 priority patent/WO2023155436A1/zh
Publication of WO2023155190A1 publication Critical patent/WO2023155190A1/zh
Priority to US18/523,828 priority patent/US20240128589A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • H01M50/4295Natural cotton, cellulose or wood
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/454Separators, membranes or diaphragms characterised by the material having a layered structure comprising a non-fibrous layer and a fibrous layer superimposed on one another
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of batteries, in particular to a battery, a separator for the battery, and a preparation method for the separator.
  • Lithium battery separator is one of the core components of lithium-ion batteries, and its performance has a very important impact on the overall performance of lithium batteries, and is one of the key technologies restricting the development of lithium batteries. With the continuous expansion of the application field of lithium batteries and the deepening influence of lithium battery products in people's lives, people's requirements for the performance of lithium batteries are also getting higher and higher. In order to meet the development requirements of lithium batteries, the separator, as an important part of lithium batteries, should not only have good chemical stability and low manufacturing cost, but also improve the safety performance of lithium-ion batteries is also an important trend in the development of lithium batteries.
  • the diaphragm of lithium battery can include base film and coating on at least one surface of the base film, and the coating can contain one-dimensional nanomaterials. , it is easy to cause problems such as too many voids and few contact points, thus affecting the thermal stability of the separator.
  • the invention provides a battery, a separator of the battery, and a preparation method of the separator to solve the problems of too many voids and few contact points.
  • a separator for a battery including: a base film and a coating structure disposed on the base film, the coating structure contains multiple material layers, and each material layer contains It contains one-dimensional nanomaterials, and along the direction away from the base film, the average length of the one-dimensional nanomaterials in each material layer decreases layer by layer.
  • the one-dimensional nanomaterials in the coating structure satisfy: 5 ⁇ L50/L10 ⁇ 1.3, 4 ⁇ L90/L50 ⁇ 1.3;
  • the L10 represents: the length description value of the one-dimensional nanomaterial in the coating structure when 10% is used as the first target ratio;
  • the L50 characterizes: the length description value of the one-dimensional nanomaterial in the coating structure when taking 50% as the first target ratio;
  • the L90 characterizes: the length description value of the one-dimensional nanomaterial in the coating structure when taking 90% as the first target ratio;
  • the length description value of the one-dimensional nanomaterial in the coating structure shows that: when the quantity of the one-dimensional nanomaterial in the coating structure is gradually accumulated in the order of length from short to long, the accumulated quantity is the same as that of the coating. When the ratio of the total quantity of one-dimensional nanomaterials in the layer structure reaches the first target ratio, it corresponds to the length of the one-dimensional nanomaterials.
  • the length value of L10 of the one-dimensional nanomaterial in the coating structure is between 100 and 300 nm;
  • the L50 length value of the one-dimensional nanomaterial in the coating structure is between 250 and 400 nm;
  • the L90 length value of the one-dimensional nanomaterial in the coating structure is between 350 and 900 nm;
  • the one-dimensional nanomaterials of different material layers form different length description values for the same second target ratio
  • the length description value of the one-dimensional nanomaterial in the material layer shows that:
  • the proportion of the second target is not 50%
  • the length description value of the one-dimensional nanomaterials of each material layer decreases gradually.
  • the second target proportion is in the range of 5%-40%, or in the range of 60%-99%.
  • the one-dimensional nanomaterial includes at least one of the following: nanocellulose, aramid nanofibers, and polyimide nanofibers.
  • the gaps of the one-dimensional nanomaterials of the first material layer are partially or completely filled by the one-dimensional nanomaterials of the second material layer; wherein, The first material layer is located on a side of the second material layer facing the base film.
  • a battery including the separator mentioned in the first aspect and its optional solutions.
  • the one-dimensional nanomaterials of different lengths in the same or different dispersants before obtaining at least one dispersion liquid, it also includes:
  • the raw material of the one-dimensional nanomaterial or the one-dimensional nanomaterial after disconnection is disconnected, and one or more disconnections are performed to form at least part of the one-dimensional nanomaterials with different lengths.
  • the one-dimensional nanomaterials of different lengths in the same or different dispersants before dispersing the one-dimensional nanomaterials of different lengths in the same or different dispersants, and obtaining at least one dispersion liquid, it also includes:
  • the bonded one-dimensional nanomaterial is bonded to one end of another bonded one-dimensional nanomaterial.
  • engagement includes:
  • the solution is heated, then cooled, and the molecular sieve is removed by filtration to obtain joined one-dimensional nanomaterials.
  • At least one corresponding slurry is formed, including:
  • Adhesives and additives are sequentially added to the dispersion.
  • the adhesive includes at least one of the following: polyacrylic acid, lithium polyacrylate, polyvinyl alcohol, polyvinylpyrrolidone, carboxymethyl cellulose;
  • the auxiliary agent includes at least one of the following: glycerin, fluoroalkyl ethoxy alcohol ether, sodium butylbenzene sulfonate, sodium hydroxyethyl sulfate and sodium lauryl sulfate.
  • the preparation method also includes:
  • the present invention since the length of the one-dimensional nanomaterial is related to the surface energy, and then related to the adhesion ability of the base film, compared with the disorderly distributed one-dimensional nanomaterial , the present invention distributes layer by layer based on the adhesion ability, and can realize orderly distribution, because it is orderly, can avoid the formation of possible large gaps due to messy and disorderly distribution, and ensure sufficient contact points.
  • the gaps of the one-dimensional nanomaterials of the first material layer are partially or completely filled by the one-dimensional nanomaterials of the second material layer, and the first material layer is located on the side of the second material layer facing the base film, Therefore, in the case of ensuring the order of the one-dimensional nanomaterials, the voids are further reduced and the contact points are increased.
  • FIG. 1 is a schematic diagram of a partial structure of a diaphragm of a battery in an embodiment of the present invention
  • Fig. 2 is a schematic flow diagram of a membrane preparation method in an embodiment of the present invention.
  • Fig. 3 is a schematic diagram of the change of the length value of l50 of the material layer with the coating position in a specific example of the present invention.
  • first and second are only used for description purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • a plurality means a plurality, such as two, three, four, etc., unless otherwise specifically defined.
  • connection and other terms should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral body; it can be a mechanical connection , can also be electrically connected or can communicate with each other; it can be directly connected or indirectly connected through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components.
  • connection and other terms should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral body; it can be a mechanical connection , can also be electrically connected or can communicate with each other; it can be directly connected or indirectly connected through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components.
  • an embodiment of the present invention provides a separator 1 for a battery, including: a base film 11 and a coating structure 12 disposed on the base film 11, the coating structure 12 contains multiple material layers, Each material layer contains one-dimensional nanomaterials, and along the direction away from the base film, the average length of the one-dimensional nanomaterials in each material layer decreases layer by layer, correspondingly, the one-dimensional nanomaterials in each material layer The average size of the voids will also gradually decrease.
  • the coating wherein has three layers of material layers as shown in Figure 1, wherein, the average length of the bottom layer of one-dimensional nanomaterials is longer than the middle layer of one-dimensional nanomaterials, and the average length of the middle layer of one-dimensional nanomaterials is longer than
  • the uppermost layer of one-dimensional nanomaterials, the average length gap between the one-dimensional nanomaterials of each layer can be configured arbitrarily, and the lengths of one-dimensional nanomaterials in the same layer can be the same or different.
  • the one-dimensional nanomaterial includes at least one of the following: nanocellulose, aramid nanofibers, and polyimide nanofibers.
  • the material selection of the one-dimensional nanomaterial in the embodiment of the present invention is not limited to the above examples.
  • the one-dimensional nanomaterials of different material layers form different length description values for the same second target ratio
  • the length description value of the one-dimensional nanomaterial in the material layer shows that:
  • the ratio of the accumulated quantity to the total quantity of one-dimensional nanomaterials in the material layer reaches the second target
  • the proportion corresponds to the length of the one-dimensional nanomaterial; correspondingly, in the one-dimensional nanomaterial corresponding to the material layer, the proportion of the one-dimensional nanomaterial smaller than the corresponding length description value can reach the target proportion; the above description shows that the one-dimensional
  • the statistical significance of the length description value of nanomaterials, when actually determining the length description value, the actual calculation method can be handled according to common sense in the field.
  • the second target ratio is in the range of 5%-40%, or in the range of 60%-99%.
  • it can be 5%, 10%, 20%, 40%, 60%, 70%, 80%, 90%, 99% and so on.
  • the length description value of the one-dimensional nanomaterials of each material layer decreases gradually. Furthermore, a layer-by-layer reduction tendency of one-dimensional nanomaterials can be formed.
  • the meaning of the length description value is defined above by accumulating and determining the length description value based on the accumulation result, it does not mean that this statistical value must be included in the actual preparation and acceptance process.
  • the obtained law of the length description value satisfies the above description, that is, it does not deviate from this embodiment scope of protection.
  • the selection of the length of the one-dimensional nanomaterial or the targeted preparation of the length of the one-dimensional nanomaterial can be carried out in advance to ensure the satisfaction of the above length rule.
  • the length description value for the one-dimensional nanomaterial of the material layer can be, for example:
  • the l10 of the one-dimensional nanomaterials in the material layer refers to: when the quantity of one-dimensional nanomaterials of each length in the corresponding material layer is gradually accumulated in the order of length from short to long, the accumulated quantity is the same as one in the corresponding material layer. When the ratio of the total number of one-dimensional nanomaterials reaches 10%, it corresponds to the length of one-dimensional nanomaterials;
  • the 150 of the one-dimensional nanomaterials in the material layer refers to: when the quantity of one-dimensional nanomaterials of each length in the corresponding material layer is gradually accumulated in order of length from short to long, the accumulated quantity is the same as that of the one-dimensional nanomaterials in the corresponding material layer. When the ratio of the total number of nanomaterials reaches 50%, it corresponds to the length of the one-dimensional nanomaterials.
  • the l50 can also be understood as representing the average length of the corresponding material layer to a certain extent.
  • the l90 of the one-dimensional nanomaterials in the material layer refers to: when the quantity of one-dimensional nanomaterials of each length in the corresponding material layer is gradually accumulated in the order of length from short to long, the accumulated quantity is the same as that of the one-dimensional nanomaterials in the corresponding material layer. When the ratio of the total number of nanomaterials reaches 90%, it corresponds to the length of the one-dimensional nanomaterials.
  • decrement of one or more other length description values can also be achieved.
  • the one-dimensional nanomaterials all show a decreasing trend layer by layer, ensuring
  • the orderly distribution of one-dimensional nanomaterials makes the length gradient distribution of one-dimensional nanomaterials more concentrated and uniform, which is more conducive to reducing the number and size of voids, increasing the number of contact points, and further improving heat resistance.
  • the length value of L10 of the one-dimensional nanomaterial in the coating structure is between 100 and 300 nm;
  • the L50 length value of the one-dimensional nanomaterial in the coating structure is between 250 and 400 nm;
  • the L90 length value of the one-dimensional nanomaterial in the coating structure is between 350 and 900 nm;
  • the L10 of the one-dimensional nanomaterial in the coating structure represents: the length description value of the one-dimensional nanomaterial in the coating structure when 10% is used as the first target proportion;
  • the L50 of the one-dimensional nanomaterials in the coating structure represents: the length description value of the one-dimensional nanomaterials in the coating structure when 50% is used as the first target ratio, and can also be understood as the one-dimensional nanomaterials in the coating structure the average length of
  • the L90 of the one-dimensional nanomaterial in the coating structure represents: the length description value of the one-dimensional nanomaterial in the coating structure when 90% is used as the first target ratio;
  • the length description value of the one-dimensional nanomaterial in the coating structure shows that:
  • the ratio of the accumulated quantity to the total number of one-dimensional nanomaterials in the coating structure reaches the first
  • the target ratio corresponds to the length of the one-dimensional nanomaterial
  • the L10 of the one-dimensional nanomaterial in the coating structure refers to: the length description value of the one-dimensional nanomaterial in the coating structure when taking 10% as the first target proportion;
  • the L50 of the one-dimensional nanomaterial in the coating structure refers to: the length description value of the one-dimensional nanomaterial in the coating structure when 50% is used as the first target ratio;
  • the L90 of the one-dimensional nanomaterial in the coating structure refers to: the length description value of the one-dimensional nanomaterial in the coating structure when 90% is used as the first target ratio;
  • the above description shows the statistical significance of the length description value of the coating structure.
  • the actual calculation method can be processed according to common knowledge in the field.
  • the meaning of the length description value is defined above by accumulating and determining the length description value based on the accumulation result, it does not mean that this statistic must be included in the actual preparation and acceptance process.
  • the obtained law of the length description value satisfies the above description, that is, it does not deviate from this embodiment scope of protection.
  • the selection of the length of the one-dimensional nanomaterial or the targeted preparation of the length of the one-dimensional nanomaterial can be carried out in advance to ensure the satisfaction of the above length rule.
  • L10 110nm
  • L50 310nm
  • L90 850nm
  • the coating position on the abscissa is to characterize: along the thickness direction, the coating position of the material layer is located in the coating structure; if it is represented by a percentage, it can be characterized as: the material layer
  • the percentage of the distance between the coating position and the base film as a percentage of the overall thickness of the coating structure; for example: 10% of it means that the distance between the coating position and the base film accounts for 10% of the overall thickness of the coating structure .
  • the length value of l50 of the one-dimensional nanomaterial in the material layer can be fitted and understood as a linear change.
  • the length value of l50 of the one-dimensional nanomaterial in the material layer can be in the trend of first fast and then slow;
  • the length value of l50 of the one-dimensional nanomaterial in the material layer can show a trend of slow first and then fast.
  • first fast then slow, first slow then fast change trend it can be realized through the length configuration of one-dimensional nanomaterials in the coating structure. Furthermore, the length configuration of the one-dimensional nanomaterials in the coating structure can be selected according to the desired change trend;
  • the length configuration of the one-dimensional nanomaterial in the coating structure needs to satisfy: 2 ⁇ L90/L50>1.5;
  • the length configuration of the one-dimensional nanomaterial in the coating structure needs to meet: L50/L10>2,; 1.5 ⁇ L90/L50 ⁇ 1.3
  • the length configuration of the one-dimensional nanomaterial in the coating needs to satisfy: L90/L50>2.
  • L represents the length of the one-dimensional nanomaterial.
  • Example 1 to Example 6 From Example 1 to Example 6, it can be seen that when L is in a suitable range, the coating diaphragm has the best heat resistance, when L is too small (Example 10, 11, 12), or L is too large (Example 15 , 16), the heat resistance of the coated separator deteriorates.
  • one-dimensional nanomaterials If the length of one-dimensional nanomaterials is too small, the accumulation degree of one-dimensional nanomaterials is not enough to form an interlaced network structure. Therefore, the heat resistance is insufficient. When the thickness is increased, the heat resistance of the coating is improved. Effectively improve.
  • one-dimensional nanomaterials i.e., nanowires
  • the twisted structure When the twisted structure is deposited on the surface of the diaphragm, it will fold itself, resulting in insufficient contact with other nanowires, and the interaction will be weakened. (as shown in embodiment 10,11,12).
  • the deposited coating has large gaps and the distance between the contact points is too far.
  • external forces such as shrinkage of the base film caused by heating
  • these contact points cannot transmit force to each other in time.
  • the entire coating structure is collapsed and destroyed, so that the thermal shrinkage of the coated separator cannot be suppressed (as shown in Examples 15 and 16).
  • the coating will take into account the thinner coating structure (the thickness of the coating structure is less than 1 micron) and excellent heat resistance (180 ° C), that is: the layered structure characteristics can make The coating achieves excellent heat resistance at a thin thickness (less than 1 micron).
  • the nanowires i.e. one-dimensional nanomaterials
  • the nanowires are deposited on the surface of the base film to form a layered structure (i.e.
  • the longest one-dimensional nanomaterial (which has the largest surface energy and is the most unstable, and is most likely to adhere once it contacts an interface with a small surface energy) first
  • the longer nanowires are deposited later, and the shortest nanowires are deposited last, thus forming a layered structure that gradually accumulates from long to short.
  • the voids of the lower layer of one-dimensional nanomaterials are partially or completely filled by the upper layer of one-dimensional nanomaterials.
  • the coated separator has the best heat resistance.
  • the heat resistance of the coated separator is not good.
  • the main reason for this phenomenon is that only the stacking method of one-dimensional nanofibers decreasing layer by layer can make the coating have the largest packing density, and the contact between nanofibers is the most. Regardless of whether it is increasing layer by layer or disorderly arrangement, the compactness of the coating is small, so the improvement of heat resistance is very limited.
  • thermosensitive polymers such as poly N-isopropylacrylamide (PNIPAM)
  • PNIPAM molecules have a certain proportion of hydrophobic isopropyl groups and hydrophilic amide groups.
  • the polymer chains of PNIPAM are stretched, showing water swelling, and the fluidity of the solution is poor.
  • the hydrophilic force between the water molecule and the amide group weakens, the hydrophobic force between the isopropyl groups in the PNIPAM molecular chain is strengthened, and the hydrophobic force in the PNIPAM polymer chain gradually strengthens and takes the lead.
  • the effect makes the polymer chains gather together through hydrophobic interaction to form a hydrophobic layer, which leads to a phase transition in the discharge of water molecules.
  • the polymer chains change from a loose coil structure to a compact colloidal particle, and the fluidity of the solution is enhanced. Due to the one-dimensional The longer the length of the nanomaterial, the more PNIPAM it loads, the stronger its hydrophobicity, and the easier it is to settle first. It can be seen that the introduction of PNIPAM can help to ensure the realization of stratification.
  • the present invention distributes them layer by layer based on the adhesion ability. , can achieve orderly distribution, because it is orderly, can avoid possible large gaps caused by chaotic and disorderly distribution, and ensure sufficient contact points. Furthermore, the gaps of the one-dimensional nanomaterials in some layers are partially or fully filled by the one-dimensional nanomaterials on the upper layer, so that the gaps are further reduced and the contact points are improved while ensuring the order of the one-dimensional nanomaterials.
  • An embodiment of the present invention also provides a battery, including the separator involved in the above optional solution.
  • the battery can be, for example, a lithium battery, and furthermore, the diaphragm can be arranged on the surface of the battery.
  • the diaphragm can be arranged on the surface of the battery.
  • other existing or improved structural layers can also be arranged inside and outside the diaphragm.
  • the embodiment of the present invention also provides a membrane preparation method for preparing the membrane involved in the first aspect and its alternatives, the preparation method includes:
  • S21 Dispersing the one-dimensional nanomaterials of different lengths in the same or different dispersants to obtain at least one dispersion liquid;
  • step S23 it can only be coated once and dried once; at this time, the coated slurry can contain a variety of one-dimensional nanomaterials of different lengths;
  • step S23 it can also be coated multiple times and dried once after each coating.
  • the slurry for each coating can be of different types, and can be based on the length Coat different slurries sequentially from short to long. Take three coatings and three layers as an example. You can first coat the base film with the slurry containing the longest one-dimensional nanomaterials. The slurry containing the longer one-dimensional nanometer material is coated again, and after being dried, the slurry containing the shortest one-dimensional nanometer material is coated on it.
  • one type of slurry may be used for each coating, or two or more types of slurry may be mixed and coated.
  • At least part of the one-dimensional nanomaterials with different lengths can be realized based on the selection of raw materials for the one-dimensional nanomaterials.
  • one-dimensional nanomaterials of different lengths can also be formed by corresponding technical means.
  • step S21 it also includes:
  • S24 Disconnect the raw material of the one-dimensional nanomaterial or the disconnected one-dimensional nanomaterial, and form at least some one-dimensional nanomaterials with different lengths through one or more disconnections.
  • a shorter one-dimensional nanomaterial can be formed based on a raw material of one-dimensional nanomaterial with a length, for example, the one-dimensional nanomaterial can be broken into half of the raw material, and other For example, it can also be realized without adopting the method of breaking in half.
  • any existing means or improved means that can realize the disconnection of one-dimensional nanomaterials can be used as a specific example of the embodiment of the present invention.
  • it can be realized by etching the one-dimensional nanomaterial, for example, it can be etched to half the length of the raw material by etching the one-dimensional nanomaterial.
  • the raw material can be disconnected once or multiple times.
  • the one-dimensional nanomaterial can be etched to half the length of the raw material first, and then the one-dimensional nanomaterial with half the length can be retained, and then Cut off the other half-length one-dimensional nanomaterial to obtain a quarter-length one-dimensional nanomaterial.
  • a three-layer structure can be formed.
  • the quarter-length part can also be further
  • the one-dimensional nanomaterials are disconnected, and the number of disconnections can be arbitrarily configured according to requirements.
  • step S21 it also includes:
  • S25 Implement at least one of the following bonding processes, and form at least part of one-dimensional nanomaterials with different lengths through one or more bonding processes:
  • the bonded one-dimensional nanomaterial is bonded to one end of another bonded one-dimensional nanomaterial.
  • the object to be joined can be one end of the raw material and one end of another raw material, or one end of the raw material and one end of the joined one-dimensional nanomaterial, or one end of the joined one-dimensional nanomaterial and the other end.
  • one-dimensional nanomaterials can be formed based on raw materials of one-dimensional nanomaterials of one length, for example, two raw materials can be joined to form one-dimensional nanomaterials of twice the length.
  • Nanomaterials in other examples, can also be realized by using raw materials (or bonded one-dimensional nanomaterials) of different lengths.
  • the bonding of one-dimensional nanomaterials can be realized based on materials rich in hydroxyl functional groups (such as polyethylene glycol PEG), and then, the bonding mentioned above can include:
  • the solution is heated, then cooled, filtered to remove the molecular sieve, and the bonded one-dimensional nanometer material can be obtained.
  • nanocellulose is taken as an example.
  • the hydroxyl content of the nanocellulose port is significantly higher than that of the middle region.
  • the activity of the hydroxyl group can be fully utilized, as follows:
  • the raw material can be bonded once or multiple times. For example, the raw material of the one-dimensional nanomaterial can be bonded to twice the raw material, and then part of the one-dimensional nanomaterial with twice the length can be retained.
  • a three-layer structure can be formed.
  • further bonding can also be performed, and the number of bonding can be arbitrarily configured according to requirements.
  • one-dimensional nanomaterials of various lengths can be dispersed in the same dispersant, and then based on the slurry corresponding to the same dispersant, layering can be achieved after coating.
  • different dispersants can also be formed based on one-dimensional nanomaterials of different lengths (the lengths of one-dimensional nanomaterials in different dispersants are different), and then different dispersion liquids and slurries can be formed.
  • various slurries can also be layer-coated based on the length of the one-dimensional nanomaterials.
  • one-dimensional nanomaterials of various lengths can be fully dispersed in a dispersant, for example, water, ethanol, methanol, etc. can be selected as the dispersant.
  • the dispersing method can be, for example, uniformly dispersing in the dispersant by means of ultrasonic treatment, high-speed stirring, high-pressure homogenization, and sand mill dispersion.
  • the range of the concentration of the one-dimensional nanometer material in the dispersion liquid can be 0.01-50wt%.
  • step S22 may specifically include: sequentially adding an adhesive and an auxiliary agent into the dispersion liquid.
  • Adhesive wherein can be used to play any material with adhesive effect, for example can include at least one of the following: polyacrylic acid, lithium polyacrylate, polyvinyl alcohol, polyvinylpyrrolidone, carboxymethyl cellulose; but not limited to For example here, according to the size and material of the one-dimensional nanomaterial, a suitable adhesive can be adaptively selected, without departing from the scope of the embodiments of the present invention.
  • the auxiliary agent therein may, for example, include at least one of the following: glycerin, fluoroalkyl ethoxy alcohol ether, sodium butylbenzene sulfonate, sodium hydroxyethyl sulfate and sodium lauryl sulfate.
  • the slurry can be coated on the base film by gravure coating, spray coating, dip coating, extrusion coating, etc., and then dried to obtain a one-dimensional nanomaterial composite diaphragm. Meanwhile, the slurry can be applied on one side (ie, coated on one side of the base film) or double-sided (ie, coated on both sides of the base film).
  • poly N-isopropylacrylamide can also be added, that is: the preparation method also includes: in the dispersion liquid or the slurry Adding poly-N-isopropylacrylamide, furthermore, the longer the length of the one-dimensional nanomaterial, the more PNIPAM it loads, the stronger its hydrophobicity, and the easier it is to settle first. It can be seen that by introducing PNIPAM can help to ensure layered implementation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cell Separators (AREA)

Abstract

本发明提供了一种电池、电池的隔膜,以及隔膜制备方法,其中,电池的隔膜,包括:基膜与设于所述基膜的涂层结构,所述涂层结构中含有多层材料层,每层材料层中均具有一维纳米材料,且沿远离所述基膜的方向,各层材料层中一维纳米材料的平均长度逐层减短。

Description

电池、电池的隔膜,以及隔膜制备方法 技术领域
本发明涉及电池领域,尤其涉及一种电池、电池的隔膜,以及隔膜制备方法。
背景技术
锂电池隔膜是锂离子电池核心部件之一,其性能的好坏对锂电池的整体性能有着非常重要的影响,是制约锂电池发展的关键技术之一。随着锂电池应用领域的不断扩大和锂电产品在人们生活中的影响不断深化,人们对锂电池性能的要求也越来越高。为了满足锂电池的发展要求,隔膜作为锂电池的重要部件不仅应具有良好的化学稳定性、较低的制造成本,提高锂离子电池的安全性能也是目前锂电发展的重要趋势。
现有相关技术中,锂电池的隔膜可以包括基膜与覆于基膜至少一表面的涂层,涂层中可包含一维纳米材料,然而,一维纳米材料的堆积方式杂乱无序,进而,易于造成空隙过多、接触点少等问题,从而影响隔膜的热稳定性能。
发明内容
本发明提供一种电池、电池的隔膜,以及隔膜制备方法,以解决空隙过多、接触点少等问题。
根据本发明的第一方面,提供了一种电池的隔膜,包括:基膜与设于所述基膜的涂层结构,所述涂层结构中含有多层材料层,每层材料层中均含有一维纳米材料,且沿远离所述基膜的方向,各层材料层中一维纳米材料的平均长度逐层减短。
可选的,针对所述涂层结构中一维纳米材料,满足:5≥L50/L10≥1.3,4≥L90/L50≥1.3;
所述L10表征了:以10%作为第一目标占比时所述涂层结构中一维纳米材料的长度描述值;
所述L50表征了:以50%作为第一目标占比时所述涂层结构中一维纳米材料的长度描述值;
所述L90表征了:以90%作为第一目标占比时所述涂层结构中一维纳米材料的长度描述值;
所述涂层结构中一维纳米材料的长度描述值表明:以长度自短至长的顺序对所述涂层结构中一维纳米材料的数量进行逐步累加时,累加得到的数量与所述涂层结构中一维纳米材料总数量的比值到达所述第一目标占比时对应一维纳米材料的长度。
可选的,
所述涂层结构中一维纳米材料的L10的长度值在100到300nm之间;
所述涂层结构中一维纳米材料的L50的长度值在250到400nm之间;
所述涂层结构中一维纳米材料的L90的长度值在350到900nm之间;
可选的,不同材料层的一维纳米材料针对同一第二目标占比,形成了不同的长度描述值;
所述材料层中一维纳米材料的长度描述值表明:
以长度自短至长的顺序对对应材料层中一维纳米材料的数量进行逐步累加时,累加得到的数量与对应材料层中一维纳米材料总数量的比值到达所述第二目标占比时对应一维纳米材料的长度,所述第二目标占比不为50%;
沿远离所述基膜的方向,针对同一第二目标占比,各层材料层的一维纳米材料的长度描述值逐渐减小。
可选的,所述第二目标占比处于5%-40%的区间范围,或处于60%-99%的区间范围。
可选的,所述一维纳米材料包括以下至少之一:纳米纤维素、芳纶纳米纤维、聚酰亚胺纳米纤维。
可选的,相邻的第一材料层与第二材料层中,所述第一材料层的一维纳米材料的空隙被所述第二材料层的一维纳米材料部分或全部填充;其中,所述第一材料层位于所述第二材料层的朝向基膜的一侧。
根据本发明的第二方面,提供了一种电池,包括第一方面及其可选方案涉及的隔膜。
根据本发明的第三方面,提供了一种隔膜制备方法,用于制备第一方面 及其可选方案涉及的隔膜,所述制备方法,包括:
将不同长度的一维纳米材料分散于同一或不同的分散剂中,得到至少一种分散液;
基于所述至少一种分散液,形成对应的至少一种浆料;
将所述至少一种浆料涂覆于所述基膜,并对所述基膜与所述浆料进行烘干,得到所述隔膜。
可选的,将所述不同长度的一维纳米材料分散于同一或不同的分散剂中,得到至少一种分散液之前,还包括:
将一维纳米材料的原料或断开后的一维纳米材料断开,并通过一次或多次的断开,形成至少部分不同长度的一维纳米材料。
可选的,将不同长度的一维纳米材料分散于同一或不同的分散剂中,得到至少一种分散液之前,还包括:
实施以下至少之一接合过程,并通过一次或多次的接合,形成至少部分不同长度的一维纳米材料:
将一维纳米材料的原料接合于另一原料的一端;
将接合后的一维纳米材料接合于所述原料的一端;
将接合后的一维纳米材料接合于另一接合后的一维纳米材料的一端。
可选的,其中的接合,包括:
将待接合的一维纳米材料与富含羟基官能团的材料混合在溶液中;
在所述溶液中加入分子筛颗粒作为催化剂;
对所述溶液进行加热,然后冷却,过滤除去所述分子筛,得到接合后的一维纳米材料。
可选的,基于所述至少一种分散液,形成对应的至少一种浆料,包括:
依次在所述分散液中加入胶黏剂与助剂。
可选的,所述胶黏剂包括以下至少之一:聚丙烯酸,聚丙烯酸锂,聚乙烯醇,聚乙烯吡咯烷酮,羧甲基纤维素;
所述助剂包括以下至少之一:甘油、氟代烷基乙氧基醇醚、丁苯萘磺酸钠、羟乙基硫酸钠和十二烷基硫酸钠。
可选的,所述的制备方法,还包括:
在所述分散液或所述浆料中加入聚N-异丙基丙稀酰胺。
本发明提供的电池、电池的隔膜,以及隔膜制备方法中,由于一维纳米材料的长度与表面能相关,进而与基膜的附着能力相关,正因此,相较于杂乱分布的一维纳米材料,本发明基于附着能力而逐层分布,可实现有秩序的分布,因其是有秩序的,可避免因杂乱、无序分布而形成可能的大空隙,并保障充分多的接触点。进一步的,由于第一材料层的一维纳米材料的空隙被第二材料层的一维纳米材料部分或全部填充,且第一材料层位于所述第二材料层的朝向基膜的一侧,故而,在保障一维纳米材料有序性的情况下,进一步降低空隙,并提高接触点。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一实施例中电池的隔膜的局部构造示意图;
图2是本发明一实施例中隔膜制备方法的流程示意图;
图3是本发明具体举例中材料层的l50的长度值随涂层位置变化的示意图。
附图标记说明:
1-隔膜
11-基膜;
12-涂层结构。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明说明书的描述中,需要理解的是,术语“上部”、“下部”、“上端”、“下端”、“下表面”、“上表面”等指示的方位或位置关系 为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明说明书的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
在本发明的描述中,“多个”的含义是多个,例如两个,三个,四个等,除非另有明确具体的限定。
在本发明说明书的描述中,除非另有明确的规定和限定,术语“连接”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或可以互相通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下面以具体地实施例对本发明的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
请参考图1,本发明实施例提供了一种电池的隔膜1,包括:基膜11与设于所述基膜11的涂层结构12,所述涂层结构12中含有多层材料层,每层材料层中均含有一维纳米材料,且沿远离所述基膜的方向,各层材料层中一维纳米材料的平均长度逐层减短,对应的,各材料层中一维纳米材料的空隙的平均尺寸也会逐渐减小。
其中的涂层具有如图1所示的三层材料层,其中,最下面一层的一维纳米材料的平均长度长于中间一层一维纳米材料,中间一层一维纳米材料的平均长度长于最上面一层一维纳米材料,各层一维纳米材料之间平均长度的差距可以任意配置,同一层中一维纳米材料的长度可以是相同的,也可以是不同的。其中一种实施方式中,所述一维纳米材料包括以下至少之一:纳米纤维素、芳纶纳米纤维、聚酰亚胺纳米纤维。本发明实施例的一维纳米材料的材料选择并不限于以上举例。
其中一种实施方式中,不同材料层的一维纳米材料针对同一第二目标占比,形成了不同的长度描述值;
所述材料层中一维纳米材料的长度描述值表明:
以长度自短至长的顺序对所述材料层结构中一维纳米材料的数量进行逐步累加时,累加得到的数量与所述材料层中一维纳米材料总数量的比值到达所述第二目标占比时对应一维纳米材料的长度;对应的,在对应材料层的一维纳米材料中,小于对应长度描述值的一维纳米材料的占比可达目标占比;以上描述表明了一维纳米材料的长度描述值的统计学意义,在实际要确定该长度描述值时,实际的计算方式可根据本领域的常识而进行处理。
一种举例中,所述第二目标占比处于5%-40%的区间范围,或处于60%-99%的区间范围。例如可以为5%、10%、20%、40%、60%、70%、80%、90%、99%等等。
其中一种实施方式中,沿远离所述基膜的方向,针对同一第二目标占比,各层材料层的一维纳米材料的长度描述值逐渐减小。进而,可形成一维纳米材料的逐层减小的趋势。
此外,对于对应材料层的长度描述值,以上虽然通过累加并基于累加结果确定长度描述值的方式来定义长度描述值的含义,但是,并不表明在实际制备、验收的过程中必然包含该统计过程,在实际方案中,针对任意产品,只要用相同统计学意义的数值对材料层中的一维纳米材料进行统计后,所得到的长度描述值的规律满足以上描述,即不脱离该实施方式的保护范围。部分方案中,可预先通过对一维纳米材料长度的选择或一维纳米材料长度的针对性制备,保障以上长度规律的满足。
其中:
针对于材料层的一维纳米材料的长度描述值,可例如:
所述材料层中一维纳米材料的l10,指:以长度自短至长的顺序对对应材料层中各长度一维纳米材料的数量进行逐步累加时,累加得到的数量与对应材料层中一维纳米材料总数量的比值到达10%时对应一维纳米材料的长度;
所述材料层中一维纳米材料的l50指:以长度自短至长的顺序对对应材料层中各长度一维纳米材料的数量进行逐步累加时,累加得到的数量与对应 材料层中一维纳米材料总数量的比值到达50%时对应一维纳米材料的长度,该l50,也可理解为能在一定程度上表征出对应材料层的平均长度。
所述材料层中一维纳米材料的l90指:以长度自短至长的顺序对对应材料层中各长度一维纳米材料的数量进行逐步累加时,累加得到的数量与对应材料层中一维纳米材料总数量的比值到达90%时对应一维纳米材料的长度。
在实现l50(即平均长度)递减的情况下,也可实现其他一种或多种长度描述值(例如l90和/或l10)的递减。
进而,以上方案中,通过所定义的长度描述值的变化趋势,可充分体现出:在l50,以及各第二目标占比下,一维纳米材料均呈现出逐层减小的趋势,保障了一维纳米材料的有序分布,进而,使一维纳米材料长度梯度分布更集中、统一,更有利于降低空隙数量、尺寸,提高接触点数量,进一步提高耐热性。
其中一种实施方式中,
所述涂层结构中一维纳米材料的L10的长度值在100到300nm之间;
所述涂层结构中一维纳米材料的L50的长度值在250到400nm之间;
所述涂层结构中一维纳米材料的L90的长度值在350到900nm之间;
其中:
所述涂层结构中一维纳米材料的L10表征了:以10%作为第一目标占比时涂层结构中一维纳米材料的长度描述值;
所述涂层结构中一维纳米材料的L50表征了:以50%作为第一目标占比时涂层结构中一维纳米材料的长度描述值,也可理解为涂层结构中一维纳米材料的平均长度;
所述涂层结构中一维纳米材料的L90表征了:以90%作为第一目标占比时涂层结构中一维纳米材料的长度描述值;
所述涂层结构中一维纳米材料的长度描述值表明:
以长度自短至长的顺序对所述涂层结构中一维纳米材料的数量进行逐步累加时,累加得到的数量与所述涂层结构中一维纳米材料总数量的比值到达所述第一目标占比时对应一维纳米材料的长度;
且:针对所述涂层结构中一维纳米材料,满足:L50/L10>1.3,L90/L50>1.3;
所述涂层结构中一维纳米材料的L10指:以10%作为第一目标占比时涂 层结构中一维纳米材料的的长度描述值;
所述涂层结构中一维纳米材料的L50指:以50%作为第一目标占比时涂层结构中一维纳米材料的的长度描述值;
所述涂层结构中一维纳米材料的L90指:以90%作为第一目标占比时涂层结构中一维纳米材料的的长度描述值;
以上描述表明了涂层结构的长度描述值的统计学意义,在实际要确定该长度描述值时,实际的计算方式可根据本领域的常识而进行处理。
此外,针对涂层结构的长度描述值,以上虽然通过累加并基于累加结果确定长度描述值的方式来定义长度描述值的含义,但是,并不表明在实际制备、验收的过程中必然包含该统计过程,在实际方案中,针对任意产品,只要用相同统计学意义的数值对材料层中的一维纳米材料进行统计后,所得到的长度描述值的规律满足以上描述,即不脱离该实施方式的保护范围。部分方案中,可预先通过对一维纳米材料长度的选择或一维纳米材料长度的针对性制备,保障以上长度规律的满足。
一种举例中,针对所述涂层结构中一维纳米材料,L10=110nm,L50=310nm,L90=850nm。
在远离基膜的方向,各材料层中一维纳米材料的l50的长度值与材料层所处涂层位置(涂层厚度方向的位置)的关系拟合后的结果可参照图3中的曲线1、曲线2a、曲线2b理解,进而,在曲线中可体现为:随着厚度的增加(即随材料层所处涂层位置与基膜间距离的增加),其l50的长度值逐渐减小。
在图3中,横坐标的涂层位置是为了表征出:沿厚度方向,材料层所处涂层位置在涂层结构中所处的位置;若以百分数来进行表征,可表征出:材料层所处涂层位置与基膜之间的距离占涂层结构整体厚度的百分比;例如:其中的10%即表明:该涂层位置与基膜之间的距离占涂层结构整体厚度的10%。
针对于其中的曲线1,随材料层所处涂层位置与基膜间距离的增加,材料层中一维纳米材料的l50的长度值可拟合理解为呈线性变化,此时,其中l50的长度值x与涂层位置Y的关系可例如呈现为:Y=kx+b(k<0,b>0);
针对于其中的曲线2a,随材料层所处涂层位置与基膜间距离的增加,材 料层中一维纳米材料的l50的长度值可以呈先快后慢的变化趋势;
针对于其中的曲线2b,随材料层所处涂层位置与基膜间距离的增加,材料层中一维纳米材料的l50的长度值可以呈先慢后快的变化趋势。
为了实现以上线性变化、先快后慢、先慢后快的变化趋势,可通过涂层结构中一维纳米材料的长度配置实现。进而,可根据所需的变化趋势,选择涂层结构中一维纳米材料的长度配置;
例如:
若需实现线性变化(例如曲线1所示),则:涂层结构中一维纳米材料的长度配置需满足:2≥L90/L50>1.5;
若需实现先慢后快的变化(例如曲线2b所示),则:涂层结构中一维纳米材料的长度配置需满足:L50/L10>2,;1.5≥L90/L50≥1.3
若需实现先快后慢的变化(例如曲线2a所示),则:涂层中一维纳米材料的长度配置需满足:L90/L50>2。
由于现有技术中并未致力于形成层状结构,故而,现有技术不可能公开或启示出以上方案中针对不同变化趋势而做的长度配置。
下表中,具体阐述了部分一维纳米材料(其长度在下表表征为纤维长度),及其应用后的效果:
Figure PCTCN2022077087-appb-000001
Figure PCTCN2022077087-appb-000002
其中,L表示一维纳米材料的长度。
由实施例1到实施例6可知,当L在合适范围内,涂覆隔膜具有最佳的耐热性,当L过小(实施例10、11、12),或L过大(实施例15、16)时,涂覆隔膜的耐热性变差。
经研究分析,导致这一结果的主要原因在于:
一维纳米材料长度过小时,一维纳米材料彼此之间的堆积程度不足,不足以形成相互交错的网络化结构,因此,耐热性不足,当增加厚度后,涂层的耐热性才得到有效提高。当一维纳米材料长度过长时,一维纳米材料(即纳米线)会形成扭曲结构,扭曲结构在隔膜表面沉积时,会自我折叠,进而导致与其它纳米线接触不足,则相互作用变弱(如实施例10、11、12所示)。
另外,一维纳米材料过长时,沉积的涂层空隙大,接触点之间距离过远,在受到外力时(如加热导致的基膜收缩),这些接触点因为不能及时进行力的相互传递而导致整个涂层结构的坍塌破坏,从而不能抑制涂覆隔膜的热收缩(如实施例15、16所示)。
故而,当L在100nm到900nm之间,涂层将兼顾较薄的涂层结构(涂层结构的厚度小于1微米)和优异的耐热性(180℃),即:层状结构特性可以使涂层在较薄的厚度下(小于1微米),实现优异的耐热性。当纳米线(即 一维纳米材料)长度在100nm到900nm之间时,纳米线(即一维纳米材料)在基膜表面沉积,形成层状结构(即分层的不同长度的一维纳米材料),在基膜上沉积过程中,由于表面能的缘故,最长的一维纳米材料(其表面能最大,最不稳定,一旦与表面能小的界面接触时,最易发生附着)最先沉积,而较长的随后沉积,最短的纳米线最后沉积,这样形成的一种由长到短,逐渐堆积的层状结构。
进一步的,相邻的材料层中,下层的一维纳米材料的空隙被其上层一维纳米材料部分或全部填充。
可见,由于长纳米材料堆积的空隙大,则越在底层,其空隙越大,上一层较短的纳米材料可以一定程度上填充这些空隙,在层层沉积后,涂层内部无过多空隙,且具有较多的接触点,则在受热时,涂层紧密的结构可以抑制隔膜发生热变形。
将实施例4与对比例3、对比例4相比对,将实施例15与对比例1相比对,将实施例16与对比例2相比对,
可以看出,当一维纳米材料长度随着涂层逐层递减(体现为各材料层一维纳米材料的长度描述值的递减)时,涂覆隔膜具有最佳的耐热性。对于一维纳米材料长度随着涂层逐层递增或者无序排布的,涂覆隔膜耐热性均不佳。造成这一现象的主要原因在于只有一维纳米纤维逐层递减这种堆积方式才使得涂层具有最大的堆积密实性,纳米纤维彼此之间的接触才最多。而无论是逐层递增,还是无序排布,其涂层堆积密实性均较小,因此,对于耐热性的提升非常有限。
进一步方案中,还可引入部分方案,以保障一维纳米材料的分层,例如:一维纳米材料的分层主要是在涂覆干燥过程中完成的,为了实现在加热的过程中分层的目的,还可以加入温敏聚合物,如聚N-异丙基丙稀酰胺(PNIPAM),PNIPAM分子内具有一定比例的疏水性的异丙基和亲水性的酰胺基。在温度低于40度时,亲水性的酰胺基与一维纳米材上的羟基存在强烈的氢键作用力,使得高分子链与一维纳米材料及溶剂具有良好的亲和性,此时PNIPAM高分子链呈现出伸展状态,表现为吸水膨胀,溶液流动性较差。温度上升,大于40度时,水分子与酰胺基之间的亲水作用力减弱,PNIPAM分子链中异丙基间的疏水作用力得以加强,PNIPAM高分子链中的疏水作用逐渐加强并起主导作 用,使得高分子链通过疏水作用互相聚集,形成疏水层,导致水分子排出发生相转变,此时高分子链由疏松的线团结构转变为紧密的胶粒状,溶液流动性增强,由于一维纳米材料长度越长,其所负载的PNIPAM量越多,其疏水性也就越强,则越易最先沉降下来,可见,通过引入PNIPAM,可有助于保障分层的实现。
可见,以上方案中,由于一维纳米材料的长度与表面能相关,进而与基膜的附着能力相关,正因此,相较于杂乱分布的一维纳米材料,本发明基于附着能力而逐层分布,可实现有秩序的分布,因其是有秩序的,可避免因杂乱、无序分布而形成可能的大空隙,并保障充分多的接触点。进一步的,部分层的一维纳米材料的空隙被其上层一维纳米材料部分或全部填充,从而在保障一维纳米材料有序性的情况下,进一步降低空隙,并提高接触点。
除以上隔膜与基膜之外,在具体举例中,也可引入其他材料层。
本发明实施例还提供了一种电池,包括以上可选方案涉及的隔膜。
该电池可例如为锂电池,进而,隔膜可设于电池表面,此外,除了隔膜,在隔膜内外也可设置有其他已有或改进的结构层。
请参考图2,本发明实施例还提供了一种隔膜制备方法,用于制备第一方面及其可选方案涉及的隔膜,所述制备方法,包括:
S21:将所述不同长度的一维纳米材料分散于同一或不同的分散剂中,得到至少一种分散液;
S22:基于所述至少一种分散液,形成对应的至少一种浆料;
S23:将所述至少一种浆料涂覆于所述基膜,并对所述基膜与所述浆料进行烘干,得到所述隔膜。
步骤S23的一种举例中,可仅涂覆一次,烘干一次;此时,所涂覆的浆料中可包含多种不同长度的一维纳米材料;
步骤S23的另一举例中,也可涂覆多次,并在每次涂覆后烘干一次,此时,各次涂覆的浆料可以是不同种类的,且可依据一维纳米材料长度从短至长的顺序依次涂覆不同浆料,以三次涂覆,涂覆三层为例,可以首先在基膜涂覆含最长一维纳米材料的浆料,待烘干以后,在上面再涂覆含较长的一维纳米材料的浆料,待烘干以后,在上面再涂覆含最短一维纳米材料的浆料。
此外,每次涂覆时,可采用一个种类的浆料,也可将两种或更多个种类 的浆料混合后进行涂覆。
其中一种实施方式中,至少部分不同长度的一维纳米材料,可基于对一维纳米材料的原料的选择来实现,例如:选择采用不同材料的一维纳米材料时,可能可以形成不同长度的一维纳米材料。
另部分举例中,也可通过相应的技术手段来形成不同长度的一维纳米材料。
一种举例中,步骤S21之前,还包括:
S24:将一维纳米材料的原料或断开后的一维纳米材料断开,并通过一次或多次的断开,形成至少部分不同长度的一维纳米材料。
其中,通过对一维纳米材料的断开,可基于一种长度的一维纳米材料的原料,形成较短的一维纳米材料,例如,可将一维纳米材料断开为原料的一半,其他举例中,也可不采用对半断开的方式实现。
任意可实现一维纳米材料断开的已有手段或改进手段,均可作为本发明实施例的一种具体举例。具体举例中,可通过对一维纳米材料的刻蚀实现,例如,可通过对一维纳米材料的刻蚀将其刻蚀为原料的一半长度。
基于所需的分层,可实现对原料的一次断开,或多次断开,例如:可先将一维纳米材料刻蚀为原料的一半长度,然后保留一半长度的一维纳米材料,再将另部分一半长度的一维纳米材料断开,得到四分之一长度的一维纳米材料,此时,可形成三层的结构,其他举例中,也可再进一步对部分四分之一长度的一维纳米材料进行断开,断开次数可根据需求任意配置。
一种举例中,步骤S21之前,还包括:
S25:实施以下至少之一接合过程,并通过一次或多次的接合,形成至少部分不同长度的一维纳米材料:
将一维纳米材料的原料接合于另一原料的一端;
将接合后的一维纳米材料接合于所述原料的一端;
将接合后的一维纳米材料接合于另一接合后的一维纳米材料的一端。
可见,所接合的对象可以是原料的一端与另一原料的一端,也可以是原料的一端与接合后的一维纳米材料的一端,还可以是接合后的一维纳米材料的一端与另一接合后的一维纳米材料的一端。
其中,通过对一维纳米材料的接合,可基于一种长度的一维纳米材料的 原料,形成较长的一维纳米材料,例如,可将两个原料接合,从而形成两倍长度的一维纳米材料,其他举例中,也可采用不同长度的原料(或接合后的一维纳米材料)实现。
任意可实现一维纳米材料接合的已有手段或改进手段,均可作为本发明实施例的一种具体举例。
例如:可基于富含羟基官能团的材料(例如聚乙二醇PEG),实现一维纳米材料的接合,进而,以上所提及的接合,可包括::
将待接合的一维纳米材料与与富含羟基官能团的材料(例如PEG)混合在溶液中;
在所述溶液中加入分子筛颗粒作为催化剂;
对所述溶液进行加热,然后冷却,过滤除去分子筛,可得到接合后的一维纳米材料。
具体举例中,以纳米纤维素为例。纳米纤维素端口的羟基含量明显高于中间区域。为了增加纳米纤维素长度,可充分利用羟基的活性,做法如下:
(1)将纳米纤维素与聚乙二醇(PEG)混合,PEG的分子量为50000-1000000g/mol,PEG占纳米纤维素的1%,将两者充分搅拌均匀,形成对应的溶液。
(2)在上述溶液中加入13A分子筛颗粒,颗粒的尺度为1mm-10mm,该分子筛为催化剂;
(3)水热加热到80度,1-2小时;
(4)冷却至常温,过滤除去13A分子筛颗粒,即可得到接合的纳米纤维素。
在以上方案中,通过加入富含羟基官能团的材料(例如PEG),可在纳米纤维素之间连接架桥,而以分子筛(例如13A分子筛)作为催化剂,可加速PEG与纳米纤维素之间的聚合反应,最后形成纳米纤维素-PEG-纳米纤维素的结构。基于所需的分层,可实现对原料的一次接合,或多次接合,例如:可先将一维纳米材料的原料接合为原料的两倍,然后保留部分两倍长度的一维纳米材料,再将另部分两倍长度的一维纳米材料接合于原料或两倍长度的一维纳米材料,得到三倍长度或四倍长度的一维纳米材料,此时,可形成三层的结构,其他举例中,也可再进一步进行接合,接合次数可根据需求任意 配置。
在步骤S21的一种方案中,可将各种长度的一维纳米材料分散于同一分散剂中,进而基于同一分散剂对应的浆料,在涂覆后实现分层,在步骤S21的另一种方案中,也可基于不同长度的一维纳米材料,形成不同的分散剂(不同分散剂中一维纳米材料的长度是不同的),进而,形成不同的分散液与浆料,在涂覆时,也可基于一维纳米材料的长度分层涂覆各种浆料。
一种举例中,在步骤S21中,可将各种长度的一维纳米材料充分地分散在分散剂中,分散剂例如选择用为水、乙醇、甲醇等。分散方式可例如:通过超声波处理、高速搅拌、高压均质、砂磨分散等方式而匀地分散在分散剂中。一维纳米材料在分散液中的浓度的取值范围可以为0.01~50wt%。
其中一种实施方式中,步骤S22具体可以包括:依次在所述分散液中加入胶黏剂与助剂。
其中的胶黏剂,可选用起到胶黏效果的任意材料,例如可以包括以下至少之一:聚丙烯酸,聚丙烯酸锂,聚乙烯醇,聚乙烯吡咯烷酮,羧甲基纤维素;但也不限于此处的举例,根据一维纳米材料的尺寸、材料,可以适应性地选择合适的胶黏剂,均不脱离本发明实施例的范围。
其中的助剂,可例如包括以下至少之一:甘油、氟代烷基乙氧基醇醚、丁苯萘磺酸钠、羟乙基硫酸钠和十二烷基硫酸钠。
在步骤S23中,可以通过微凹辊涂,喷涂,浸涂,挤涂等方式,将浆料涂覆于基膜上,经烘干即可得到一维纳米材料复合的隔膜。同时,浆料的涂覆可以是单面(即涂覆于基膜的一侧表面)或双面(即涂覆于基膜的两侧表面)。
其中一种实施方式中,如前文所提到的,还可加入聚N-异丙基丙稀酰胺(PNIPAM),即:所述制备方法还包括:在所述分散液或所述浆料中加入聚N-异丙基丙稀酰胺,进而,一维纳米材料长度越长,其所负载的PNIPAM量越多,其疏水性也就越强,则越易最先沉降下来,可见,通过引入PNIPAM,可有助于保障分层的实现。
在本说明书的描述中,参考术语“一种实施方式”、“一种实施例”、“具体实施过程”、“一种举例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例 中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (14)

  1. 一种电池的隔膜,其特征在于,包括:基膜与设于所述基膜的涂层结构,所述涂层结构中含有多层材料层,每层材料层中均含有一维纳米材料,且沿远离所述基膜的方向,各层材料层中一维纳米材料的平均长度逐层减短。
  2. 根据权利要求1所述的隔膜,其特征在于,针对所述涂层结构中一维纳米材料,满足:5≥L50/L10≥1.3,4≥L90/L50≥1.3;
    其中:
    所述L10表征了:以10%作为第一目标占比时所述涂层结构中一维纳米材料的长度描述值;
    所述L50表征了:以50%作为第一目标占比时所述涂层结构中一维纳米材料的长度描述值;
    所述L90表征了:以90%作为第一目标占比时所述涂层结构中一维纳米材料的长度描述值;
    所述涂层结构中一维纳米材料的长度描述值表明:以长度自短至长的顺序对所述涂层结构中一维纳米材料的数量进行逐步累加时,累加得到的数量与所述涂层结构中一维纳米材料总数量的比值到达所述第一目标占比时对应一维纳米材料的长度。
  3. 根据权利要求2所述的所述涂层结构中一维纳米材料的L10的长度值在100到300nm之间;
    所述涂层结构中一维纳米材料的L50的长度值在250到400nm之间;
    所述涂层结构中一维纳米材料的L90的长度值在350到900nm之间。
  4. 根据权利要求1所述的隔膜,其特征在于,不同材料层的一维纳米材料针对同一第二目标占比,形成了不同的长度描述值;
    所述材料层中一维纳米材料的长度描述值表明:
    以长度自短至长的顺序对对应材料层中一维纳米材料的数量进行逐步累加时,累加得到的数量与对应材料层中一维纳米材料总数量的比值到达所述第二目标占比时对应一维纳米材料的长度,所述第二目标占比不为50%;
    沿远离所述基膜的方向,针对同一第二目标占比,各层材料层的一维纳米材料的长度描述值逐渐减小;
    进一步地,所述第二目标占比处于5%-40%的区间范围,或处于60%-99% 的区间范围。
  5. 根据权利要求1至3任一项所述的隔膜,其特征在于,所述一维纳米材料包括以下至少之一:纳米纤维素、芳纶纳米纤维、聚酰亚胺纳米纤维。
  6. 根据权利要求1所述的隔膜,其特征在于,相邻的第一材料层与第二材料层中,所述第一材料层的一维纳米材料的空隙被所述第二材料层的一维纳米材料部分或全部填充;其中,所述第一材料层位于所述第二材料层的朝向基膜的一侧。
  7. 一种电池,其特征在于,包括权利要求1至6任一项所述的隔膜。
  8. 一种隔膜制备方法,其特征在于,用于制备权利要求1至6任一项所述的隔膜,所述制备方法,包括:
    将不同长度的一维纳米材料分散于同一或不同的分散剂中,得到至少一种分散液;
    基于所述至少一种分散液,形成对应的至少一种浆料;
    将所述至少一种浆料涂覆于所述基膜,并对所述基膜与所述浆料进行烘干,得到所述隔膜。
  9. 根据权利要求8所述的制备方法,其特征在于,将所述不同长度的一维纳米材料分散于同一或不同的分散剂中,得到至少一种分散液之前,还包括:
    将一维纳米材料的原料或断开后的一维纳米材料断开,并通过一次或多次的断开,形成至少部分不同长度的一维纳米材料。
  10. 根据权利要求8所述的制备方法,其特征在于,将不同长度的一维纳米材料分散于同一或不同的分散剂中,得到至少一种分散液之前,还包括:
    实施以下至少之一接合过程,并通过一次或多次的接合,形成至少部分不同长度的一维纳米材料:
    将一维纳米材料的原料接合于另一原料的一端;
    将接合后的一维纳米材料接合于所述原料的一端;
    将接合后的一维纳米材料接合于另一接合后的一维纳米材料的一端。
  11. 根据权利要求10所述的制备方法,其特征在于,其中的接合,包括:
    将待接合的一维纳米材料与富含羟基官能团的材料混合在溶液中;
    在所述溶液中加入分子筛颗粒作为催化剂;
    对所述溶液进行加热,然后冷却,过滤除去所述分子筛,得到接合后的一维纳米材料。
  12. 根据权利要求8至11任一项所述的制备方法,其特征在于,基于所述至少一种分散液,形成对应的至少一种浆料,包括:
    依次在所述分散液中加入胶黏剂与助剂。
  13. 根据权利要求11所述的制备方法,其特征在于,所述胶黏剂包括以下至少之一:聚丙烯酸,聚丙烯酸锂,聚乙烯醇,聚乙烯吡咯烷酮,羧甲基纤维素;
    所述助剂包括以下至少之一:甘油、氟代烷基乙氧基醇醚、丁苯萘磺酸钠、羟乙基硫酸钠和十二烷基硫酸钠。
  14. 根据权利要求8至11任一项所述的制备方法,其特征在于,还包括:
    在所述分散液或所述浆料中加入聚N-异丙基丙稀酰胺。
PCT/CN2022/077087 2022-02-21 2022-02-21 电池、电池的隔膜,以及隔膜制备方法 WO2023155190A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN202280032570.1A CN117397113A (zh) 2022-02-21 2022-02-21 电池、电池的隔膜,以及隔膜制备方法
PCT/CN2022/077087 WO2023155190A1 (zh) 2022-02-21 2022-02-21 电池、电池的隔膜,以及隔膜制备方法
KR1020237040835A KR20240001228A (ko) 2022-02-21 2022-02-21 배터리, 배터리의 분리막, 및 분리막 제조 방법
JP2023573579A JP2024520109A (ja) 2022-02-21 2022-02-21 電池、電池のセパレータ、及びセパレータの製造方法
EP22926517.8A EP4329078A1 (en) 2022-02-21 2022-02-21 Battery, battery separator, and separator preparation method
PCT/CN2022/108551 WO2023155382A1 (zh) 2022-02-21 2022-07-28 涂覆隔膜、涂覆隔膜的制备方法以及电池
PCT/CN2022/121422 WO2023155436A1 (zh) 2022-02-21 2022-09-26 涂覆隔膜、涂覆隔膜的制备方法以及电池
US18/523,828 US20240128589A1 (en) 2022-02-21 2023-11-29 Battery, separator for a battery and method for preparing separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/077087 WO2023155190A1 (zh) 2022-02-21 2022-02-21 电池、电池的隔膜,以及隔膜制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/523,828 Continuation US20240128589A1 (en) 2022-02-21 2023-11-29 Battery, separator for a battery and method for preparing separator

Publications (1)

Publication Number Publication Date
WO2023155190A1 true WO2023155190A1 (zh) 2023-08-24

Family

ID=87577252

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2022/077087 WO2023155190A1 (zh) 2022-02-21 2022-02-21 电池、电池的隔膜,以及隔膜制备方法
PCT/CN2022/108551 WO2023155382A1 (zh) 2022-02-21 2022-07-28 涂覆隔膜、涂覆隔膜的制备方法以及电池
PCT/CN2022/121422 WO2023155436A1 (zh) 2022-02-21 2022-09-26 涂覆隔膜、涂覆隔膜的制备方法以及电池

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/108551 WO2023155382A1 (zh) 2022-02-21 2022-07-28 涂覆隔膜、涂覆隔膜的制备方法以及电池
PCT/CN2022/121422 WO2023155436A1 (zh) 2022-02-21 2022-09-26 涂覆隔膜、涂覆隔膜的制备方法以及电池

Country Status (6)

Country Link
US (1) US20240128589A1 (zh)
EP (1) EP4329078A1 (zh)
JP (1) JP2024520109A (zh)
KR (1) KR20240001228A (zh)
CN (1) CN117397113A (zh)
WO (3) WO2023155190A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004442A (ja) * 2006-06-23 2008-01-10 Hitachi Maxell Ltd リチウム二次電池用セパレータおよびリチウム二次電池
JP2008186707A (ja) * 2007-01-30 2008-08-14 Tomoegawa Paper Co Ltd 電気化学素子用セパレータ
US20120156568A1 (en) * 2010-12-21 2012-06-21 GM Global Technology Operations LLC Battery separators with variable porosity
CN106340606A (zh) * 2016-10-19 2017-01-18 山东圣阳电源股份有限公司 一种蓄电池隔板及富液式蓄电池
CN108807825A (zh) * 2018-08-31 2018-11-13 深圳市星源材质科技股份有限公司 用于锂离子电池的涂布液、锂离子电池隔膜和锂离子电池

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299113A (ja) * 1999-02-10 2000-10-24 Toray Ind Inc 導電シートおよびそれを用いた燃料電池用電極基材
DE10255121B4 (de) * 2002-11-26 2017-09-14 Evonik Degussa Gmbh Separator mit asymmetrischem Porengefüge für eine elektrochemische Zelle
JP2014011163A (ja) * 2012-06-29 2014-01-20 Jntc Co Ltd ガス拡散層用炭素基材、それを利用したガス拡散層、それを含む燃料電池用電極
US9412986B2 (en) * 2013-07-31 2016-08-09 GM Global Technology Operations LLC Porous composite structures for lithium-ion battery separators
CN105529425B (zh) * 2014-11-19 2017-04-12 比亚迪股份有限公司 一种陶瓷隔膜及其制备方法和应用
US20200220137A1 (en) * 2017-07-18 2020-07-09 Japan Vilene Company, Ltd. Separator for electrochemical element
CN114361715A (zh) * 2018-08-31 2022-04-15 深圳市星源材质科技股份有限公司 用于锂离子电池的涂布液、锂离子电池隔膜和锂离子电池
CN112909430A (zh) * 2019-12-03 2021-06-04 恒大新能源技术(深圳)有限公司 锂离子电池隔膜及其制备方法和锂离子电池
CN212342766U (zh) * 2020-06-13 2021-01-12 连城徐氏新能源有限公司 一种锂离子电池用纳米纤维复合隔膜
CN114024097A (zh) * 2020-07-17 2022-02-08 深圳市星源材质科技股份有限公司 锂离子电池及其制备方法
CN113193303B (zh) * 2021-04-16 2022-11-08 江西京九动力能源有限公司 一种锂电池用的复合隔膜及其制备方法
CN113594634A (zh) * 2021-06-18 2021-11-02 苏州大学 具有自关闭功能的高离子电导率锂电池隔膜及其制备方法
CN113690545A (zh) * 2021-08-02 2021-11-23 惠州锂威电子科技有限公司 一种陶瓷隔膜及其制备方法以及二次电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004442A (ja) * 2006-06-23 2008-01-10 Hitachi Maxell Ltd リチウム二次電池用セパレータおよびリチウム二次電池
JP2008186707A (ja) * 2007-01-30 2008-08-14 Tomoegawa Paper Co Ltd 電気化学素子用セパレータ
US20120156568A1 (en) * 2010-12-21 2012-06-21 GM Global Technology Operations LLC Battery separators with variable porosity
CN106340606A (zh) * 2016-10-19 2017-01-18 山东圣阳电源股份有限公司 一种蓄电池隔板及富液式蓄电池
CN108807825A (zh) * 2018-08-31 2018-11-13 深圳市星源材质科技股份有限公司 用于锂离子电池的涂布液、锂离子电池隔膜和锂离子电池

Also Published As

Publication number Publication date
EP4329078A1 (en) 2024-02-28
KR20240001228A (ko) 2024-01-03
WO2023155436A1 (zh) 2023-08-24
CN117397113A (zh) 2024-01-12
WO2023155382A1 (zh) 2023-08-24
US20240128589A1 (en) 2024-04-18
JP2024520109A (ja) 2024-05-21

Similar Documents

Publication Publication Date Title
KR200493331Y1 (ko) 계면 구조를 가지는 전극
JP6863561B2 (ja) リチウム電池用セパレータ、それを含むリチウム電池及び該リチウム電池の製造方法
US11005141B2 (en) Separator comprising an adhesion layer for an electrochemical device and an electrode assembly comprising the same
WO2022227345A1 (zh) 一种复合隔膜及其制备方法和用途
JP5361232B2 (ja) リチウム二次電池及びその製造方法
WO2022161088A1 (zh) 一种轻量化锂离子电池隔膜用涂层材料及其制备方法和轻量化锂离子电池复合隔膜
Deng et al. Functional double-layer membrane as separator for lithium-sulfur battery with strong catalytic conversion and excellent polysulfide-blocking
JP6502523B2 (ja) 蓄電デバイス用バインダー、蓄電デバイス用バインダー組成物
CN111540881A (zh) 一种负极片、制备方法及包含其的锂离子电池
US20140315083A1 (en) Graphene coating modified electrode plate for lithium secondary battery and method for producing the same
CN105489819A (zh) 一种锂离子电池陶瓷隔膜浆料
WO2021208071A1 (zh) 组合物、复合隔膜及其制备方法以及锂离子电池
JP2015099776A (ja) セパレータ、それを含むリチウム電池、該セパレータの製造方法及び該リチウム電池の製造方法
WO2023206689A1 (zh) 集流体及其制备方法和应用
WO2023137973A1 (zh) 粘结性与透气性俱佳的隔膜及其制备方法
JP2023122593A (ja) 電極およびそれを含む二次電池
JP2010231957A (ja) セパレータ一体型電極、セパレータ一体型電極の製造方法及び電気化学素子
CN111509292A (zh) 全固体电池及其制造方法
KR20160042662A (ko) 세퍼레이터 코팅용 수계 슬러리, 세퍼레이터, 이차전지 및 세퍼레이터 제조방법
WO2023155190A1 (zh) 电池、电池的隔膜,以及隔膜制备方法
JP5488780B2 (ja) 燃料電池用複合型電解質膜
TWI686978B (zh) 金屬離子電池
CN113363670A (zh) 一种隔膜及包含该隔膜的锂离子电池
WO2023221823A1 (zh) 电极片、电池及电动汽车
CN113839037B (zh) 导电剂、电极浆料、电极片及电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926517

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280032570.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022926517

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20237040835

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237040835

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2023573579

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022926517

Country of ref document: EP

Effective date: 20231123