WO2023155382A1 - 涂覆隔膜、涂覆隔膜的制备方法以及电池 - Google Patents

涂覆隔膜、涂覆隔膜的制备方法以及电池 Download PDF

Info

Publication number
WO2023155382A1
WO2023155382A1 PCT/CN2022/108551 CN2022108551W WO2023155382A1 WO 2023155382 A1 WO2023155382 A1 WO 2023155382A1 CN 2022108551 W CN2022108551 W CN 2022108551W WO 2023155382 A1 WO2023155382 A1 WO 2023155382A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic particles
coating
dimensional
ceramic
dispersion
Prior art date
Application number
PCT/CN2022/108551
Other languages
English (en)
French (fr)
Inventor
王艳杰
陈泽林
廖志恒
谭斌
黄慧桢
刘瑞
张晓民
Original Assignee
深圳市星源材质科技股份有限公司
星源材质(南通)新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市星源材质科技股份有限公司, 星源材质(南通)新材料科技有限公司 filed Critical 深圳市星源材质科技股份有限公司
Priority to PCT/CN2022/121422 priority Critical patent/WO2023155436A1/zh
Publication of WO2023155382A1 publication Critical patent/WO2023155382A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • H01M50/4295Natural cotton, cellulose or wood
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/454Separators, membranes or diaphragms characterised by the material having a layered structure comprising a non-fibrous layer and a fibrous layer superimposed on one another
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of battery separators, in particular to a coated separator, a preparation method of the coated separator and a battery.
  • Diaphragm is one of the core components of lithium batteries, and its performance has a very important impact on the overall performance of lithium batteries, and is one of the key technologies restricting the development of lithium batteries. With the continuous expansion of the application field of lithium batteries and the deepening influence of lithium battery products in people's lives, people's requirements for the performance of lithium batteries are also getting higher and higher. In order to meet the development requirements of lithium batteries, the diaphragm, as an important part of lithium batteries, should not only have good chemical stability and low manufacturing cost, but also improve the safety performance of lithium batteries is an important trend in the development of lithium batteries.
  • the coated diaphragm can include a base film and a coating coated on at least one surface of the base film, and the coating can contain one-dimensional nanomaterials.
  • the stacking mode of the one-dimensional nanomaterials is disordered, and , it is easy to cause problems such as too many voids and few contact points, thus affecting the thermal stability of the separator.
  • the invention provides a coated separator, a preparation method of the coated separator and a battery, so as to improve the performance of the separator.
  • a coated diaphragm comprising: a base film and a coating structure provided on at least one surface of the base film, the coating structure contains multiple material layers, and the coating
  • the layer structure contains one-dimensional nanomaterials and ceramic particles, and along the direction away from the base film, the average length of the one-dimensional nanomaterials in each material layer decreases layer by layer.
  • the thickness of the coating in which the ceramic particles are distributed in the coating structure accounts for more than 80%, preferably more than 90%, and more preferably 100% of the total thickness of the coating structure.
  • the mass ratio of the one-dimensional nanomaterials to the ceramic particles in the coating structure is 1:1-1:14.
  • each of the ceramic particles includes first ceramic particles and second ceramic particles; wherein, the particle size of the second ceramic particles is larger than the particle size of the first ceramic particles, and the particle size of the second ceramic particles is The particle size is larger than the diameter of the one-dimensional nanomaterial;
  • the particle diameter of the second ceramic particle is more than twice the diameter of the one-dimensional nanomaterial
  • the particle size of the second ceramic particle is at least one order of magnitude different from the diameter of the one-dimensional nanomaterial
  • the particle size of the second ceramic particles differs from the diameter of the first ceramic particles by at least one order of magnitude
  • the diameter of the one-dimensional nanomaterial is 5-50 nm
  • the average particle diameter of the first ceramic particles is 10-60 nm
  • the average particle diameter of the second ceramic particles is 100-600 nm.
  • the mass ratio of the first ceramic particles to the second ceramic particles is 5:1-1:5.
  • the first ceramic particles and/or the second ceramic particles are inorganic substances that have a melting point above 200° C., are electrically insulating, and are electrochemically stable within the range of use of lithium batteries.
  • the surface of the first ceramic particles is grafted with lithium ion fast conductor functional groups
  • the coated separator at least meets any of the following conditions:
  • a method for preparing a coated diaphragm which is used to prepare the coated diaphragm involved in the first aspect and its alternatives, the preparation method comprising:
  • Dispersion of ceramics disperse ceramic particles in the first solvent to obtain a ceramic dispersion
  • Dispersion of one-dimensional nanomaterials disperse one-dimensional nanomaterials of different lengths in the same or different dispersants to obtain at least one one-dimensional nanomaterial dispersion;
  • Mixing and slurrying mixing the ceramic dispersion with the dispersion of the one-dimensional nanomaterials to form at least one corresponding slurry;
  • Coating and film forming coating the at least one slurry on at least one surface of the base film and drying to obtain the coated diaphragm.
  • Ceramic screening selecting first ceramic particles and second ceramic particles with different particle sizes, wherein the average particle size of the first ceramic particles is 10-60nm, and the average particle size of the second ceramic particles is 100-600nm;
  • ceramic pretreatment is also included: adding the first ceramic particles into the second solvent and then placing them in the reaction kettle, adding the material to be grafted for grafting reaction, and grafting on the surface of the first ceramic particles There are lithium-ion fast conductor functional groups.
  • the material to be grafted includes any one of polycarbonate, polylactic acid, polyurethane, perfluoropropyl vinyl ether, and methyl ethyl propyl ketone.
  • the material to be grafted includes any one of polycarbonate, polylactic acid, polyurethane, perfluoropropyl vinyl ether, and methyl ethyl propyl ketone.
  • a battery including the coated separator related to the first aspect and its optional solutions or the coated separator prepared by the method for preparing a coated separator including the second aspect and its optional solutions diaphragm;
  • the battery is a lithium battery.
  • the present invention adds ceramic particles to the coating structure so that the coating structure is a mixture of one-dimensional nanomaterials and ceramic particles. Adding ceramic particles can avoid excessive stacking density of one-dimensional nanomaterials, thereby forming more effective lithium ion transmission channels, thereby increasing the transmission rate of lithium ions, and effectively improving the performance of separators and batteries.
  • Fig. 1 is a schematic diagram of a partial structure of a coating diaphragm in an embodiment of the present invention
  • FIG. 2 is a schematic flow diagram of a method for preparing a coated diaphragm in an embodiment of the present invention
  • Fig. 3 is a schematic diagram of the change of the length value of l50 of the material layer with the coating position in a specific example of the present invention.
  • first and second are only used for description purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • a plurality means a plurality, such as two, three, four, etc., unless otherwise specifically defined.
  • connection and other terms should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral body; it can be a mechanical connection , can also be electrically connected or can communicate with each other; it can be directly connected or indirectly connected through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components.
  • connection and other terms should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral body; it can be a mechanical connection , can also be electrically connected or can communicate with each other; it can be directly connected or indirectly connected through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components.
  • the applicant proposed a corresponding solution, by making the length of the one-dimensional nanomaterials increase with the length of the coating Decrease layer by layer (reflected by the decrease of the length description value of one-dimensional nanomaterials in each material layer), because the gaps accumulated by long nanomaterials are large, the closer to the bottom layer, the larger the gaps, and the shorter nanomaterials on the upper layer can be certain To fill these gaps to a certain extent, after layer-by-layer deposition, there are no too many gaps inside the coating, and there are more contact points.
  • the packing density of one-dimensional nanofibers is too high, which hinders the transmission channel of lithium ions, affects the transmission rate of lithium ions, and limits the performance of the separator.
  • an embodiment of the present invention provides a coated diaphragm 1, including: a base film 11 and a coating structure 12 disposed on the base film 11, the coating structure 12 contains multiple layers of materials, One-dimensional nanomaterials and ceramic particles 13 are distributed in the coating structure 12.
  • the average length of the one-dimensional nanomaterials in each material layer decreases layer by layer.
  • the one-dimensional nanomaterials in each material layer The average size of the voids of the nanomaterials will also gradually decrease.
  • the embodiment of the present invention considers the problem that the ion conduction rate is low because the one-dimensional nanomaterial coating is too dense and the gaps are too small, and the ion conduction rate can be effectively improved by introducing ceramic particles, but if the one-dimensional nanomaterials are distributed disorderly, In the case of the introduction of external ceramic particles, it is easy to cause disordered mixing, which results in small lithium ion transport channels in some local areas, and large lithium ion transport channels in some local areas, making the transmission speed of lithium ions in different areas very different. It is easy to cause problems in the growth and development of lithium dendrites (easy to cause self-discharge), which further causes battery capacity attenuation and safety problems.
  • the present application mixes ceramic particles into the one-dimensional nanomaterials on the basis of reducing the average length of the one-dimensional nanomaterials in each material layer layer by layer, and the use of ceramic particles can avoid the excessive stacking density of the one-dimensional nanomaterials, thereby A more effective lithium ion transmission channel can be formed, thereby increasing the transmission rate of lithium ions, and can effectively improve the performance of the separator and the battery.
  • the mass ratio of the one-dimensional nanomaterial to the ceramic particles in the coating structure 12 is 1:1-1:14.
  • the mass ratio of the one-dimensional nanomaterial in the coating structure 12 to the ceramic particles can be 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:1, for example. 7. Any one of 1:8, 1:9, 1:10, 1:11, 1:12, 1:13, 1:14 or any range between them.
  • the mass ratio of the one-dimensional nanomaterials and ceramic particles in the coating structure 12 can also take other values, and the specific values are not as limitations of the present invention, as long as the ratio is between 1:1-1:14, then all Within the protection scope of the present invention.
  • the ceramic particles in the coating structure 12 include first ceramic particles and second ceramic particles; wherein, the particle diameter of the first ceramic particles is equivalent to the diameter of the one-dimensional nanomaterial, The particle diameter of the second ceramic particle is much larger than the diameter of the one-dimensional nanomaterial.
  • the diameter of the one-dimensional nanomaterial is 5-50 nm
  • the average particle diameter of the first ceramic particles is 10-60 nm
  • the average particle diameter of the second ceramic particles is 100-600 nm.
  • layered one-dimensional nanomaterials are mixed with multi-scale ceramic particles.
  • the bottom one-dimensional nanomaterials are long and the upper one-dimensional nanomaterials are short. The distribution is even and the difference between different regions is small.
  • the introduced multi-scale ceramics can fully Accelerates the transport of lithium ions.
  • delamination refers to the delamination formed by the size change of the nanofiber in the thickness direction, which can be multiple layers that can be separated substantially, or can be artificially delaminated according to the obvious size change (such as accounting for 10% of the total coating thickness is defined as one layer, or 20%, 30%, 40% of the total coating thickness is defined as one layer, and it can also be defined in layers according to the interface where the size changes in the structure. not specifically limited here).
  • the thickness of the coating with ceramic particles 13 in the coating structure 12 accounts for more than 80% of the total thickness of the entire coating structure, preferably more than 90%, more preferably 100%, so that the ceramic The particles are relatively uniformly dispersed in the coating structure to more effectively avoid the excessive stacking density of one-dimensional nanomaterials, thereby forming more effective lithium ion transmission channels, thereby increasing the transmission rate of lithium ions, which can effectively improve the diaphragm and battery performance.
  • each layer contains ceramic particles, which can further increase the transmission rate of lithium ions and improve the performance of the separator and battery.
  • the average particle size (D50) of the first ceramic particle is set to be much larger than the average particle diameter of the first ceramic particles and the diameter of the one-dimensional nanomaterial, thereby improving the penetration ability of the coating to the outside world.
  • the meaning of far greater than here is more than 2 times.
  • the average particle size of the first ceramic particles is 10-60 nm, and the average particle size of the second ceramic particles is 100-600 nm, which are preferred values after verification.
  • the average particle diameter of the first ceramic particles can be, for example, any one of 10nm, 15nm, 20nm, 25nm, 30nm, 35nm, 40nm, 45nm, 50nm, 55nm, 60nm or a range between any two .
  • the average particle size of the second ceramic particles can be, for example, any one of 100nm, 150nm, 200nm, 250nm, 300nm, 350nm, 375nm, 400nm, 450nm, 500nm, 550nm, 600nm or a range between any two.
  • the average particle diameter of the first ceramic particles and the average particle diameter of the second ceramic particles can also take other values, and the specific values are not as limitations of the present invention, as long as the average particle diameter of the first ceramic particles is 10-60nm, The average particle diameter of the second ceramic particles is 100-600nm, all of which are within the protection scope of the present invention.
  • the diameter of the second ceramic particle is equivalent to the diameter of the one-dimensional nanomaterial, and the diameter of the second ceramic particle is much larger than the diameter of the one-dimensional nanomaterial, neither of which departs from the protection scope of the present invention.
  • the mass ratio of the first ceramic particles in the coating structure to the second ceramic particles is 5:1-1:5; thereby the ionic conductivity of the coating can be further improved, and more effective
  • the puncture resistance of the coating coating puncture resistance ⁇ 7N
  • heat shrinkage performance 180 ° C / 1h ⁇ 4%.
  • the mass ratio of the first ceramic particles to the second ceramic particles in the coating structure can be, for example, 5:1, 4:1, 3:1, 2:1, 1:1, 1:2, 1:3 , 1:4, 1:5 or any range between them.
  • the mass ratio of the first ceramic particle to the second ceramic particle in the coating structure can also take other values, and the specific value is not a limitation of the present invention, as long as the ratio is between 5:1-1:5, then All within the protection scope of the present invention.
  • the surface of the first ceramic particles is grafted with lithium ion fast conductor functional groups.
  • the surface of the first ceramic particles introduces lithium ion fast conductor functional groups through a grafting reaction.
  • the lithium ion fast conductor functional groups rich in the surface of the first ceramic particles can greatly improve the lithium ion transport capacity.
  • the grafted functional groups only work on the surface of the ceramic, and the particle size of the second ceramic is larger than that of the first ceramic, so the gap formed is larger, and it is difficult for the functional group of the fast ion conductor to function, while the particle size of the first ceramic is small, and the formed The small gap can better play the role of lithium ion fast conductor and improve lithium ion conductivity.
  • the coating therein has three layers of material layers as shown in Figure 1 (here, the layered definition is carried out according to the interface where the size change is obvious in the coating structure), wherein, the average value of the one-dimensional nanomaterial in the bottom layer is The length is longer than that of the middle layer of one-dimensional nanomaterials, and the average length of the middle layer of one-dimensional nanomaterials is longer than that of the top layer of one-dimensional nanomaterials.
  • the lengths of dimensional nanomaterials can be the same or different.
  • the one-dimensional nanomaterial may be at least one of the following: nanocellulose, aramid nanofibers, and polyimide nanofibers.
  • the material selection of the one-dimensional nanomaterial in the embodiment of the present invention is not limited to the above examples.
  • the one-dimensional nanomaterials of different material layers form different length description values for the same second target ratio
  • the length description value of the one-dimensional nanomaterial in the material layer shows that:
  • the ratio of the accumulated quantity to the total quantity of one-dimensional nanomaterials in the material layer reaches the second target
  • the proportion corresponds to the length of the one-dimensional nanomaterial; correspondingly, in the one-dimensional nanomaterial corresponding to the material layer, the proportion of the one-dimensional nanomaterial smaller than the corresponding length description value can reach the target proportion; the above description shows that the one-dimensional
  • the statistical significance of the length description value of nanomaterials, when actually determining the length description value, the actual calculation method can be handled according to common sense in the field.
  • the second target ratio is in the range of 5%-40%, or in the range of 60%-99%.
  • it may be any one of 5%, 10%, 20%, 40%, 60%, 70%, 80%, 90%, 99%, or a range between any two.
  • the length description value of the one-dimensional nanomaterials of each material layer decreases gradually. Furthermore, a layer-by-layer reduction tendency of one-dimensional nanomaterials can be formed.
  • the meaning of the length description value is defined above by accumulating and determining the length description value based on the accumulation result, it does not mean that this statistical value must be included in the actual preparation and acceptance process.
  • the obtained law of the length description value satisfies the above description, that is, it does not deviate from this embodiment scope of protection.
  • the selection of the length of the one-dimensional nanomaterial or the targeted preparation of the length of the one-dimensional nanomaterial can be carried out in advance to ensure the satisfaction of the above length rule.
  • the length description value for the one-dimensional nanomaterial of the material layer can be, for example:
  • the l10 of the one-dimensional nanomaterials in the material layer refers to: when the quantity of one-dimensional nanomaterials of each length in the corresponding material layer is gradually accumulated in the order of length from short to long, the accumulated quantity is the same as one in the corresponding material layer. When the ratio of the total number of one-dimensional nanomaterials reaches 10%, it corresponds to the length of one-dimensional nanomaterials;
  • the 150 of the one-dimensional nanomaterials in the material layer refers to: when the quantity of one-dimensional nanomaterials of each length in the corresponding material layer is gradually accumulated in order of length from short to long, the accumulated quantity is the same as that of the one-dimensional nanomaterials in the corresponding material layer. When the ratio of the total number of nanomaterials reaches 50%, it corresponds to the length of the one-dimensional nanomaterials.
  • the l50 can also be understood as representing the average length of the corresponding material layer to a certain extent.
  • the l90 of the one-dimensional nanomaterials in the material layer refers to: when the quantity of one-dimensional nanomaterials of each length in the corresponding material layer is gradually accumulated in the order of length from short to long, the accumulated quantity is the same as that of the one-dimensional nanomaterials in the corresponding material layer. When the ratio of the total number of nanomaterials reaches 90%, it corresponds to the length of the one-dimensional nanomaterials.
  • decrement of one or more other length description values can also be achieved.
  • the length value of L10 of the one-dimensional nanomaterial in the coating structure is between 100 and 300 nm;
  • the L50 length value of the one-dimensional nanomaterial in the coating structure is between 250 and 400 nm;
  • the L90 length value of the one-dimensional nanomaterial in the coating structure is between 350 and 900 nm;
  • the L10 of the one-dimensional nanomaterial in the coating structure represents: the length description value of the one-dimensional nanomaterial in the coating structure when 10% is used as the first target ratio;
  • the L50 of the one-dimensional nanomaterials in the coating structure represents: the length description value of the one-dimensional nanomaterials in the coating structure when 50% is used as the first target ratio, and can also be understood as the one-dimensional nanomaterials in the coating structure the average length of
  • the L90 of the one-dimensional nanomaterial in the coating structure represents: the length description value of the one-dimensional nanomaterial in the coating structure when 90% is used as the first target ratio;
  • the length description value of the one-dimensional nanomaterial in the coating structure shows that:
  • the ratio of the accumulated quantity to the total number of one-dimensional nanomaterials in the coating structure reaches the first
  • the target ratio corresponds to the length of the one-dimensional nanomaterial
  • the L10 of the one-dimensional nanomaterial in the coating structure refers to: the length description value of the one-dimensional nanomaterial in the coating structure when 10% is used as the first target ratio;
  • the L50 of the one-dimensional nanomaterial in the coating structure refers to: the length description value of the one-dimensional nanomaterial in the coating structure when 50% is used as the first target ratio;
  • the L90 of the one-dimensional nanomaterial in the coating structure refers to: the length description value of the one-dimensional nanomaterial in the coating structure when 90% is used as the first target ratio;
  • the above description shows the statistical significance of the length description value of the coating structure.
  • the actual calculation method can be processed according to common knowledge in the field.
  • the meaning of the length description value is defined above by accumulating and determining the length description value based on the accumulation result, it does not mean that this statistic must be included in the actual preparation and acceptance process.
  • the obtained law of the length description value satisfies the above description, that is, it does not deviate from this embodiment scope of protection.
  • the selection of the length of the one-dimensional nanomaterial or the targeted preparation of the length of the one-dimensional nanomaterial can be carried out in advance to ensure the satisfaction of the above length rule.
  • L10 110nm
  • L50 310nm
  • L90 850nm
  • the coating position on the abscissa is to characterize: along the thickness direction, the coating position of the material layer is located in the coating structure; if it is represented by a percentage, it can be characterized as: the material layer
  • the percentage of the distance between the coating position and the base film as a percentage of the overall thickness of the coating structure; for example: 10% of it means that the distance between the coating position and the base film accounts for 10% of the overall thickness of the coating structure .
  • the length value of l50 of the one-dimensional nanomaterial in the material layer can be fitted and understood as a linear change.
  • the length value of l50 of the one-dimensional nanomaterial in the material layer can show a trend of slow first and then fast.
  • first fast then slow, first slow then fast change trend it can be realized through the length configuration of one-dimensional nanomaterials in the coating structure. Furthermore, the length configuration of the one-dimensional nanomaterials in the coating structure can be selected according to the desired change trend;
  • the length configuration of the one-dimensional nanomaterial in the coating structure needs to satisfy: 2 ⁇ L90/L50>1.5;
  • the length configuration of the one-dimensional nanomaterial in the coating structure needs to meet: L50/L10>2,; 1.5 ⁇ L90/L50 ⁇ 1.3
  • the length configuration of the one-dimensional nanomaterial in the coating needs to satisfy: L90/L50>2.
  • an embodiment of the present invention also provides a battery, including the coated separator involved in the above optional solution.
  • an embodiment of the present invention also provides a method for preparing a coated diaphragm, which is used to prepare the coated diaphragm involved in the first aspect and its alternatives.
  • the preparation method includes:
  • S1 Dispersion of ceramics: dispersing ceramic particles in a first solvent to obtain a ceramic dispersion.
  • the ceramic particles are dispersed in the first solvent to obtain a dispersion.
  • the first solvent is selected from water, N-methylpyrrolidone, ethanol, acetone and the like.
  • the dispersion method is to uniformly disperse in the solvent by means of high-speed stirring, high-pressure homogenization, and sand grinding dispersion, and the mass concentration of ceramic particles in the dispersion liquid is 2%-40%.
  • S2 Dispersion of one-dimensional nanomaterials: dispersing one-dimensional nanomaterials with different lengths in the same or different dispersants to obtain at least one one-dimensional nanomaterial dispersion.
  • one-dimensional nanomaterials with different lengths are dispersed in a dispersant to obtain a dispersion.
  • the dispersant is selected from water, N-methylpyrrolidone, ethanol, acetone and the like.
  • the dispersion method is uniformly dispersed in the dispersant by means of high-speed stirring, high-pressure homogenization, and sand mill dispersion.
  • the mass concentration of one-dimensional nanomaterials in the dispersant is 2%-30%.
  • At least some one-dimensional nanomaterials with different lengths are realized based on the selection of raw materials for one-dimensional nanomaterials. For example, when one-dimensional nanomaterials of different materials are selected, one-dimensional nanomaterials with different lengths may be formed.
  • one-dimensional nanomaterials of different lengths can also be formed by corresponding technical means.
  • the raw material of the one-dimensional nanomaterial or the one-dimensional nanomaterial after disconnection is disconnected, and one or more disconnections are performed to form at least part of the one-dimensional nanomaterials with different lengths.
  • a shorter one-dimensional nanomaterial can be formed based on a raw material of one-dimensional nanomaterial with a length, for example, the one-dimensional nanomaterial can be broken into half of the raw material, and other For example, it can also be realized without adopting the method of breaking in half.
  • any existing means or improved means that can realize the disconnection of one-dimensional nanomaterials can be used as a specific example of the embodiment of the present invention.
  • it can be realized by etching the one-dimensional nanomaterial, for example, it can be etched to half the length of the raw material by etching the one-dimensional nanomaterial.
  • the raw material can be disconnected once or multiple times.
  • the one-dimensional nanomaterial can be etched to half the length of the raw material first, and then the one-dimensional nanomaterial with half the length can be retained, and then Cut off the other half-length one-dimensional nanomaterial to obtain a quarter-length one-dimensional nanomaterial.
  • a three-layer structure can be formed.
  • the quarter-length part can also be further
  • the one-dimensional nanomaterials are disconnected, and the number of disconnections can be arbitrarily configured according to requirements.
  • the bonded one-dimensional nanomaterial is bonded to one end of another bonded one-dimensional nanomaterial.
  • the object to be joined can be one end of the raw material and one end of another raw material, or one end of the raw material and one end of the joined one-dimensional nanomaterial, or one end of the joined one-dimensional nanomaterial and the other end.
  • one-dimensional nanomaterials can be formed based on raw materials of one-dimensional nanomaterials of one length, for example, two raw materials can be joined to form one-dimensional nanomaterials of twice the length.
  • Nanomaterials in other examples, can also be realized by using raw materials (or bonded one-dimensional nanomaterials) of different lengths.
  • the bonding of one-dimensional nanomaterials can be realized based on materials rich in hydroxyl functional groups (such as polyethylene glycol PEG), and then, the bonding mentioned above can include:
  • the solution is heated, then cooled, filtered to remove the molecular sieve, and the bonded one-dimensional nanometer material can be obtained.
  • nanocellulose is taken as an example.
  • the hydroxyl content of the nanocellulose port is significantly higher than that of the middle region.
  • the activity of the hydroxyl group can be fully utilized, as follows:
  • the raw material can be bonded once or multiple times. For example, the raw material of the one-dimensional nanomaterial can be bonded to twice the raw material, and then part of the one-dimensional nanomaterial with twice the length can be retained.
  • a three-layer structure can be formed.
  • further bonding can also be performed, and the number of bonding can be arbitrarily configured according to requirements.
  • one-dimensional nanomaterials of various lengths can be dispersed in the same dispersant, and then based on the slurry corresponding to the same dispersant, layering can be achieved after coating.
  • different dispersants can also be formed based on one-dimensional nanomaterials of different lengths (the lengths of one-dimensional nanomaterials in different dispersants are different), and then different dispersion liquids and slurries can be formed.
  • various slurries can also be layer-coated based on the length of the one-dimensional nanomaterials.
  • one-dimensional nanomaterials of various lengths can be fully dispersed in a dispersant, such as water, ethanol, methanol, etc. are selected as the dispersant.
  • the dispersing method can be, for example, uniformly dispersing in the dispersant by means of ultrasonic treatment, high-speed stirring, high-pressure homogenization, and sand mill dispersion.
  • the range of the concentration of the one-dimensional nanometer material in the dispersion liquid can be 0.01-50wt%.
  • S3 mixing slurry: mixing the ceramic dispersion liquid and the dispersion of the one-dimensional nanomaterial to form at least one corresponding slurry.
  • the ceramic dispersion liquid obtained in S1 is mixed with the dispersion of one-dimensional nanomaterials obtained in S2, and the mixing method adopts high-speed stirring, high-pressure homogenization, sand mill dispersion and other methods.
  • the adhesive is then added to the mixed solution.
  • the adhesive is at least one of polyvinyl alcohol, polyacrylonitrile, polyacrylic acid, styrene-butadiene rubber, carboxymethyl cellulose, polyvinylidene fluoride, polyvinylpyrrolidone and polyimide. Adhesive accounts for 1%-10% of the solid mass in the dispersion.
  • S4 Coating and film forming: coating the at least one slurry on the base film, and drying the base film and the slurry to obtain the coated separator.
  • the slurry prepared above is coated on the base film, and then dried to obtain a coated separator.
  • Coating methods include spray coating, dip coating, micro-gravure roll coating, printing coating, extrusion coating, and wire bar coating.
  • the base film is, for example, a polyolefin base film with a thickness of 3-30 microns, a drying temperature of 40-130 degrees, and a coating speed of 10-200 m/min.
  • S11 Ceramic screening: select first ceramic particles and second ceramic particles with different particle sizes, wherein the average particle size of the first ceramic particles is 10-60nm, and the average particle size of the second ceramic particles is 100-600nm ;
  • S12 Ceramic pretreatment: adding the first ceramic particles into the second solvent and then placing them in the reaction kettle, adding the material to be grafted for grafting reaction, and grafting lithium ions on the surface of the first ceramic particles Fast conductor functional groups. Specifically, the first ceramic particles are added to the second solvent, and then they are put into the reaction kettle together, and then the material to be grafted is added. After a certain reaction temperature, reaction pressure, and reaction time, the first ceramic particles can be Lithium-ion fast conductor functional groups are grafted.
  • the first ceramic is not particularly limited, but preferably has a melting point of 200° C. or higher, has high electrical insulation properties, and is electrochemically stable within the usage range of a lithium battery.
  • oxide-based ceramics such as alumina, silica, titania, zirconia, magnesia, cerium oxide, yttrium oxide, and zinc oxide, and nitrides such as silicon nitride, titanium nitride, and boron nitride.
  • Ceramics silicon carbide, calcium carbonate, magnesium sulfate, aluminum sulfate, aluminum hydroxide oxide, potassium titanate, talc, kaolinite, clay, pearl clay, halloysite, pyrophyllite, Ceramics such as montmorillonite, sericite, mica, magnesium chloride, bentonite, asbestos, zeolite, calcium silicate, magnesium silicate, diatomaceous earth, and silica sand may be used alone or in combination.
  • the second ceramic is not particularly limited, but preferably has a melting point of 200° C. or higher, has high electrical insulation, and is electrochemically stable within the range of use of lithium batteries, and the same or different inorganic material as the first ceramic can be selected.
  • the second solvent is water, ethanol, acetone, NMP, etc., and the material to be grafted is polycarbonate, polylactic acid, polyurethane, perfluoropropyl vinyl ether, methyl ethyl propyl ketone, etc.
  • the reaction temperature is 100-200°C
  • the reaction pressure is 0.1-0.5Mpa
  • the reaction time is 10-50min.
  • the liquid solvent is removed to leave a solid, and the first ceramic particles grafted with lithium-ion fast conductors can be obtained.
  • the dispersion of the ceramics in S1 is specifically:
  • the first ceramic particles pretreated in S12 are mixed with the second ceramic particles and then dispersed in the first solvent to obtain a ceramic dispersion.
  • a coated diaphragm is prepared through the following steps:
  • S1 Ceramic screening: select first ceramic particles and second ceramic particles with different particle sizes, wherein the average particle size of the first ceramic particles is 40nm, and the average particle size of the second ceramic particles is 300nm; Both the first ceramic and the second ceramic are alumina.
  • S2 Dispersion of ceramics: Mix the second ceramic particles and the first ceramic particles in a ratio of 1:1, and uniformly disperse them in N-methylpyrrolidone by high-speed stirring to obtain a ceramic dispersion.
  • the mass concentration of ceramics in the dispersion is 20%.
  • S3 Dispersion of one-dimensional nanomaterials: disperse one-dimensional nanomaterials of different lengths in a dispersant to obtain a dispersion.
  • the dispersant is N-methylpyrrolidone
  • the dispersion method is high-speed stirring
  • the mass concentration of the one-dimensional nanometer material in the dispersant is 15%.
  • S4 mixing pulping: mixing the ceramic dispersion obtained in S2 and the dispersion of one-dimensional nanomaterials obtained in S3, the mixing method adopts high-speed stirring; then add an adhesive to the mixed solution, and the adhesive is polyvinyl alcohol; Adhesive accounts for 8% of the mass of solids in the dispersion.
  • the base film is a polyethylene base film with a thickness of 9 microns, a drying temperature of 100 degrees, and a coating speed of 100 m/min. The resulting coating thickness was 2 microns.
  • the one-dimensional nanomaterials are specifically one-dimensional nanofibers, which are deposited on the surface of the base film to form a layered structure (that is, layered one-dimensional nanomaterials of different lengths).
  • a layered structure that is, layered one-dimensional nanomaterials of different lengths.
  • Example 30 shown in Table 1 the difference between Example 30 shown in Table 1 and Example 1 is that the ceramic pretreatment step is carried out before the S2 ceramic powder is dispersed: the first ceramic particles are added to the second solvent, and then put into the reaction kettle together
  • the substance to be grafted add the substance to be grafted, maintain a certain reaction temperature, reaction pressure, and reaction time, and graft lithium-ion fast conductor functional groups on the first ceramic particles.
  • the second solvent is acetone, and the material to be grafted is polycarbonate.
  • the reaction temperature is 150° C.
  • the reaction pressure is 0.3 Mpa
  • the reaction time is 20 minutes.
  • the liquid solvent is removed to leave a solid, and the first ceramic particles grafted with lithium-ion fast conductors can be obtained.
  • the main reason for this phenomenon is that the increase in the proportion of ceramic particles can further expand the gaps between the fiber layers, thereby improving the conductivity of lithium ions.
  • the gaps are large, the self-discharge will be enhanced, resulting in attenuation of the high-temperature shelf capacity; the expansion of the gaps will also lead to The contact between coating materials decreases, resulting in poor heat resistance in a hot environment; and the puncture resistance of ceramic particles is better than that of one-dimensional nanomaterials, so the puncture resistance is improved.
  • the main reason for this phenomenon is that submicron ceramics are beneficial to increase the large voids of the coating, which in turn can improve the conductivity of lithium batteries, and the large-scale ceramic particles have excellent puncture resistance, but if the voids are large, the self-discharge will be enhanced, resulting in High-temperature shelving capacity attenuation; the expansion of voids also leads to a decrease in the contact between coating materials, resulting in poor heat resistance in a hot environment.
  • the main reason for this phenomenon is that when the nano-ceramic particle size is small, the problem of agglomeration is more serious, which leads to the narrowing of lithium ion transmission channels and low ion conductivity; when the nano-ceramic particle size is too large, the voids in the coating increase. , which in turn increases the self-discharge, and the battery capacity retention rate decreases; when the submicron ceramic particle size is small, the coating gap narrows, the ionic conductivity decreases, and the reduction in size brings about a weakened ability to resist external punctures; submicron ceramic particles When the diameter is too large, the voids of the coating will increase sharply, resulting in a decrease in the battery capacity retention rate. In addition, the excessively large voids will easily cause the voids to shrink when the coated separator is in the diaphragm, and the macroscopic performance is reduced in heat resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Cell Separators (AREA)

Abstract

本发明提供了一种涂覆隔膜、涂覆隔膜的制备方法及电池,涂覆隔膜包括基膜与设于基膜的涂层结构,涂层结构中含有多层材料层,以及涂层结构中含有一维纳米材料与陶瓷颗粒,且沿远离基膜的方向,各层材料层中一维纳米材料的平均长度逐层减短。由于各层材料层中一维纳米材料的平均长度逐层减短,可避免因一维纳米材料的无序分布而形成可能的大空隙。此外,通过在涂层结构中添加了陶瓷颗粒,使得一维纳米材料与陶瓷颗粒的混合,由此可以避免一维纳米材料的堆叠密度过大,从而可形成更有效的锂离子传输通道,从而提高锂离子的传输率,可有效改善隔膜以及电池的性能。

Description

涂覆隔膜、涂覆隔膜的制备方法以及电池 技术领域
本发明涉及电池隔膜技术领域,尤其涉及一种涂覆隔膜、涂覆隔膜的制备方法以及电池。
背景技术
隔膜是锂电池核心部件之一,其性能的好坏对锂电池的整体性能有着非常重要的影响,是制约锂电池发展的关键技术之一。随着锂电池应用领域的不断扩大和锂电产品在人们生活中的影响不断深化,人们对锂电池性能的要求也越来越高。为了满足锂电池的发展要求,隔膜作为锂电池的重要部件不仅应具有良好的化学稳定性、较低的制造成本,提高锂电池的安全性能也是目前锂电发展的重要趋势。
现有相关技术中,涂覆隔膜可以包括基膜与涂覆于基膜至少一表面的涂层,涂层中可包含一维纳米材料,然而,一维纳米材料的堆积方式杂乱无序,进而,易于造成空隙过多、接触点少等问题,从而影响隔膜的热稳定性能。
发明内容
本发明提供一种涂覆隔膜、涂覆隔膜的制备方法以及电池,以提高隔膜的性能。
根据本发明的第一方面,提供了一种涂覆隔膜,包括:基膜与设于所述基膜至少一表面的涂层结构,所述涂层结构中含有多层材料层,所述涂层结构含有一维纳米材料与陶瓷颗粒,且沿远离所述基膜的方向,各层材料层中一维纳米材料的平均长度逐层减短。
可选的,所述涂层结构中分布有所述陶瓷颗粒的涂层厚度占所述涂层结构总厚度的比例达到80%以上,优选90%以上,更优选100%。
可选的,所述涂层结构中的一维纳米材料与陶瓷颗粒的质量比为1:1-1:14。
可选的,所述陶瓷颗粒均包括第一陶瓷颗粒与第二陶瓷颗粒;其中,所述第二陶瓷颗粒的粒径大于所述第一陶瓷颗粒的粒径,且所述第二陶瓷颗粒 的粒径大于所述一维纳米材料的直径;
进一步地,所述第二陶瓷颗粒的粒径为所述一维纳米材料的直径的2倍以上;
进一步地,所述第二陶瓷颗粒的粒径与所述一维纳米材料的直径相差至少一个数量级,
和/或,所述第二陶瓷颗粒的粒径与所述第一陶瓷颗粒的直径相差至少一个数量级;
进一步地,所述一维纳米材料的直径为5-50nm,所述第一陶瓷颗粒的平均粒径为10-60nm,所述第二陶瓷颗粒的平均粒径为100-600nm。
可选的,所述涂层结构中,所述第一陶瓷颗粒与所述第二陶瓷颗粒的质量比为5:1-1:5。
可选的,所述第一陶瓷颗粒和/或所述第二陶瓷颗粒为具有200℃以上的熔点、具有电绝缘性并且在锂电池的使用范围内电化学稳定的无机物。
可选的,所述第一陶瓷颗粒的表面接枝有锂离子快导体官能团;
进一步地,所述锂离子快导体官能团包括羟基(-OH)、羰基(-C=O)、氟(-F)、羧基(-COOH)中的任一种。
可选的,所述涂覆隔膜至少满足以下任一条件:
a)涂层抗穿刺≥7N;
b)离子电导率≥0.8;
c)容量保持率≥90%;
d)180℃/h热收缩≤4%。
根据本发明的第二方面,提供了一种涂覆隔膜的制备方法,用于制备第一方面及其可选方案涉及的涂覆隔膜,所述制备方法包括:
陶瓷的分散:将陶瓷颗粒分散于第一溶剂中,得到陶瓷分散液;
一维纳米材料的分散:将不同长度的一维纳米材料分散于同一或不同的分散剂中,得到至少一种一维纳米材料分散液;
混合制浆:将所述陶瓷分散液与所述一维纳米材料的分散进行混合,形成对应的至少一种浆料;
涂覆制膜:将所述至少一种浆料涂覆于所述基膜至少一表面,并进行烘干,得到所述涂覆隔膜。
可选的,在陶瓷的分散之前,还包括:
陶瓷筛选:选取不同粒径的第一陶瓷颗粒和第二陶瓷颗粒,其中所述第一陶瓷颗粒的平均粒径为10-60nm,所述第二陶瓷颗粒的平均粒径为100-600nm;
进一步地,还包括陶瓷预处理:将所述第一陶瓷颗粒加入到第二溶剂中后置于反应釜中,加入待接枝物进行接枝反应,在所述第一陶瓷颗粒的表面接枝有锂离子快导体官能团。
可选的,所述待接枝物包括聚碳酸酯、聚乳酸、聚氨酯、全氟丙基乙烯基醚、甲基乙丙基酮中的任一种。
可选的,所述待接枝物包括聚碳酸酯、聚乳酸、聚氨酯、全氟丙基乙烯基醚、甲基乙丙基酮中的任一种。
根据本发明的第三方面,提供了一种电池,包括第一方面及其可选方案涉及的涂覆隔膜或包括第二方面及其可选方案的涂覆隔膜的制备方法制备得到的涂覆隔膜;
进一步地,所述电池为锂电池。
本发明提供的涂覆隔膜、涂覆隔膜的制备方法以及电池中,由于各层材料层中一维纳米材料的平均长度逐层减短,有序分布,一方面可避免因一维纳米材料的杂乱、无序分布而形成可能的大空隙。另一方面,为了防止一维纳米材料的堆叠密度太大而影响锂离子的传输,本发明在涂层结构中添加了陶瓷颗粒,使得涂层结构为一维纳米材料与陶瓷颗粒的混合,通过添加陶瓷颗粒,可以避免一维纳米材料的堆叠密度过大,从而可形成更有效的锂离子传输通道,从而提高锂离子的传输率,可有效改善隔膜以及电池的性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一实施例中涂覆隔膜的局部构造示意图;
图2是本发明一实施例中涂覆隔膜制备方法的流程示意图;
图3是本发明具体举例中材料层的l50的长度值随涂层位置变化的示意图。
附图标记说明:
1-涂覆隔膜
11-基膜;
12-涂层结构;
13-陶瓷颗粒。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明说明书的描述中,需要理解的是,术语“上部”、“下部”、“上端”、“下端”、“下表面”、“上表面”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明说明书的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
在本发明的描述中,“多个”的含义是多个,例如两个,三个,四个等,除非另有明确具体的限定。
在本发明说明书的描述中,除非另有明确的规定和限定,术语“连接”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或可以互相通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下面以具体地实施例对本发明的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
申请人在提出本申请之前,对现有的隔膜进行了一系列的研究及实验:
其中,为了解决涂层中一维纳米材料的堆积方式杂乱无序,易于造成空隙过多、接触点少等问题,申请人提出了相应的解决方案,通过使一维纳米材料长度随着涂层逐层递减(体现为各材料层一维纳米材料的长度描述值的递减),由于长纳米材料堆积的空隙大,则越在底层,其空隙越大,上一层较短的纳米材料可以一定程度上填充这些空隙,在层层沉积后,涂层内部无过多空隙,且具有较多的接触点,则在受热时,涂层紧密的结构可以抑制隔膜发生热变形,从而提高涂覆隔膜的耐热性。对于该方案,申请人也提出了专利申请(申请号为:PCT/CN2022/077087、申请日为:2022.02.21),本申请在此引入PCT/CN2022/077087的全部内容,即PCT/CN2022/077087的全部内容均可作为本申请的支撑。
然而,申请人在进一步研究中发现,上述方案相对于一维纳米材料无序排列的方式而言,虽能提高隔膜的耐热性,然而隔膜的整体性能仍然不够理想。申请人通过研究和试验发现,其原因在于:一维纳米纤维逐层递减这种堆积方式使得涂层具有最大的堆积密实性,纳米纤维彼此之间的接触最多。然而一维纳米纤维的堆积密度太大,阻碍了锂离子的传输通道,影响了锂离子的传输率,使得隔膜的性能受到限制。
正是基于这一发现,申请人通过一系列的研究和试验以及验证,得到了本申请的技术方案。由于一维纳米纤维的有序排列是申请人的一重大创举,基于有序排列进一步研究的问题以及得到的解决方案也是重大创举,其整个研究过程均应作为本方案不可分割的一部分,在评述本申请的创造性时应作为一个整体进行考虑。
请参考图1,本发明实施例提供了一种涂覆隔膜1,包括:基膜11与设于所述基膜11的涂层结构12,所述涂层结构12中含有多层材料层,涂层结构12中分布有一维纳米材料与陶瓷颗粒13,沿远离所述基膜的方向,各层材料层中一维纳米材料的平均长度逐层减短,对应的,各材料层中一维纳米材料的空隙的平均尺寸也会逐渐减小。
本发明实施例考虑到由于一维纳米材料涂层太密实容易造成空隙过小而导致离子传导速率低的问题,通过导入陶瓷颗粒可有效提高离子传导速率,但若一维纳米材料无序分布,在外部陶瓷颗粒引入的情况下容易造成无序混合,因此造成某些局部区域锂离子传输通道小,而某些局部区域锂离子传输通道大,使得锂离子在不同区域的传输速度差异大,进而易导致锂枝晶的生长发育存在问题(容易导致自放电),进一步造成电池容量衰减和安全性问题。本申请通过在各层材料层中一维纳米材料的平均长度逐层减短的基础上,在一维纳米材料中混入陶瓷颗粒,利用陶瓷颗粒可以避免一维纳米材料的堆叠密度过大,从而可形成更有效的锂离子传输通道,从而提高锂离子的传输率,可有效改善隔膜以及电池的性能。
作为一种优选实施方式,所述涂层结构12中的一维纳米材料与陶瓷颗粒的质量比为1:1-1:14。作为具体实施例,涂层结构12中的一维纳米材料与陶瓷颗粒的质量比例如可以为1:1、1:2、1:3、1:4、1:5、1:6、1:7、1:8、1:9、1:10、1:11、1:12、1:13、1:14中的任一者或者任意两者之间的范围。当然,涂层结构12中的一维纳米材料与陶瓷颗粒的质量比还可以取其他值,具体的数值并不作为本发明的限制,只要比值在1:1-1:14之间,则均在本发明的保护范围之内。
作为一种优选实施方式,所述涂层结构12中的陶瓷颗粒包括第一陶瓷颗粒与第二陶瓷颗粒;其中,所述第一陶瓷颗粒的粒径与所述一维纳米材料的直径相当,所述第二陶瓷颗粒的粒径远大于所述一维纳米材料的直径。
具体的,所述一维纳米材料的直径为5-50nm,所述第一陶瓷颗粒的平均粒径为10-60nm,所述第二陶瓷颗粒的平均粒径为100-600nm。
本发明实施例通过分层分布的一维纳米材料与多尺度的陶瓷颗粒混合,底部一维纳米材料长,上部一维纳米材料短,分布均匀,不同区域差异小,引入的多尺度陶瓷可以充分加速锂离子的传输。其中,分层是指在厚度方向上纳米纤维的尺寸有明显的变化从而形成的分层,可以是实质可分离的多个层,也可以依据明显的尺寸变化而进行的人为分层(如占总涂层厚度的10%定义为一层,或占总涂层厚度的20%、30%、40%等定义为一层,也可依据结构中尺寸变化明显之处的界面进行分层定义,此处不作具体限定)。
作为一种优选实施方式,涂层结构12中分布有陶瓷颗粒13的涂层的厚 度占整个涂层结构的总厚度的比例达到80%以上,优选90%以上,更优选100%,从而使得陶瓷颗粒相对均匀地分散在涂层结构中,以更有效地避免一维纳米材料的堆叠密度过大,从而可形成更有效的锂离子传输通道,从而提高锂离子的传输率,可有效改善隔膜以及电池的性能。且作为进一步优选的实施方式,当涂层结构存在明显分层的情况下,各层中均含有陶瓷颗粒,从而可进一步提高锂离子的传输率,改善隔膜以及电池的性能。
并且通过将第一陶瓷颗粒的平均粒径(D50)设置为与一维纳米材料的直径相当,使得其可扩充一维纳米材料之间的空隙,提高锂离子导电率;通过将第二陶瓷颗粒的平均粒径(D50)设置为远大于第一陶瓷颗粒的平均粒径和一维纳米材料的直径,从而可提高涂层对外界的穿刺能力。其中,此处的远大于的含义为2倍以上。申请人通过研究证实:若第一陶瓷颗粒的平均粒径过小,会导致团聚严重,进而导致涂层的锂离子电导率偏低,而若第一陶瓷颗粒的平均粒径过大,则不能充分填充到一维纳米材料的空隙之中。若第二陶瓷颗粒的平均粒径过小,则抗穿刺能力下降,而若第二陶瓷颗粒的平均粒径过大,会导致牺牲涂层的耐热性。因而,本申请提出的第一陶瓷颗粒的平均粒径为10-60nm、第二陶瓷颗粒的平均粒径为100-600nm为验证后的优选值。
作为具体实施方式,第一陶瓷颗粒的平均粒径例如可以为10nm、15nm、20nm、25nm、30nm、35nm、40nm、45nm、50nm、55nm、60nm中的任一者或者任意两者之间的范围。第二陶瓷颗粒的平均粒径例如可以为100nm、150nm、200nm、250nm、300nm、350nm、375nm、400nm、450nm、500nm、550nm、600nm中的任一者或者任意两者之间的范围。当然,第一陶瓷颗粒的平均粒径与第二陶瓷颗粒的平均粒径还可以取其他值,具体的数值并不作为本发明的限制,只要第一陶瓷颗粒的平均粒径为10-60nm、第二陶瓷颗粒的平均粒径为100-600nm,则均在本发明的保护范围之内。并且本领域技术人员应当知道,当一维纳米材料的直径变化时,第一陶瓷颗粒的平均粒径与第二陶瓷颗粒的平均粒径也会随之变化,只要满足第一陶瓷颗粒的粒径与一维纳米材料的直径相当,第二陶瓷颗粒的粒径远大于一维纳米材料的直径,则均不脱离本发明的保护范围。
作为进一步优选实施方案,所述涂层结构中的第一陶瓷颗粒与第二陶瓷 颗粒的质量比为5:1-1:5;从而可进一步地提高涂层的离子电导率,同时能更有效地保证涂层的抗穿刺(涂层抗穿刺≥7N)和热收缩性能(180℃/1h≤4%)。申请人研究发现,当第一陶瓷颗粒过多,会导致抗穿刺能力差,而第一陶瓷颗粒过少,带来的扩充有限,进而降低锂离子电导率;当第二陶瓷颗粒过多,会导致耐热性下降,而第二陶瓷颗粒过少,会导致抗穿刺能力下降。因而,本申请提出的涂层结构中的第一陶瓷颗粒与第二陶瓷颗粒的质量比为5:1-1:5为验证后的优选值。
具体的,涂层结构中的第一陶瓷颗粒与第二陶瓷颗粒的质量比例如可以为5:1、4:1、3:1、2:1、1:1、1:2、1:3、1:4、1:5中的任一者或者任意两者之间的范围。当然,涂层结构中的第一陶瓷颗粒与第二陶瓷颗粒的质量比还可以取其他值,具体的数值并不作为本发明的限制,只要比值在5:1-1:5之间,则均在本发明的保护范围之内。
作为进一步优选方式,第一陶瓷颗粒的表面接枝有锂离子快导体官能团。具体地,第一陶瓷颗粒的表面通过接枝反应,引入锂离子快导体官能团。第一陶瓷颗粒表面富含的锂离子快导体官能团可以大幅度提高锂离子传输能力。接枝官能团只在陶瓷的表面起作用,而第二陶瓷粒径第一陶瓷粒径大,因此形成的缝隙较大,快离子导体官能团难以起作用,而第一陶瓷粒径小,所形成的缝隙小,能更好地发挥锂离子快导体的作用,提高锂离子传导性能。
关于本发明实施例中的一维纳米材料长度随着涂层逐层递减的方式,进一步具体说明如下:
其中的涂层具有如图1所示的三层材料层(此处是依据涂层结构中尺寸变化明显之处的界面进行分层定义),其中,最下面一层的一维纳米材料的平均长度长于中间一层一维纳米材料,中间一层一维纳米材料的平均长度长于最上面一层一维纳米材料,各层一维纳米材料之间平均长度的差距可以任意配置,同一层中一维纳米材料的长度可以是相同的,也可以是不同的。其中一种实施方式中,所述一维纳米材料可以为以下至少之一:纳米纤维素、芳纶纳米纤维、聚酰亚胺纳米纤维。本发明实施例的一维纳米材料的材料选择并不限于以上举例。
其中一种实施方式中,不同材料层的一维纳米材料针对同一第二目标占比,形成了不同的长度描述值;
所述材料层中一维纳米材料的长度描述值表明:
以长度自短至长的顺序对所述材料层结构中一维纳米材料的数量进行逐步累加时,累加得到的数量与所述材料层中一维纳米材料总数量的比值到达所述第二目标占比时对应一维纳米材料的长度;对应的,在对应材料层的一维纳米材料中,小于对应长度描述值的一维纳米材料的占比可达目标占比;以上描述表明了一维纳米材料的长度描述值的统计学意义,在实际要确定该长度描述值时,实际的计算方式可根据本领域的常识而进行处理。
一种举例中,所述第二目标占比处于5%-40%的区间范围,或处于60%-99%的区间范围。例如可以为5%、10%、20%、40%、60%、70%、80%、90%、99%中的任一者或者任意两者之间的范围。
其中一种实施方式中,沿远离所述基膜的方向,针对同一第二目标占比,各层材料层的一维纳米材料的长度描述值逐渐减小。进而,可形成一维纳米材料的逐层减小的趋势。
此外,对于对应材料层的长度描述值,以上虽然通过累加并基于累加结果确定长度描述值的方式来定义长度描述值的含义,但是,并不表明在实际制备、验收的过程中必然包含该统计过程,在实际方案中,针对任意产品,只要用相同统计学意义的数值对材料层中的一维纳米材料进行统计后,所得到的长度描述值的规律满足以上描述,即不脱离该实施方式的保护范围。部分方案中,可预先通过对一维纳米材料长度的选择或一维纳米材料长度的针对性制备,保障以上长度规律的满足。
其中:
针对于材料层的一维纳米材料的长度描述值,可例如:
所述材料层中一维纳米材料的l10,指:以长度自短至长的顺序对对应材料层中各长度一维纳米材料的数量进行逐步累加时,累加得到的数量与对应材料层中一维纳米材料总数量的比值到达10%时对应一维纳米材料的长度;
所述材料层中一维纳米材料的l50指:以长度自短至长的顺序对对应材料层中各长度一维纳米材料的数量进行逐步累加时,累加得到的数量与对应材料层中一维纳米材料总数量的比值到达50%时对应一维纳米材料的长度,该l50,也可理解为能在一定程度上表征出对应材料层的平均长度。
所述材料层中一维纳米材料的l90指:以长度自短至长的顺序对对应材 料层中各长度一维纳米材料的数量进行逐步累加时,累加得到的数量与对应材料层中一维纳米材料总数量的比值到达90%时对应一维纳米材料的长度。
在实现l50(即平均长度)递减的情况下,也可实现其他一种或多种长度描述值(例如l90和/或l10)的递减。
其中一种实施方式中,
所述涂层结构中一维纳米材料的L10的长度值在100到300nm之间;
所述涂层结构中一维纳米材料的L50的长度值在250到400nm之间;
所述涂层结构中一维纳米材料的L90的长度值在350到900nm之间;
其中:
所述涂层结构中一维纳米材料的L10表征了:以10%作为第一目标占比时涂层结构中一维纳米材料的长度描述值;
所述涂层结构中一维纳米材料的L50表征了:以50%作为第一目标占比时涂层结构中一维纳米材料的长度描述值,也可理解为涂层结构中一维纳米材料的平均长度;
所述涂层结构中一维纳米材料的L90表征了:以90%作为第一目标占比时涂层结构中一维纳米材料的长度描述值;
所述涂层结构中一维纳米材料的长度描述值表明:
以长度自短至长的顺序对所述涂层结构中一维纳米材料的数量进行逐步累加时,累加得到的数量与所述涂层结构中一维纳米材料总数量的比值到达所述第一目标占比时对应一维纳米材料的长度;
且:针对所述涂层结构中一维纳米材料,满足:L50/L10>1.3,L90/L50>1.3;
所述涂层结构中一维纳米材料的L10指:以10%作为第一目标占比时涂层结构中一维纳米材料的的长度描述值;
所述涂层结构中一维纳米材料的L50指:以50%作为第一目标占比时涂层结构中一维纳米材料的的长度描述值;
所述涂层结构中一维纳米材料的L90指:以90%作为第一目标占比时涂层结构中一维纳米材料的的长度描述值;
以上描述表明了涂层结构的长度描述值的统计学意义,在实际要确定该长度描述值时,实际的计算方式可根据本领域的常识而进行处理。
此外,针对涂层结构的长度描述值,以上虽然通过累加并基于累加结果 确定长度描述值的方式来定义长度描述值的含义,但是,并不表明在实际制备、验收的过程中必然包含该统计过程,在实际方案中,针对任意产品,只要用相同统计学意义的数值对材料层中的一维纳米材料进行统计后,所得到的长度描述值的规律满足以上描述,即不脱离该实施方式的保护范围。部分方案中,可预先通过对一维纳米材料长度的选择或一维纳米材料长度的针对性制备,保障以上长度规律的满足。
一种举例中,针对所述涂层结构中一维纳米材料,L10=110nm,L50=310nm,L90=850nm。
在远离基膜的方向,各材料层中一维纳米材料的l50的长度值与材料层所处涂层位置(涂层厚度方向的位置)的关系拟合后的结果可参照图3中的曲线1、曲线2a、曲线2b理解,进而,在曲线中可体现为:随着厚度的增加(即随材料层所处涂层位置与基膜间距离的增加),其l50的长度值逐渐减小。
在图3中,横坐标的涂层位置是为了表征出:沿厚度方向,材料层所处涂层位置在涂层结构中所处的位置;若以百分数来进行表征,可表征出:材料层所处涂层位置与基膜之间的距离占涂层结构整体厚度的百分比;例如:其中的10%即表明:该涂层位置与基膜之间的距离占涂层结构整体厚度的10%。
针对于其中的曲线1,随材料层所处涂层位置与基膜间距离的增加,材料层中一维纳米材料的l50的长度值可拟合理解为呈线性变化,此时,其中l50的长度值x与涂层位置Y的关系可例如呈现为:Y=kx+b(k<0,b>0);
针对于其中的曲线2a,随材料层所处涂层位置与基膜间距离的增加,材料层中一维纳米材料的l50的长度值可以呈先快后慢的变化趋势;
针对于其中的曲线2b,随材料层所处涂层位置与基膜间距离的增加,材料层中一维纳米材料的l50的长度值可以呈先慢后快的变化趋势。
为了实现以上线性变化、先快后慢、先慢后快的变化趋势,可通过涂层结构中一维纳米材料的长度配置实现。进而,可根据所需的变化趋势,选择涂层结构中一维纳米材料的长度配置;
例如:
若需实现线性变化(例如曲线1所示),则:涂层结构中一维纳米材料 的长度配置需满足:2≥L90/L50>1.5;
若需实现先慢后快的变化(例如曲线2b所示),则:涂层结构中一维纳米材料的长度配置需满足:L50/L10>2,;1.5≥L90/L50≥1.3
若需实现先快后慢的变化(例如曲线2a所示),则:涂层中一维纳米材料的长度配置需满足:L90/L50>2。
由于现有技术中并未致力于形成层状结构,故而,现有技术不可能公开或启示出以上方案中针对不同变化趋势而做的长度配置。
同时,本发明实施例还提供了一种电池,包括以上可选方案涉及的涂覆隔膜。
此外,请参考图2,本发明实施例还提供了一种涂覆隔膜制备方法,用于制备第一方面及其可选方案涉及的涂覆隔膜,所述制备方法,包括:
S1:陶瓷的分散:将陶瓷颗粒分散于第一溶剂中,得到陶瓷分散液。
具体地,将陶瓷颗粒分散于第一溶剂中,得到分散液。第一溶剂选择用为水、N-甲基吡咯烷酮、乙醇、丙酮等。分散方式通过高速搅拌、高压均质、砂磨分散等方式而均匀地分散在溶剂中,陶瓷颗粒在分散液中的质量浓度为2%-40%。
S2:一维纳米材料的分散:将不同长度的一维纳米材料分散于同一或不同的分散剂中,得到至少一种一维纳米材料分散液。
具体地,将不同长度的一维纳米材料分散于分散剂中,得到分散液。分散剂选择用为水、N-甲基吡咯烷酮、乙醇、丙酮等。分散方式通过高速搅拌、高压均质、砂磨分散等方式而均匀地分散在分散剂中,一维纳米材料在分散剂中的质量浓度为2%-30%。
其中,至少部分不同长度的一维纳米材料,是基于对一维纳米材料的原料的选择来实现,例如:选择采用不同材料的一维纳米材料时,可能可以形成不同长度的一维纳米材料。
另部分举例中,也可通过相应的技术手段来形成不同长度的一维纳米材料。
将一维纳米材料的原料或断开后的一维纳米材料断开,并通过一次或多次的断开,形成至少部分不同长度的一维纳米材料。
其中,通过对一维纳米材料的断开,可基于一种长度的一维纳米材料的原料,形成较短的一维纳米材料,例如,可将一维纳米材料断开为原料的一半,其他举例中,也可不采用对半断开的方式实现。
任意可实现一维纳米材料断开的已有手段或改进手段,均可作为本发明实施例的一种具体举例。具体举例中,可通过对一维纳米材料的刻蚀实现,例如,可通过对一维纳米材料的刻蚀将其刻蚀为原料的一半长度。
基于所需的分层,可实现对原料的一次断开,或多次断开,例如:可先将一维纳米材料刻蚀为原料的一半长度,然后保留一半长度的一维纳米材料,再将另部分一半长度的一维纳米材料断开,得到四分之一长度的一维纳米材料,此时,可形成三层的结构,其他举例中,也可再进一步对部分四分之一长度的一维纳米材料进行断开,断开次数可根据需求任意配置。
当然,也可以实施以下至少之一接合过程,并通过一次或多次的接合,形成至少部分不同长度的一维纳米材料:
将一维纳米材料的原料接合于另一原料的一端;
将接合后的一维纳米材料接合于所述原料的一端;
将接合后的一维纳米材料接合于另一接合后的一维纳米材料的一端。
可见,所接合的对象可以是原料的一端与另一原料的一端,也可以是原料的一端与接合后的一维纳米材料的一端,还可以是接合后的一维纳米材料的一端与另一接合后的一维纳米材料的一端。
其中,通过对一维纳米材料的接合,可基于一种长度的一维纳米材料的原料,形成较长的一维纳米材料,例如,可将两个原料接合,从而形成两倍长度的一维纳米材料,其他举例中,也可采用不同长度的原料(或接合后的一维纳米材料)实现。
任意可实现一维纳米材料接合的已有手段或改进手段,均可作为本发明实施例的一种具体举例。
例如:可基于富含羟基官能团的材料(例如聚乙二醇PEG),实现一维纳米材料的接合,进而,以上所提及的接合,可包括::
将待接合的一维纳米材料与与富含羟基官能团的材料(例如PEG)混合在溶液中;
在所述溶液中加入分子筛颗粒作为催化剂;
对所述溶液进行加热,然后冷却,过滤除去分子筛,可得到接合后的一维纳米材料。
具体举例中,以纳米纤维素为例。纳米纤维素端口的羟基含量明显高于中间区域。为了增加纳米纤维素长度,可充分利用羟基的活性,做法如下:
(1)将纳米纤维素与聚乙二醇(PEG)混合,PEG的分子量为50000-1000000g/mol,PEG占纳米纤维素的1%,将两者充分搅拌均匀,形成对应的溶液。
(2)在上述溶液中加入13A分子筛颗粒,颗粒的尺度为1mm-10mm,该分子筛为催化剂;
(3)水热加热到80度,1-2小时;
(4)冷却至常温,过滤除去13A分子筛颗粒,即可得到接合的纳米纤维素。
在以上方案中,通过加入富含羟基官能团的材料(例如PEG),可在纳米纤维素之间连接架桥,而以分子筛(例如13A分子筛)作为催化剂,可加速PEG与纳米纤维素之间的聚合反应,最后形成纳米纤维素-PEG-纳米纤维素的结构。基于所需的分层,可实现对原料的一次接合,或多次接合,例如:可先将一维纳米材料的原料接合为原料的两倍,然后保留部分两倍长度的一维纳米材料,再将另部分两倍长度的一维纳米材料接合于原料或两倍长度的一维纳米材料,得到三倍长度或四倍长度的一维纳米材料,此时,可形成三层的结构,其他举例中,也可再进一步进行接合,接合次数可根据需求任意配置。
在步骤S2的一种方案中,可将各种长度的一维纳米材料分散于同一分散剂中,进而基于同一分散剂对应的浆料,在涂覆后实现分层,在步骤S2的另一种方案中,也可基于不同长度的一维纳米材料,形成不同的分散剂(不同分散剂中一维纳米材料的长度是不同的),进而,形成不同的分散液与浆料,在涂覆时,也可基于一维纳米材料的长度分层涂覆各种浆料。
一种举例中,在步骤S2中,可将各种长度的一维纳米材料充分地分散在分散剂中,分散剂例如选择用为水、乙醇、甲醇等。分散方式可例如:通过超声波处理、高速搅拌、高压均质、砂磨分散等方式而匀地分散在分散剂中。一维纳米材料在分散液中的浓度的取值范围可以为0.01~50wt%。
S3:混合制浆:将所述陶瓷分散液与所述一维纳米材料的分散进行混合,形成对应的至少一种浆料。
具体地,将S1得到的陶瓷分散液与S2得到的一维纳米材料的分散进行混合,混合方式采用高速搅拌、高压均质、砂磨分散等方式。随后在混合溶液中加入胶黏剂。胶黏剂为聚乙烯醇、聚丙烯腈、聚丙烯酸、丁苯橡胶、羧甲基纤维素、聚偏氟乙烯、聚乙烯吡咯烷酮和聚酰亚胺中的至少一种。胶黏剂占分散液中固体质量的1%-10%。
S4:涂覆制膜:将所述至少一种浆料涂覆于所述基膜,并对所述基膜与所述浆料进行烘干,得到所述涂覆隔膜。
具体地,通过涂覆方式,将上述制得的浆料涂覆于基膜上,烘干即可得到涂覆隔膜。涂覆方式为喷涂、浸涂、微凹辊涂、印刷涂、挤压涂覆、线棒涂。基膜例如为聚烯烃基膜,厚度为3-30微米,烘干温度为40-130度,涂覆速度为10-200m/min。
其中,作为优选方式,在陶瓷的分散之前,还包括:
S11:陶瓷筛选:选取不同粒径的第一陶瓷颗粒和第二陶瓷颗粒,其中所述第一陶瓷颗粒的平均粒径为10-60nm,所述第二陶瓷颗粒的平均粒径为100-600nm;
S12:陶瓷预处理:将所述第一陶瓷颗粒加入到第二溶剂中后置于反应釜中,加入待接枝物进行接枝反应,在所述第一陶瓷颗粒的表面接枝有锂离子快导体官能团。具体地,将第一陶瓷颗粒加入到第二溶剂中,然后一起放入反应釜中,再加入待接枝物,通过一定的反应温度、反应压力、反应时间,即可在第一陶瓷颗粒上接枝上锂离子快导体官能团。
对于第一陶瓷,没有特别的限定,优选为具有200℃以上的熔点、电绝缘性高并且在锂电池的使用范围内电化学稳定的物质。可举出例如:氧化铝、二氧化硅、氧化钛、二氧化锆、氧化镁、氧化铈、氧化钇、氧化锌等氧化物系陶瓷,氮化硅、氮化钛、氮化硼等氮化物系陶瓷,碳化硅、碳酸钙、硫酸镁、硫酸铝、碱式氧化铝(Aluminum hydroxide oxide)、钛酸钾、滑石、高岭石、陶土、珍珠陶土、多水高岭石、叶蜡石、蒙脱石、绢云母、云母、镁绿泥石、膨润土、石棉、沸石、硅酸钙、硅酸镁、硅藻土、硅砂等陶瓷,它们可以单独使用也可以组合使用多种。
第二陶瓷也没有特别限定,优选为具有200℃以上的熔点、电绝缘性高并且在锂电池的使用范围内电化学稳定的物质,且可选择与第一陶瓷相同或不同 的无机材料。第二溶剂为水、乙醇、丙酮、NMP等,待接枝物为聚碳酸酯、聚乳酸、聚氨酯、全氟丙基乙烯基醚、甲基乙丙基酮等。反应温度为100-200℃,反应压力为0.1-0.5Mpa,反应时间为10-50min。待反应结束后,将液体溶剂去除,留下固体,即可得到锂离子快导体接枝的第一陶瓷颗粒。
在此基础上,S1中的所述陶瓷的分散具体为:
将经S12预处理后的第一陶瓷颗粒与所述第二陶瓷颗粒混合后分散于第一溶剂中,得到陶瓷分散液。
下面将通过实验分析本发明一些实施例的产品性能。
实施例1
本实施例通过以下步骤制备得到涂覆隔膜:
S1:陶瓷筛选:选取不同粒径的第一陶瓷颗粒和第二陶瓷颗粒,其中所述第一陶瓷颗粒的平均粒径为40nm,所述第二陶瓷颗粒的平均粒径为300nm;所述第一陶瓷和第二陶瓷均为氧化铝。
S2:陶瓷的分散:将第二陶瓷颗粒和第一陶瓷颗粒按照1:1的比例混合,通过高速搅拌方式均匀分散于N-甲基吡咯烷酮中,得到陶瓷分散液。陶瓷在分散液中的质量浓度为20%。
S3:一维纳米材料的分散:将不同长度的一维纳米材料分散于分散剂中,得到分散液。分散剂为N-甲基吡咯烷酮,分散方式为高速搅拌,一维纳米材料在分散剂中的质量浓度为15%。
S4:混合制浆:将S2得到的陶瓷分散液与S3得到的一维纳米材料的分散进行混合,混合方式采用高速搅拌;随后在混合溶液中加入胶黏剂,胶黏剂为聚乙烯醇;胶黏剂占分散液中固体质量的8%。
S5:涂覆制膜:通过涂覆方式,将所述至少一种浆料涂覆于基膜,并对所述基膜与所述浆料进行烘干,得到所述涂覆隔膜。其中,基膜为聚乙烯基膜,厚度为9微米,烘干温度为100度,涂覆速度为100m/min。得到的涂层厚度为2微米。
其中,一维纳米材料具体为一维纳米纤维,其在基膜表面沉积,形成层状结构(即分层的不同长度的一维纳米材料),在基膜上沉积过程中,由于表面能的缘故,最长的一维纳米材料(其表面能最大,最不稳定,一旦与表 面能小的界面接触时,最易发生附着)最先沉积,而较长的随后沉积,最短的纳米线最后沉积,这样形成的一种由长到短,逐渐堆积的层状结构。
并利用同样的方式得到实施例2-29以及对比例1-5,其中,关于实施例1-29以及对比例1-5得到的对应隔膜的性能请参考表1,除表1中列出的制备参数的差异外,所有实施例及对比例在其他方面均与实施例1一致,因而不再赘述。
其中,表1所示的实施例30,与实施例1的区别仅在于在S2陶瓷粉分散前进行了陶瓷预处理步骤:将第一陶瓷颗粒加入到第二溶剂中,然后一起放入反应釜中,再加入待接枝物,保持一定的反应温度、反应压力、反应时间,在第一陶瓷颗粒上接枝上锂离子快导体官能团。第二溶剂为丙酮,待接枝物为聚碳酸酯。反应温度为150℃,反应压力为0.3Mpa,反应时间为20min。待反应结束后,将液体溶剂去除,留下固体,即可得到锂离子快导体接枝的第一陶瓷颗粒。
Figure PCTCN2022108551-appb-000001
Figure PCTCN2022108551-appb-000002
表1
由表1,根据实施例1-8对比可知,当一维纳米材料过多时(实施例8),涂覆隔膜的锂离子电导率远低于其它比例,当陶瓷颗粒过多时(实施例7),涂覆隔膜的电池容量保持率下降,且热收缩下降;当一维纳米材料与陶瓷比例 在(1:1-1:14)时,随着陶瓷占比的增加,高温电池容量保持率逐渐下降,锂离子电导率逐渐增加,抗穿刺能力逐渐提高,耐热性逐渐下降。导致这一现象的主要原因在于陶瓷颗粒占比提高,则能进一步扩充纤维层间空隙,进而提高锂离子电导率,但空隙大的话,自放电增强,导致高温搁置容量衰减;空隙的扩大还导致涂层材料之间的接触下降,导致在热环境下的耐热变差;且陶瓷颗粒的耐穿刺能力优于一维纳米材料,故而抗穿刺能力提升。
由实施例9-14对比可知,在陶瓷中,随着第二陶瓷颗粒(亚微米陶瓷)占比的增加(实施例9-13),涂覆隔膜的锂离子电导率逐渐增加,电池容量保持率逐渐下降,抗穿刺能力逐渐增加,耐热性不变。但当第一陶瓷颗粒(纳米陶瓷)含量过高时(实施例9),涂覆隔膜的锂离子电导率较低,抗穿刺能力较差,当纳米陶瓷含量过低时(实施例14),涂覆隔膜的耐热较大。导致这一现象的主要原因在于,亚微米陶瓷对于提高涂层的大空隙有利,进而可以提高锂电池导电率,且陶瓷颗粒尺度大的抗穿刺能力优异,但空隙大的话,自放电增强,导致高温搁置容量衰减;空隙的扩大还导致涂层材料之间的接触下降,导致在热环境下的耐热变差。
由实施例15-27对比可知,当纳米陶瓷粒径过小时(实施例24),涂覆隔膜的离子电导率偏低;当纳米陶瓷粒径过大时(实施例25)涂覆隔膜的电池容量保持率偏低;当亚微米陶瓷粒径过小时(实施例26),涂覆隔膜的离子电导率偏低,且抗穿刺能力下降;当亚微米陶瓷粒径过大时(实施例27),涂覆隔膜的电池容量保持率偏低,且耐热性下降。导致这一现象的主要原因在于,当纳米陶瓷粒径小时,团聚问题更严重,进而导致锂离子传输通道变窄,离子导电率偏低;纳米陶瓷粒径过大时,导致涂层空隙增大,进而增加了自放电,电池容量保持率下降;亚微米陶瓷粒径小时,涂层空隙变窄,离子电导率下降,且尺寸的减小带来抵御外界穿刺的能力变弱;亚微米陶瓷粒径过大时,涂层空隙急剧增大,导致电池容量保持率下降,另外,过大的空隙导致涂覆隔膜在隔膜时容易发生空隙缩小,宏观表现为耐热性下降。
由对比例1、2可以看出,涂层中只有一维纳米材料时,涂覆隔膜的耐热性优异,但锂离子电导率和抗穿刺能力差;当涂层中只有纳米陶瓷时,涂覆隔膜的耐热性下降,抗穿刺能力下降,但具有非常优异的锂离子电导率;当涂层中只有亚微米陶瓷时,涂覆隔膜耐热性下降明显,锂离子传输能力小, 但有高的抗穿刺能力。由实施例1-8对比可知,当一维纳米材料与陶瓷比例超过1:1时(实施例8),涂覆隔膜的锂离子传输能力和抗穿刺能力未得到提高。当一维纳米材料与陶瓷比例低于1:14时(实施例7),涂覆隔膜的锂离子传输能力和抗穿刺能力得到明显提高,但耐热性下降明显。当第一陶瓷与第二陶瓷比例超过6:1时(实施例9),涂覆隔膜的耐热和锂离子传输能力均较高,但抗穿刺能力下降,当第一陶瓷与第二陶瓷比例低于与1:6时(实施例13),涂覆隔膜的耐热和抗穿刺能力提升,但锂离子传输能力下降。只有三者的比例在一定范围时,涂覆隔膜的各项指标才具有综合最好的性能(实施例5)。
由实施例1、2、5及对比例3-5对比可知,当一维纳米材料不分层时,其涂覆隔膜锂电电导率低,且电池容量保持率下降,导致这一现象的主要原因在于一维纳米材料不分层,则材料间的团聚现象非常严重,团聚体会堵塞基膜孔道,从而导致锂离子电导率偏低;另外空隙大小不一,自放电问题严重,进而导致容量保持率下降。
在本说明书的描述中,参考术语“一种实施方式”、“一种实施例”、“具体实施过程”、“一种举例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (13)

  1. 一种涂覆隔膜,其特征在于,包括:基膜与设于所述基膜至少一表面的涂层结构,所述涂层结构中含有多层材料层,所述涂层结构含有一维纳米材料与陶瓷颗粒,且沿远离所述基膜的方向,各层材料层中一维纳米材料的平均长度逐层减短。
  2. 根据权利要求1所述的涂覆隔膜,其特征在于,所述涂层结构中分布有所述陶瓷颗粒的涂层厚度占所述涂层结构总厚度的比例达到80%以上,优选90%以上,更优选100%。
  3. 根据权利要求1或2所述的涂覆隔膜,其特征在于,所述涂层结构中的一维纳米材料与陶瓷颗粒的质量比为1:1-1:14。
  4. 根据权利要求3所述的涂覆隔膜,其特征在于,所述陶瓷颗粒包括第一陶瓷颗粒与第二陶瓷颗粒;其中,所述第二陶瓷颗粒的粒径大于所述第一陶瓷颗粒的粒径,且所述第二陶瓷颗粒的粒径为所述一维纳米材料的直径的2倍以上;
    进一步地,所述第二陶瓷颗粒的粒径与所述一维纳米材料的直径相差至少一个数量级,
    和/或,所述第二陶瓷颗粒的粒径与所述第一陶瓷颗粒的直径相差至少一个数量级;
    进一步地,所述一维纳米材料的直径为5-50nm,所述第一陶瓷颗粒的平均粒径为10-60nm,所述第二陶瓷颗粒的平均粒径为100-600nm。
  5. 根据权利要求4所述的涂覆隔膜,其特征在于,所述涂层结构中,所述第一陶瓷颗粒与所述第二陶瓷颗粒的质量比为5:1-1:5。
  6. 根据权利要求4所述涂覆隔膜,其特征在于,所述第一陶瓷颗粒和/或所述第二陶瓷颗粒为具有200℃以上的熔点、具有电绝缘性并且在锂电池的使用范围内电化学稳定的无机物。
  7. 根据权利要求1-5任一项所述的涂覆隔膜,其特征在于,所述第一陶瓷颗粒的表面接枝有锂离子快导体官能团;
    进一步地,所述锂离子快导体官能团包括羟基(-OH)、羰基(-C=O)、氟(-F)、羧基(-COOH)中的任一种。
  8. 根据权利要求1所述的涂覆隔膜,其特征在于,所述涂覆隔膜至少满 足以下任一条件:
    a)涂层抗穿刺≥7N;
    b)离子电导率≥0.8;
    c)容量保持率≥90%;
    d)180℃/h热收缩≤4%。
  9. 一种涂覆隔膜的制备方法,其特征在于,用于制备权利要求1至8任一项所述的涂覆隔膜,所述制备方法包括:
    陶瓷的分散:将陶瓷颗粒分散于第一溶剂中,得到陶瓷分散液;
    一维纳米材料的分散:将不同长度的一维纳米材料分散于同一或不同的分散剂中,得到至少一种一维纳米材料分散液;
    混合制浆:将所述陶瓷分散液与所述一维纳米材料的分散进行混合,形成对应的至少一种浆料;
    涂覆制膜:将所述至少一种浆料涂覆于所述基膜至少一表面,并进行烘干,得到所述涂覆隔膜。
  10. 根据权利要求9所述涂覆隔膜的制备方法,其特征在于,在陶瓷的分散之前,还包括:
    陶瓷筛选:选取不同粒径的第一陶瓷颗粒和第二陶瓷颗粒,其中所述第一陶瓷颗粒的平均粒径为10-60nm,所述第二陶瓷颗粒的平均粒径为100-600nm;
    进一步地,还包括陶瓷预处理:将所述第一陶瓷颗粒加入到第二溶剂中后置于反应釜中,加入待接枝物进行接枝反应,在所述第一陶瓷颗粒的表面接枝有锂离子快导体官能团。
  11. 根据权利要求10所述涂覆隔膜的制备方法,其特征在于,所述待接枝物包括聚碳酸酯、聚乳酸、聚氨酯、全氟丙基乙烯基醚、甲基乙丙基酮中的任一种。
  12. 根据权利要求10所述涂覆隔膜的制备方法,其特征在于,所述陶瓷的分散具体为:
    将预处理后的第一陶瓷颗粒与所述第二陶瓷颗粒混合后分散于第一溶剂中,得到陶瓷分散液。
  13. 一种电池,其特征在于,包括权利要求1至8任一项所述的涂覆隔 膜或包括利用权利要求9至12任一项所述的涂覆隔膜的制备方法制备得到的涂覆隔膜;
    进一步地,所述电池为锂电池。
PCT/CN2022/108551 2022-02-21 2022-07-28 涂覆隔膜、涂覆隔膜的制备方法以及电池 WO2023155382A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/121422 WO2023155436A1 (zh) 2022-02-21 2022-09-26 涂覆隔膜、涂覆隔膜的制备方法以及电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2022/077087 2022-02-21
PCT/CN2022/077087 WO2023155190A1 (zh) 2022-02-21 2022-02-21 电池、电池的隔膜,以及隔膜制备方法

Publications (1)

Publication Number Publication Date
WO2023155382A1 true WO2023155382A1 (zh) 2023-08-24

Family

ID=87577252

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2022/077087 WO2023155190A1 (zh) 2022-02-21 2022-02-21 电池、电池的隔膜,以及隔膜制备方法
PCT/CN2022/108551 WO2023155382A1 (zh) 2022-02-21 2022-07-28 涂覆隔膜、涂覆隔膜的制备方法以及电池
PCT/CN2022/121422 WO2023155436A1 (zh) 2022-02-21 2022-09-26 涂覆隔膜、涂覆隔膜的制备方法以及电池

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077087 WO2023155190A1 (zh) 2022-02-21 2022-02-21 电池、电池的隔膜,以及隔膜制备方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121422 WO2023155436A1 (zh) 2022-02-21 2022-09-26 涂覆隔膜、涂覆隔膜的制备方法以及电池

Country Status (6)

Country Link
US (1) US20240128589A1 (zh)
EP (1) EP4329078A1 (zh)
JP (1) JP2024520109A (zh)
KR (1) KR20240001228A (zh)
CN (1) CN117397113A (zh)
WO (3) WO2023155190A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299113A (ja) * 1999-02-10 2000-10-24 Toray Ind Inc 導電シートおよびそれを用いた燃料電池用電極基材
CN1717820A (zh) * 2002-11-26 2006-01-04 德古萨公司 电化学电池用不对称多孔结构隔离物
US20140011118A1 (en) * 2012-06-29 2014-01-09 Jntg Co., Ltd. Carbon Substrate For Gas Diffusion Layer, Gas Diffusion Layer Using The Same, And Electrode For Fuel Cell, Membrane-Electrode Assembly And Fuel Cell Comprising The Gas Diffusion Layer
CN109167004A (zh) * 2018-08-31 2019-01-08 深圳市星源材质科技股份有限公司 用于锂离子电池的涂布液、锂离子电池隔膜和锂离子电池
CN110892551A (zh) * 2017-07-18 2020-03-17 日本宝翎株式会社 电化学元件用隔膜
CN212342766U (zh) * 2020-06-13 2021-01-12 连城徐氏新能源有限公司 一种锂离子电池用纳米纤维复合隔膜
CN113690545A (zh) * 2021-08-02 2021-11-23 惠州锂威电子科技有限公司 一种陶瓷隔膜及其制备方法以及二次电池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004442A (ja) * 2006-06-23 2008-01-10 Hitachi Maxell Ltd リチウム二次電池用セパレータおよびリチウム二次電池
JP2008186707A (ja) * 2007-01-30 2008-08-14 Tomoegawa Paper Co Ltd 電気化学素子用セパレータ
US8835058B2 (en) * 2010-12-21 2014-09-16 GM Global Technology Operations LLC Battery separators with variable porosity
US9412986B2 (en) * 2013-07-31 2016-08-09 GM Global Technology Operations LLC Porous composite structures for lithium-ion battery separators
CN105529425B (zh) * 2014-11-19 2017-04-12 比亚迪股份有限公司 一种陶瓷隔膜及其制备方法和应用
CN106340606A (zh) * 2016-10-19 2017-01-18 山东圣阳电源股份有限公司 一种蓄电池隔板及富液式蓄电池
CN108807825B (zh) * 2018-08-31 2020-08-21 深圳市星源材质科技股份有限公司 用于锂离子电池的涂布液、锂离子电池隔膜和锂离子电池
CN112909430A (zh) * 2019-12-03 2021-06-04 恒大新能源技术(深圳)有限公司 锂离子电池隔膜及其制备方法和锂离子电池
CN114024097A (zh) * 2020-07-17 2022-02-08 深圳市星源材质科技股份有限公司 锂离子电池及其制备方法
CN113193303B (zh) * 2021-04-16 2022-11-08 江西京九动力能源有限公司 一种锂电池用的复合隔膜及其制备方法
CN113594634A (zh) * 2021-06-18 2021-11-02 苏州大学 具有自关闭功能的高离子电导率锂电池隔膜及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299113A (ja) * 1999-02-10 2000-10-24 Toray Ind Inc 導電シートおよびそれを用いた燃料電池用電極基材
CN1717820A (zh) * 2002-11-26 2006-01-04 德古萨公司 电化学电池用不对称多孔结构隔离物
US20140011118A1 (en) * 2012-06-29 2014-01-09 Jntg Co., Ltd. Carbon Substrate For Gas Diffusion Layer, Gas Diffusion Layer Using The Same, And Electrode For Fuel Cell, Membrane-Electrode Assembly And Fuel Cell Comprising The Gas Diffusion Layer
CN110892551A (zh) * 2017-07-18 2020-03-17 日本宝翎株式会社 电化学元件用隔膜
CN109167004A (zh) * 2018-08-31 2019-01-08 深圳市星源材质科技股份有限公司 用于锂离子电池的涂布液、锂离子电池隔膜和锂离子电池
CN212342766U (zh) * 2020-06-13 2021-01-12 连城徐氏新能源有限公司 一种锂离子电池用纳米纤维复合隔膜
CN113690545A (zh) * 2021-08-02 2021-11-23 惠州锂威电子科技有限公司 一种陶瓷隔膜及其制备方法以及二次电池

Also Published As

Publication number Publication date
KR20240001228A (ko) 2024-01-03
WO2023155436A1 (zh) 2023-08-24
EP4329078A1 (en) 2024-02-28
WO2023155190A1 (zh) 2023-08-24
US20240128589A1 (en) 2024-04-18
JP2024520109A (ja) 2024-05-21
CN117397113A (zh) 2024-01-12

Similar Documents

Publication Publication Date Title
JP7304351B2 (ja) セラミックを含むセパレータ層を備えたセパレータ
JP6068573B2 (ja) スラリー組成物およびそれを含んでなるリチウムイオン電池用セパレータ
KR102409258B1 (ko) 리튬 이온 전지용 세퍼레이터
KR101287667B1 (ko) 적층 세퍼레이터, 폴리올레핀 미다공막 및 축전 디바이스용 세퍼레이터
JP5753657B2 (ja) 絶縁層形成用スラリー、電気化学素子用セパレータの製造方法、及び電気化学素子
TWI294350B (en) Microporous polyolefin film
CN207021328U (zh) 用于二次电池的不对称隔膜
WO2019093184A1 (ja) ポリオレフィン複合多孔質膜及びその製造方法、並びに電池用セパレータ及び電池
JP5942102B2 (ja) 微多孔膜積合体及びその製造方法、並びに微多孔膜の製造方法
JPWO2018047871A1 (ja) アルミナ粉末、アルミナスラリー、アルミナ含有コート層、積層分離膜及び二次電池
KR20120043164A (ko) 다층 다공막 및 그의 제조 방법
CN107611320B (zh) 锂电池涂布隔膜用水性浆料、锂电池涂布隔膜以及它们的制备方法
CN207165672U (zh) 用于二次电池的隔膜
WO2021208071A1 (zh) 组合物、复合隔膜及其制备方法以及锂离子电池
JP6378998B2 (ja) 蓄電デバイス用セパレータの製造方法
WO2023155382A1 (zh) 涂覆隔膜、涂覆隔膜的制备方法以及电池
KR20180071961A (ko) 축전 디바이스용 세퍼레이터, 및 이를 사용한 적층체, 권회체 및 이차 전지
Lvye et al. Nanonet-/fiber-structured flexible ceramic membrane enabling dielectric energy storage.
JP4118622B2 (ja) 層間隔が制御された多層を有する多孔質シートおよびその製造方法
US20040259712A1 (en) Ceramic slurry composition, method for producing thin green sheet by extrusion, and electronic device fabricated using the green sheet
CN112259914A (zh) 一种分子筛涂布的多孔复合材料及其制备方法和应用
KR20190142246A (ko) 비수 전해액 이차 전지용 다공질층
WO2023155191A1 (zh) 纳米浆料及其制备方法、电池隔膜及其制作方法和电池
KR102648840B1 (ko) 복합 음극재 구조 및 이를 포함하는 리튬 이차 전지용 음극활물질
JP7344644B2 (ja) ポリオレフィン微多孔膜を備える多層多孔膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926688

Country of ref document: EP

Kind code of ref document: A1