WO2023153586A1 - 신규한 meta-poss(meta-polyhedral oligomeric silsesquioxane) 화합물, 이의 제조방법, 및 이의 제조방법으로 제조된 meta-poss(meta-polyhedral oligomeric silsesquioxane) 화합물을 포함하는 조성물 - Google Patents

신규한 meta-poss(meta-polyhedral oligomeric silsesquioxane) 화합물, 이의 제조방법, 및 이의 제조방법으로 제조된 meta-poss(meta-polyhedral oligomeric silsesquioxane) 화합물을 포함하는 조성물 Download PDF

Info

Publication number
WO2023153586A1
WO2023153586A1 PCT/KR2022/017459 KR2022017459W WO2023153586A1 WO 2023153586 A1 WO2023153586 A1 WO 2023153586A1 KR 2022017459 W KR2022017459 W KR 2022017459W WO 2023153586 A1 WO2023153586 A1 WO 2023153586A1
Authority
WO
WIPO (PCT)
Prior art keywords
meta
composition
silane
group
compound
Prior art date
Application number
PCT/KR2022/017459
Other languages
English (en)
French (fr)
Inventor
오상수
김명준
오일권
Original Assignee
주식회사 파이오셀
오상수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220015979A external-priority patent/KR20230119792A/ko
Priority claimed from KR1020220092195A external-priority patent/KR20240014705A/ko
Application filed by 주식회사 파이오셀, 오상수 filed Critical 주식회사 파이오셀
Publication of WO2023153586A1 publication Critical patent/WO2023153586A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics

Definitions

  • the present invention relates to a novel meta-POSS (meta-polyhedral oligomeric silsesquioxane) compound, which is a modified polysiloxane compound of polyhedral oligomeric silsesquioxane, a method for preparing the same, and a meta-POSS (meta-polyhedral oligomeric compound prepared by the method) It relates to a composition comprising a silsesquioxane) compound.
  • a novel meta-POSS metal-polyhedral oligomeric silsesquioxane
  • Polysiloxane-based compounds are used in various industries due to their excellent heat resistance, cold resistance, weather resistance, light resistance, chemical stability, electrical properties, flame retardancy, water resistance, transparency, colorability, non-adhesiveness, and non-corrosiveness.
  • polyhedral oligomeric silsesquioxane is known to have excellent weather resistance, heat resistance, physical properties, optical properties, chemical stability, and low dielectric properties due to its specific chemical structure. It is used in industries such as electronic materials, optical materials, electronic optical materials, paints, and primers.
  • All of the conventionally known polyhedral oligomeric silsesquioxane (POSS) compounds are in the form of substituting a Si atom with a functional group, and due to these multifunctional functional groups, the polyhedral oligomeric silsesquioxane (POSS) compounds are generally solid compounds And, because of this, it is difficult to control the reaction, and in particular, there is a problem that handling property and molding processability are low.
  • the present invention is a novel meta-POSS (meta-polyhedral oligomeric silsesquioxane), a new polyhedral oligomeric silsesquioxane-based compound with improved weather resistance, heat resistance, physical properties, optical properties, chemical stability, low dielectric properties, handling properties, molding processability, etc.
  • An object of the present invention is to provide a compound, a method for preparing the same, and a composition including a meta-polyhedral oligomeric silsesquioxane (meta-POSS) compound prepared by the method for preparing the same.
  • metal-POSS meta-polyhedral oligomeric silsesquioxane
  • novel meta-POSS metal-polyhedral oligomeric silsesquioxane
  • the novel meta-POSS metal-polyhedral oligomeric silsesquioxane compound of the present invention is characterized by including a structural unit of -Si-O-R2-O-Si- and has the following general formula ( 1) may be a compound represented by
  • R1 in Formula 1 is an epoxy group, a (meth)acrylic group, a vinyl group, a hydrolysable silyl group, an oxetanyl group, a phenyl group, an aminoalkyl group, an alkoxy group, or an alkyl group, a halogen alkyl group, an alkylhydroxy group (-(CH2)n -OH), an alkylthiol group (mercapto group, -(CH2)n-SH), etc.
  • R2 may be an alkyl group, preferably a substituted or unsubstituted linear or branched C1 to C15 alkyl group, more preferably a substituted or unsubstituted linear or branched C1 to C5 alkyl group.
  • a may be 8 to 24, preferably a may be 8 to 20.
  • the novel meta-POSS (meta-polyhedral oligomeric silsesquioxane) compound represented by Formula (1) is an oligomer having a molecular weight of 1,500 to 20,000, preferably 1,500 to 15,000.
  • composition comprising the novel meta-POSS (meta-polyhedral oligomeric silsesquioxane) compound of the present invention is a meta-POSS (meta-polyhedral oligomeric silsesquioxane) compound represented by the general formula (1), a dilution monomer, an initiator, and Characterized in that it contains additives.
  • a meta-POSS metal-polyhedral oligomeric silsesquioxane
  • novel meta-POSS metal-polyhedral oligomeric silsesquioxane
  • the novel meta-POSS metal-polyhedral oligomeric silsesquioxane compound of the present invention has weather resistance, heat resistance, physical properties, optical properties, chemical stability, low dielectric properties and handling properties due to increased flexibility and reduced curing shrinkage, molding processability, etc. There is an advantage to this enhancement.
  • novel meta-POSS metal-polyhedral oligomeric silsesquioxane
  • the composition including the same can be applied to various industries, and in particular, the effect of increasing utilization in industries such as electronic materials, optical materials, and electronic optical materials indicates
  • the manufacturing method of the novel meta-POSS (meta-polyhedral oligomeric silsesquioxane) compound of the present invention exhibiting the above advantages and effects is a simple reaction of a silane compound and a diol, and thus, mass production is possible, which is suitable for various industries. It has great usability.
  • a novel meta-POSS (meta-polyhedral oligomeric silsesquioxane) compound which is a novel polyhedral oligomeric silsesquioxane-based compound of the present invention provided in the present invention, a method for preparing the same, and a meta-POSS (meta-POSS) prepared by the method -The composition containing the polyhedral oligomeric silsesquioxane) compound will be described in detail.
  • the novel meta-POSS (meta-polyhedral oligomeric silsesquioxane) compound of the present invention which is one aspect of the present invention, is characterized by including a structural unit of -Si-O-R2-O-Si-, and has the following general formula ( 1) may be a compound represented by
  • R1 in Formula (1) is an epoxy group, a (meth)acrylic group, a vinyl group, a hydrolysable silyl group, an oxetanyl group, a phenyl group, an aminoalkyl group, an alkoxy group, or an alkyl group, a halogen alkyl group, an alkylhydroxy group (-(CH2 )n-OH), a functional group including an alkylthiol group (mercapto group, -(CH2)n-SH), and the like,
  • R2 may be an alkyl group, preferably a substituted or unsubstituted linear or branched C1 to C15 alkyl group, more preferably a substituted or unsubstituted linear or branched C1 to C5 alkyl group.
  • a may be 8 to 24, preferably a may be 8 to 20.
  • the structure according to the general formula (1) may have the form of the following formula (a).
  • n may be 1 to 9, preferably n may be 1 to 7.
  • n 3
  • it may have the form of Formula (3) below,
  • n 4
  • n 4
  • Formula (4) When n is 4, it may have the form of Formula (4) below.
  • the novel meta-POSS (meta-polyhedral oligomeric silsesquioxane) compound represented by Formula (1) is an oligomer having a molecular weight of 1,500 to 20,000, preferably 1,500 to 15,000.
  • a method for preparing a novel meta-polyhedral oligomeric silsesquioxane (meta-POSS) compound of the present invention reacts a silane compound and a diol in a diluting solvent using a catalyst to obtain the general formula (1) It is characterized in that to obtain the structure of.
  • metal-POSS meta-polyhedral oligomeric silsesquioxane
  • reaction step' a reaction step of reacting silane and diol in a diluting solvent using a catalyst
  • reaction step of i) (a) raw material input step; (b) heating step of raising the temperature; and (c) a synthesis step.
  • the (a) raw material input step is a step of adding a diluting solvent, a silane compound, and a diol to a reactor, and adding a catalyst while stirring at room temperature.
  • the diluting solvent uses a polar solvent to dissolve well with alcohol, which is a by-product generated during the POSS reaction in the reaction step i).
  • alcohol which is a by-product generated during the POSS reaction in the reaction step i).
  • the same alcohol as the by-product alcohol is a reaction by-product of the silane compound and the diol, so it is not used as a diluting solvent for forward progress of the reaction.
  • the polar solvent as the diluting solvent is, for example, methanol, ethanol, propanol, iso-propanol, n-butanol, iso-butanol, t-butanol, n-pentanol, iso-pentanol, straight-chain or branched hexanol, etc. chain C1 to C6 alcohols; Ketones such as Acetone, MEK, and MIBK; and hydrophilic solvents such as the like, and one or more of the polar solvents may be used.
  • the amount of the diluting solvent may be 30 to 70% by weight, preferably 30 to 60% by weight, based on the total amount (parts by weight, wt) of the catalyst, the diluting solvent, silane, and the diol.
  • the silane compound may be any one of organo trialkoxy silane-based compounds represented by the following general formula (2).
  • R1 is an organic group, an epoxy group; (meth)acrylic group; vinyl group; hydrolysable silyl group; oxetanyl group; phenyl group; aminoalkyl group; substituted or unsubstituted alkoxy; or a substituted or unsubstituted alkyl group; halogen alkyl group; Alkyl hydroxy group (-(CH2)n-OH); An alkylthiol group (mercapto group -(CH2)n-SH); a functional group including the like,
  • R3 is a substituted or unsubstituted alkyl group having C1 to C15 carbon atoms.
  • Exemplary compounds of the organo trialkoxy silane series may include the following compounds, but are not limited thereto.
  • the amount of silane used may be 15 to 40% by weight, preferably 20 to 35% by weight, based on the total amount (parts by weight, wt) of the catalyst, diluent, silane, and diol.
  • the diol is any one of substituted or unsubstituted straight-chain or branched-chain diols having C1 to C15 carbon atoms, and the specific diol is as follows, but is not limited thereto.
  • the amount of the diol may be 10 to 30% by weight, preferably 15 to 30% by weight, based on the total amount (parts by weight, wt) of the catalyst, diluent, silane, and diol.
  • the amount of silane and diol used is a ratio (molar ratio) of 2:3, and is determined according to the number of a in the general formula (1).
  • the catalyst is a strong acid such as HCl, HNO3, H2SO4; strong bases such as NaOH, KOH and BaOH; and TMAH (Tetra Methyl Ammonium Hydroxide), TMAA (Tetra Methyl Ammonium Acetate), TMAF (Tetra Methyl Ammonium Fluoride), TEAH (Tetra Ethyl Ammonium Hydroxide), TEAA (Tetra Ethy lAmmonium Acetate), TEAF (Tetra Ethyl Ammonium Fluoride), TBAH Ammonium salts such as (Tetra Butyl Ammonium Hydrocide), TBAA (Tetra Butyl Ammonium Acetate), and TBAF (Tetara Butyl Ammonium Fluoride);
  • TMAH Tetra Methyl Ammonium Hydroxide
  • TMAA Tetra Methyl Ammonium Acetate
  • TMAF Tetra Methyl Ammonium Fluoride
  • the amount of the catalyst may be 0.01 to 5% by weight, preferably 0.05 to 5% by weight, based on the total amount (parts by weight, wt) of the catalyst, diluent, silane, and diol.
  • the (b) heating and temperature raising step is a step of raising the reaction temperature of the reaction mixture in the (a) raw material input step to 60 to 100 ° C, preferably 70 to 85 ° C.
  • the synthesis step (c) is a step of continuing the reaction while maintaining the reaction temperature raised in the heating and temperature raising step of (b), and the diluting solvent volatilized as the reaction proceeds and the reaction by-product alcohol are recovered.
  • the recovery may use a conventional method, and preferably, the volatilized material, the volatilized diluent and the reaction by-product alcohol, are condensed and recovered in a condenser using a recovery still adapter. (See Fig. 5).
  • the synthesis reaction proceeds while replenishing by adding additional dilution solvent to the reactor as much as the amount of dilution solvent volatilized during the reaction.
  • the diluting solvent is added for 1/3 to 1/2 hours of the total reaction time, 5 to 30% by weight of the amount of the solvent initially used, preferably 10 to 20% by weight may be added.
  • the addition of such a diluting solvent has the advantage of securing the uniformity of the reaction by maintaining an appropriate concentration of the diluting solvent in the reactor.
  • reaction time of i) reaction step including steps (a) to (c) may be 6 to 48 hours.
  • the purification step of ii) is a step of obtaining a meta-POSS compound of the general formula (1) of the present invention, which is a reaction product, by leaving the reaction mixture in the reaction step i) to be cooled and purified in vacuum.
  • the reaction mixture passed through the steps (a) to (c) is left to cool to a temperature below room temperature, and the reaction mixture in the reaction step i) is separated into an upper layer of the liquid phase and a lower layer of the slurry phase.
  • the reaction mixture in the reaction step i) is separated into an upper layer of the liquid phase and a lower layer of the slurry phase.
  • the upper layer of the liquid phase there are mainly unreacted reactants and diluents
  • the lower layer of the slurry phase in addition to the meta-POSS compound represented by the general formula (1) of the present invention, which is a reaction product, some diluting solvents and the reaction product May contain alcohol and water.
  • the vacuum purification separates the upper layer and the lower layer formed by the cooling process, and the meta-POSS compound, which is a reaction product, from the slurry phase of the lower layer is separated from the excess diluent solvent, and the alcohol and water produced by the reaction is removed in vacuum to finally obtain the meta-POSS compound represented by the general formula (1) of the present invention, which is a reaction product.
  • Diluting solvents and unreacted reactants (substances such as silane and diol) separated from the upper and lower layers can be reused after purification.
  • composition comprising a meta-polyhedral oligomeric silsesquioxane (meta-POSS) compound prepared by the production method of the present invention, meta-POSS represented by the following general formula (1) as described above ( It is characterized in that it includes a meta-polyhedral oligomeric silsesquioxane) compound, a dilution monomer, an initiator, and an additive.
  • meta-POSS meta-polyhedral oligomeric silsesquioxane
  • R1 in the general formula (1) is an epoxy group; (meth)acrylic group; vinyl group; hydrolysable silyl group; oxetanyl group; phenyl group; aminoalkyl group; substituted or unsubstituted alkoxy; or a substituted or unsubstituted alkyl group; halogen alkyl group; Alkyl hydroxy group (-(CH2)n-OH); It is a functional group including an alkylthiol group (mercapto group -(CH2)n-SH) and the like.
  • R2 may be an alkyl group, preferably a substituted or unsubstituted linear or branched C1 to C15 alkyl group, more preferably a substituted or unsubstituted linear or branched C1 to C5 alkyl group.
  • a may be 8 to 24, preferably a may be 8 to 20.
  • the structure according to the general formula (1) may have the form of the following formula (a).
  • n may be 1 to 9, preferably n may be 1 to 7.
  • the meta-POSS (meta-polyhedral oligomeric silsesquioxane) compound represented by the general formula (1) is an oligomer having a molecular weight of 1,500 to 20,000, preferably 1,500 to 15,000, and binds to the following diluted monomer in the composition, 40 wt% to 95 wt%, preferably 50 wt% to 90 wt%.
  • the diluent monomer is a component added for viscosity control, curing properties, adhesion, flexibility, and the like of the composition.
  • the dilution monomer of the composition may be determined according to the type of functional group of R1 in the general formula (1).
  • R1 in Formula 1 is an acryl group
  • an acryl-based monomer is used as the diluting monomer
  • R1 is an epoxy group
  • an epoxy-based monomer is used as the diluting monomer
  • R1 is an alkylhalogen group
  • R1 includes all of an acrylate group, an epoxy group, and an alkylhalogen group
  • all of the above acryl-based, epoxy-based, and alkylhalogen-based monomers may be used.
  • the dilution monomer used may vary depending on the curing characteristics of the product in which the composition is used.
  • a diluent monomer having a low molecular weight and a multifunctional group increases the curing density, so that the product exhibits very hard physical properties.
  • the diluent monomer having a high molecular weight and a monofunctional group lowers the curing density and exhibits soft physical properties of the product.
  • the refractive index of the product is lowered, the dielectric properties are improved, and the surface energy is lowered.
  • the compound of the specific dilution monomer may be one or more of the exemplary compounds according to the following functions.
  • Exemplary compounds of the acrylic dilution monomer for the function of the dilution monomer compound in the composition to have characteristics such as viscosity control, acrylic reactivity, and glass adhesion increase are as follows, but are not limited thereto.
  • Exemplary compounds of the epoxy-based dilution monomer for the function of the dilution monomer compound in the composition to have properties such as viscosity control, epoxy reactivity, and glass adhesion increase are as follows, but are not limited thereto.
  • An amine-based silane diluting monomer can be used as a diluting monomer for the function of the diluting monomer compound in the composition to have characteristics such as viscosity control, reactivity with epoxy included in the substrate, etc., and glass adhesion increase.
  • exemplary compounds of these are as follows Same, but not limited thereto.
  • Exemplary compounds of the acrylic-epoxy-based diluting monomer for the function of the diluting monomer compound in the composition to have properties such as viscosity control, acrylic-epoxy reactivity, and hardness increase are as follows, but are not limited thereto.
  • Exemplary compounds of the epoxy-based dilution monomer including a double bond as another monomer for the function of the dilution monomer compound in the composition to have properties such as viscosity control, reactivity with acryl-vinyl-epoxy, and hardness increase are as follows, but It is not limited.
  • Exemplary compounds of the halogen-based dilution monomer to have properties such as viscosity control, acrylic reactivity, refractive index control, and water resistance increase in the function of the dilution monomer compound in the composition are as follows, but are not limited thereto.
  • the diluted monomer as described above includes 1 wt% to 40 wt%, preferably 5 wt% to 35 wt% of the total composition.
  • the initiator is a photoinitiator for initiating a bond between the oligomer, which is the meta-POSS compound of the general formula (1), and the dilution monomer.
  • One or more types of initiator may be used, and the initiator may include the following compounds, but is not limited thereto.
  • an appropriate initiator may be selected according to the used oligomer and monomer.
  • a Radical UV initiator may be used, and in particular, Hydroxy cyclohexyl phenyl ketone (trade name, Omnirad 184) may be used.
  • a cationic UV initiator may be used, such as Iodonium-methylphenyl-methylpropylphenyl Hexafluoro-phosphate.
  • the initiator comprises 0.1 wt% to 5 wt%, preferably 1 wt% to 5 wt%, of the total composition.
  • the additive may be determined depending on the product to which the composition is applied.
  • one or more of the following additives may be used, but is not limited thereto.
  • one or more of the following additives may be used, but is not limited thereto.
  • composition of the present invention if necessary, a known curing retardant for storage stability of the composition; Adhesion accelerator for improving adhesion; inorganic filler; pigment; phosphor; coloring agent; heat resistance improver; Various additives and release agents, such as; dispersants for packaging materials; Additives such as may be further added.
  • the amount of the additive used is 0.1 wt% to 15 wt%, preferably 0.1 wt% to 10 wt%, of the total composition.
  • a resin oligomer solution (1) is prepared by stirring the oligomer and monomer of the general formula (1) in a stirrer at room temperature until they become transparent.
  • additive solution 2 is prepared by mixing additives, initiators, and some of the monomers and stirring them until completely transparently dissolved at room temperature.
  • the resin oligomer solution (1) and the additive solution (2) are mixed and stirred to prepare a finished product.
  • composition of the present invention comprising the above configuration is a display; OELD; cell phone; tablet; laptop; monitor; TV; Electronic equipment, Glass; UTG; PET; CPI; PI; TAC; acrylic; PC; It can be used as a hard coating material used for transparent materials or/and film materials, and general paints such as home appliances, furniture, and automobiles.
  • composition of the present invention is an OLED insulating material; touch screen insulating material; insulating materials for cell phone antennas and the like; LED encapsulation materials; It can also be used as a low dielectric constant material such as.
  • composition of the present invention may include a hydrogel-type adhesive medical patch material containing a drug such as a patch; contact lenses; medical adhesives; It can also be used for medical purposes such as silicone for human body insertion.
  • the composition of the present invention is a semiconductor encapsulation material such as EMC encapsulation of an ultra-thin semiconductor package, an optical adhesive; optical fiber coating agent; cladding materials; Wave guide resin; It can also be used as a material for optics, etc.
  • Isopropyl alcohol (IPA) 500.00g, methacryltrimethoxysilane 320.00g (32%, 8 mole), and 1,4-Butanediol 179.00g (17.80%, 12 mole) were introduced into the reactor.
  • 1.00 g (0.10%, 0.016) of TBAF 75% aq (Aser) is added while stirring the reaction mixture at room temperature.
  • the reaction temperature of the reaction mixture to which the catalyst is added is raised to 80° C. to react.
  • the reaction temperature is maintained at 80 ° C., and MeOH and IPA volatilized in the reaction are recovered. 3 hours after the start of the reaction, 100 g of IPA was additionally added to the reactor.
  • composition of the present invention was prepared by the following composition preparation method with the composition shown in Table 1 below.
  • composition prepared in Example 2 of the present invention is prepared for coating for a display.
  • a resin oligomer solution (1) is prepared by adding the above 1), 2), and 3) to a reactor and completely transparently stirring at room temperature. Add the above 4) to another reactor and stir until completely transparently dissolved at room temperature to prepare a semi-finished solution (2) in which the additives are stirred. After mixing the solutions (1) and (2) and stirring at room temperature, the composition (A1) is prepared by filtering.
  • Composition (A2) of the present invention was prepared with the composition shown in Table 2 by the following composition preparation method.
  • a resin oligomer solution (1) is prepared by adding the above 1), 3), 4), and 5) to a reactor and completely transparently stirring at room temperature.
  • the above 2), 6), 7), and 8) were added to another reactor and stirred until completely transparently dissolved at room temperature to prepare a semi-finished solution (2) in which the additives were stirred.
  • the composition (A2) is prepared by filtering. Physical properties of the prepared composition (A) are as follows.
  • Example 2 (preparation of composition A1), the resin oligomer of 1) was the same except that a compound represented by the following formula (b), which is a conventional cage-type silsesquioxane resin (POSS oligomer) compound, was used. Proceeded to obtain composition (B1).
  • a compound represented by the following formula (b) which is a conventional cage-type silsesquioxane resin (POSS oligomer) compound
  • Example 3 preparation of composition A2
  • the resin oligomer of 1) was the same except that the compound represented by the formula (b), which is a conventional cage-type silsesquioxane resin (POSS oligomer) compound, was used. Proceded to obtain composition (B2).
  • composition of Comparative Example 1 (Composition B1) and the composition of Example 2 (Composition A1) were coated on a slide glass, covered with a polyethylene terephthalate (PET) film, and then cured by UV, The first falling force was measured by pulling the PET film in the direction of 180° to the adhesive surface.
  • PET polyethylene terephthalate
  • Conditions of the slide glass, PET film, coating thickness, and amount of UV light are as follows.
  • composition B1 prepared by the method of Comparative Example 1
  • composition A1 prepared by the method of Example 2
  • Table 3 The measurement results are shown in Table 3 below.
  • composition of Comparative Example 1 (Composition B1) and the composition of Example 2 (Composition A1) were coated on a PET film, and after UV curing, the cured film was bent to measure the maximum radius of curvature without cracks.
  • the measurement of the radius of curvature of the inner is to measure the minimum radius of curvature at which cracks do not occur when the coated specimen is rolled and folded so that the coated surface is inward. Measure by folding to 0.5 mm while reducing. The smaller the radius of curvature, the greater the flexibility of the composition.
  • the radius of curvature of outer is to measure the minimum radius of curvature that does not cause cracks when the coated surface is rolled and folded so that the coated surface is outward. Measure the smallest curvature. Also, the smaller the radius of curvature, the greater the flexibility of the composition.
  • composition B1 prepared by the method of Comparative Example 1
  • composition A1 prepared by the method of Example 2, respectively.
  • composition of Example 2 (composition A1)
  • the radius of curvature at which cracks occur and the coating film is lifted is R 0.5 mm to 1.0 mm in the case of the inner and R 2.0 mm to 3 mm in the case of the outer
  • the composition of Example 2 (Composition A1) of the present invention has excellent flexibility (flexibility), and in particular, it shows excellent flexibility about 10 to 40 times as compared to the composition of Comparative Example 1 (Composition B1).
  • the cracking or lifting phenomenon in the radius of curvature of the inner or outer as in the composition of the present invention is considered to mean that cracks or lifting due to shrinkage hardly occur in the applied article when the composition of the present invention is applied.
  • composition B1 The density of the liquid state of the composition of Comparative Example 1 (Composition B1) and the composition of Example 2 (Composition A1) was measured, and 10 g of each composition was placed in an aluminum dish, UV cured, and then the density in the solid state was measured. Next, each shrinkage rate was calculated by calculating the difference between each liquid phase density and solid phase density.
  • composition B1 prepared by the method of Comparative Example 1
  • composition A1 prepared by the method of Example 2, respectively, that represents the average.
  • composition A1 composition A1
  • the average shrinkage rate was 0.81%, showing a very low shrinkage rate even after UV curing, which seems to indicate excellent adhesion and flexibility (comparison of adhesion test in Table 3 and Table 3 above). See the flexibility comparison in Fig. 4).
  • composition B2 The density of the liquid state of the composition of Comparative Example 2 (Composition B2) and the composition of Example 3 (Composition A2) was measured, and 10 g of each composition was placed in an aluminum dish, UV cured, and then the density in the solid state was measured. Next, each shrinkage rate was calculated by calculating the difference between each liquid phase density and solid phase density.
  • composition B2 The measurement of the liquid density and the solid density and the calculation of the shrinkage rate were performed by measuring and calculating the five compositions (composition B2) prepared by the method of Comparative Example 2 and the five compositions (composition A2) prepared by the method of Example 3, respectively, that represents the average.
  • composition of Comparative Example 2 (Composition B2) was 4.32%, showing a relatively high shrinkage rate, whereas the composition of Example 3 of the present invention (Composition A2) had an average shrinkage rate of 1.14 %am. That is, the composition of Example 3 of the present invention (Composition A2) shows about 4 times less shrinkage after UV curing than the composition of Comparative Example 2 (Composition B2) of the prior art.
  • the composition containing the novel meta-POSS (meta-polyhedral oligomeric silsesquioxane) compound of the present invention has excellent adhesion, flexibility (flexibility), and excellent shrinkage after UV curing, compared to the prior art. Therefore, it can be applied to semiconductor encapsulation materials as well as optical materials, coating agents, low dielectric constant materials, medical materials, and has high industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

본 발명은, 폴리실록산계 화합물인 다면체 올리고머 실세스퀴옥산의 변성체인 신규한 meta-POSS(meta-polyhedral oligomeric silsesquioxane) 화합물, 이의 제조방법, 및 이의 제조방법으로 제조된 meta-POSS (meta-polyhedral oligomeric silsesquioxane) 화합물을 포함하는 조성물에 관한 것이다. 상기 신규한 meta-POSS(meta-polyhedral oligomeric silsesquioxane) 화합물은 -Si-O-R2-O-Si-의 구조 단위를 포함하는 것을 특징으로 한다.

Description

신규한 META-POSS(META-POLYHEDRAL OLIGOMERIC SILSESQUIOXANE) 화합물, 이의 제조방법, 및 이의 제조방법으로 제조된 META-POSS(META-POLYHEDRAL OLIGOMERIC SILSESQUIOXANE) 화합물을 포함하는 조성물
본 발명은, 폴리실록산계 화합물인 다면체 올리고머 실세스퀴옥산의 변성체인 신규한 meta-POSS(meta-polyhedral oligomeric silsesquioxane) 화합물, 이의 제조방법, 및 이의 제조방법으로 제조된 meta-POSS (meta-polyhedral oligomeric silsesquioxane) 화합물을 포함하는 조성물에 관한 것이다.
폴리실록산계 화합물은, 내열성, 내한성, 내후성, 내광성, 화학적 안정성, 전기 특성, 난연성, 내수성, 투명성, 착색성, 비점착성, 비부식성에 뛰어난 장점으로 다양한 산업에서 이용하고 있다.
폴리실록산계 화합물에서도, 다면체 올리고머 실세스퀴옥산(POSS, polyhedral oligomeric silsesquioxane)은 그 특이적인 화학 구조에 의하여 뛰어난 내후성, 내열성, 물리적 특성, 광학적 특성, 화학적 안정성, 저유전성 등을 갖는 것으로 알려져 있고, 특히 전자재료, 광학재료, 전자광학재료, 도료, 프라이머 등의 산업에서 이용하고 있다.
한편, 다면체 올리고머 실세스퀴옥산의 화합물로는, 각종 관능기, 예를 들어 에폭시기, (메타)아크릴로일기, 비닐기, 가수분해성 실릴기,옥세타닐기, 페닐기 등을 갖는 화합물이 보고되고 있다(특허문헌 1 내지 6).
상기 종래의 공지된 다면체 올리고머 실세스퀴옥산(POSS) 화합물들은 모두 Si 원자에 관능기에 치환된 형태이고, 이러한 다관능성 작용기로 인하여 상기 다면체 올리고머 실세스퀴옥산(POSS) 화합물들은 일반적으로 고체의 화합물이며, 이로 인하여 반응의 제어가 어렵고, 특히 핸들링성, 성형 가공성이 낮다는 문제점이 있다.
따라서 종래의 다면체 올리고머 실세스퀴옥산계 화합물의 특성인 내후성, 내열성, 물리적 특성, 광학적 특성, 화학적 안정성, 저유전성 등에 더하여 핸들링성, 성형 가공성 등이 향상된 새로운 다면체 올리고머 실세스퀴옥산계 화합물의 개발이 요구되고 있다.
본 발명은 내후성, 내열성, 물리적 특성, 광학적 특성, 화학적 안정성, 저유전에 더하여 핸들링성, 성형 가공성 등이 향상된 새로운 다면체 올리고머 실세스퀴옥산계 화합물인 신규한 meta-POSS(meta-polyhedral oligomeric silsesquioxane) 화합물, 이의 제조방법, 및 이의 제조방법으로 제조된 meta-POSS(meta-polyhedral oligomeric silsesquioxane) 화합물을 포함하는 조성물을 제공하는 것을 목적으로 한다.
상기와 같은 목적을 위하여, 본 발명의 신규한 meta-POSS (meta-polyhedral oligomeric silsesquioxane) 화합물은, -Si-O-R2-O-Si- 의 구조 단위를 포함하는 것을 특징으로 하고 하기 일반식 (1)로 표시되는 화합물일 수 있다.
[(R1)SiO3(R2)3/2]a
<일반식 (1)>
상기 일반식 1의 R1은 에폭시기, (메타)아크릴기, 비닐기, 가수분해성 실릴기, 옥세타닐기, 페닐기, 아미노알킬기, 알콕시, 또는 알킬기, 할로겐 알킬기, 알킬하이드록시기(-(CH2)n-OH), 알킬티올기(머캡토기, -(CH2)n-SH) 등을 포함하는 작용기이며,
R2는 알킬기일 수 있으며, 바람직하게는 치환 또는 비치환의 직쇄 또는 분지쇄의 C1 내지 C15의 알킬기이며, 더욱 바람직하게는 치환 또는 비치환의 직쇄 또는 분지쇄의 C1 내지 C5의 알킬기이다.
상기 일반식 (1)에서 a는 8 내지 24일 수 있으며, 바람직하게는 a는 8 내지 20일 수 있다.
상기 일반식 (1)로 표시되는 화합물인 신규한 meta-POSS (meta-polyhedral oligomeric silsesquioxane) 화합물의 분자량은 1,500 내지 20,000, 바람직하게는 1,500 내지 15,000의 올리고머이다.
본 발명의 상기 일반식 (1)로 표시되는 화합물의 제조방법은,
i) 촉매를 이용하여 희석용제에서 실란, 및 디올을 반응시키는 반응 단계; 및
ii) 상기 i) 반응 단계의 반응물을 냉각 방치 분리 및 진공 정제 단계;를 포함한다.
그리고, 본 발명의 신규한 meta-POSS(meta-polyhedral oligomeric silsesquioxane) 화합물을 포함하는 조성물은 상기 일반식 (1)로 나타내어지는 meta-POSS(meta-polyhedral oligomeric silsesquioxane) 화합물, 희석 모노머, 개시제, 및 첨가제를 포함하는 것을 특징으로 한다.
본 발명의 신규한 meta-POSS(meta-polyhedral oligomeric silsesquioxane) 화합물은 내후성, 내열성, 물리적 특성, 광학적 특성, 화학적 안정성, 저유전의 특성 및 유연성 증가와 경화 수축의 감소에 의한 핸들링성, 성형가공성 등이 향상된 장점이 있다.
이로 인하여 본 발명의 신규한 meta-POSS(meta-polyhedral oligomeric silsesquioxane) 화합물 및 이를 포함한 조성물은 다양한 산업에 적용이 가능하고, 특히 전자재료, 광학재료, 전자광학재료 등의 산업에서 활용성이 높아지는 효과를 나타낸다.
또한, 상기와 같은 장점 및 효과를 나타내는 본 발명의 신규한 meta-POSS(meta-polyhedral oligomeric silsesquioxane) 화합물의 제조방법은 실란 화합물 및 디올의 간단한 반응이고, 이에 따른 대량생산의 가능으로 다양한 산업에의 활용도가 큰 장점이 있다.
도 1은 종래의 POSS 화합물의 구조를 나타낸 것이다.
도 2는 본 발명의 일반식 (1)의 신규한 meta-POSS 화합물(a=8)의 구조를 나타낸 것이다.
도 3은 종래기술의 POSS 화합물(a=8)의 NMR을 나타낸 것이다.
도 4는 본 발명의 일반식 (1)의 신규한 meta-POSS 화합물(a=8)의 NMR을 나타낸 것이다.
도 5는, 본 발명의 신규한 meta-POSS 화합물 제조방법에서 사용하는 통상적인 장치이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 이때, 본 명세서 및 청구 범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
하기에서는 본 발명에서 제공되는 본 발명의 새로운 다면체 올리고머 실세스퀴옥산계 화합물인 신규한 meta-POSS(meta-polyhedral oligomeric silsesquioxane) 화합물, 이의 제조방법, 및 이의 제조방법으로 제조된 meta-POSS(meta-polyhedral oligomeric silsesquioxane) 화합물을 포함하는 조성물에 대하여 자세하게 설명한다.
우선, 본 발명의 일 태양인 본 발명의 신규한 meta-POSS (meta-polyhedral oligomeric silsesquioxane) 화합물은, -Si-O-R2-O-Si- 의 구조 단위를 포함하는 것을 특징으로 하고 하기 일반식 (1)로 표시되는 화합물일 수 있다.
[(R1)SiO3(R2)3/2]a
<일반식 (1)>
상기 일반식 (1)의 R1은 에폭시기, (메타)아크릴기, 비닐기, 가수분해성 실릴기, 옥세타닐기, 페닐기, 아미노알킬기, 알콕시, 또는 알킬기, 할로겐 알킬기, 알킬하이드록시기(-(CH2)n-OH), 알킬티올기(머캡토기, -(CH2)n-SH) 등을 포함하는 작용기이며,
R2는 알킬기일 수 있으며, 바람직하게는 치환 또는 비치환의 직쇄 또는 분지쇄의 C1 내지 C15의 알킬기이며, 더욱 바람직하게는 치환 또는 비치환의 직쇄 또는 분지쇄의 C1 내지 C5의 알킬기이다.
상기 일반식 (1)에서 a는 8 내지 24일 수 있으며, 바람직하게는 a는 8 내지 20일 수 있다.
상기 일반식 (1)에 의한 구조는 하기 화학식 (a)의 형태를 가질 수 있다.
Figure PCTKR2022017459-appb-img-000001
<화학식 (a)>
상기 화학식 (a)에서 n은 1 내지 9일 수 있으며, 바람직하게는 n은 1 내지 7일 수 있다.
구체적인 형태를 보면, 상기 n이 1인 경우 하기 화학식 (1)의 형태를 가질 수 있으며,
Figure PCTKR2022017459-appb-img-000002
화학식 (1)
상기 n이 2인 경우 하기 화학식 (2)의 형태를 가질 수 있고,
Figure PCTKR2022017459-appb-img-000003
화학식 (2)
상기 n이 3인 경우 하기 화학식 (3)의 형태를 가질 수 있으며,
Figure PCTKR2022017459-appb-img-000004
화학식 (3)
상기 n이 4인 경우 하기 화학식 (4)의 형태를 가질 수 있다.
Figure PCTKR2022017459-appb-img-000005
화학식 (4)
상기 일반식 (1)로 표시되는 화합물인 신규한 meta-POSS (meta-polyhedral oligomeric silsesquioxane) 화합물의 분자량은 1,500 내지 20,000, 바람직하게는 1,500 내지 15,000의 올리고머이다.
다음으로 본 발명의 다른 일 태양인 본 발명의 신규한 meta-POSS (meta-polyhedral oligomeric silsesquioxane) 화합물의 제조방법은, 촉매를 이용하여 희석용제에서 실란 화합물, 및 디올을 반응시켜 상기 일반식 (1)의 구조를 얻는 것을 특징으로 한다.
구체적으로 상기 제조방법은,
i) 촉매를 이용하여 희석용제에서 실란, 및 디올을 반응시키는 반응 단계(‘반응 단계’); 및
ii) 상기 i) 반응 단계의 반응혼합물을 냉각 방치 및 진공 정제 단계(‘정제 단계’);를 포함한다.
상기 i)의 반응 단계는, (a) 원료 투입단계; (b) 가열 승온단계; 및 (c) 합성 단계;를 포함한다.
상기 (a) 원료 투입단계는 반응기에 희석용제, 실란 화합물, 및 디올을 투입하고, 상온에서 교반하면서 촉매를 가하는 단계이다.
상기 희석용제는 상기 i) 반응 단계의 POSS 반응 시 발생하는 부산물인 알코올과 잘 용해되기 위해 극성용매를 사용한다. 단, 상기 알코올 중에서 부산물인 알코올과 동일한 알코올은 실란 화합물, 및 다이올의 반응 부산물이어서 반응의 정방향 진행을 위하여 희석용제로 사용하지 않는다.
상기 희석용제로서의 극성용매는, 예를 들어 메탄올, 에탄올, 프로판올, iso-프로판올, n-부탄올, iso-부탄올, t-부탄올, n-펜탄올, iso-펜탄올, 헥산올 등의 직쇄 또는 분지쇄의 C1 내지 C6의 알코올류; Acetone, MEK, MIBK 등의 Ketone류; 등과 같은 친수성 용제를 포함하며, 상기 극성용매 중 하나 이상을 사용할 수 있다.
상기 희석용제의 사용량은 촉매, 희석용제, 실란, 및 디올의 전체 총량(중량부, wt) 중 30 내지 70 중량%를 사용할 수 있으며, 바람직하게는 30 내지 60 중량%이다.
상기 실란 화합물은, 하기 일반식 (2)로 표현되는 유기 트리알콕시 실란(organo trialkoxy silane) 계열의 화합물 중 어느 하나일 수 있다.
R1Si(OR3)3
<일반식 (2)>
상기 일반식 (2)에서 R1은 유기기로서, 에폭시기; (메타)아크릴기; 비닐기; 가수분해성 실릴기; 옥세타닐기; 페닐기; 아미노알킬기; 치환 또는 비치환의 알콕시; 또는 치환 또는 비치환의 알킬기; 할로겐 알킬기; 알킬하이드록시기(-(CH2)n-OH); 알킬티올기(머캡토기 -(CH2)n-SH);등을 포함한 작용기이며,
R3은 치환 또는 비치환의 탄소수 C1 내지 C15의 알킬기이다.
상기 구체적인 유기 트리알콕시 실란(organo trialkoxy silane) 계열의 예시 화합물로는 하기의 화합물일 수 있으나, 이에 한정되는 것은 아니다.
- (3-ACRYLOXYPROPYL) TRIMETHOXY SILANE, [4369-14-6]
- METHACRYLOXYPROPYL TRIMETHOXY SILANE, [2530-85-0]
- METHACRYLOXYMETHYL TRIETHOXY SILANE, [5577-72-0]
- METHACRYLOXYMETHYL TRIMETHOXY SILANE, [54586-78-6]
- METHACRYLOXYPROPYL TRIETHOXY SILANE, [21142-29-0]
- 3-AMINOPROPYL TRIETHOXY SILANE, [919-30-2]
- 3-AMINOPROPYL TRIMETHOXY SILANE, [13822-56-5]
- 4-AMINOBUTYL TRIETHOXY SILANE, [3069-30-5]
- m-AMINOPHENYL TRIMETHOXY SILANE, [70411-42-6]
- 2-(3,4-EPOXYCYCLOHEXYL)ETHYL TRIETHOXY SILANE, [10217-34-2]
- 2-(3,4-EPOXYCYCLOHEXYL)ETHYL TRIMETHOXY SILANE, [3388-04-3]
- (3-GLYCIDOXYPROPYL) TRIMETHOXY SILANE, [2530-83-8]
- (3-GLYCIDOXYPROPYL) TRIETHOXY SILANE, [2602-34-8]
- 3-MERCAPTOPROPYLTRIMETHOXYSILANE, [4420-74-0]
- 3-MERCAPTOPROPYLTRIETHOXYSILANE, [14814-09-6]
- ALLYLTRIMETHOXYSILANE, [2551-83-9]
- HEXENYLTRIETHOXYSILANE, [52034-14-7]
- 7-OCTENYLTRIMETHOXYSILANE, [52217-57-9]
- METHYL TRIMETHOXY SILANE, [1185-55-3]
- METHYL TRIETHOXY SILANE, [2031-67-6]
- PHENYL TRIETHOXY SILANE, [780-69-8]
- PHENYL TRIMETHOXY SILANE, [2996-92-1]
- HYDROXYMETHYLTRIETHOXYSILANE
- N,N-BIS(2-HYDROXYETHYL)-3-AMINOPROPYLTRIETHOXYSILANE
- [HYDROXY(POLYETHYLENEOXY)PROPYL]TRIETHOXYSILANE
- (HYDROXYETHYL)-METHYLAMINOPROPYLTRIMETHOXYSILANE
상기 실란의 사용량은 촉매, 희석용제, 실란, 및 디올의 전체 총량(중량부, wt) 중 15 내지 40 중량%를 사용할 수 있으며, 바람직하게는 20 내지 35 중량%이다.
상기 디올은, 치환 또는 비치환의 직쇄 또는 분지쇄의 탄소수 C1 내지 C15의 디올 중 어느 하나이고, 상기 구체적인 디올은 하기와 아래와 같으나, 이에 한정되는 것은 아니다.
- 1,2-Ethanediol
- 1,3-Propanediol
- 1,4-Butanediol
- 1,5-Pentanediol
- 1,6-Hexanediol
- 1,8-Octanediol
- 1,10-Decanediol
- 1,12-Dodecanediol
상기 디올의 사용량은 촉매, 희석용제, 실란, 및 디올의 전체 총량 (중량부, wt) 중 10 내지 30 중량%를 사용할 수 있으며, 바람직하게는 15 내지 30 중량%이다.
상기 실란 및 디올의 사용량은 2:3의 비율(몰비)이고, 상기 일반식(1)의 a의 수에 따라 결정된다.
예를 들어 실란 및 디올의 사용몰수 비율은 a=8인 경우는 8:12를 만족할 수 있는 양이어야 하고, a=10인 경우는 10:15를 만족할 수 있는 양이어야 하며, a=12인 경우는 12:18을 만족할 수 있는 양이어야 한다.
상기 촉매는 HCl, HNO3, H2SO4 등의 강산; NaOH, KOH, BaOH 등의 강염기; 및 TMAH (Tetra Methyl Ammonium Hydroxide), TMAA (Tetra Methyl Ammonium Acetate), TMAF (Tetra Methyl Ammonium Fluoride), TEAH (Tetra Ethyl Ammonium Hydroxide), TEAA (Tetra Ethy lAmmonium Acetate), TEAF (Tetra Ethyl Ammonium Fluoride), TBAH (Tetra Butyl Ammonium Hydrocide), TBAA (Tetra Butyl Ammonium Acetate), TBAF (Tetara Butyl Ammonium Fluoride)등의 암모늄염;을 포함하는 촉매 중에서 선택되는 어느 하나 이상을 사용하는 것이 가능하다.
상기 촉매의 사용량은 촉매, 희석용제, 실란, 및 디올의 전체 총량 (중량부, wt) 중 0.01 내지 5 중량%를 사용할 수 있으며, 바람직하게는 0.05 내지 5 중량%이다.
상기 (b) 가열 승온단계는 상기 (a) 원료 투입단계의 반응 혼합물의 반응 온도를 60 내지 100℃, 바람직하게는 70 내지 85℃로 승온시키는 단계이다.
상기 (c) 합성 단계는, 상기 (b) 가열 승온단계에서 승온된 반응 온도를 유지하면서 반응을 계속 진행시키는 단계이고, 반응이 진행되면서 휘발되는 희석용제와 반응 부산물인 알코올은 회수된다. 상기 회수는 통상적인 방법을 사용할 수 있으며, 바람직하게는 회수 스틸 어뎁터(recovery still adapter)를 이용하여 휘발된 물질인, 상기 휘발되는 희석용제와 반응 부산물인 알코올을 냉각기(condenser)에서 응축하여 회수한다(도 5 참조).
상기 (c) 합성 단계에서는, 반응 중 휘발되는 희석용제의 양만큼 다시 희석용제를 반응기에 추가 투입하여 보충하면서 합성 반응을 진행시킨다. 상기 희석용제의 투입은 전체 반응시간의 1/3 내지 1/2 시간일 때, 최초 사용한 용제량의 5 중량% 내지 30 중량%, 바람직하게는 10 중량% 내지 20 중량%를 부가할 수 있다. 이러한 희석용제의 추가 투입은 반응기 내부에 적정 비율의 희석용제 농도를 유지함으로써 반응의 균일성을 확보할 수 있는 장점이 있다.
상기 (a) 내지 (c) 단계를 포함하는 i) 반응 단계의 반응시간은 6 내지 48 시간일 수 있다.
상기 ii)의 정제단계는, i) 반응 단계의 반응혼합물을 냉각 방치 및 진공 정제하여 반응생성물인, 본 발명의 일반식 (1)의 meta-POSS 화합물을 얻는 단계이다.
상기 ii)의 정제단계 중 i) 반응 단계의 반응혼합물을 냉각 방치는,
상기 (a) 내지 (c) 단계를 거친 반응혼합물을 상온 이하의 온도로 냉각 방치하는 것이고, 상기의 냉각 방치로 상기 i) 반응 단계의 반응물혼합물은 액상의 상층부와 슬러리 상의 하층부로 분리된다. 상기 액상의 상층부는 주로 미반응의 반응물 및 희석용제가 있으며, 슬러리 상의 하층부에는 반응생성물인 상기 본 발명의 일반식(1)로 표시되는 meta-POSS 화합물 이외에도 일부 희석용제, 및 반응에 의하여 생성된 알코올과 물이 포함되어 있을 수 있다.
상기 ii)의 정제단계 중 진공 정제는, 상기 냉각 방치로 형성된 상층부 및 하층부를 분리하고, 하층부의 슬러리 상으로부터 반응생성물인 meta-POSS 화합물을 여분의 희석용제, 및 반응에 의하여 생성된 알코올과 물을 진공으로 제거하여 최종적으로 반응생성물인 본 발명의 일반식 (1)로 표시되는 meta-POSS 화합물을 수득하는 단계이다.
상기 상층부 및 하층부로부터 분리된 희석용제, 미반응의 반응물(실란, 디올 등의 물질)은 정제 후 재사용 할 수 있다.
본 발명의 또 다른 일 태양인, 상기 본 발명의 제조방법으로 제조된 meta-POSS (meta-polyhedral oligomeric silsesquioxane) 화합물을 포함하는 조성물은, 상기와 같은 하기 일반식 (1)로 나타내어지는 meta-POSS (meta-polyhedral oligomeric silsesquioxane) 화합물, 희석 모노머, 개시제, 및 첨가제를 포함하는 것을 특징으로 한다.
[(R1)SiO3(R2)3/2]a
<일반식 (1)>
상기 일반식 (1)의 R1은 에폭시기; (메타)아크릴기; 비닐기; 가수분해성 실릴기; 옥세타닐기; 페닐기; 아미노알킬기; 치환 또는 비치환의 알콕시; 또는 치환 또는 비치환의 알킬기; 할로겐 알킬기; 알킬하이드록시기(-(CH2)n-OH); 알킬티올기(머캡토기 -(CH2)n-SH) ;등을 포함한 작용기이며
R2는 알킬기일 수 있으며, 바람직하게는 치환 또는 비치환의 직쇄 또는 분지쇄의 C1 내지 C15의 알킬기이고, 더욱 바람직하게는 치환 또는 비치환의 직쇄 또는 분지쇄의 C1 내지 C5의 알킬기이다.
상기 일반식 (1)에서 a는 8 내지 24일 수 있으며, 바람직하게는 a는 8 내지 20일 수 있다.
상기 일반식 (1)에 의한 구조는 하기 화학식 (a)의 형태를 가질 수 있다.
Figure PCTKR2022017459-appb-img-000006
<화학식 (a)>
상기 화학식 (a)에서 n은 1 내지 9일 수 있으며, 바람직하게는 n은 1 내지 7일 수 있다.
상기 일반식 (1)로 표시되는 meta-POSS(meta-polyhedral oligomeric silsesquioxane) 화합물은 분자량이 1,500 내지 20,000, 바람직하게는 1,500 내지 15,000의 올리고머로서, 상기 조성물 중에서 하기 희석 모노머와 결합하며, 전체 조성물 중 40 wt% 내지 95wt%, 바람직하게는 50 wt% 내지 90 wt%를 포함한다.
상기 희석 모노머는 조성물의 점도 조절 및 경화 특성, 부착력, 굴곡성 등을 위하여 부가하는 성분이다.
상기 조성물의 희석 모노머는 상기 일반식 (1) 중 R1의 작용기 종류에 따라 모노머가 결정될 수 있다. 예를 들어 일반식 1의 R1이 아크릴기일 경우 희석 모노머는 아크릴계 모노머를 사용하고, R1이 에폭시기일 경우 희석 모노머는 에폭시계 모노머를 사용하고, R1이 알킬할로겐기일 경우 희석 모노머는 알킬할로겐계 모노머를 사용할 수 있다. R1이 아크릴레이트기, 에폭시기, 알킬할로겐기를 모두 포함할 경우, 상기 아크릴계, 에폭시계, 및 알킬할로겐계의 모노머를 모두 사용할 수 있다.
또한, 상기 조성물이 사용되는 제품의 경화 특성에 따라 사용되는 희석 모노머가 달라질 수도 있다.
예를 들어, 분자량이 적고, 다관능기를 갖는 희석 모노머는 경화 밀도를 높여, 제품이 매우 단단한 물성을 나타낸다. 그리고, 분자량이 크고, 단관능기를 갖는 희석 모노머는 경화 밀도를 낮추어, 제품의 연질의 물성을 나타낸다. 희석 모노머에 불소기가 많은 경우에는 제품의 굴절률이 낮아지고, 유전특성이 좋아지며, 표면에너지가 낮아지는 특성을 나타낼 수 있다.
구체적인 희석 모노머의 화합물은 하기와 같은 기능에 따른 예시 화합물 중에서 하나 이상일 수 있다.
조성물 내에서 희석 모노머 화합물의 기능이 점도 조절, 아크릴 반응성, 유리부착력 증가 등의 특성을 갖기 위한 아크릴계 희석 모노머의 예시 화합물은 아래와 같으나, 이에 한정되는 것은 아니다.
- METHACRYLOXY PROPYL TRIMETHOXY SILANE
- (3-ACRYLOXYPROPYL)TRIMETHOXYSILANE
- METHACRYLOXYMETHYLTRIMETHOXYSILANE
- (METHACRYLOXYMETHYL)BIS(TRIMETHYLSILOXY)METHYLSILANE
- (3-ACRYLOXYPROPYL)METHYLDIMETHOXYSILANE
- (3-ACRYLOXYPROPYL)METHYLDIETHOXYSILANE
- METHACRYLOXYPROPYLMETHYLDIMETHOXYSILANE
- METHACRYLOXYPROPYLMETHYLDIETHOXYSILANE
- METHACRYLOXYPROPYLDIMETHYLMETHOXYSILANE
- METHACRYLOXYPROPYLDIMETHYLETHOXYSILANE
- (ACRYLOXYMETHYL)PHENETHYLTRIMETHOXYSILANE
- (METHACRYLOXYMETHYL)DIMETHYLETHOXYSILANE
- METHACRYLOXYPROPYLTRIETHOXYSILANE
- (METHACRYLOXYMETHYL)METHYLDIMETHOXYSILANE
- METHACRYLOXYMETHYLTRIETHOXYSILANE
- ACRYLOXYMETHYLTRIMETHOXYSILANE
- METHACRYLOXYPROPYLTRIISOPROPOXYSILANE
- METHACRYLOXYMETHYLTRIS(TRIMETHYLSILOXY)SILANE
- (3-ACRYLOXYPROPYL)TRIS(TRIMETHYLSILOXY)SILANE
- (3-ACRYLOXYPROPYL)METHYLBIS(TRIMETHYLSILOXY)SILANE
- 3-METHACRYLOXYPROPYLTRIACETOXYSILANE
- METHACRYLOXYPROPYLMETHYLDICHLOROSILANE
- (3-ACRYLOXYPROPYL)DIMETHYLMETHOXYSILANE
- (2-ACRYLOXYETHOXY)TRIMETHYLSILANE
- ACRYLOXYTRIISOPROPYLSILANE
- 1,3-BIS(METHACRYLOXY)-2-TRIMETHYLSILOXYPROPANE
- 1,3-BIS(3-METHACRYLOXYPROPYL)TETRAKIS(TRIMETHYLSILOXY) DISILOXANE
- O-(METHACRYLOXYETHYL)-N-(TRIETHOXYSILYLPROPYL) CARBAMATE
- O-(METHACRYLOXYETHOXY)CARBAMOYLPROPYLMETHYLDIMETHOXY SILANE
- N-(3-METHACRYLOXY-2-HYDROXYPROPYL)-3-AMINOPROPYLTRIETHOXYSILANE
조성물 내에서 희석 모노머 화합물의 기능이 점도 조절, 에폭시 반응성, 유리부착력 증가 등의 특성을 갖기 위한 에폭시계 희석 모노머의 예시 화합물은 아래와 같으나, 이에 한정되는 것은 아니다.
- (3-GLYCIDOXYPROPYL)TRIMETHOXYSILANE
- 2-(3,4-EPOXYCYCLOHEXYL)ETHYLTRIMETHOXYSILANE
- (3-GLYCIDOXYPROPYL)TRIETHOXYSILANE
- (3-GLYCIDOXYPROPYL)METHYLDIMETHOXYSILANE
- (3-GLYCIDOXYPROPYL)METHYLDIETHOXYSILANE
- 2-(3,4-EPOXYCYCLOHEXYL)ETHYLTRIETHOXYSILANE
- 5,6-EPOXYHEXYLTRIETHOXYSILANE
- (3-GLYCIDOXYPROPYL)DIMETHYLETHOXYSILANE
- 2-(3,4-EPOXYCYCLOHEXYL)ETHYLMETHYLDIETHOXYSILANE
- 8-GLYCIDOXYOCTYLTRIMETHOXYSILANE
- 1-(3-GLYCIDOXYPROPYL)-1,1,3,3,3-PENTAETHOXY-1,3-DISILAPROPANE
조성물 내에서 희석 모노머 화합물의 기능이 점도 조절, 기재 등에 포함된 에폭시와의 반응성 부여, 유리부착력 증가 등의 특성을 갖기 위한 희석 모노머로서는 아민계 실란희석 모노머를 사용할 수 있으며, 이들의 예시 화합물은 아래와 같으나, 이에 한정되는 것은 아니다.
- N-(2-AMINOETHYL)-3-AMINOPROPYLMETHYLDIMETHOXYSILANE
- (3-(N-ETHYLAMINO)ISOBUTYL)TRIMETHOXYSILANE
- 3-AMINOPROPYLTRIMETHOXYSILANE
조성물 내에서 희석 모노머 화합물의 기능이 점도 조절, 아크릴-에폭시 반응성, 경도 증가 등의 특성을 갖기 위한 아크릴-에폭시계 희석 모노머의 예시 화합물은 아래와 같으나, 이에 한정되는 것은 아니다.
- Glycidyl methacrylate
- Glycidyl Acrylate
- (3,4-Epoxycyclohexyl)methyl Acrylate
- (3,4-Epoxycyclohexyl)methyl methacrylate
조성물 내에서 희석 모노머 화합물의 기능이 점도 조절, 아크릴-비닐-에폭시와의 반응성 부여, 경도 증가 등의 특성을 갖기 위한 또 다른 모노머로서의 이중결합을 포함한 에폭시계 희석 모노머의 예시 화합물은 아래와 같으나, 이에 한정되는 것은 아니다.
- Allyl glycidyl ether
- 1,2-Epoxy-4-vinylcyclohexane
- 2-Vinyloxytetrahydropyran
- 3-[(Allyloxy)methyl]-3-ethyloxetane
- 1,3-Butadiene Monoepoxide
- 1,2-Epoxy-9-decene
- 1,2-Epoxy-5-hexene
조성물 내에서 희석 모노머 화합물의 기능이 점도 조절, 아크릴 반응성, 굴절률 조절, 내수성 증가 등의 특성을 갖기 위한 할로겐계 희석 모노머의 예시 화합물은 아래와 같으나, 이에 한정되는 것은 아니다.
- 2-Perfluorobutyl ethyl acrylate
- 2-Perfluorohexyl ethyl acrylate
- 2-Perfluorooctyl ethyl acrylate
- 2-Perfluorodecyl ethyl acrylate
- 3-(Perfluorobutyl)propyl acrylate
- 3-(Perfluorobutyl)propyl acrylate
- 3-Perfluorooctyl porpyl acrylate
- 2-Perfluorobutyl ethyl methacrylate
- 2-Perfluorohexyl ethyl methacrylate
- 2-Perfluorooctyl ethyl methacrylate
- 2-Perfluorodecyl ethyl methacrylate
- 3-Perfluorobutyl propyl methacrylate
- 3-Perfluorohexyl propyl methacrylate
- 3-Perfluorooctyl propyl methacrylate
- 1H,1H,5H-Octafluoropentyl methacrylate
- 1H,1H,2H,2H-Perfluorodecyltriethoxysilane
- 1H,1H,2H,2H-Perfluorodecyltrimethoxysilane
- 1H,1H,2H,2H-Perfluorodecyltrichlorosilane
- Perfluorohexyl propyl epoxide
- Perfluorooctyl propyl epoxide
- 2-Perfluorobutyl ethyl alcohol
- 2-Perfluorohexyl ethyl alcohol
- 2-Perfluorooctyl ethyl alcohol
- 2-Perfluorohexyl ethyl thiol
- 2-Perfluorooctyl ethyl thiol
상기와 같은 희석 모노머는 상기 전체 조성물 중 1 wt% 내지 40wt%, 바람직하게는 5 wt% 내지 35 wt%를 포함한다.
상기 개시제는, 광 개시제로서 상기 일반식 (1)의 meta-POSS 화합물인 올리고머 및 상기 희석 모노머와의 결합의 개시를 위한 것이다.
상기 개시제는 1종 이상이 사용될 수 있으며, 상기 개시제로는 하기의 화합물을 들 수 있으나, 이에 한정하는 것은 아니다.
- BENZIL DIMETHYL KETAL
- HYDROXY CYCLOHEXYL PHENYL KETONE
- HYDROXY DIMETHYL ACETOPHENONE
- METHYL-[METYLTHIO PHENYL]-MORPHOLINE PROPANONE
- 2,4-DIETHYLTHIOXANETHONE
- ETHYL-4-DIMETHYLAMINOBENZOATE
- BENZOPHENONE
- 4-PHENYLBENZOPHENONE
- 2,4,6-TRIMETHYLBENZOYL-DIPHENYL PHOSPHINE
- METHYL BENZYLFORMATE
- Bis [4-n-alkyl(C10~13)phenyl] iodonium Hexafluorophosphate
- Bis [a-n-alkyl(C10~13)phenyl] iodonium Hexafluoroantimonate
- Bis (4-tert-butylphenyl)iodium hexafluorophosphate
- Bis [4-n-alkyl(C10~13)phenyl]iodonium tetrakispentafluorophenyl borate
- 1,2-Dicyclohexyl-4,4,5,5-tetramethylbiguanidium n-butyltriphenyl borate
- IODONIUM,(4-METHYLPHENYL)[4-(2-METHYLPROPYL)PHENYL]-,HEXAFLUORO PHOSPHATE
한편, 개시제는 사용된 올리고머와 모노머에 따라서 적합한 개시제를 선택할 수 있다.
예를 들어 상기 올리고머 및 모노머가 아크릴레이트계 화합물인 경우는, Radical UV 개시제를 사용할 수 있으며, 특히 Hydroxy cyclohexyl phenyl ketone(상표명 , Omnirad 184) 등이 사용될 수 있다.
또한, 상기 올리고머 및 모노머가 에폭시계 화합물인 경우는, Cationic UV 개시제를 사용할 수 있으며, 예를 들어 Iodonium-methylphenyl-methylpropylphenyl Hexafluoro-phosphate 등이 사용될 수 있다.
상기 개시제는 전체 조성물 중 0.1 wt% 내지 5 wt%, 바람직하게는 1 wt% 내지 5 wt%를 포함한다.
상기 첨가제는 상기 조성물이 적용되는 제품에 따라 결정될 수 있다.
상기 조성물이 적용되는 제품이 코팅표면 평활도 증가, 표면 슬립성 증가, 경도 증가 등이 요구되는 경우 하기와 같은 첨가제 중 1종 이상이 사용될 수 있으나, 이에 한정되는 것은 아니다.
- polysiloxanes (silicones additives)
- polyacrylates (acrylate additives)
- Polyether modification polysiloxane
- Silicone macromers
- Polymethylalkylsiloxanes
- thermostable modified polysiloxane
- Reactive silicones
- polyether-modified dimethylsiloxanes
또한, 상기 조성물이 적용되는 제품이 소재와의 부작력 증가, 배합 재료의 저장안정성 증가 등이 요구되는 경우 하기와 같은 첨가제 중 1종 이상이 사용될 수 있으나, 이에 한정되는 것은 아니다.
- Copolymer of acrylate epoxy urethane
- Copolymer adsorbed on silicon dioxide
- Solution of modified alkylene copolymer
- Solution of a hydroxy functional copolymer with acidic groups
- Solution of modified polyether (2-methoxy-1-methylethyl acetate)
- Carboxylated Linear Low Density Polyethylene (maleicanydride)
상기의 첨가제 이외에도 본 발명의 조성물에는 필요에 따라 공지의 상기 조성물의 보존 안정성을 위하여 경화지연제; 접착력의 향상을 위한 접착성촉진제; 무기필러; 안료; 형광체; 착색제; 내열성 향상제; 등의 각종 첨가제나 이형제; 포장제용 분산제; 등의 첨가제를 추가로 부가할 수 있다.
상기 첨가제의 사용량은 전체 조성물 중 0.1 wt% 내지 15 wt%, 바람직하게는 0.1 wt% 내지 10 wt%를 포함한다.
상기 본 발명의 조성물의 제조방법은 교반기에 상기 일반식 (1)의 올리고머, 및 모노머를 상온에서 투명해질 때까지 교반하여 레진 올리고머 용액(1)을 제조한다. 또 다른 교반기에는 첨가제, 개시제, 및 모노머 중 일부를 혼합하여 상온에서 완전히 투명하게 용해될 때까지 교반하여 첨가제 용액(2)을 제조한다.
상기 레진 올리고머 용액(1) 및 첨가제 용액(2)을 혼합하여 교반하여 완제품을 제조한다.
상기의 구성을 포함하는 본 발명의 조성물은, 디스플레이; OELD; 휴대폰; 태블릿; 노트북; 모니터; TV; 등 전자기기, Glass; UTG; PET; CPI; PI; TAC; Acryl; PC; 등의 투명 소재 또는/및 필름 소재, 그리고 가전, 가구, 자동차 등의 일반 페인트에 사용되는 Hard Coating 재료로 사용할 수 있다.
또한, 본 발명의 조성물은 OLED 절연재료; 터치스크린 절연재료; 휴대폰 안테나 등의 절연재료; LED incapsulation 재료; 등의 저유전율 재료로도 사용될 수 있다.
더 나아가서, 본 발명의 조성물은, 파스 등 약물을 함유하는 hydrogel type의 점착 의료용 패취 재료; 컨택렌즈; 의료용 접착제; 인체 삽입용 실리콘 등의 의료용으로도 사용할 수 있다.
특히, 본 발명의 조성물은, 초박형 반도체 패키지의 EMC encapsulation 등의 반도체 encapsulation 재료나, 광학용 접착제; 광섬유 코팅제; 클래딩 재료; Wave guide resin; 등의 광학용 재료로도 사용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
<본 발명의 meta-POSS 화합물, 이를 포함하는 조성물의 제조>
실시예 1: <본 발명의 meta-POSS의 제조>
반응기에 Isopropyl alcohol(IPA) 500.00g, Methacryltrimethoxysilane 320.00g(32%, 8 mole), 및 1,4-Butanediol 179.00g(17.80%, 12 mole)을 투입한다. 상기 반응물의 혼합물을 상온에서 교반하면서 TBAF 75% aq (Aser) 1.00 g(0.10%, 0.016)을 부가한다.
상기 촉매가 부가된 반응 혼합물의 반응 온도를 80℃로 승온시켜 반응시킨다. 상기 반응 온도를 80℃로 유지하며, 반응에서 휘발되는 MeOH, IPA를 회수한다. 반응 시작 후 3시간 뒤 IPA 100g 을 반응기에 추가 투입한다. 8hr 반응시간 유지 후 반응 혼합물을 상온 이하로 냉각 방치하여 형성된 상층부 및 하층부 중 하층부를 진공에서 반응에 의하여 형성된 MeOH과 Water, 및 그리고 희석용매인 IPA를 제거하여 상기 목적물인 본 발명의 meta-POSS 화합물(n=8인 경우) 370 g(수율 87%)을 얻었다.
상기 목적물인 본 발명의 meta-POSS 화합물(n=8인 경우)의 NMR은 도 4에 개시되어 있다.
실시예 2 : <본 발명 조성물 A1의 제조>
하기 표 1에서와 같은 조성으로 하기의 조성물 제조방법으로 본 발명의 조성물을 제조하였다. 본 발명의 실시예 2에서 제조된 조성물은 디스플레이용 코팅용으로 제조된 것이다.
Figure PCTKR2022017459-appb-img-000007
<조성물 제조방법>
반응기에 상기 1), 2), 및 3)을 투입하여 상온에서 완전히 투명하게 교반하여 레진 올리고머 용액(1)을 제조한다. 다른 반응기에 상기 4)를 투입하고 상온에서 완전히 투명하게 용해될 때까지 교반하여 첨가제가 교반된 반제품 용액(2)를 제조한다. 상기 용액(1) 및 (2)를 혼합하여 상온에서 교반한 후, 여과하여 조성물(A1)을 제조한다.
실시예 3 : <본 발명 조성물 A2의 제조>
하기 표 2에서와 같은 조성으로 하기의 조성물 제조방법으로 본 발명의 조성물(A2)을 제조하였다.
Figure PCTKR2022017459-appb-img-000008
<조성물 제조방법>
반응기에 상기 1), 3), 4), 및 5)를 투입하여 상온에서 완전히 투명하게 교반하여 레진 올리고머 용액(1)을 제조한다. 다른 반응기에 상기 2), 6), 7), 및 8)를 투입하고 상온에서 완전히 투명하게 용해될 때까지 교반하여 첨가제가 교반된 반제품 용액(2)를 제조한다. 상기 용액(1) 및 (2)를 혼합하여 상온에서 교반한 후, 여과하여 조성물(A2)을 제조한다. 상기 제조된 조성물(A)의 물성은 아래와 같다.
비교예 1 : <종래기술 조성물 B1의 제조>
상기 실시예 2(조성물 A1의 제조)에서 상기 1)의 레진 올리고머로서 종래의 바구니형 실세스퀴옥산 수지(POSS 올리고머) 화합물인 하기 화학식 (b)로 나타내어지는 화합물을 사용한 것을 제외하고는 동일하게 진행하여 조성물(B1)을 얻었다.
<화학식 (b)>
Figure PCTKR2022017459-appb-img-000009
비교예 2 : <종래기술 조성물 B2의 제조>
상기 실시예 3(조성물 A2의 제조)에서 상기 1)의 레진 올리고머로서 종래의 바구니형 실세스퀴옥산 수지(POSS 올리고머) 화합물인 상기 화학식 (b)로 나타내어지는 화합물을 사용한 것을 제외하고는 동일하게 진행하여 조성물(B2)을 얻었다.
<본 발명의 조성물(A1) 및 종래기술의 조성물(B1)의 물성 비교>
(1) 부착력 테스트(gf/cm)
180° peel off 테스트를 위해 슬라이드 글래스 위에 비교예 1의 조성물(조성물 B1) 및 실시예 2의 조성물(조성물 A1)을 코팅하고, 그 위에 PET (Polyethylene Terephthalate) 필름을 덮은 뒤 UV로 경화한 후, PET 필름을 부착면에 180°방향으로 잡아당겨서 처음 떨어지는 힘을 측정하였다. 상기 슬라이드 글래스, PET 필름, 코팅두께, 및 UV 광량의 조건은 하기와 같다.
- 슬라이드 글래스 : 50mm * 75mm (두께: 1mm)
- PET 필름 (접착부) : 20mm * 75mm (두께: 50um)
- PET 필름 (손잡이부) : 20mm * 45mm (두께: 50um)
- 코팅 두께 : 50um
- UV 광량 : Mercury lamp, 2000mJ/cm2
상기 측정은 비교예 1의 방법으로 제조된 5개의 조성물(조성물 B1) 및 실시예 2의 방법으로 제조된 5개의 조성물(조성물 A1)을 각각 측정하고, 그 평균을 나타낸 것이다. 상기 측정 결과를 하기 표 3에 나타내고 있다.
Figure PCTKR2022017459-appb-img-000010
상기 부착력 테스트 결과인 표 3에서 보는 바와 같이, 비교예 1의 조성물(조성물 B1)로 코팅, 경화 후 180°peel off 테스트 결과, 경화 후 바로 코팅 면에 크랙이 발생하거나, 또는 일부 시료는 경화 후 박리가 발생하였다. 이러한 결과 아주 약한 힘인 평균 1.2 gf/cm 만으로도 peel off가 되었다.
한편, 실시예 2의 조성물(조성물 A1)로 코팅, 경화 후 180°peel off 테스트 결과, 경화 후 코팅면이 투명하게 양호하였고, 크랙 발생이 없었으며, 14~16 gf/cm 의 부착력을 나타내었으며, 평균 14.80 gf/cm으로 peel off가 되었다.
상기의 결과와 같이 본 발명의 실시예 2의 조성물(조성물 A1)의 부착력은 상기 비교예 1의 조성물(조성물 B1)에 비하여 약 12배 이상 강한 것임을 알 수 있다.
(2) 굴곡성 비교
PET 필름 위에 비교예 1의 조성물(조성물 B1) 및 실시예 2의 조성물(조성물 A1)을 코팅하여, UV 경화 후 경화된 필름을 구부려 크랙이 발생하지 않는 최대한의 곡률반경을 측정하였다.
즉, inner 곡률반경의 측정은 코팅된 시편을 코팅면이 안쪽이 되도록 둥글게 말아 접었을 때, 크랙이 발생하지 않는 최소의 곡률반경을 측정하는 것으로, 곡률반경 20mm부터 시작하여, 1mm 단위로 곡률반경을 줄이면서 0.5mm 까지 접어서 측정한다. 곡률반경이 작을수록 조성물의 유연성이 큰 것이다.
outer 곡률반경은 반대로 코팅면이 바깥쪽이 되도록 둥글게 말아 접었을 때, 크랙이 발생하지 않는 최소의 곡률반경을 측정하는 것으로, inner와 동일하게 20mm부터 측정하여 0.5mm 까지 측정하고, 크랙이 발생하지 않는 가장 작은 곡률을 측정한다. 이 또한 곡률 반경이 작을수록 조성물의 유연성이 큰 것이다.
- PET 필름 : 150mm * 200mm (두께 100um)
- 코팅 두께 : 50um
- UV 광량 : Mercury lamp, 2000mJ/cm2
상기 측정은 비교예 1의 방법으로 제조된 5개의 조성물(조성물 B1) 및 실시예 2의 방법으로 제조된 5개의 조성물(조성물 A1)을 각각 측정하고, 그 평균을 나타낸 것이다.
상기 측정 결과를 하기 표 4에 나타내고 있다.
Figure PCTKR2022017459-appb-img-000011
상기 표 4에서와 보이는 바와 같이 비교예 1의 조성물(조성물 B1)의 경우, 수축에 의한 크랙이 발생하였다. 즉, 5개의 모든 조성물(조성물 B1)이 비교적 평편함을 나타내는 바깥쪽으로 최대 측정 범위의 outer 곡률반경 R 20mm에서 크랙 발생과 코팅막 들뜸 현상이 발생하였고, 일부 시편에서 outer 곡률반경 R 15mm에서 크랙 발생과 코팅막 들뜸 현상이 발생하였다. 즉, 비교예 1의 조성물(조성물 B1)의 경우, 비교적 평편함을 나타내는 곡률반경 R 20mm 내지 R 15mm 사이에서 모두 크랙 발생과 코팅막 들뜸 현상이 발생하였다.
이와 달리 실시예 2의 조성물(조성물 A1)의 경우, 크랙 발생과 코팅막 들뜸 현상이 나타나는 곡률 반경이 inner의 경우 곡률반경 R 0.5 mm 내지 1.0mm, 그리고 outer의 경우 곡률반경 R 2.0mm 내지 3mm이며, 이는 곡률반경이 아주 적은 곡률반경 R 0.5mm나, 곡률반경 R 3mm까지는 크랙 발생과 코팅막 들뜸 현상이 나타나지 않는 것이다. 이는 본 발명의 실시예 2의 조성물(조성물 A1)이 우수한 굴곡성(유연성)을 갖는 것을 나타내며, 특히 상기 비교예 1의 조성물(조성물 B1)에 비하여 약 10배 내지 40배의 우수한 유연성을 나타내는 것이다.
이러한 상기 본 발명 조성물에서와 같은 inner, 또는 outer의 곡률반경에서의 크랙이나 들뜸 현상은 본 발명의 조성물을 적용 시, 적용된 물품에서 수축에 의한 크랙이나 들뜸 현상이 거의 발생하지 않는다는 것을 의미하는 것으로 볼 수 있다.
(3) 수축률 비교
비교예 1의 조성물(조성물 B1) 및 실시예 2의 조성물(조성물 A1)의 액상 상태의 밀도를 측정하고, 상기 각각의 조성물을 10g씩 알루미늄 디쉬에 담아서 UV 경화시킨 후 고상 상태의 밀도를 측정한 다음, 각각의 액상 밀도와 고상밀도의 차이를 계산하여 각각의 수축률을 계산하였다.
- 알루미늄 디쉬 : Φ50mm * 10mm
- UV 광량 : Mercury lamp, 2000mJ/cm2
- 수축률 (%) = { 1 - ( 액체밀도 / 고체밀도 ) } * 100
상기 액상 밀도와 고상 밀도의 측정 및 수축률 계산은 비교예 1의 방법으로 제조된 5개의 조성물(조성물 B1) 및 실시예 2의 방법으로 제조된 5개의 조성물(조성물 A1)을 각각 측정 및 계산하여, 그 평균을 나타낸 것이다.
상기 측정 및 계산 결과를 하기 표 5에 나타내고 있다.
Figure PCTKR2022017459-appb-img-000012
상기 표 5와 같이 비교예 1의 조성물(조성물 B1)의 UV 경화 후의 수축률 평균은 6.03%로 비교적 높은 수축률을 나타내었고, 이러한 수축으로 인해 부착력 저하 및 굴곡성 저하가 나타나는 것으로 보인다(상기 표 3의 부착력 테스트 비교 및 표 4의 굴곡성 비교 참조).
이와 달리 실시예 2의 조성물(조성물 A1)의 경우는 수축률 평균이 0.81%로서 UV 경화 후에도 매우 낮은 수축률을 나타내고 있으며, 이로 인해 우수한 부착력 및 굴곡성을 나타내는 것으로 보인다(상기 표 3의 부착력 테스트 비교 및 표 4의 굴곡성 비교 참조).
<본 발명의 조성물(A2) 및 종래기술의 조성물(B2)의 물성 비교>
(1) 수축률 비교
비교예 2의 조성물(조성물 B2) 및 실시예 3의 조성물(조성물 A2)의 액상 상태의 밀도를 측정하고, 상기 각각의 조성물을 10g씩 알루미늄 디쉬에 담아서 UV 경화시킨 후 고상 상태의 밀도를 측정한 다음, 각각의 액상 밀도와 고상밀도의 차이를 계산하여 각각의 수축률을 계산하였다.
- 알루미늄 디쉬 : Φ50mm * 10mm
- UV 광량 : Mercury lamp, 2000mJ/cm2
- 수축률 (%) = { 1 - ( 액체밀도 / 고체밀도 ) } * 100
상기 액상 밀도와 고상 밀도의 측정 및 수축률 계산은 비교예 2의 방법으로 제조된 5개의 조성물(조성물 B2) 및 실시예 3의 방법으로 제조된 5개의 조성물(조성물 A2)을 각각 측정 및 계산하여, 그 평균을 나타낸 것이다.
상기 측정 및 계산 결과를 하기 표 6에 나타내고 있다.
Figure PCTKR2022017459-appb-img-000013
상기 표 6과 같이 비교예 2의 조성물(조성물 B2)의 UV 경화 후의 수축률 평균은 4.32%로 비교적 높은 수축률을 나타내는 반면, 본 발명의 실시예 3의 조성물(조성물 A2)의 경우는 수축률 평균이 1.14%이다. 즉 본 발명의 실시예 3의 조성물(조성물 A2)은 종래기술의 비교예 2의 조성물(조성물 B2)에 비하여 UV 경화 후 수축률이 약 4배 정도 적은 것으로 나타내고 있다.
상기와 같이 본 발명의 신규한 meta-POSS(meta-polyhedral oligomeric silsesquioxane) 화합물을 포함하는 조성물은 부착력, 굴곡성(유연성)뿐만 아니라, UV 경화 후 수축률이 우수하고, 종래기술에 비하여도 특히 뛰어난 결과를 나타내므로, 광학용 재료, 코팅제, 저유전율 재료, 의료용 재료뿐만 아니라, 반도체 encapsulation 재료에 적용할 수 있어 산업상 이용 가능성이 높다.

Claims (35)

  1. 하기 일반식 (1)로 표시되며, -Si-O-R2-O-Si-의 구조 단위를 포함하는 것을 특징으로 하는, meta-POSS (meta-polyhedral oligomeric silsesquioxane) 화합물.
    [(R1)SiO3(R2)3/2]a
    <일반식 (1)>
    상기 일반식 (1)의 R1은 에폭시기, (메타)아크릴기, 비닐기, 가수분해성 실릴기, 옥세타닐기, 페닐기, 아미노알킬기, 알콕시, 또는 알킬기, 할로겐 알킬기, 알킬히드록시기, 알킬티올기를 포함하는 작용기이며, R2는 치환 또는 비치환의 직쇄 또는 분지쇄의 C1 내지 C15의 알킬기이고, a는 8 내지 24이다.
  2. 제1항에 있어서,
    상기 R2는 치환 또는 비치환의 직쇄 또는 분지쇄의 C1 내지 C5의 알킬기이고 상기 a는 8 내지 20인 것을 특징으로 하는, meta-POSS (meta-polyhedral oligomeric silsesquioxane) 화합물
  3. 제1항에 있어서,
    상기 meta-POSS (meta-polyhedral oligomeric silsesquioxane) 화합물은 분자량이 1,500 내지 20,000 인 것을 특징으로 하는, meta-POSS (meta-polyhedral oligomeric silsesquioxane) 화합물
  4. 제1항의 meta-POSS (meta-polyhedral oligomeric silsesquioxane) 화합물의 제조방법에 있어서,
    i) 촉매를 이용하여 희석용제에서 실란, 및 디올을 반응시키는 반응 단계(‘반응 단계’); 및
    ii) 상기 i) 반응 단계의 반응혼합물을 냉각 방치 및 진공 정제 단계(‘정제 단계’);를 포함하는 것을 특징으로 하는, meta-POSS (meta-polyhedral oligomeric silsesquioxane) 화합물의 제조방법.
  5. 제4항에 있어서,
    상기 희석용제의 사용량은 촉매, 희석용제, 실란, 및 디올의 전체 총량(중량부, wt) 중 30 내지 70 중량%이고,
    상기 실란의 사용량은 촉매, 희석용제, 실란, 및 디올의 전체 총량(중량부, wt) 중 15 내지 40 중량%이며,
    상기 디올의 사용량은 촉매, 희석용제, 실란, 및 디올의 전체 총량(중량부, wt) 중 10 내지 30 중량%이고,
    상기 촉매의 사용량은 촉매, 희석용제, 실란, 및 디올의 전체 총량(중량부, wt) 중 0.01 내지 5 중량%이며,
    상기 실란 및 디올의 사용량 비율은 2:3의 비율(몰비)인 것을 특징으로 하는, meta-POSS (meta-polyhedral oligomeric silsesquioxane) 화합물의 제조방법.
  6. 제4항에 있어서,
    상기 희석용제는 메탄올, 에탄올, 프로판올, iso-프로판올, n-부탄올, iso-부탄올, t-부탄올, n-펜탄올, iso-펜탄올, 헥산올 등의 직쇄 또는 분지쇄의 C1 내지 C6의 알코올류; Acetone, MEK, MIBK 등의 Ketone류;로부터 선택되는 1종 이상인 것을 특징으로 하는, meta-POSS (meta-polyhedral oligomeric silsesquioxane) 화합물의 제조방법.
  7. 제4항에 있어서,
    상기 실란은, 하기 일반식 (2)로 표현되는 유기 트리알콕시 실란(organo trialkoxy silane) 계열의 화합물 중 어느 하나인 것을 특징으로 하는, meta-POSS (meta-polyhedral oligomeric silsesquioxane) 화합물의 제조방법.
    R1Si(OR3)3
    <일반식 (2)>
    (상기 일반식 (2)에서 R1은 유기기로서, 에폭시기; (메타)아크릴기; 비닐기; 가수분해성 실릴기; 옥세타닐기; 페닐기; 아미노알킬기; 치환 또는 비치환의 알콕시; 또는 치환 또는 비치환의 알킬기; 할로겐 알킬기; 알킬히드록시기; 알킬티올기;를 포함한 작용기이며, R3은 치환 또는 비치환의 탄소수 C1 내지 C15의 알킬기이다)
  8. 제4항에 있어서,
    상기 실란은 하기의 실란 화합물 중 선택되는 1종인 것을 특징으로 하는, meta-POSS (meta-polyhedral oligomeric silsesquioxane) 화합물의 제조방법.
    - (3-ACRYLOXYPROPYL) TRIMETHOXY SILANE, [4369-14-6]
    - METHACRYLOXYPROPYL TRIMETHOXY SILANE, [2530-85-0]
    - METHACRYLOXYMETHYL TRIETHOXY SILANE, [5577-72-0]
    - METHACRYLOXYMETHYL TRIMETHOXY SILANE, [54586-78-6]
    - METHACRYLOXYPROPYL TRIETHOXY SILANE, [21142-29-0]
    - 3-AMINOPROPYL TRIETHOXY SILANE, [919-30-2]
    - 3-AMINOPROPYL TRIMETHOXY SILANE, [13822-56-5]
    - 4-AMINOBUTYL TRIETHOXY SILANE, [3069-30-5]
    - m-AMINOPHENYL TRIMETHOXY SILANE, [70411-42-6]
    - 2-(3,4-EPOXYCYCLOHEXYL)ETHYL TRIETHOXY SILANE, [10217-34-2]
    - 2-(3,4-EPOXYCYCLOHEXYL)ETHYL TRIMETHOXY SILANE, [3388-04-3]
    - (3-GLYCIDOXYPROPYL) TRIMETHOXY SILANE, [2530-83-8]
    - (3-GLYCIDOXYPROPYL) TRIETHOXY SILANE, [2602-34-8]
    - 3-MERCAPTOPROPYLTRIMETHOXYSILANE, [4420-74-0]
    - 3-MERCAPTOPROPYLTRIETHOXYSILANE, [14814-09-6]
    - ALLYLTRIMETHOXYSILANE, [2551-83-9]
    - HEXENYLTRIETHOXYSILANE, [52034-14-7]
    - 7-OCTENYLTRIMETHOXYSILANE, [52217-57-9]
    - METHYL TRIMETHOXY SILANE, [1185-55-3]
    - METHYL TRIETHOXY SILANE, [2031-67-6]
    - PHENYL TRIETHOXY SILANE, [780-69-8]
    - PHENYL TRIMETHOXY SILANE, [2996-92-1]
  9. 제4항에 있어서,
    상기 디올은, 치환 또는 비치환의 직쇄 또는 분지쇄의 탄소수 C1 내지 C15의 디올 중 어느 하나인 것을 특징으로 하는, meta-POSS (meta-polyhedral oligomeric silsesquioxane) 화합물의 제조방법.
  10. 제4항에 있어서,
    상기 디올은, 하기의 디올 중 1종인 것을 특징으로 하는, meta-POSS (meta-polyhedral oligomeric silsesquioxane) 화합물의 제조방법.
    - 1,2-Ethanediol
    - 1,3-Propanediol
    - 1,4-Butanediol
    - 1,5-Pentanediol
    - 1,6-Hexanediol
    - 1,8-Octanediol
    - 1,10-Decanediol
    - 1,12-Dodecanediol
  11. 제4항에 있어서,
    상기 촉매는 HCl, HNO3, H2SO4의 강산; NaOH, KOH, BaOH의 강염기; 및 TMAH(Tetra Methyl Ammonium Hydroxide), TMAA(Tetra Methyl Ammonium Acetate), TMAF(Tetra Methyl Ammonium Fluoride), TEAH(Tetra Ethyl Ammonium Hydroxide), TEAA(Tetra Ethyl Ammonium Acetate), TEAF(Tetra Ethyl Ammonium Fluoride), TBAH(Tetra Butyl Ammonium Hydrocide), TBAA(Tetra Butyl Ammonium Acetate), TBAF(Tetara Butyl Ammonium Fluoride)의 암모늄염;을 포함하는 촉매 중에서 선택되는 1종 이상인 것을 특징으로 하는, meta-POSS (meta-polyhedral oligomeric silsesquioxane) 화합물의 제조방법.
  12. 제4항에 있어서,
    상기 i)의 반응 단계는, (a) 원료 투입단계; (b) 가열 승온단계; 및 (c) 합성 단계;를 포함하며,
    상기 (a) 원료 투입단계는 반응기에 희석용제, 실란 화합물, 및 디올을 투입하고, 상온에서 교반하면서 촉매를 가하는 단계이고,
    상기 (b) 가열 승온단계는 상기 (a) 원료 투입단계의 반응 혼합물의 반응 온도를 60 내지 100℃로 승온시키는 단계이며,
    상기 (c) 합성 단계는, 상기 (b) 가열 승온단계에서 승온된 반응 온도를 유지하면서 반응을 계속 진행시키는 단계이고,
    상기 (c) 합성 단계에서는, 반응 중 휘발되는 희석용제의 양만큼 다시 희석용제를 반응기에 추가 투입하여 보충하면서 합성 반응을 진행하는 단계로서, 상기 희석용제의 투입은 전체 반응시간의 1/3 내지 1/2 시간일 때, 최초 사용한 용제의 5 중량% 내지 30 중량%인 것을 특징으로 하는, meta-POSS (meta-polyhedral oligomeric silsesquioxane) 화합물의 제조방법.
  13. 제4항에 있어서,
    상기 ii)의 정제단계는, i) 반응 단계의 반응혼합물을 상온 이하의 온도에서 냉각 방치 및 진공 정제하는 단계를 포함하는 것을 특징으로 하는, meta-POSS (meta-polyhedral oligomeric silsesquioxane) 화합물의 제조방법.
  14. 제4항 내지 제13항 중 어느 한 항의 제조방법으로 제조된 meta-POSS (meta-polyhedral oligomeric silsesquioxane) 화합물을 포함하는 것을 특징으로 하는, 조성물
  15. 제14항에 있어서,
    상기 조성물은 희석 모노머, 개시제, 및 첨가제를 더 포함하는 것을 특징으로 하는, 조성물
  16. 제14항에 있어서,
    상기 meta-POSS (meta-polyhedral oligomeric silsesquioxane) 화합물은 분자량이 1,500 내지 20,000인 것을 특징으로 하는, 조성물
  17. 제15항에 있어서,
    상기 meta-POSS (meta-polyhedral oligomeric silsesquioxane) 화합물은 전체 조성물 중 40 wt% 내지 95wt%로 사용되고,
    상기 희석 모노머는 상기 전체 조성물 중 1 wt% 내지 40wt%로 사용되며,
    상기 개시제는 전체 조성물 중 0.1 wt% 내지 5 wt%로 사용되고,
    상기 첨가제는 전체 조성물 중 0.1 wt% 내지 15 wt%로 사용되는 것을 특징으로 하는, 조성물
  18. 제15항에 있어서,
    상기 희석 모노머는, 아크릴계 희석 모노머; 에폭시계 희석 모노머; 아민계 실란 희석 모노머; 아크릴-에폭시계 희석 모노머; 이중결합을 포함한 에폭시계 희석 모노머; 할로겐계 희석 모노머;로부터 선택되는 1종 이상인 것을 특징으로 하는, 조성물
  19. 제18항에 있어서,
    상기 아크릴계 희석 모노머는 하기 화합물 그룹에서 선택되는 1종 이상인 것을 특징으로 하는, 조성물
    - METHACRYLOXY PROPYL TRIMETHOXY SILANE
    - (3-ACRYLOXYPROPYL)TRIMETHOXYSILANE
    - METHACRYLOXYMETHYLTRIMETHOXYSILANE
    - (METHACRYLOXYMETHYL)BIS(TRIMETHYLSILOXY)METHYLSILANE
    - (3-ACRYLOXYPROPYL)METHYLDIMETHOXYSILANE
    - (3-ACRYLOXYPROPYL)METHYLDIETHOXYSILANE
    - METHACRYLOXYPROPYLMETHYLDIMETHOXYSILANE
    - METHACRYLOXYPROPYLMETHYLDIETHOXYSILANE
    - METHACRYLOXYPROPYLDIMETHYLMETHOXYSILANE
    - METHACRYLOXYPROPYLDIMETHYLETHOXYSILANE
    - (ACRYLOXYMETHYL)PHENETHYLTRIMETHOXYSILANE
    - (METHACRYLOXYMETHYL)DIMETHYLETHOXYSILANE
    - METHACRYLOXYPROPYLTRIETHOXYSILANE
    - (METHACRYLOXYMETHYL)METHYLDIMETHOXYSILANE
    - METHACRYLOXYMETHYLTRIETHOXYSILANE
    - ACRYLOXYMETHYLTRIMETHOXYSILANE
    - METHACRYLOXYPROPYLTRIISOPROPOXYSILANE
    - METHACRYLOXYMETHYLTRIS(TRIMETHYLSILOXY)SILANE
    - (3-ACRYLOXYPROPYL)TRIS(TRIMETHYLSILOXY)SILANE
    - (3-ACRYLOXYPROPYL)METHYLBIS(TRIMETHYLSILOXY)SILANE
    - 3-METHACRYLOXYPROPYLTRIACETOXYSILANE
    - METHACRYLOXYPROPYLMETHYLDICHLOROSILANE
    - (3-ACRYLOXYPROPYL)DIMETHYLMETHOXYSILANE
    - (2-ACRYLOXYETHOXY)TRIMETHYLSILANE
    - ACRYLOXYTRIISOPROPYLSILANE
    - 1,3-BIS(METHACRYLOXY)-2-TRIMETHYLSILOXYPROPANE
    - 1,3-BIS(3-METHACRYLOXYPROPYL)TETRAKIS(TRIMETHYLSILOXY) DISILOXANE
    - O-(METHACRYLOXYETHYL)-N-(TRIETHOXYSILYLPROPYL) CARBAMATE
    - O-(METHACRYLOXYETHOXY)CARBAMOYLPROPYLMETHYLDIMETHOXY SILANE
    - N-(3-METHACRYLOXY-2-HYDROXYPROPYL)-3-AMINOPROPYLTRIETHOXYSILANE
  20. 제18항에 있어서,
    상기 에폭시계 희석 모노머는 하기 화합물 그룹에서 선택되는 1종 이상인 것을 특징으로 하는, 조성물
    - (3-GLYCIDOXYPROPYL)TRIMETHOXYSILANE
    - 2-(3,4-EPOXYCYCLOHEXYL)ETHYLTRIMETHOXYSILANE
    - (3-GLYCIDOXYPROPYL)TRIETHOXYSILANE
    - (3-GLYCIDOXYPROPYL)METHYLDIMETHOXYSILANE
    - (3-GLYCIDOXYPROPYL)METHYLDIETHOXYSILANE
    - 2-(3,4-EPOXYCYCLOHEXYL)ETHYLTRIETHOXYSILANE
    - 5,6-EPOXYHEXYLTRIETHOXYSILANE
    - (3-GLYCIDOXYPROPYL)DIMETHYLETHOXYSILANE
    - 2-(3,4-EPOXYCYCLOHEXYL)ETHYLMETHYLDIETHOXYSILANE
    - 8-GLYCIDOXYOCTYLTRIMETHOXYSILANE
    - 1-(3-GLYCIDOXYPROPYL)-1,1,3,3,3-PENTAETHOXY-1,3-DISILAPROPANE
  21. 제18항에 있어서,
    상기 아민계 실란 희석 모노머는 하기 화합물 그룹에서 선택되는 1종 이상인 것을 특징으로 하는, 조성물
    - N-(2-AMINOETHYL)-3-AMINOPROPYLMETHYLDIMETHOXYSILANE
    - (3-(N-ETHYLAMINO)ISOBUTYL)TRIMETHOXYSILANE
    - 3-AMINOPROPYLTRIMETHOXYSILANE
  22. 제18항에 있어서,
    상기 아크릴-에폭시계 희석 모노머는 하기 화합물 그룹에서 선택되는 1종 이상인 것을 특징으로 하는, 조성물
    - Glycidyl methacrylate
    - Glycidyl Acrylate
    - (3,4-Epoxycyclohexyl)methyl Acrylate
    - (3,4-Epoxycyclohexyl)methyl methacrylate
  23. 제18항에 있어서,
    상기 이중결합을 포함한 에폭시계 희석 모노머는 하기 화합물 그룹에서 선택되는 1종 이상인 것을 특징으로 하는, 조성물
    - Allyl glycidyl ether
    - 1,2-Epoxy-4-vinylcyclohexane
    - 2-Vinyloxytetrahydropyran
    - 3-[(Allyloxy)methyl]-3-ethyloxetane
    - 1,3-Butadiene Monoepoxide
    - 1,2-Epoxy-9-decene
    - 1,2-Epoxy-5-hexene
  24. 제18항에 있어서,
    상기 할로겐계 희석 모노머는 하기 화합물 그룹에서 선택되는 1종 이상인 것을 특징으로 하는, 조성물
    - 2-Perfluorobutyl ethyl acrylate
    - 2-Perfluorohexyl ethyl acrylate
    - 2-Perfluorooctyl ethyl acrylate
    - 2-Perfluorodecyl ethyl acrylate
    - 3-(Perfluorobutyl)propyl acrylate
    - 3-(Perfluorobutyl)propyl acrylate
    - 3-Perfluorooctyl porpyl acrylate
    - 2-Perfluorobutyl ethyl methacrylate
    - 2-Perfluorohexyl ethyl methacrylate
    - 2-Perfluorooctyl ethyl methacrylate
    - 2-Perfluorodecyl ethyl methacrylate
    - 3-Perfluorobutyl propyl methacrylate
    - 3-Perfluorohexyl propyl methacrylate
    - 3-Perfluorooctyl propyl methacrylate
    - 1H,1H,5H-Octafluoropentyl methacrylate
    - 1H,1H,2H,2H-Perfluorodecyltriethoxysilane
    - 1H,1H,2H,2H-Perfluorodecyltrimethoxysilane
    - 1H,1H,2H,2H-Perfluorodecyltrichlorosilane
    - Perfluorohexyl propyl epoxide
    - Perfluorooctyl propyl epoxide
    - 2-Perfluorobutyl ethyl alcohol
    - 2-Perfluorohexyl ethyl alcohol
    - 2-Perfluorooctyl ethyl alcohol
    - 2-Perfluorohexyl ethyl thiol
    - 2-Perfluorooctyl ethyl thiol
  25. 제15항에 있어서,
    상기 개시제는 하기의 화합물 그룹에서 선택되는 1종 이상인 것을 특징으로 하는, 조성물
    - BENZIL DIMETHYL KETAL
    - HYDROXY CYCLOHEXYL PHENYL KETONE
    - HYDROXY DIMETHYL ACETOPHENONE
    - METHYL-[METYLTHIO PHENYL]-MORPHOLINE PROPANONE
    - 2,4-DIETHYLTHIOXANETHONE
    - ETHYL-4-DIMETHYLAMINOBENZOATE
    - BENZOPHENONE
    - 4-PHENYLBENZOPHENONE
    - 2,4,6-TRIMETHYLBENZOYL-DIPHENYL PHOSPHINE
    - METHYL BENZYLFORMATE
    - Bis [4-n-alkyl(C10~13)phenyl] iodonium Hexafluorophosphate
    - Bis [a-n-alkyl(C10~13)phenyl] iodonium Hexafluoroantimonate
    - Bis (4-tert-butylphenyl) iodium hexafluorophosphate
    - Bis [4-n-alkyl(C10~13)phenyl] iodoniumtetrakispentafluorophenylborate
    - 1,2-Dicyclohexyl-4,4,5,5-tetramethylbiguanidium n-butyltriphenyl borate
    - IODONIUM,(4-METHYLPHENYL)[4-(2-METHYLPROPYL)PHENYL]-, HEXA FLUORO PHOSPHATE
  26. 제15항에 있어서,
    상기 첨가제는 하기의 화합물 그룹에서 선택되는 1종 이상인 것을 특징으로 하는, 조성물
    - polysiloxanes (silicones additives)
    - polyacrylates (acrylate additives)
    - Polyether modification polysiloxane
    - Silicone macromers
    - Polymethylalkylsiloxanes
    - thermostable modified polysiloxane
    - Reactive silicones
    - polyether-modified dimethylsiloxanes
    - Copolymer of acrylate epoxy urethane
    - Copolymer adsorbed on silicon dioxide
    - Solution of modified alkylene copolymer
    - Solution of a hydroxy functional copolymer with acidic groups
    - Solution of modified polyether (2-methoxy-1-methylethyl acetate)
    - Carboxylated Linear Low Density Polyethylene (maleicanydride)
  27. 제26항에 있어서,
    상기 첨가제에 조성물의 보존 안정성을 위하여 경화지연제; 접착력의 향상을 위한 접착성촉진제; 무기필러; 안료; 형광체; 착색제; 내열성 향상제; 이형제; 포장제용 분산제;의 첨가제 중에서 선택되는 1종 이상의 첨가제를 더 부가하는 것을 특징으로 하는, 조성물
  28. 제14항의 조성물을 포함하는 것을 특징으로 하는, 하드 코팅 재료.
  29. 제15항 내지 제27항 중 어느 한 항의 조성물을 포함하는 것을 특징으로 하는, 하드 코팅 재료.
  30. 제14항의 조성물을 포함하는 것을 특징으로 하는, 저유전율 재료
  31. 제15항 내지 제27항 중 어느 한 항의 조성물을 포함하는 것을 특징으로 하는, 저유전율 재료.
  32. 제14항의 조성물을 포함하는 것을 특징으로 하는, 의료용 재료
  33. 제15항 내지 제27항 중 어느 한 항의 조성물을 포함하는 것을 특징으로 하는, 의료용 재료.
  34. 제14항의 조성물을 포함하는 것을 특징으로 하는, 광학용 재료
  35. 제15항 내지 제27항 중 어느 한 항의 조성물을 포함하는 것을 특징으로 하는, 광학용 재료.
PCT/KR2022/017459 2022-02-08 2022-11-08 신규한 meta-poss(meta-polyhedral oligomeric silsesquioxane) 화합물, 이의 제조방법, 및 이의 제조방법으로 제조된 meta-poss(meta-polyhedral oligomeric silsesquioxane) 화합물을 포함하는 조성물 WO2023153586A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020220015979A KR20230119792A (ko) 2022-02-08 2022-02-08 신규한 meta-POSS(meta-polyhedral oligomeric silsesquioxane) 화합물
KR10-2022-0015979 2022-02-08
KR10-2022-0092195 2022-07-26
KR1020220092195A KR20240014705A (ko) 2022-07-26 2022-07-26 신규한 meta-POSS(meta-polyhedral oligomeric silsesquioxane) 화합물, 이의 제조방법, 및 이의 제조방법으로 제조된 meta-POSS(meta-polyhedral oligomeric silsesquioxane) 화합물을 포함하는 조성물

Publications (1)

Publication Number Publication Date
WO2023153586A1 true WO2023153586A1 (ko) 2023-08-17

Family

ID=87564625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017459 WO2023153586A1 (ko) 2022-02-08 2022-11-08 신규한 meta-poss(meta-polyhedral oligomeric silsesquioxane) 화합물, 이의 제조방법, 및 이의 제조방법으로 제조된 meta-poss(meta-polyhedral oligomeric silsesquioxane) 화합물을 포함하는 조성물

Country Status (1)

Country Link
WO (1) WO2023153586A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100029804A1 (en) * 2007-01-16 2010-02-04 Mitsui Chemicals, Inc Hardcoat composition
KR20120017133A (ko) * 2010-08-18 2012-02-28 한국과학기술연구원 선택적으로 구조가 제어된 폴리실세스퀴옥산의 제조방법 및 이로부터 제조된 폴리실세스퀴옥산
CN104086587A (zh) * 2014-06-18 2014-10-08 中国兵器工业集团第五三研究所 一种笼型十缩水甘油基倍半硅氧烷的制备方法
JP5611544B2 (ja) * 2008-06-20 2014-10-22 昭和電工株式会社 (メタ)アクリロイルオキシ基含有篭状シルセスキオキサン化合物およびその製造方法
KR20190136553A (ko) * 2018-05-31 2019-12-10 코스맥스 주식회사 다면체 올리고머 실세스퀴옥산(poss)을 이용한 mq-t 실리콘 레진의 합성법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100029804A1 (en) * 2007-01-16 2010-02-04 Mitsui Chemicals, Inc Hardcoat composition
JP5611544B2 (ja) * 2008-06-20 2014-10-22 昭和電工株式会社 (メタ)アクリロイルオキシ基含有篭状シルセスキオキサン化合物およびその製造方法
KR20120017133A (ko) * 2010-08-18 2012-02-28 한국과학기술연구원 선택적으로 구조가 제어된 폴리실세스퀴옥산의 제조방법 및 이로부터 제조된 폴리실세스퀴옥산
CN104086587A (zh) * 2014-06-18 2014-10-08 中国兵器工业集团第五三研究所 一种笼型十缩水甘油基倍半硅氧烷的制备方法
KR20190136553A (ko) * 2018-05-31 2019-12-10 코스맥스 주식회사 다면체 올리고머 실세스퀴옥산(poss)을 이용한 mq-t 실리콘 레진의 합성법

Similar Documents

Publication Publication Date Title
WO2017057813A1 (ko) 바인더 수지 및 이를 포함하는 감광성 수지 조성물
WO2017047917A1 (ko) 변성 폴리이미드 및 이를 포함하는 경화성 수지 조성물
WO2015108386A1 (ko) 신규한 β-옥심에스테르 플루오렌 화합물, 이를 포함하는 광중합 개시제 및 포토레지스트 조성물
WO2017034357A1 (ko) 적층체 및 이의 제조방법
WO2017061826A1 (ko) 방담제
WO2015016456A1 (ko) 위상차 필름 및 이를 구비하는 화상 표시 장치
WO2017086567A1 (ko) 플렉서블 터치스크린 패널 모듈 및 이를 포함하는 플렉서블 디스플레이 장치
WO2013055015A1 (ko) 점착제 조성물, 점착필름, 그 제조방법 및 이를 이용한 디스플레이 부재
WO2014104496A1 (ko) 모노머, 상기 모노머를 포함하는 하드마스크 조성물 및 상기 하드마스크 조성물을 사용하는 패턴형성방법
WO2023153586A1 (ko) 신규한 meta-poss(meta-polyhedral oligomeric silsesquioxane) 화합물, 이의 제조방법, 및 이의 제조방법으로 제조된 meta-poss(meta-polyhedral oligomeric silsesquioxane) 화합물을 포함하는 조성물
WO2016085087A9 (ko) 고굴절률 (메트)아크릴계 화합물, 이의 제조방법, 이를 포함하는 광학시트 및 이를 포함하는 광학표시장치
WO2020226461A1 (ko) 실리콘계 점착성 보호 필름 및 이를 포함하는 광학 부재
WO2023191535A1 (ko) 클릭반응을 이용한 패턴화된 cnt 필름 코팅 기판 및 이의 제조방법
WO2015064958A1 (ko) 신규한 옥심에스테르 비페닐 화합물, 이를 포함하는 광개시제 및 감광성 수지 조성물
WO2023167562A1 (ko) 광학 필름, 코팅층 형성용 조성물, 및 전자 기기
WO2022173083A1 (ko) 표면에너지 조절용 유무기 입자, 이를 포함하는 이형필름, 및 상기 표면에너지 조절용 유무기 입자의 제조방법
WO2017171272A1 (ko) 컬러필터 및 이를 포함하는 화상표시장치
WO2017171271A1 (ko) 필름 터치 센서 및 이를 포함하는 터치 스크린 패널
WO2020197179A1 (ko) 알칼리 가용성, 광경화성 및 열경화성을 갖는 공중합체, 이를 이용한 감광성 수지 조성물, 감광성 수지 필름, 및 컬러필터
WO2020218879A1 (ko) 실리콘계 점착성 보호 필름 및 이를 포함하는 광학 부재
WO2022182014A1 (ko) 광결정 구조체 및 이의 제조 방법
WO2021132865A1 (ko) 고분자 수지 화합물, 이의 제조 방법 및 이를 포함하는 감광성 수지 조성물
WO2022065886A1 (ko) 저굴절 열경화성 조성물, 이로부터 형성된 광학 부재 및 표시장치
WO2022045737A1 (ko) 포지티브형 감광성 수지 조성물
WO2017043873A1 (ko) 청색광 흡수 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926184

Country of ref document: EP

Kind code of ref document: A1