WO2023149290A1 - 電池 - Google Patents

電池 Download PDF

Info

Publication number
WO2023149290A1
WO2023149290A1 PCT/JP2023/002191 JP2023002191W WO2023149290A1 WO 2023149290 A1 WO2023149290 A1 WO 2023149290A1 JP 2023002191 W JP2023002191 W JP 2023002191W WO 2023149290 A1 WO2023149290 A1 WO 2023149290A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
negative electrode
positive electrode
layer
battery
Prior art date
Application number
PCT/JP2023/002191
Other languages
English (en)
French (fr)
Inventor
智仁 関谷
秀昭 片山
春樹 上剃
Original Assignee
マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセル株式会社 filed Critical マクセル株式会社
Publication of WO2023149290A1 publication Critical patent/WO2023149290A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to batteries with excellent output characteristics.
  • lithium-ion secondary battery that uses an organic electrolyte containing an organic solvent and a lithium salt is widely used.
  • lithium-ion secondary batteries are required to have a longer life and a higher capacity, as well as to ensure battery reliability.
  • the organic electrolyte used in lithium-ion secondary batteries contains an organic solvent, which is a combustible substance. or the battery may catch fire.
  • Batteries using solid electrolytes are not only highly safe, but also highly reliable, highly resistant to environmental conditions, and have a long service life. It is expected to be a maintenance-free battery that can By providing such batteries to society, among the 17 Sustainable Development Goals (SDGs) established by the United Nations, Goal 3 (ensure healthy lives and promote well-being for all at all ages). Goal 7 (Ensure access to affordable, reliable, sustainable and modern energy for all), Goal 11 (Inclusive, Safe, Resilient and Sustainable Cities and Human Settlements). and achieve Goal 12 (Ensure sustainable production and consumption patterns).
  • SDGs Sustainable Development Goals
  • Patent Document 2 In addition, in a battery using a solid electrolyte, there is also a proposal to stack a plurality of laminates each composed of a positive electrode, a solid electrolyte layer, and a negative electrode (Patent Document 2).
  • the present invention has been made in view of the above circumstances, and its object is to provide a battery with excellent output characteristics.
  • the battery of the present invention includes a laminated electrode body having a positive electrode, a negative electrode, and a plurality of solid electrolyte layers adjacent to each other via a positive electrode or a negative electrode, and the solid electrolyte layers adjacent to each other via a positive electrode or a negative electrode are separated from each other by an edge. It is characterized in that at least part of the parts are joined to each other.
  • FIG. 1 is a plan view schematically showing an example of a battery of the present invention
  • FIG. FIG. 2 is a sectional view taken along the line II of FIG. 1;
  • the battery of the present invention includes a laminated electrode body having a positive electrode, a negative electrode, and a plurality of solid electrolyte layers adjacent to each other via the positive electrode or the negative electrode.
  • the solid electrolyte layers adjacent to each other via the positive electrode or the negative electrode are joined to each other at least partly at the ends.
  • the battery of the present invention the mobility of lithium ions between the positive electrode and the solid electrolyte layer and between the negative electrode and the solid electrolyte layer can be maintained satisfactorily, so that excellent output characteristics can be exhibited. .
  • bonding between the ends of the solid electrolyte layers means that the solid electrolyte layers are in close contact with each other at the bonding portion to such an extent that they do not peel off during normal use of the battery, for example. means.
  • FIG. 1 and 2 show drawings schematically showing an example of the battery of the present invention.
  • 1 is a plan view of the battery
  • FIG. 2 is a sectional view taken along the line II of FIG.
  • a negative electrode 3B laminated on the lower side with a solid electrolyte layer 4 interposed therebetween and having a negative electrode mixture layer 31 on one side of a current collector 32 has a solid electrolyte layer 4 on the upper side of a positive electrode 2A arranged on the upper side in the figure. It has a laminated electrode body 5 laminated with an intervening layer.
  • the laminated electrode body 5 is housed in a laminate film exterior body 6 composed of two metal laminate films to form the battery 1 .
  • FIG. 2 does not show each layer of the metal laminate film forming the laminate film exterior body 6 .
  • the current collectors 22 of the positive electrodes 2A and 2B are provided with exposed portions where the positive electrode mixture layer 21 is not formed, and these are collectively connected as lead bodies to the positive electrode external terminal 23.
  • the negative electrodes 3A and 3B of the laminated electrode body are also provided with an exposed portion on the current collector where the negative electrode mixture layer is not formed, and these are combined as a lead body and connected to the negative electrode external terminal 33 inside the battery 1 .
  • One end of each of the positive electrode external terminal 23 and the negative electrode external terminal 33 is drawn out of the laminate film exterior body 6 so as to be connectable to an external device or the like.
  • the solid electrolyte layers 4 adjacent to each other via the positive electrode 2A or the negative electrode 3A are joined to each other at least part of their ends, that is, the ends on the left side in FIG. ing. 2A and 2B in the solid electrolyte layer 4, the current collector 22, which plays the role of the lead body of the positive electrode 2A, is connected to the positive electrode external terminal 23, so that the portion through which the current collector 22 passes Then, the solid electrolyte layers 4 adjacent to each other cannot be joined.
  • the solid electrolyte layers adjacent to each other via the positive electrode or the negative electrode are joined to each other at least partly at the ends, thereby forming the positive electrode and the solid electrolyte layer in the laminated electrode body. and the adhesion between the negative electrode and the solid electrolyte layer can be maintained, thereby improving the output characteristics of the battery.
  • the region where the solid electrolyte layers adjacent to each other through the positive electrode or the negative electrode are bonded to each other should account for 50% of the length of the entire circumference of the solid electrolyte layer.
  • the end portions of the solid electrolyte layers adjacent to each other with the positive electrode or negative electrode interposed therebetween are joined at all portions except for the portion where the current collector (lead body) connected to the electrode external terminal is arranged. preferable.
  • the width of the portion where the solid electrolyte layers are bonded is preferably 0.5 mm or more, more preferably 1.0 mm or more.
  • the batteries of the present invention include primary batteries and secondary batteries.
  • ⁇ Positive electrode> For the positive electrode of the battery, for example, one having a structure in which a positive electrode mixture layer containing a positive electrode active material and a solid electrolyte is formed on one side or both sides of a current collector can be used.
  • the same positive electrode active material used in conventionally known non-aqueous electrolyte primary batteries can be used.
  • manganese dioxide, lithium-containing manganese oxide for example, LiMn 3 O 6 , or the same crystal structure as manganese dioxide ( ⁇ -type, ⁇ -type, or a structure in which ⁇ -type and ⁇ -type are mixed) is used.
  • a composite oxide having a Li content of 3.5% by mass or less, preferably 2% by mass or less, more preferably 1.5% by mass or less, and particularly preferably 1% by mass or less], Li a Ti Lithium-containing composite oxides such as 5/3 O 4 (4/3 ⁇ a ⁇ 7/3); vanadium oxides; niobium oxides; titanium oxides; sulfides such as iron disulfide ; silver sulfides such as S; nickel oxides such as NiO2 ;
  • the battery when the battery is a secondary battery, the same positive electrode active material used in conventionally known non-aqueous electrolyte secondary batteries, that is, an active material capable of absorbing and releasing Li (lithium) ions, can be used. things can be used.
  • Li 1-x M r Mn 2-r O 4 (where M is Li, Na, K, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Zr, Fe, Co , Ni, Cu, Zn, Al, Sn, Sb, In, Nb, Ta, Mo, W, Y, Ru and Rh, wherein 0 ⁇ x ⁇ 1,0 ⁇ r ⁇ 1), Li r Mn (1-st) Ni s M t O (2-u) F v (where M is Co, Mg, Al , B, Ti, V, Cr, Fe, Cu, Zn, Zr, Mo, Sn, Ca, Sr and W, and 0 ⁇ r ⁇ 1.2,0 ⁇ s ⁇ 0.5, 0 ⁇ t ⁇ 0.5, u + v ⁇ 1, ⁇ 0.1 ⁇ u ⁇ 0.2, 0 ⁇ v ⁇ 0.1), Li 1-x Co 1-rM r O 2 , where M is from the group consisting of Al, Mg, Ti,
  • the average particle size of the positive electrode active material is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, and preferably 10 ⁇ m or less, and 8 ⁇ m or less. is more preferable.
  • the positive electrode active material may be primary particles or secondary particles obtained by agglomeration of primary particles. When a positive electrode active material having an average particle size in the above range is used, a large interface with the solid electrolyte contained in the positive electrode can be obtained, so that the output characteristics of the battery are further improved.
  • the average particle size of the positive electrode active material and other particles (negative electrode active material, solid electrolyte, etc.) referred to in this specification is measured using a particle size distribution analyzer (Microtrac particle size distribution analyzer "HRA9320" manufactured by Nikkiso Co., Ltd.). means the 50% diameter value (D 50 ) in the integrated fraction based on volume when the integrated volume is determined from particles with a small particle size.
  • the positive electrode active material preferably has a reaction suppression layer on its surface for suppressing reaction with the solid electrolyte contained in the positive electrode.
  • the solid electrolyte may oxidize to form a resistance layer, which may reduce the lithium ion conductivity in the positive electrode mixture layer.
  • a reaction suppression layer that suppresses reaction with the solid electrolyte is provided on the surface of the positive electrode active material to prevent direct contact between the positive electrode active material and the solid electrolyte. A decrease in ionic conductivity can be suppressed.
  • the reaction suppression layer may be composed of a material that has lithium ion conductivity and that can suppress the reaction between the positive electrode active material and the solid electrolyte.
  • Materials that can constitute the reaction suppression layer include, for example, oxides containing Li and at least one element selected from the group consisting of Nb, P, B, Si, Ge, Ti and Zr, more specifically include Nb-containing oxides such as LiNbO3, Li3PO4 , Li3BO3 , Li4SiO4 , Li4GeO4 , LiTiO3 , LiZrO3 , Li2WO4 and the like .
  • the reaction-suppressing layer may contain only one of these oxides, or may contain two or more of these oxides. may form Among these oxides, Nb-containing oxides are preferably used, and LiNbO 3 is more preferably used.
  • the reaction suppressing layer is preferably present on the surface in an amount of 0.1 to 1.0 parts by mass with respect to 100 parts by mass of the positive electrode active material. Within this range, the reaction between the positive electrode active material and the solid electrolyte can be satisfactorily suppressed.
  • Examples of methods for forming a reaction-suppressing layer on the surface of the positive electrode active material include the sol-gel method, mechanofusion method, CVD method, PVD method, and ALD method.
  • the content of the positive electrode active material in the positive electrode mixture layer is preferably 60 to 98% by mass.
  • the positive electrode mixture layer can contain a conductive aid.
  • a conductive aid include carbon materials such as graphite (natural graphite, artificial graphite), graphene, carbon black, carbon nanofiber, and carbon nanotube.
  • carbon materials such as graphite (natural graphite, artificial graphite), graphene, carbon black, carbon nanofiber, and carbon nanotube.
  • the content is preferably 1 to 10% by mass.
  • the positive electrode mixture layer can contain a binder.
  • a binder include fluororesins such as polyvinylidene fluoride (PVDF) and acrylic resins.
  • PVDF polyvinylidene fluoride
  • acrylic resins acrylic resins.
  • the positive electrode mixture layer may not contain a binder.
  • a binder When a binder is required in the positive electrode mixture layer, its content is preferably 15% by mass or less, and preferably 0.5% by mass or more. On the other hand, when the positive electrode material mixture layer contains a sulfide-based solid electrolyte, the content of the binder is preferably 0.1% by mass or more and 15% by mass or less, and a more preferable content is 0.5%. It is more than mass % and below 5 mass %.
  • the solid electrolyte to be contained in the positive electrode mixture layer is not particularly limited as long as it has lithium ion conductivity. Electrolytes and the like can be used.
  • Sulfide-based solid electrolytes include particles of Li 2 SP 2 S 5 , Li 2 S--SiS 2 , Li 2 SP 2 S 5 -GeS 2 , Li 2 S--B 2 S 3 -based glasses, and the like.
  • thio-LISICON type materials Li 10 GeP 2 S 12 , Li 9.54 Si 1.74 P 1.44 S 11.7 Cl 0 , which have recently attracted attention as having high lithium ion conductivity Li 12-12a-b+c+6d-e M 1 3+a-b-c-d M 2 b M 3 c M 4 d M 5 12-e X e , such as .3 , where M 1 is Si, Ge or Sn; M2 is P or V, M3 is Al, Ga, Y or Sb, M4 is Zn, Ca, or Ba, M5 is either S or S and O, X is F, Cl, Br or I, 0 ⁇ a ⁇ 3, 0 ⁇ b+c+d ⁇ 3, 0 ⁇ e ⁇ 3] and aldirodite type [Li 7-f+g PS 6-x Cl x+y such as Li 6 PS 5 Cl (where 0.
  • Examples of hydride-based solid electrolytes include LiBH 4 , solid solutions of LiBH 4 and the following alkali metal compounds (for example, those having a molar ratio of LiBH 4 and alkali metal compounds of 1:1 to 20:1), and the like. mentioned.
  • alkali metal compounds in the solid solution include lithium halides (LiI, LiBr, LiF, LiCl, etc.), rubidium halides (RbI, RbBr, RbF, RbCl, etc.), and cesium halides (CsI, CsBr, CsF, CsCl, etc.). , lithium amide, rubidium amide and cesium amide.
  • known compounds described in, for example, International Publication No. 2020/070958 and International Publication No. 2020/070955 can be used.
  • oxide-based solid electrolytes examples include garnet-type Li 7 La 3 Zr 2 O 12 , NASICON-type Li 1+O Al 1+O Ti 2-O (PO 4 ) 3 , Li 1+p Al 1+p Ge 2-p (PO 4 ) 3 and perovskite-type Li 3q La 2/3-q TiO 3 .
  • solid electrolyte only one of the above examples may be used, or two or more may be used in combination.
  • sulfide-based solid electrolytes are preferred because of their high lithium-ion conductivity, and sulfide-based solid electrolytes containing Li and P are more preferred, particularly those having high lithium-ion conductivity and chemical stability. Aldirodite-type sulfide-based solid electrolytes with high properties are more preferable.
  • the content of the solid electrolyte in the positive electrode mixture layer is preferably 4-40% by mass.
  • metal foil such as aluminum and stainless steel, punching metal, mesh, expanded metal, foam metal, carbon sheet, and the like can be used.
  • a positive electrode mixture-containing composition obtained by dispersing a positive electrode active material and a solid electrolyte, a conductive agent, a binder, etc. added as necessary in a solvent is applied to a current collector. After coating and drying, pressure molding such as calendering may be performed as necessary to form a positive electrode material mixture layer on the surface of the current collector.
  • Organic solvents such as water and N-methyl-2-pyrrolidone (NMP) can be used as the solvent for the composition containing the positive electrode mixture.
  • NMP N-methyl-2-pyrrolidone
  • sulfide-based solid electrolytes and hydride-based solid electrolytes are represented by hydrocarbon solvents such as hexane, heptane, octane, nonane, decane, decalin, toluene, and xylene, since chemical reactions occur with minute amounts of moisture. Preference is given to using non-polar aprotic solvents.
  • a super-dehydrated solvent with a water content of 0.001% by mass (10 ppm) or less.
  • fluorine-based solvents such as “Vertrel (registered trademark)” manufactured by Mitsui-DuPont Fluorochemicals, “Zeorolla (registered trademark)” manufactured by Nippon Zeon, “Novec (registered trademark)” manufactured by Sumitomo 3M, and , dichloromethane, and diethyl ether can also be used.
  • the positive electrode mixture-containing composition is filled into the pores of the conductive porous substrate, After drying, the positive electrode can also be manufactured by a method of pressure molding such as calendering, if necessary.
  • the thickness of the positive electrode mixture layer (the thickness per side of the current collector when it has a current collector) is preferably 10 to 1000 ⁇ m. Moreover, the thickness of the positive electrode current collector is preferably 0.01 to 0.1 mm.
  • the thickness thereof is 30 to 4000 ⁇ m. preferable.
  • the lead body of the positive electrode may be provided, for example, by providing an exposed portion in which the positive electrode mixture layer is not formed in a part of the positive electrode current collector, and cutting this into a predetermined shape. It may be formed by bonding an aluminum or nickel foil (plate) to the exposed portion of the body.
  • the lead body of the positive electrode is connected to the positive electrode external terminal of the battery (for example, in the case of the sheet-shaped battery shown in FIGS. 1 and 2, the positive electrode external terminal 23. In the case of the flat battery described later, (sealing can or outer can).
  • the lead bodies of all the positive electrodes constituting the laminated electrode body are integrated by welding or the like together, and the battery is formed using such a laminated electrode body.
  • a part of the current collector of the positive electrode that constitutes the integrated lead body or the laminated electrode body is connected to the positive electrode external terminal of the battery.
  • a structure having a negative electrode mixture layer containing a negative electrode active material on one or both sides of a current collector, a lithium sheet, or a lithium alloy sheet can be used.
  • examples of negative electrode active materials include carbon materials such as graphite, simple substances containing elements such as Si and Sn, compounds (such as oxides), and alloys thereof. Lithium metal and lithium alloys (lithium-aluminum alloy, lithium-indium alloy, etc.) can also be used as the negative electrode active material.
  • the content of the negative electrode active material in the negative electrode mixture layer is preferably 10 to 99% by mass.
  • the negative electrode mixture layer can contain a conductive aid. Specific examples thereof include the same conductive aids exemplified above as those that can be contained in the positive electrode mixture layer.
  • the content of the conductive aid in the negative electrode mixture layer is preferably 1 to 10% by mass.
  • the negative electrode mixture layer can contain a binder. Specific examples thereof include the same binders as previously exemplified as those that can be contained in the positive electrode mixture layer.
  • the negative electrode mixture layer contains a sulfide-based solid electrolyte (described later), good moldability can be secured in forming the negative electrode mixture layer without using a binder.
  • the negative electrode mixture layer may not contain a binder.
  • a binder When a binder is required in the negative electrode mixture layer, its content is preferably 15% by mass or less, and preferably 0.5% by mass or more.
  • the preferable binder content is 0.3% by mass or more and 15% by mass or less, and a more preferable content is 0.7%. It is more than mass % and below 7 mass %.
  • the negative electrode mixture layer contains a solid electrolyte.
  • a solid electrolyte include the same solid electrolytes as exemplified above as those that can be used for the positive electrode mixture layer.
  • solid electrolytes exemplified above it is more preferable to use a sulfide-based solid electrolyte because it has high lithium ion conductivity and has a function of improving the moldability of the negative electrode mixture layer.
  • the content of the solid electrolyte in the negative electrode mixture layer is preferably 4 to 49% by mass.
  • negative electrode current collector copper or nickel foil, punching metal, mesh, expanded metal, foamed metal, carbon sheet, etc. can be used.
  • a negative electrode mixture-containing composition in which a negative electrode active material, a conductive agent added as necessary, a solid electrolyte, a binder, etc. are dispersed in a solvent is used as a current collector. It can be manufactured by a method in which the negative electrode mixture layer is formed on the surface of the current collector by applying the negative electrode mixture layer on the surface of the current collector after applying the negative electrode mixture layer on the surface of the current collector and drying the negative electrode mixture layer.
  • An organic solvent such as water or NMP can be used as the solvent for the negative electrode mixture-containing composition.
  • the solvent should not easily degrade the solid electrolyte. is preferably selected, and it is preferable to use the same solvents as the various solvents exemplified above as the solvent for the positive electrode mixture-containing composition.
  • the negative electrode mixture-containing composition is filled into the pores of the conductive porous substrate, After drying, the negative electrode can be manufactured by a method of pressure molding such as calendering, if necessary.
  • the thickness of the negative electrode mixture layer (the thickness per side of the current collector when it has a current collector) is preferably 10 to 1000 ⁇ m. Further, the thickness of the current collector of the negative electrode is preferably 0.01 to 0.1 mm.
  • the thickness of the negative electrode is 30 to 4000 ⁇ m. preferable.
  • a negative electrode having a lithium sheet or a lithium alloy sheet a negative electrode made of these sheets alone or a laminate of these sheets and a current collector is used.
  • Alloy elements related to lithium alloys include aluminum, lead, bismuth, indium, and gallium, with aluminum and indium being preferred.
  • the ratio of the alloying elements in the lithium alloy (the total ratio of the alloying elements when multiple alloying elements are included) is preferably 50 atomic % or less (in this case, the balance is lithium and unavoidable impurities).
  • a layer containing alloying elements for forming a lithium alloy is laminated by pressure bonding on the surface of a lithium layer (a layer containing lithium) made of metal lithium foil or the like. It is also possible to form a lithium alloy on the surface of the lithium layer to form a negative electrode by using the laminated body and bringing this laminated body into contact with the solid electrolyte in the battery.
  • a laminate having a layer containing an alloy element on only one side of the lithium layer may be used, or a laminate having a layer containing an alloy element on both sides of the lithium layer may be used.
  • the laminate can be formed, for example, by press-bonding a metallic lithium foil and a foil made of an alloy element.
  • the current collector can also be used when a lithium alloy is formed to form a negative electrode in a battery.
  • a laminate having a layer containing an alloy element on the opposite side may be used, having a lithium layer on both sides of the negative electrode current collector, and the side opposite to the negative electrode current collector of each lithium layer
  • a laminate having a layer containing an alloy element may also be used.
  • the negative electrode current collector and the lithium layer may be laminated by pressure bonding or the like.
  • the layer containing the alloying element of the laminate for the negative electrode for example, a foil made of these alloying elements can be used.
  • the thickness of the layer containing the alloying element is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, preferably 20 ⁇ m or less, and more preferably 12 ⁇ m or less.
  • a metallic lithium foil or the like can be used for the lithium layer of the laminate used as the negative electrode.
  • the thickness of the lithium layer is preferably 0.1 to 1.5 mm.
  • the thickness of the sheet of the negative electrode having a lithium or lithium alloy sheet is also preferably 0.1 to 1.5 mm.
  • the current collector is the same as the current collector exemplified above as usable for the negative electrode having a negative electrode mixture layer. Available.
  • the lead body of the negative electrode is, for example, a part of the negative electrode current collector that is exposed so as not to form a negative electrode active material layer (a negative electrode mixture layer or a layer formed of a metal sheet that becomes a negative electrode active material, etc.; the same applies hereinafter).
  • a portion may be provided and cut into a predetermined shape, or the exposed portion of the current collector may be formed by attaching a foil (plate) made of copper or nickel.
  • the lead body of the negative electrode is connected to the negative electrode external terminal of the battery (for example, in the case of the sheet-shaped battery shown in FIGS. (sealing can or outer can).
  • the lead bodies of all the negative electrodes constituting the laminated electrode body are integrated together by welding, etc., and the battery is formed using such a laminated electrode body. is formed, a part of the current collector of the negative electrode constituting the integrated lead body or the laminated electrode body is connected to the negative electrode external terminal of the battery.
  • Solid electrolyte layer As the solid electrolyte in the solid electrolyte layer, one or more of the solid electrolytes exemplified above for the positive electrode can be used. From the viewpoint of better bonding, it is preferable to use a sulfide-based solid electrolyte.
  • the solid electrolyte layer contains a binder.
  • the binder contained in the solid electrolyte layer desirably does not react with the solid electrolyte, and at least one resin selected from the group consisting of butyl rubber, chloropyrene rubber, acrylic resin and fluororesin is preferably used.
  • a composition for forming a solid electrolyte layer prepared by dispersing a solid electrolyte in a solvent is applied on a substrate, a positive electrode, and a negative electrode, dried, and if necessary, pressurization such as press treatment is applied. It can be formed by molding.
  • the solvent used in the composition for forming the solid electrolyte layer is desirably one that does not easily deteriorate the solid electrolyte, and the same solvents as the various solvents exemplified above as the solvent for the positive electrode mixture-containing composition are used. is preferred.
  • the occurrence of defects such as cracks can be suppressed satisfactorily.
  • the solid electrolyte layer containing the porous substrate can be configured using a solid electrolyte sheet having a structure in which the solid electrolyte is held in the pores of the porous substrate and includes the porous substrate and the solid electrolyte. can. Moreover, in the solid electrolyte sheet, it is preferable that both surfaces of the porous substrate are covered with the solid electrolyte in addition to the solid electrolyte being held in the voids of the porous substrate.
  • porous substrate related to the solid electrolyte sheet examples include those composed of fibrous materials, such as woven fabrics, nonwoven fabrics, and meshes, among which nonwoven fabrics are preferred.
  • the fiber diameter of the fibrous material constituting the porous substrate is preferably 5 ⁇ m or less, and preferably 0.5 ⁇ m or more.
  • the material of the fibrous material is not particularly limited as long as it does not react with lithium metal and has insulating properties.
  • examples include polyolefins such as polypropylene and polyethylene; polystyrene; aramid; polyamideimide; polyimide; nylon; Resins such as polyester such as (PET); polyarylate; cellulose and modified cellulose; Inorganic materials such as glass, alumina, silica, and zirconia may also be used.
  • a preferred material is polyarylate.
  • the fibrous material one or more of the above-exemplified materials can be used.
  • the porous base material may be composed only of fibrous substances of the same material, or may be composed of a combination of two or more kinds of fibrous substances of different materials.
  • the basis weight of the porous substrate is preferably 10 g/m 2 or less, more preferably 8 g/m 2 or less, so as to sufficiently retain the solid electrolyte in an amount sufficient to ensure good lithium ion conductivity. It is more preferably 3 g/m 2 or more, more preferably 4 g/m 2 or more, from the viewpoint of ensuring sufficient strength.
  • the solid electrolyte to be contained in the solid electrolyte sheet is preferably in the form of particles, and the size thereof is set to an average particle size from the viewpoint of further increasing the filling properties in the pores of the porous substrate and ensuring good lithium ion conductivity.
  • the diameter is preferably 5 ⁇ m or less, more preferably 2 ⁇ m or less.
  • the average particle size of the solid electrolyte particles is preferably 0.3 ⁇ m or more, more preferably 0.5 ⁇ m or more.
  • the solid electrolyte sheet in addition to better bonding of the solid electrolyte layers adjacent to each other via the positive or negative electrode, the solid electrolyte can be well retained in the pores of the porous substrate, It is preferable to bind the solid electrolyte using a binder in order to improve the adhesion of the solid electrolyte covering the surface of the sheet to the porous substrate and to enhance the shape retention of the solid electrolyte sheet.
  • binder of the solid electrolyte sheet those exemplified above as those that can be contained in the solid electrolyte layer can be used.
  • the ratio of the porous substrate in the solid electrolyte sheet (the ratio of the actual volume excluding the pore portion) is preferably 30% by volume or less, and 25% by volume or less. It is more preferable to have However, if the proportion of the porous base material in the solid electrolyte sheet is too small, the effect of improving the shape retention of the solid electrolyte sheet may be reduced. Therefore, from the viewpoint of increasing the strength of the solid electrolyte sheet, the proportion of the porous substrate in the solid electrolyte sheet is preferably 5% by volume or more, more preferably 10% by volume or more.
  • the content of the binder in the solid electrolyte sheet should be 0.05% of the total amount of the solid electrolyte and the binder, from the viewpoint of better bonding of the solid electrolyte layers to each other and improved shape retention of the solid electrolyte sheet. It is preferably 5% by mass or more, preferably 1% by mass or more, and is 10% by mass or less from the viewpoint of suppressing a decrease in lithium ion conductivity by limiting the amount of the binder to some extent. preferably 7% by mass or less.
  • the method for producing the solid electrolyte sheet is not particularly limited, but the solid electrolyte and optionally used binder are dispersed in a solvent to form a slurry or the like, and the slurry is wet-filled into the voids of the porous substrate. , preferably by a method comprising the step of forming a coating film of this slurry on the surface of a porous substrate. This improves the strength of the solid electrolyte sheet and facilitates the production of a large-area solid electrolyte sheet.
  • a coating method such as a screen printing method, a doctor blade method, or an immersion method can be used. can be adopted.
  • the slurry is prepared by adding a solid electrolyte and, if necessary, a binder to a solvent and mixing them.
  • a solvent for the slurry it is desirable to select a solvent that does not easily deteriorate the solid electrolyte, and it is preferable to use the same various solvents as those previously exemplified as the solvent for the positive electrode mixture-containing composition.
  • a solid electrolyte sheet can be obtained by performing pressure molding.
  • the method for manufacturing the solid electrolyte sheet is not limited to the wet method described above.
  • the solid electrolyte or a mixture of the solid electrolyte and the binder is dry-filled, and then pressure-molded. may be performed.
  • a sheet obtained by molding a mixture of the solid electrolyte and the binder is placed on the surface of the sheet in which the pores of the porous substrate are filled with the solid electrolyte. You can paste it.
  • the thickness of the solid electrolyte layer containing no porous substrate is preferably 100 to 300 ⁇ m.
  • the thickness of the solid electrolyte layer containing the porous substrate is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and 50 ⁇ m or less. It is preferably 30 ⁇ m or less, more preferably 30 ⁇ m or less. Furthermore, the thickness of the porous substrate is preferably 3 ⁇ m or more, more preferably 8 ⁇ m or more, preferably 45 ⁇ m or less, and more preferably 25 ⁇ m or less.
  • the laminated electrode body may be configured by (a) using one (one) positive electrode and one (one) negative electrode, and (b) one (one) positive electrode and two (two) negative electrodes. (c) two (two) positive electrodes and one (one) negative electrode may be used; (d) a plurality of positive electrodes and a plurality of negative electrodes may be used may be configured
  • a solid electrolyte layer is interposed between the positive electrode and the negative electrode in the laminated electrode body. Therefore, in the laminated electrode body of the aspect (a), the solid electrolyte layer interposed between the positive electrode and the negative electrode is one layer, but the outer surface of the positive electrode of this laminated electrode body (the surface facing the negative electrode and the surface facing the negative electrode) A solid electrolyte layer is also disposed on the surface opposite to the positive electrode) and/or the outer surface of the negative electrode (the surface opposite to the surface facing the positive electrode). Therefore, the laminated electrode body of the aspect (a) has two or three solid electrolyte layers.
  • the negative electrode is arranged on both sides of the positive electrode with the solid electrolyte layer interposed therebetween.
  • the positive electrode is arranged on both sides of the negative electrode with the solid electrolyte layer interposed therebetween. Therefore, the laminated electrode body of the embodiment (b) and the laminated electrode body of the embodiment (c) have at least two solid electrolyte layers.
  • the laminated electrode body of the aspect (d) is formed, for example, by alternately laminating a plurality of positive electrodes and a plurality of negative electrodes with solid electrolyte layers interposed therebetween. Also in the laminated electrode bodies of the modes (b), (c) and (d), as in the laminated electrode body of the mode (a), one of the electrodes positioned at the outermost part of the stacked electrode body or Solid electrolyte layers can be arranged on both outer surfaces.
  • the laminated electrode bodies of the embodiments (b), (c) and (d) at least part of the plurality of solid electrolyte layers is interposed between the positive electrode and the negative electrode. That is, when the solid electrolyte is not arranged on the outer surface of one or both of the electrodes positioned at the outermost part of the laminated electrode body, all of the plurality of solid electrolyte layers of the laminated electrode body are positive electrodes and negative electrodes. but if the solid electrolyte is arranged on the outer surface of one or both of the electrodes positioned at the outermost part of the laminated electrode body, a plurality of solid electrolytes possessed by the laminated electrode body Only part of the layer will be interposed between the positive and negative electrodes.
  • the solid electrolyte layers adjacent to each other via the positive electrode or the negative electrode are joined to each other at their ends. ing.
  • the solid electrolyte layer is arranged on the outer surface of the laminated electrode body of the aspect (a) or the electrode arranged at the outermost part in any of the aspects (b), (c) and (d).
  • the outermost solid electrolyte layer of the laminated electrode body is joined to the solid electrolyte layer arranged inside thereof at the end, so that the electrodes in the laminated electrode body Since misalignment can be well prevented, the handleability is improved, and impact resistance is improved by the action of the outermost solid electrolyte layer of the laminated electrode body.
  • the solid electrolyte layer is protrudes from the electrodes (positive and negative electrodes).
  • the length of the portion of the solid electrolyte layer that protrudes from the electrode is the solid electrolyte layer that is arranged adjacent to the positive electrode or the negative electrode, and the relationship that these solid electrolyte layers are joined to each other at the ends. It is desirably longer than the thickness of the positive electrode or negative electrode disposed between the layers, and specifically, it is preferably 0.5 mm or more.
  • the upper limit of the length of the portion of the solid electrolyte layer protruding from the electrode in plan view is not particularly limited, but if it is too long, it will be necessary to increase the size of the outer package. 0 mm or less.
  • the positive electrode in the laminated electrode body of embodiment (c) and the positive electrode in the case where one or both of the outermost electrodes in the laminated electrode body of embodiment (d) are positive electrodes are shown in FIG.
  • the positive electrode may have a positive electrode mixture layer on one side, or may have a positive electrode mixture layer on both sides of a current collector.
  • the negative electrode in the laminated electrode body of the aspect (b) and the negative electrode in the case where one or both of the outermost electrodes in the laminated electrode assembly of the aspect (d) are negative electrodes are as shown in FIG.
  • the negative electrode may have a negative electrode active material layer on one side of the body, or the negative electrode may have a negative electrode active material layer on both sides of the current collector.
  • a positive electrode having a positive electrode mixture layer on both sides of a current collector may be used as the positive electrode to be arranged other than the outermost layer of the laminated electrode body, and a positive electrode having a positive electrode mixture layer on one side of the current collector may be used. may be used.
  • a negative electrode having a negative electrode active material layer on both sides of the current collector may be used. may be used.
  • a laminated electrode body can be formed by laminating a plurality of unit electrode bodies formed by laminating the positive electrode mixture layer and the negative electrode active material layer so that the positive electrode mixture layer and the negative electrode active material layer face each other, with the solid electrolyte layer interposed therebetween.
  • the number (number of sheets) of the positive electrode and the negative electrode included in the laminated electrode body of the aspect (d) is not particularly limited as long as it is plural, that is, two or more, but usually it is 100 or less.
  • the solid electrolyte layers in the laminated electrode body may be joined together by a method of crimping (crimping or thermocompression bonding at room temperature) the ends of both, or by heat-sealing the ends of the solid electrolyte layers.
  • an adhesive may be used to adhere.
  • Pressure molding of the laminated electrode body by the hydrostatic pressing method can be carried out by enclosing the laminated electrode body in a packaging material, sealing it, and using a known hydrostatic pressing machine.
  • Conditions for isostatic pressing may be, for example, a temperature of 20 to 90° C. and a pressure of 100 to 500 MPa.
  • the shape of the battery is not particularly limited, and in addition to the sheet-like (laminate type) having a laminate film exterior body as shown in FIGS. Cylindrical shape, rectangular shape (rectangular tubular shape)], etc. can be used.
  • a metal laminate film can be used, or a metal can having an opening (exterior can) and a lid (sealing can) can be used in combination. .
  • a sheet-like (laminate) battery can be produced by stacking two metal laminate films or by folding one metal laminate film, pasting the periphery together, and sealing.
  • a flat-shaped (coin-shaped, button-shaped, etc.) or cylindrical battery is produced by crimping a can and a sealing can through a gasket, or by welding and sealing an outer can and a sealing can. be able to.
  • polypropylene polypropylene
  • nylon nylon
  • fluorine resins such as tetrafluoroethylene-perfluoroalkoxyethylene copolymer (PFA), polyphenylene ether (PEE), polysulfone (PSF), polyarylate (PAR) , polyether sulfone (PES), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), and other heat-resistant resins having a melting point or thermal decomposition temperature of 200° C. or higher can also be used.
  • PFA tetrafluoroethylene-perfluoroalkoxyethylene copolymer
  • PEE polyphenylene ether
  • PSF polysulfone
  • PAR polyarylate
  • PES polyether sulfone
  • PPS polyphenylene sulfide
  • PEEK polyether ether ketone
  • other heat-resistant resins having a melting point or thermal decomposition temperature of 200° C. or higher
  • the shape of the exterior body in a plan view may be circular or polygonal such as quadrangular (square/rectangular). Moreover, in the case of a polygon, the corners thereof may be curved.
  • Example 1 Preparation of solid electrolyte sheet> Using xylene (“super dehydrated” grade) as a solvent, particles of a sulfide-based solid electrolyte (Li 6 PS 5 Cl) with an average particle size of 1 ⁇ m, an acrylic resin binder, and a dispersant were mixed in a mass ratio of 100:3. : 1 and a solid content ratio of 40%, and stirred for 10 minutes with a thinky mixer to prepare a uniform slurry.
  • xylene super dehydrated” grade
  • This slurry was applied onto an Al foil having a thickness of 20 ⁇ m using an applicator with a gap of 200 ⁇ m, followed by vacuum drying at 120° C. to obtain a positive electrode having a positive electrode mixture layer on one side of the current collector.
  • an exposed portion for use as a lead body was left on a part of the Al foil. Then, it was cut into a shape having a main body on which a 50 ⁇ 50 mm positive electrode mixture layer was formed and a 10 ⁇ 20 mm lead body (exposed portion of the current collector) to obtain a battery positive electrode.
  • This slurry was applied to a SUS foil having a thickness of 20 ⁇ m using an applicator with a gap of 160 ⁇ m, followed by vacuum drying at 120° C. to obtain a negative electrode having a negative electrode mixture layer on one side of the current collector.
  • an exposed portion for use as a lead body was left on a part of the SUS foil. Then, it was cut into a shape having a main body on which a negative electrode mixture layer of 52 ⁇ 52 mm was formed and a lead body (exposed portion of the current collector) of 10 ⁇ 20 mm to obtain a battery negative electrode.
  • ⁇ Battery assembly> Four unit electrode bodies are formed by stacking the positive electrode and the negative electrode with the solid electrolyte sheet interposed therebetween so that the positive electrode mixture layer and the negative electrode mixture layer face each other, and performing pressure treatment. After stacking these unit electrode bodies with the solid electrolyte sheet interposed therebetween, they were sealed in an aluminum laminate film bag and subjected to hydrostatic pressing under the conditions of temperature: 25° C. and pressure: 300 MPa. rice field. After isostatic pressing, the laminated body is taken out of the bag, and all the positive electrode lead bodies are put together and welded to an aluminum plate (size: 5 ⁇ 70 mm, thickness: 0.3 mm) serving as a positive electrode external terminal.
  • an aluminum plate size: 5 ⁇ 70 mm, thickness: 0.3 mm
  • each solid electrolyte layer is joined to the solid electrolyte layer adjacent via the positive electrode or the negative electrode at the end portions thereof except for the portion where the lead body is located.
  • the length of the portion where the solid electrolyte layer was formed was 91% of the total circumferential length of the solid electrolyte layer.
  • the width of the joint portion of the solid electrolyte layer was 1 to 2 mm from the end of the solid electrolyte layer.
  • Example 2 A battery (all-solid secondary battery) was produced in the same manner as in Example 1, except that the solid electrolyte sheet was cut into a size of 54.5 ⁇ 54.5 mm. The length of the portion joined to the adjacent solid electrolyte layer was 79% of the total circumferential length of the solid electrolyte layer. Also, the width of the joint portion of the solid electrolyte layer was 0.7 to 1.6 mm from the end of the solid electrolyte layer.
  • Example 3 A battery (all-solid secondary battery) was produced in the same manner as in Example 1, except that the solid electrolyte sheet was cut into a size of 54 ⁇ 54 mm. The length of the portion joined to the adjacent solid electrolyte layer was 58% of the total circumferential length of the solid electrolyte layer. Also, the width of the joint portion of the solid electrolyte layer was 0.5 to 1.2 mm from the end of the solid electrolyte layer.
  • Comparative example 1 A battery (all-solid secondary battery) was prepared in the same manner as in Example 1 except that the laminate obtained by laminating four unit electrode bodies each having a positive electrode, a solid electrolyte layer and a negative electrode was not subjected to hydrostatic pressing. was made.
  • the batteries of Examples 1 to 3 each having a laminated electrode body in which each solid electrolyte layer is joined to an adjacent solid electrolyte layer via a positive electrode or a negative electrode at the ends are Compared to the battery of Comparative Example 1 using a laminated electrode body that is not bonded to other solid electrolyte layers, the battery had a high capacity retention rate when evaluating output characteristics, and had excellent output characteristics.
  • the battery of the present invention can be applied to the same uses as conventionally known primary batteries and secondary batteries, but has excellent heat resistance because it has a solid electrolyte instead of an organic electrolyte. It can be preferably used for applications exposed to high temperatures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

出力特性に優れた電池を提供する。本発明の電池は、SDGsの目標3、7、11、および12に関係する。 本発明の電池は、正極と、負極と、正極または負極を介して隣り合う複数の固体電解質層とを有する積層電極体を備え、正極または負極を介して隣り合う前記固体電解質層同士は、端部の少なくとも一部で互いに接合していることを特徴とするものである。正極または負極を介して隣り合う前記固体電解質層同士は、全周の長さのうちの50%以上の長さの部分で、互いに接合していることが好ましい。

Description

電池
 本発明は、出力特性に優れた電池に関するものである。
 近年、携帯電話またはノート型パソコンなどの携帯電子機器の発達、および電気自動車の実用化などに伴い、小型・軽量で、かつ高容量・高エネルギー密度の電池が必要とされるようになってきている。
 現在、この要求に応える二次電池として、特に、有機溶媒とリチウム塩とを含む有機電解液を用いたリチウムイオン二次電池が幅広く用いられている。一方、機器のさらなる発達に伴って、リチウムイオン二次電池には、さらなる長寿命化や高容量化が求められると共に、電池の信頼性確保も求められるようになっている。
 しかし、リチウムイオン二次電池に用いられている有機電解液は、可燃性物質である有機溶媒を含んでいるため、電池に短絡などの異常事態が発生した際に、有機電解液が異常発熱したり、電池が発火したりする可能性がある。
 このような状況において、有機溶媒を用いないタイプのリチウム二次電池が注目されている。前記電池は、従来の有機溶媒系電解質および正極と負極との間に介在させるセパレータに代えて、例えば有機溶媒を用いない固体電解質の成形体(固体電解質層)を用いるものであり、高温環境下でも優れた安全性を備える電池となっている(特許文献1など)。
 固体電解質を用いた電池は、高い安全性だけではなく、高い信頼性および高い耐環境性を有し、かつ長寿命であるため、社会の発展に寄与すると同時に安心、安全にも貢献し続けることができるメンテナンスフリーの電池として期待されている。こうした電池の社会への提供により、国際連合が制定する持続可能な開発目標(SDGs)の17の目標のうち、目標3(あらゆる年齢のすべての人々の健康的な生活を確保し、福祉を促進する)、目標7(すべての人々の、安価かつ信頼できる持続可能な近代的エネルギーへのアクセスを確保する)、目標11〔包摂的で安全かつ強靭(レジリエント)で持続可能な都市および人間居住を実現する〕、および目標12(持続可能な生産消費形態を確保する)の達成に貢献することができる。
 また、固体電解質を用いた電池においては、正極、固体電解質層および負極からなる積層体を複数積層して使用する提案もある(特許文献2)。
国際公開第2020/054081号 国際公開第2021/075208号
 ところで、正極と負極との間に固体電解質層を介在させた電極体を有する電池においては、有機電解液系電解質のようなリチウムイオンを移動させる媒体が存在しないため、正極や負極といった電極と固体電解質層とが密着していないと、電極-固体電解質層間でのリチウムイオンの移動が良好に進まなくなり、例えば電池の出力特性(高負荷での放電特性)が低下しやすくなる。
 本発明は前記事情に鑑みてなされたものであり、その目的は、出力特性に優れた電池を提供することにある。
 本発明の電池は、正極と、負極と、正極または負極を介して隣り合う複数の固体電解質層とを有する積層電極体を備え、正極または負極を介して隣り合う前記固体電解質層同士は、端部の少なくとも一部で互いに接合していることを特徴とするものである。
 本発明によれば、出力特性に優れた電池を提供することができる。
本発明の電池の一例を模式的に表す平面図である。 図1のI-I線断面図である。
 本発明の電池は、正極と、負極と、正極または負極を介して隣り合う複数の固体電解質層とを有する積層電極体を備えている。そして、前記積層電極体においては、正極または負極を介して隣り合う固体電解質層同士が、端部の少なくとも一部で互いに接合している。
 これにより、電池の製造工程および使用中において、正極および負極と、これらと接するように配置された固体電解質層との密着性が損なわれることを抑制できる。そのため、本発明の電池においては、正極と固体電解質層との間、および負極と固体電解質層との間のリチウムイオンの移動性を良好に維持できるため、優れた出力特性を発揮できるようになる。
 なお、本明細書でいう固体電解質層同士の端部の「接合」は、固体電解質層同士が、その接合部分において、例えば電池の通常の使用中に、剥離しない程度に密着していることを意味している。
 図1および図2に、本発明の電池の一例を模式的に表す図面を示す。図1は電池の平面図であり、図2は図1のI-I線断面図である。
 図1および図2に示す電池1においては、正極合剤層21を集電体22の両面に有する正極2Aと、負極合剤層31を集電体32の両面に有する負極3Aとを、それぞれ2枚ずつ有し、これらが固体電解質層4を介して交互に積層され、かつ正極合剤層21を集電体22の片面に有する正極2Bが、図中下側に配置された負極3Aの下側に固体電解質層4を介して積層され、また、負極合剤層31を集電体32の片面に有する負極3Bが、図中上側に配置された正極2Aの上側に固体電解質層4を介して積層された積層電極体5を有している。そして、積層電極体5が、2枚の金属ラミネートフィルムで構成されたラミネートフィルム外装体6内に収容されて電池1を構成している。ただし、図2においては、ラミネートフィルム外装体6を構成している金属ラミネートフィルムの各層を図示していない。
 正極2A、2Bの集電体22には、正極合剤層21を形成しない露出部を設け、これらをリード体として纏めて正極外部端子23と接続しており、また、図示していないが、積層電極体の有する負極3A、3Bも、集電体に負極合剤層を形成しない露出部を設け、これらをリード体として纏めて、電池1内で負極外部端子33と接続している。そして、正極外部端子23および負極外部端子33は、外部の機器などと接続可能なように、片端側がラミネートフィルム外装体6の外側に引き出されている。
 そして、積層電極体5においては、正極2Aまたは負極3Aを介して隣り合う固体電解質層4同士が、その端部の少なくとも一部、すなわち、図2では図中左側の端部において、互いに接合している。なお、固体電解質層4における図2中右側の端部に関しては、正極2Aのリード体の役割を担う集電体22を正極外部端子23と接続する関係上、これらの集電体22を通す部分では、隣り合う固体電解質層4と接合することができない。
 このように、電池の積層電極体においては、正極または負極を介して隣り合う固体電解質層同士が、端部の少なくとも一部において接合しており、これにより、積層電極体内における正極と固体電解質層との密着性、および負極と固体電解質層との密着性を良好に保ち得るようにして、電池の出力特性向上を可能としている。なお、こうした効果をより良好に確保する観点からは、正極または負極を介して隣り合う固体電解質層同士が互いに接合している領域は、固体電解質層の全周の長さのうちの、50%以上の長さの部分であることが好ましく、75%以上の長さの部分であることがより好ましく、90%以上の長さの部分であることがさらに好ましい。また、正極または負極を介して隣り合う固体電解質層同士の端部は、電極外部端子に接続する集電体(リード体)が配置されている箇所を除く全ての部分が接合していることが好ましい。
 また、固体電解質層同士の接合強度をより高める観点からは、固体電解質層同士が接合している部分の幅〔固体電解質層同士が接合している箇所の、固体電解質層の端から内側に向かう方向(図2中横方向)における長さ〕は、0.5mm以上であることが好ましく、1.0mm以上であることがより好ましい。
 本発明の電池には、一次電池と二次電池とが含まれる。
<正極>
 電池の正極には、例えば、正極活物質および固体電解質を含有する正極合剤層を、集電体の片面または両面に形成した構造のものが使用できる。
 電池が一次電池の場合、従来から知られている非水電解質一次電池に用いられている正極活物質と同じものが使用できる。具体的には、例えば、二酸化マンガン、リチウム含有マンガン酸化物〔例えば、LiMnや、二酸化マンガンと同じ結晶構造(β型、γ型、またはβ型とγ型が混在する構造など)を有し、Liの含有量が3.5質量%以下、好ましくは2質量%以下、より好ましくは1.5質量%以下、特に好ましくは1質量%以下である複合酸化物など〕、LiTi5/3(4/3≦a<7/3)などのリチウム含有複合酸化物;バナジウム酸化物;ニオブ酸化物;チタン酸化物;二硫化鉄などの硫化物;フッ化黒鉛;AgSなどの銀硫化物;NiOなどのニッケル酸化物:などが挙げられる。
 また、電池が二次電池の場合には、従来から知られている非水電解質二次電池に用いられている正極活物質、すなわち、Li(リチウム)イオンを吸蔵・放出可能な活物質と同じものが使用できる。具体的には、Li1-xMn2-r(ただし、Mは、Li、Na、K、B、Mg、Ca、Sr、Ba、Ti、V、Cr、Zr、Fe、Co、Ni、Cu、Zn、Al、Sn、Sb、In、Nb、Ta、Mo、W、Y、RuおよびRhよりなる群から選択される少なくとも1種の元素であり、0≦x≦1、0≦r≦1)で表されるスピネル型リチウムマンガン複合酸化物、LiMn(1-s-t)Ni(2-u)(ただし、Mは、Co、Mg、Al、B、Ti、V、Cr、Fe、Cu、Zn、Zr、Mo、Sn、Ca、SrおよびWよりなる群から選択される少なくとも1種の元素であり、0≦r≦1.2、0<s<0.5、0≦t≦0.5、u+v<1、-0.1≦u≦0.2、0≦v≦0.1)で表される層状化合物、Li1-xCo1-r(ただし、Mは、Al、Mg、Ti、V、Cr、Zr、Fe、Ni、Cu、Zn、Ga、Ge、Nb、Mo、Sn、SbおよびBaよりなる群から選択される少なくとも1種の元素であり、0≦x≦1、0≦r≦0.5)で表されるリチウムコバルト複合酸化物、Li1-xNi1-r(ただし、Mは、Al、Mg、Ti、Zr、Fe、Co、Cu、Zn、Ga、Ge、Nb、Mo、Sn、SbおよびBaよりなる群から選択される少なくとも1種の元素であり、0≦x≦1、0≦r≦0.5)で表されるリチウムニッケル複合酸化物、Li1+s-x1-rPO(ただし、Mは、Fe、MnおよびCoよりなる群から選択される少なくとも1種の元素で、Nは、Al、Mg、Ti、Zr、Ni、Cu、Zn、Ga、Ge、Nb、Mo、Sn、Sb、VおよびBaよりなる群から選択される少なくとも1種の元素であり、0≦x≦1、0≦r≦0.5、0≦s≦1)で表されるオリビン型複合酸化物、Li2-x1-r(ただし、Mは、Fe、MnおよびCoよりなる群から選択される少なくとも1種の元素で、Nは、Al、Mg、Ti、Zr、Ni、Cu、Zn、Ga、Ge、Nb、Mo、Sn、Sb、VおよびBaよりなる群から選択される少なくとも1種の元素であり、0≦x≦2、0≦r≦0.5)で表されるピロリン酸化合物などが例示でき、これらのうちの1種のみを用いてもよく、2種以上を併用してもよい。
 電池が二次電池の場合には、正極活物質の平均粒子径は、1μm以上であることが好ましく、2μm以上であることがより好ましく、また、10μm以下であることが好ましく、8μm以下であることがより好ましい。なお、正極活物質は一次粒子でも一次粒子が凝集した二次粒子であってもよい。平均粒子径が前記範囲の正極活物質を使用すると、正極に含まれる固体電解質との界面を多くとれるため、電池の出力特性がより向上する。
 本明細書でいう正極活物質や、その他の粒子(負極活物質、固体電解質など)の平均粒子径は、粒度分布測定装置(日機装株式会社製マイクロトラック粒度分布測定装置「HRA9320」など)を用いて、粒度の小さい粒子から積分体積を求める場合の体積基準の積算分率における50%径の値(D50)を意味している。
 電池が二次電池の場合、正極活物質は、その表面に、正極に含まれる固体電解質との反応を抑制するための反応抑制層を有していることが好ましい。
 正極合剤層内において、正極活物質と固体電解質とが直接接触すると、固体電解質が酸化して抵抗層を形成し、正極合剤層内のリチウムイオン伝導性が低下する虞がある。正極活物質の表面に、固体電解質との反応を抑制する反応抑制層を設け、正極活物質と固体電解質との直接の接触を防止することで、固体電解質の酸化による正極合剤層内のリチウムイオン伝導性の低下を抑制することができる。
 反応抑制層は、リチウムイオン伝導性を有し、正極活物質と固体電解質との反応を抑制できる材料で構成されていればよい。反応抑制層を構成し得る材料としては、例えば、Liと、Nb、P、B、Si、Ge、TiおよびZrよりなる群から選択される少なくとも1種の元素とを含む酸化物、より具体的には、LiNbOなどのNb含有酸化物、LiPO、LiBO、LiSiO、LiGeO、LiTiO、LiZrO、LiWOなどが挙げられる。反応抑制層は、これらの酸化物のうちの1種のみを含有していてもよく、また、2種以上を含有していてもよく、さらに、これらの酸化物のうちの複数種が複合化合物を形成していてもよい。これらの酸化物の中でも、Nb含有酸化物を使用することが好ましく、LiNbOを使用することがより好ましい。
 反応抑制層は、正極活物質:100質量部に対して0.1~1.0質量部で表面に存在することが好ましい。この範囲であれば正極活物質と固体電解質との反応を良好に抑制することができる。
 正極活物質の表面に反応抑制層を形成する方法としては、ゾルゲル法、メカノフュージョン法、CVD法、PVD法、ALD法などが挙げられる。
 正極合剤層における正極活物質の含有量は、60~98質量%であることが好ましい。
 正極合剤層には、導電助剤を含有させることができる。その具体例としては、黒鉛(天然黒鉛、人造黒鉛)、グラフェン、カーボンブラック、カーボンナノファイバー、カーボンナノチューブなどの炭素材料などが挙げられる。なお、例えば活物質にAgSを用いる場合には放電反応の際に導電性のあるAgが生成するため、導電助剤は含有させなくてもよい。正極合剤層に導電助剤を含有させる場合には、その含有量は、1~10質量%であることが好ましい。
 また、正極合剤層にはバインダを含有させることができる。その具体例としては、ポリフッ化ビニリデン(PVDF)などのフッ素樹脂、アクリル系樹脂などが挙げられる。なお、例えば正極合剤層に硫化物系固体電解質を含有させる場合(後述する)のように、バインダを使用しなくても、正極合剤層を形成する上で良好な成形性が確保できる場合には、正極合剤層にはバインダを含有させなくてもよい。
 正極合剤層において、バインダを要する場合には、その含有量は、15質量%以下であることが好ましく、また、0.5質量%以上であることが好ましい。他方、正極合剤層において、硫化物系固体電解質を含有している場合、好ましいバインダの含有量は、0.1質量%以上、15質量%以下であり、より好ましい含有量は、0.5質量%以上、5質量%以下である。
 正極合剤層に含有させる固体電解質は、リチウムイオン伝導性を有していれば特に限定されず、例えば、硫化物系固体電解質、水素化物系固体電解質、ハロゲン化物系固体電解質、酸化物系固体電解質などが使用できる。
 硫化物系固体電解質としては、LiS-P、LiS-SiS、LiS-P-GeS、LiS-B系ガラスなどの粒子が挙げられる他、近年、リチウムイオン伝導性が高いものとして注目されているthio-LISICON型のもの〔Li10GeP12、Li9.54Si1.741.4411.7Cl0.3などの、Li12-12a-b+c+6d-e 3+a-b-c-d 12-e(ただし、MはSi、GeまたはSn、MはPまたはV、MはAl、Ga、YまたはSb、MはZn、Ca、またはBa、MはSまたはSおよびOのいずれかであり、XはF、Cl、BrまたはI、0≦a<3、0≦b+c+d≦3、0≦e≦3〕や、アルジロダイト型のもの〔LiPSClなどの、Li7-f+gPS6-xClx+y(ただし、0.05≦f≦0.9、-3.0f+1.8≦g≦-3.0f+5.7)で表されるもの、Li7-hPS6-hClBr(ただし、h=i+j、0<h≦1.8、0.1≦i/j≦10.0)で表されるものなど〕も使用することができる。
 水素化物系固体電解質としては、例えば、LiBH、LiBHと下記のアルカリ金属化合物との固溶体(例えば、LiBHとアルカリ金属化合物とのモル比が1:1~20:1のもの)などが挙げられる。前記固溶体におけるアルカリ金属化合物としては、ハロゲン化リチウム(LiI、LiBr、LiF、LiClなど)、ハロゲン化ルビジウム(RbI、RbBr、RbF、RbClなど)、ハロゲン化セシウム(CsI、CsBr、CsF、CsClなど)、リチウムアミド、ルビジウムアミドおよびセシウムアミドよりなる群から選択される少なくとも1種が挙げられる。
 ハロゲン化物系固体電解質としては、例えば、単斜晶型のLiAlCl、欠陥スピネル型または層状構造のLiInBr、単斜晶型のLi6-3m(ただし、0<m<2かつX=ClまたはBr)などが挙げられ、その他にも例えば国際公開第2020/070958や国際公開第2020/070955に記載の公知のものを使用することができる。
 酸化物系固体電解質としては、例えば、ガーネット型のLiLaZr12、NASICON型のLi1+OAl1+OTi2-O(PO、Li1+pAl1+pGe2-p(PO、ペロブスカイト型のLi3qLa2/3-qTiOなどが挙げられる。
 固体電解質には、前記例示のもののうちの1種のみを用いてもよく、2種以上を併用してもよい。これらの固体電解質の中でも、リチウムイオン伝導性が高いことから、硫化物系固体電解質が好ましく、LiおよびPを含む硫化物系固体電解質がより好ましく、特にリチウムイオン伝導性が高く、化学的に安定性の高いアルジロダイト型の硫化物系固体電解質がさらに好ましい。
 正極合剤層における固体電解質の含有量は、4~40質量%であることが好ましい。
 正極の集電体としては、アルミニウムやステンレス鋼などの金属の箔、パンチングメタル、網、エキスパンドメタル、発泡メタル;カーボンシート;などを用いることができる。
 正極は、例えば、正極活物質および固体電解質に、必要に応じて添加される導電助剤、バインダなどを溶媒に分散させた正極合剤含有組成物(ペースト、スラリーなど)を、集電体に塗布し、乾燥した後、必要に応じてカレンダ処理などの加圧成形をして、集電体の表面に正極合剤層を形成する方法によって製造することができる。
 正極合剤含有組成物の溶媒には、水やN-メチル-2-ピロリドン(NMP)などの有機溶媒を使用することができるが、水に対する反応性が高い固体電解質を使用する場合の溶媒は、固体電解質を劣化させ難いものを選択することが望ましい。特に、硫化物系固体電解質や水素化物系固体電解質は、微少量の水分によって化学反応を起こすため、ヘキサン、ヘプタン、オクタン、ノナン、デカン、デカリン、トルエン、キシレンなどの炭化水素溶媒に代表される非極性非プロトン性溶媒を使用することが好ましい。特に、含有水分量を0.001質量%(10ppm)以下とした超脱水溶媒を使用することがより好ましい。また、三井・デュポンフロロケミカル社製の「バートレル(登録商標)」、日本ゼオン社製の「ゼオローラ(登録商標)」、住友3M社製の「ノベック(登録商標)」などのフッ素系溶媒、並びに、ジクロロメタン、ジエチルエーテルなどの非水系有機溶媒を使用することもできる。
 また、正極集電体にパンチングメタルなどの導電性多孔質基材を使用する場合には、例えば、前記の正極合剤含有組成物を、導電性多孔質基材の空孔内に充填し、乾燥した後、必要に応じてカレンダ処理などの加圧成形をする方法で、正極を製造することもできる。
 正極合剤層の厚み(集電体を有する場合は、集電体の片面当たりの厚み)は、10~1000μmであることが好ましい。また、正極集電体の厚みは、0.01~0.1mmであることが好ましい。
 さらに、正極集電体に導電性多孔質基材を使用し、その空孔内に正極合剤含有組成物を充填する方法で得られる正極の場合、その厚みは、30~4000μmであることが好ましい。
 正極のリード体は、例えば、正極集電体の一部に正極合剤層を形成しない露出部を設けておき、これを所定の形状に切断するなどして設けてもよく、また、集電体の露出部にアルミニウム製やニッケル製の箔(板)を接合して形成してもよい。電池を形成する際には、例えば正極のリード体を電池の正極外部端子(例えば、図1および図2に示すシート状電池の場合は、正極外部端子23。後記の扁平形電池の場合は、封口缶または外装缶。)と接続する。また、複数の正極を有する積層電極体を形成する際には、積層電極体を構成する全ての正極のリード体を纏めて溶接するなどして一体化し、このような積層電極体を用いて電池を形成する際には、このリード体の一体化物または積層電極体を構成する正極のうちの一部の集電体を、電池の正極外部端子と接続する。
<負極>
 電池の負極は、例えば、負極活物質を含有する負極合剤層を集電体の片面または両面に有する構造のものや、リチウムのシート、またはリチウム合金のシートを有するものが使用できる。
 負極合剤層を有する負極の場合、その負極活物質としては、例えば、黒鉛などの炭素材料や、Si、Snなどの元素を含む単体、化合物(酸化物など)およびその合金などが挙げられる。また、リチウム金属やリチウム合金(リチウム-アルミニウム合金、リチウム-インジウム合金など)も負極活物質として用いることができる。
 負極合剤層における負極活物質の含有量は、10~99質量%であることが好ましい。
 負極合剤層には、導電助剤を含有させることができる。その具体例としては、正極合剤層に含有させ得るものとして先に例示した導電助剤と同じものなどが挙げられる。負極合剤層における導電助剤の含有量は1~10質量%であることが好ましい。
 また、負極合剤層にはバインダを含有させることができる。その具体例としては、正極合剤層に含有させ得るものとして先に例示したバインダと同じものなどが挙げられる。なお、例えば負極合剤層に硫化物系固体電解質を含有させる場合(後述する)のように、バインダを使用しなくても、負極合剤層を形成する上で良好な成形性が確保できる場合には、負極合剤層にはバインダを含有させなくてもよい。
 負極合剤層において、バインダを要する場合には、その含有量は、15質量%以下であることが好ましく、また、0.5質量%以上であることが好ましい。他方、負極合剤層において、硫化物系固体電解質を含有している場合、好ましいバインダの含有量は、0.3質量%以上、15質量%以下であり、より好ましい含有量は、0.7質量%以上、7質量%以下である。
 負極合剤層を有する負極においては、負極合剤層に固体電解質を含有させる。その具体例としては、正極合剤層に使用し得るものとして先に例示した固体電解質と同じものなどが挙げられる。前記例示の固体電解質の中でも、リチウムイオン伝導性が高く、また、負極合剤層の成形性を高める機能を有していることから、硫化物系固体電解質を用いることがより好ましい。
 負極合剤層における固体電解質の含有量は、4~49質量%であることが好ましい。
 負極集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタル、発泡メタル;カーボンシート;などを用いることができる。
 負極は、例えば、負極活物質、さらには必要に応じて添加される導電助剤、固体電解質およびバインダなどを溶媒に分散させた負極合剤含有組成物(ペースト、スラリーなど)を、集電体に塗布し、乾燥した後、必要に応じてカレンダ処理などの加圧成形をして、集電体の表面に負極合剤層を形成する方法によって製造することができる。
 負極合剤含有組成物の溶媒には、水やNMPなどの有機溶媒を使用することができるが、負極合剤含有組成物に固体電解質も含有させる場合の溶媒は、固体電解質を劣化させ難いものを選択することが望ましく、正極合剤含有組成物用の溶媒として先に例示した各種の溶媒と同じものを使用することが好ましい。
 また、負極集電体にパンチングメタルなどの導電性多孔質基材を使用する場合には、例えば、前記の負極合剤含有組成物を、導電性多孔質基材の空孔内に充填し、乾燥した後、必要に応じてカレンダ処理などの加圧成形をする方法で、負極を製造することができる。
 負極合剤層の厚み(集電体を有する場合は、集電体の片面当たりの厚み)は、10~1000μmであることが好ましい。また、負極の集電体の厚みは、0.01~0.1mmであることが好ましい。
 さらに、負極集電体に導電性多孔質基材を使用し、その空孔内に負極合剤含有組成物を充填する方法で得られる負極の場合、その厚みは、30~4000μmであることが好ましい。
 リチウムのシートまたはリチウム合金のシートを有する負極の場合、これらのシートのみからなるものや、これらのシートが集電体と貼り合されてなるものが使用される。
 リチウム合金に係る合金元素としては、アルミニウム、鉛、ビスマス、インジウム、ガリウムなどが挙げられるが、アルミニウムやインジウムが好ましい。リチウム合金における合金元素の割合(合金元素を複数種含む場合は、それらの合計割合)は、50原子%以下であることが好ましい(この場合、残部はリチウムおよび不可避不純物である)。
 また、リチウム合金のシートを有する負極の場合、金属リチウム箔などで構成されるリチウム層(リチウムを含む層)の表面にリチウム合金を形成するための合金元素を含む層を圧着するなどして積層した積層体を使用し、この積層体を電池内で固体電解質と接触させることで、前記リチウム層の表面にリチウム合金を形成させて負極とすることもできる。このような負極の場合、リチウム層の片面のみに合金元素を含む層を有する積層体を用いてもよく、リチウム層の両面に合金元素を含む層を有する積層体を用いてもよい。前記積層体は、例えば、金属リチウム箔と合金元素で構成された箔とを圧着することで形成することができる。
 また、電池内でリチウム合金を形成して負極とする場合にも集電体を使用することができ、例えば、負極集電体の片面にリチウム層を有し、かつリチウム層の負極集電体とは反対側の面に合金元素を含む層を有する積層体を用いてもよく、負極集電体の両面にリチウム層を有し、かつ各リチウム層の負極集電体とは反対側の面に合金元素を含む層を有する積層体を用いてもよい。負極集電体とリチウム層(金属リチウム箔)とは、圧着などにより積層すればよい。
 負極とするための前記積層体に係る前記合金元素を含む層には、例えば、これらの合金元素で構成された箔などが使用できる。前記合金元素を含む層の厚みは、1μm以上であることが好ましく、3μm以上であることがより好ましく、20μm以下であることが好ましく、12μm以下であることがより好ましい。
 負極とするための前記積層体に係るリチウム層には、例えば、金属リチウム箔などを用いることができる。リチウム層の厚みは、0.1~1.5mmであることが好ましい。また、リチウムまたはリチウム合金のシートを有する負極に係る前記シートの厚みも、0.1~1.5mmであることが好ましい。
 リチウムのシートまたはリチウム合金のシートを有する負極が集電体を有する場合、その集電体には、負極合剤層を有する負極に使用可能なものとして先に例示した集電体と同じものが使用できる。
 負極のリード体は、例えば、負極集電体の一部に負極活物質層(負極合剤層、または負極活物質となる金属のシートなどで形成された層。以下同じ。)を形成しない露出部を設けておき、これを所定の形状に切断するなどして設けてもよく、また、集電体の露出部に銅製やニッケル製の箔(板)を貼り付けて形成してもよい。電池を形成する際には、例えば負極のリード体を電池の負極外部端子(例えば、図1および図2に示すシート状電池の場合は、負極外部端子33。後記の扁平形電池の場合は、封口缶または外装缶。)と接続する。また、複数の負極を有する積層電極体を形成する際には、積層電極体を構成する全ての負極のリード体を纏めて溶接するなどして一体化し、このような積層電極体を用いて電池を形成する際には、このリード体の一体化物または積層電極体を構成する負極のうちの一部の集電体を、電池の負極外部端子と接続する。
<固体電解質層>
 固体電解質層における固体電解質には、正極の固体電解質として先に例示したものと同じもののうちの1種または2種以上を使用することができるが、正極または負極を介して隣り合う固体電解質層同士をより良好に接合する観点からは、硫化物系固体電解質を使用することが好ましい。
 また、正極または負極を介して隣り合う固体電解質層同士をより良好に接合する観点から、固体電解質層にはバインダを含有させることが好ましい。固体電解質層に含有させるバインダは、固体電解質と反応しないものが望ましく、ブチルゴム、クロロピレンゴム、アクリル樹脂およびフッ素樹脂よりなる群から選択される少なくとも一種の樹脂が好ましく用いられる。
 固体電解質層は、例えば、固体電解質を溶媒に分散させて調製した固体電解質層形成用組成物を基材や正極、負極の上に塗布して乾燥し、必要に応じてプレス処理などの加圧成形を行うことで形成することができる。
 固体電解質層形成用組成物に使用する溶媒は、固体電解質を劣化させ難いものを選択することが望ましく、正極合剤含有組成物用の溶媒として先に例示した各種の溶媒と同じものを使用することが好ましい。
 また、固体電解質層の強度をより高め、例えば、正極または負極を介して隣り合う固体電解質層同士を接合しても、割れなどの欠陥が生じることを良好に抑制する観点からは、固体電解質層が多孔質基材を含有していることが好ましい。
 多孔質基材を含有する固体電解質層は、多孔質基材と固体電解質とを含み、多孔質基材の空隙内に固体電解質が保持されている構造の固体電解質シートを用いて構成することができる。また、固体電解質シートは、多孔質基材の空隙内に固体電解質が保持されていることに加えて、多孔質基材の両面が固体電解質で覆われていることが好ましい。
 固体電解質シートに係る多孔質基材は、繊維状物で構成されたものが挙げられ、例えば、織布、不織布、メッシュなどが好ましく、これらの中でも不織布が好ましい。
 多孔質基材を構成する繊維状物の繊維径は、5μm以下であることが好ましく、また、0.5μm以上であることが好ましい。
 繊維状物の材質としては、リチウム金属と反応せず、絶縁性を有していれば特に限定されず、例えば、ポリプロピレン、ポリエチレンなどのポリオレフィン;ポリスチレン;アラミド;ポリアミドイミド;ポリイミド;ナイロン;ポリエチレンテレフタレート(PET)などのポリエステル;ポリアリレート;セルロースやセルロース変成体;などの樹脂を用いることができる。また、ガラス、アルミナ、シリカ、ジルコニアなどの無機材料であってもよい。好ましい材質は、ポリアリレートである。繊維状物には、前記例示の材質のうちの1種または2種以上で構成したものを使用することができる。また、多孔質基材は、同じ材質の繊維状物のみで構成したものであってもよく、材質の異なる2種以上の繊維状物を組み合わせて構成したものであってもよい。
 多孔質基材の目付けは、リチウムイオン伝導性を良好に確保できるだけの量の固体電解質を十分に保持できるように、10g/m以下であることが好ましく、8g/m以下であることがより好ましく、また、十分な強度を確保する観点から、3g/m以上であることが好ましく、4g/m以上であることがより好ましい。
 固体電解質シートに含有させる固体電解質は粒子であることが好ましく、そのサイズとしては、多孔質基材の空隙内への充填性をより高め、良好なリチウムイオン伝導性を確保する観点から、平均粒子径が、5μm以下であることが好ましく、2μm以下であることがより好ましい。ただし、固体電解質粒子のサイズが小さすぎると、取扱い性が低下する虞があり、また、後述するように固体電解質粒子は、多孔質基材の空隙内に良好に保持させたり、多孔質基材の表面に良好に密着させたりするために、バインダを用いて結着することが好ましいが、その場合により多くの量のバインダが必要となって抵抗値が増大したりする虞がある。よって、固体電解質粒子の平均粒子径は、0.3μm以上であることが好ましく、0.5μm以上であることがより好ましい。
 固体電解質シートにおいては、正極または負極を介して隣り合う固体電解質層同士をより良好に接合することに加えて、多孔質基材の空隙内に固体電解質を良好に保持させたり、多孔質基材の表面を覆う固体電解質の多孔質基材との密着性を向上させたりして、固体電解質シートの形状保持性を高めるために、バインダを用いて固体電解質を結着することが好ましい。
 固体電解質シートのバインダには、固体電解質層に含有させ得るものとして先に例示したものが使用できる。
 固体電解質シートにおける多孔質基材の割合(空孔部分を除く実体積の割合)は、良好なリチウムイオン伝導性を確保する観点から、30体積%以下であることが好ましく、25体積%以下であることがより好ましい。ただし、固体電解質シートにおける多孔質基材の割合が小さすぎると、固体電解質シートの形状保持性の向上効果が小さくなる虞がある。よって、固体電解質シートの強度をより高める観点からは、固体電解質シートにおける多孔質基材の割合は、5体積%以上であることが好ましく、10体積%以上であることが
より好ましい。
 また、固体電解質シートにおけるバインダの含有量は、固体電解質層同士をより良好に接合したり、固体電解質シートの形状保持性をより高めたりする観点から、固体電解質とバインダとの総量中、0.5質量%以上であることが好ましく、1質量%以上であることが好ましく、また、バインダの量をある程度制限して、リチウムイオン伝導性の低下を抑制する観点からは、10質量%以下であることが好ましく、7質量%以下であることが好ましい。
 固体電解質シートの製造方法については特に制限はないが、固体電解質および必要に応じて使用されるバインダを溶媒に分散させてスラリーなどとし、このスラリーを湿式で多孔質基材の空隙に充填しつつ、このスラリーの塗膜を多孔質基材の表面に形成する工程を備える方法で製造することが好ましい。これにより、固体電解質シートの強度が向上し、大面積の固体電解質シートの製造が容易となる。
 固体電解質を含むスラリーを多孔質基材の空隙に充填しつつ、前記スラリーの塗膜を多孔質基材の表面に形成する方法としては、スクリーン印刷法、ドクターブレード法、浸漬法などの塗工法が採用できる。
 前記スラリーは、固体電解質、さらには必要に応じてバインダを溶媒に投入し、混合して調製する。スラリーの溶媒は、固体電解質を劣化させ難いものを選択することが望ましく、正極合剤含有組成物用の溶媒として先に例示した各種の溶媒と同じものを使用することが好ましい。
 前記のように多孔質基材の空隙にスラリーを充填し、また、必要に応じて多孔質基材の表面にスラリーの塗膜を形成した後には、乾燥によってスラリーの溶媒を除去し、好ましくは加圧成形を行うことで、固体電解質シートを得ることができる。
 なお、前記の通り、固体電解質シートの製造方法は、前記の湿式法に制限されない。例えば、多孔質基材の空隙に、固体電解質(および必要に応じて使用されるバインダ)を充填するに際しては、固体電解質や固体電解質とバインダとの混合物を乾式で充填し、その後に加圧成形を行ってもよい。また、多孔質基材の表面を固体電解質で覆う場合には、固体電解質とバインダとの混合物を成形して得られるシートを、多孔質基材の空孔に固体電解質を充填したシートの表面に貼り付けてもよい。
 多孔質基材を含有しない固体電解質層の厚みは、100~300μmであることが好ましい。
 また、多孔質基材を含有する固体電解質層(固体電解質層の形成に使用される固体電解質シート)の厚みは、5μm以上であることが好ましく、10μm以上であることがより好ましく、50μm以下であることが好ましく、30μm以下であることがより好ましい。さらに、多孔質基材の厚みは、3μm以上であることが好ましく、8μm以上であることがより好ましく、45μm以下であることが好ましく、25μm以下であることがより好ましい。
<積層電極体>
 積層電極体は、(a)正極および負極を、それぞれ1個(1枚)ずつ用いて構成してもよく、(b)1個(1枚)の正極および2個(2枚)の負極を用いて構成してもよく、(c)2個(2枚)の正極および1個(1枚)の負極を用いて構成してもよく、(d)複数の正極と複数の負極とを用いて構成してもよい。
 前記(a)、(b)、(c)および(d)のいずれに態様においても、積層電極体における正極と負極との間には、固体電解質層を介在させる。よって、(a)の態様の積層電極体においては、正極と負極との間に介在する固体電解質層は1層であるが、この積層電極体の正極の外側の面(負極との対向面とは反対側の面)および/または負極の外側の面(正極との対向面とは反対側の面)にも、固体電解質層を配置する。よって、(a)の態様の積層電極体は、2層または3層の固体電解質層を有している。
 (b)の態様の積層電極体においては、正極の両面に固体電解質層を介して負極を配置する。また、(c)の態様の積層電極体においては、負極の両面に固体電解質層を介して正極を配置する。よって、(b)の態様の積層電極体および(c)の態様の積層電極体は、少なくとも2層の固体電解質層を有している。
 (d)の態様の積層電極体は、例えば、複数の正極と複数の負極とを、固体電解質層を介在させつつ交互に積層して形成する。また、(b)、(c)および(d)の態様の積層電極体においても、(a)の態様の積層電極体と同様に、積層電極体の最外部に位置する電極のうちの一方または両方の外側の面に、固体電解質層を配置することができる。
 よって、(b)、(c)および(d)の態様の積層電極体においては、複数の固体電解質層のうちの少なくとも一部が、正極と負極との間に介在している。すなわち、積層電極体の最外部に位置する電極のうちの一方または両方の外側の面に固体電解質を配置していない場合は、積層電極体の有する複数の固体電解質層の全てが、正極と負極との間に介在しているが、積層電極体の最外部に位置する電極のうちの一方または両方の外側の面に固体電解質を配置している場合は、積層電極体の有する複数の固体電解質層のうちの一部のみが、正極と負極との間に介在していることになる。
 そして、(a)、(b)、(c)および(d)のいずれの態様の積層電極体においても、正極または負極を介して隣り合う固体電解質層同士は、それらの端部で互いに接合されている。
 なお、(a)の態様の積層電極体や、(b)、(c)および(d)のいずれかの態様であって、最外部に配置される電極の外側の面に固体電解質層を配置している積層電極体の場合には、積層電極体の最外部の固体電解質層が、その内側に配置された固体電解質層と、端部で接合されているため、積層電極体内での電極の位置ずれを良好に防止できることから取り扱い性が向上し、また、積層電極体の最外部の固体電解質層の作用によって耐衝撃性が良好となる。
 固体電解質層は、隣り合う固体電解質層と端部同士で接合されることから、積層電極体の平面視(例えば、図2において、上側から下方向に向けて見た場合)で、固体電解質層が電極(正極および負極)からはみ出している。平面視で、固体電解質層の、電極からはみ出した部分の長さは、正極または負極を介して隣り合うように配置される固体電解質層と、端部で互いに接合する関係から、これらの固体電解質層の間に配置される正極または負極の厚みよりも長いことが望ましく、具体的には0.5mm以上であることが好ましい。平面視で、固体電解質層の、電極からはみ出した部分の長さの上限値については、特に制限はないが、あまり長すぎると、外装体を大きくする必要が生じることから、通常は、2.0mm以下である。
 (c)の態様の積層電極体における正極、および(d)の態様の積層電極体において最外部の電極の一方または両方を正極とする場合の正極は、図2に示すように集電体の片面に正極合剤層を有する正極であってもよく、集電体の両面に正極合剤層を有する正極であってもよい。また、(b)の態様の積層電極体における負極、および(d)の態様の積層電極体において最外部の電極の一方または両方を負極とする場合の負極は、図2に示すように集電体の片面に負極活物質層を有する負極であってもよく、集電体の両面に負極活物質層を有する負極であってもよい。
 また、積層電極体の最外部以外に配置する正極には、集電体の両面に正極合剤層を有する正極を使用してもよく、集電体の片面に正極合剤層を有する正極を使用してもよい。さらに、積層電極体の最外部以外に配置する負極についても、集電体の両面に負極活物質層を有する負極を使用してもよく、集電体の片面に負極活物質層を有する負極を使用してもよい。集電体の片面に正極合剤層を有する正極を使用し、また、集電体の片面に負極活物質層を有する負極を使用する場合、例えば、正極と負極とを、固体電解質層を介して正極合剤層と負極活物質層とが対向するように重ね合わせて形成した単位電極体を、固体電解質層を介して複数積層することで、積層電極体を形成することができる。
 (d)の態様の積層電極体が有する正極および負極の個数(枚数)については、それぞれ複数、すなわち2個以上であれば特に制限はないが、通常は、それぞれ100個以下である。
 積層電極体における固体電解質層同士の接合は、両者の端部同士を圧着(常温での圧着または熱圧着)する方法で行ってもよく、固体電解質層の端部同士を熱融着させてもよく、また、接着剤を用いて接着してもよい。なお、積層電極体を形成するに際しては、全ての層(正極、負極および固体電解質層)を積層した状態で加圧成形することが望ましいが、固体電解質層同士の端部での接合も、積層電極体全体の加圧成形の際に同時に行うことが好ましい。
 積層電極体を加圧成形し、それと同時に固体電解質層同士の端部での接合を行う際には、静水圧プレス法を採用することが好ましい。
 静水圧プレス法による積層電極体の加圧成形は、積層電極体を包装材に収容して密閉し、公知の静水圧プレス機を用いて実施することができる。静水圧プレスの条件は、例えば、温度を20~90℃とし、圧力を100~500MPaとすればよい。
<電池の形態>
 電池の形態については特に制限はなく、図1および図2に示すようなラミネートフィルム外装体を有するシート状(ラミネート形)のほかに、扁平形(コイン形、ボタン形を含む)、筒形〔円筒形、角形(角筒形)〕など、種々の形態とすることが可能である。積層電極体を内部に収容する外装体(電池ケース)には、金属ラミネートフィルムを用いたり、開口を有する金属製の缶(外装缶)と蓋(封口缶)を組み合わせて用いたりすることができる。
 具体的には、2枚の金属ラミネートフィルムを重ねるか、1枚の金属ラミネートフィルムを折り曲げ、周囲を貼り合わせて封口することにより、シート状(ラミネート形)の電池を作製することができ、外装缶と封口缶とをガスケットを介してカシメ封口したり、外装缶と封口缶とを溶接して封口したりすることにより、扁平形(コイン形、ボタン形など)や筒形の電池を作製することができる。
 なお、カシメ封口を行う形態の外装体を使用する場合、外装缶と封口缶との間に介在させるガスケットの素材には、ポリプロピレン(PP)、ナイロンなどを使用できるほか、電池の用途との関係で特に高度な耐熱性が要求される場合には、テトラフルオロエチレン-パーフルオロアルコキシエチレン共重合体(PFA)などのフッ素樹脂、ポリフェニレ
ンエーテル(PEE)、ポリスルフォン(PSF)、ポリアリレート(PAR)、ポリエーテルスルフォン(PES)、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)などの融点または熱分解温度が200℃以上の耐熱樹脂を使用することもできる。また、電池が耐熱性を要求される用途に適用される場合、その封口には、ガラスハーメチックシールを利用することもできる。
 外装体の平面視での形状は、円形でもよく、四角形(正方形・長方形)などの多角形であってもよい。また、多角形の場合には、その角を曲線状としていてもよい。
 以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。
実施例1
<固体電解質シートの作製>
 溶媒としてキシレン(「超脱水」グレード)を用い、平均粒子径1μmの硫化物系固体電解質(LiPSCl)の粒子と、アクリル樹脂バインダと、分散剤とを、質量比で100:3:1の割合とし、かつ固形分比が40%となるように混合し、シンキーミキサーで10分間攪拌して均一なスラリーを調製した。このスラリー中に、厚み:15μmで目付:8g/mのPET製不織布(廣瀬製紙社製「05TH-8」)を通し、その後にアプリケータを用いて40μmのギャップを通して引き上げることで、PET不織布にスラリーを塗布した後、120℃で1時間の真空乾燥を行って固体電解質シートを得た。固体電解質シートにおける固体電解質粒子とバインダとの総量中、バインダの割合は2.9質量%であった。得られた固体電解質シートは55×55mmの大きさに切断して、後述する電池の組み立てに使用した。
<正極の作製>
 溶媒としてキシレン(「超脱水」グレード)を用い、表面にLiとNbの非晶質複合酸化物が形成された平均粒子径3μmのLiNi0.6Co0.2Mn0.2と、硫化物固体電解質(LiPSCl)、導電助剤であるカーボンナノチューブ〔昭和電工社製「VGCF」(商品名)〕と、アクリル樹脂バインダとを、質量比で70:24:3:3の割合とし、固形分比が60%となるように混合し、シンキーミキサーで10分間撹拌して均一なスラリーを調製した。このスラリーを、厚みが20μmのAl箔上にアプリケータを用いてギャップを200μmとして塗布し、120℃で真空乾燥を行って、集電体の片面に正極合剤層を有する正極を得た。なお、集電体となるAl箔上に前記スラリーを塗布する際には、Al箔の一部に、リード体として利用するための露出部が残るようにした。そして、50×50mmの正極合剤層が形成された本体部と、10×20mmのリード体(集電体の露出部)とを有する形状に切断して、電池用正極を得た。
<負極の作製>
 溶媒としてキシレン(「超脱水」グレード)を用い、平均粒子径20μmの黒鉛と、硫化物固体電解質(LiPSCl)と、導電助剤であるカーボンナノチューブ〔昭和電工社製「VGCF」(商品名)〕と、アクリル樹脂バインダとを、質量比で50:44:3:3の割合とし、固形分比が50%となるように混合し、シンキーミキサーで10分間撹拌して均一なスラリーを調製した。このスラリーを、厚みが20μmのSUS箔上にアプリケータを用いてギャップを160μmとして塗布し、120℃で真空乾燥を行って、集電体の片面に負極合剤層を有する負極を得た。なお、集電体となるSUS箔上に前記スラリーを塗布する際には、SUS箔の一部に、リード体として利用するための露出部が残るようにした。そして、52×52mmの負極合剤層が形成された本体部と、10×20mmのリード体(集電体の露出部)とを有する形状に切断して、電池用負極を得た。
<電池の組み立て>
 前記の正極と前記の負極とを、前記の固体電解質シートを介し、正極合剤層と負極合剤層とが対向するように重ね合わせ、加圧処理を行って形成した単位電極体を4個用意し、これらの単位電極体を、前記の固体電解質シートを介して重ね合わせた後に、アルミニウムラミネートフィルムの袋に入れて密封し、温度:25℃、圧力:300MPaの条件で静水圧プレスを行った。静水圧プレス後の積層体を袋から取り出し、全ての正極のリード体を纏めて正極外部端子となるアルミニウム製の板(大きさ:5×70mm、厚み:0.3mm)に溶接し、また、全ての負極のリード体を纏めて負極外部端子となるニッケル製の板(大きさ:5×70mm、厚み:0.3mm)に溶接して、積層電極体を得た。得られた積層電極体においては、各固体電解質層が、正極または負極を介して隣り合う固体電解質層と、リード体が位置している箇所を除いて互いの端部において接合されており、接合している部分の長さは、固体電解質層の全周長さのうちの91%であった。また、固体電解質層の接合部分の幅は、固体電解質層の端から1~2mmであった。
 四角形の2枚のアルミニウムラミネートフィルムを用意し、その一方の上に前記の積層電極体を、正極外部端子の片端側および負極外部端子の片端側が外部に突出するように載置し、その上にもう一方のアルミニウムラミネートフィルムを重ねた。そして、2枚のアルミニウムラミネートフィルム同士の四辺の端部を熱融着して、ラミネートフィルム外装体内に積層電極体が収容された電池(全固体二次電池)を得た。
実施例2
 固体電解質シートを54.5×54.5mmの大きさに切断して使用した以外は、実施例1と同様にして電池(全固体二次電池)を作製した。隣り合う固体電解質層と接合している部分の長さは、固体電解質層の全周長さのうちの79%であった。また、固体電解質層の接合部分の幅は、固体電解質層の端から0.7~1.6mmであった。
実施例3
 固体電解質シートを54×54mmの大きさに切断して使用した以外は、実施例1と同様にして電池(全固体二次電池)を作製した。隣り合う固体電解質層と接合している部分の長さは、固体電解質層の全周長さのうちの58%であった。また、固体電解質層の接合部分の幅は、固体電解質層の端から0.5~1.2mmであった。
比較例1
 正極、固体電解質層および負極を有する単位電極体を4個積層して得られた積層体について、静水圧プレスを行わなかった以外は、実施例1と同様にして電池(全固体二次電池)を作製した。
 実施例1~3および比較例1の電池について、0.05Cの電流値で電圧が4.2Vになるまで定電流充電を行い、続いて4.2Vの電圧で電流値が0.01Cになるまで定電圧充電を行い、その後0.1Cの電流値で電圧が2.0Vになるまで定電流放電を行って、放電容量(0.1C放電容量)を測定した。
 また、0.1C放電容量測定後の各電池について、0.1C放電容量測定時と同じ条件で定電流充電および定電圧充電を行い、その後に、5Cの電流値で電圧が2.0Vになるまで定電流放電を行い、放電容量(5C放電容量)を測定した。そして、各電池について、5C放電容量を0.1C放電容量で除した値を百分率で表して容量維持率を求め、電池の出力特性を評価した。前記の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示す通り、各固体電解質層が、正極または負極を介して隣り合う固体電解質層と端部で接合している積層電極体を有する実施例1~3の電池は、各固体電解質層が他の固体電解質層と接合していない積層電極体を用いた比較例1の電池に比べて、出力特性評価時の容量維持率が高く、優れた出力特性を有していた。
 本発明は、その趣旨を逸脱しない範囲で、前記以外の形態としても実施が可能である。本出願に開示された実施形態は一例であって、本発明は、これらの実施形態には限定されない。本発明の範囲は、前記の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれる。
 本発明の電池は、従来から知られている一次電池や二次電池と同様の用途に適用し得るが、有機電解液に代えて固体電解質を有していることから耐熱性に優れており、高温に曝されるような用途に好ましく使用することができる。
   1  電池
   2A、2B  正極
  21  正極合剤層
  22  正極集電体
  23  正極外部端子
   3A、3B  負極
  31  負極合剤層
  32  負極集電体
  33  負極外部端子
   4  固体電解質層
   5  積層電極体
   6  ラミネートフィルム外装体

Claims (7)

  1.  正極と、負極と、正極または負極を介して隣り合う複数の固体電解質層とを有する積層電極体を備え、
     正極または負極を介して隣り合う前記固体電解質層同士は、端部の少なくとも一部で互いに接合していることを特徴とする電池。
  2.  前記固体電解質層は、バインダを含有している請求項1に記載の電池。
  3.  前記固体電解質層は、硫化物系固体電解質を含有している請求項1に記載の電池。
  4.  正極または負極を介して隣り合う前記固体電解質層同士は、全周の長さのうちの50%以上の長さの部分で、互いに接合している請求項1に記載の電池。
  5.  正極または負極を介して隣り合う前記固体電解質層同士は、全周の長さのうちの75%以上の長さの部分で、互いに接合している請求項1に記載の電池。
  6.  正極または負極を介して隣り合う前記固体電解質層同士は、全周の長さのうちの90%以上の長さの部分で、互いに接合している請求項1に記載の電池。
  7.  前記正極および前記負極を、それぞれ複数有し、前記複数の固体電解質層のうちの少なくとも一部が前記正極と前記負極の間に介在する請求項1に記載の電池。
PCT/JP2023/002191 2022-02-01 2023-01-25 電池 WO2023149290A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-014272 2022-02-01
JP2022014272 2022-02-01

Publications (1)

Publication Number Publication Date
WO2023149290A1 true WO2023149290A1 (ja) 2023-08-10

Family

ID=87552167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002191 WO2023149290A1 (ja) 2022-02-01 2023-01-25 電池

Country Status (1)

Country Link
WO (1) WO2023149290A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042880A (ja) * 2000-07-27 2002-02-08 Mitsubishi Cable Ind Ltd 電極積層体、およびそれを用いたシート状ポリマー電池
JP2020149867A (ja) * 2019-03-13 2020-09-17 マクセルホールディングス株式会社 全固体リチウム二次電池およびその製造方法
JP2021150204A (ja) * 2020-03-19 2021-09-27 マクセルホールディングス株式会社 全固体リチウム二次電池及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042880A (ja) * 2000-07-27 2002-02-08 Mitsubishi Cable Ind Ltd 電極積層体、およびそれを用いたシート状ポリマー電池
JP2020149867A (ja) * 2019-03-13 2020-09-17 マクセルホールディングス株式会社 全固体リチウム二次電池およびその製造方法
JP2021150204A (ja) * 2020-03-19 2021-09-27 マクセルホールディングス株式会社 全固体リチウム二次電池及びその製造方法

Similar Documents

Publication Publication Date Title
KR102648753B1 (ko) 고체 전해질 시트 및 전고체 리튬 이차전지
JP6206237B2 (ja) 全固体電池の製造方法
JP7345263B2 (ja) 全固体リチウム二次電池の製造方法
JP2021150204A (ja) 全固体リチウム二次電池及びその製造方法
WO2023054333A1 (ja) 全固体電池
JP2022545706A (ja) 全固体電池用リチウム金属単位セルの製造方法及びそれによって製造された単位セル
JP2020126790A (ja) 全固体リチウム二次電池
WO2023149290A1 (ja) 電池
JP7374664B2 (ja) 固体電解質シートおよび全固体リチウム二次電池
WO2023054293A1 (ja) 全固体電池
JP2021144924A (ja) 全固体電池用電極および全固体電池
WO2023189693A1 (ja) 電池およびその製造方法
WO2021241423A1 (ja) 全固体二次電池用負極、その製造方法および全固体二次電池
WO2022092055A1 (ja) 全固体二次電池用負極および全固体二次電池
WO2024004877A1 (ja) 電極積層体の製造方法、電気化学素子およびその製造方法
WO2024101355A1 (ja) 全固体電池
JP2021039860A (ja) 全固体電池用負極および全固体電池
WO2023238926A1 (ja) 電極積層体、その製造方法および電気化学素子
JP7376393B2 (ja) 全固体二次電池用正極および全固体二次電池
WO2024071175A1 (ja) 合金形成用積層シート、非水電解質電池用負極の製造方法および非水電解質電池の製造方法
WO2023042579A1 (ja) 電池
WO2024024728A1 (ja) 電気化学素子、その製造方法および電気化学素子のモジュール
WO2023042640A1 (ja) 電池およびその使用方法、並びに電池のシステム
JP2023047443A (ja) 全固体電池
JP2022140017A (ja) 全固体電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749606

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023578495

Country of ref document: JP

Kind code of ref document: A