WO2023149290A1 - 電池 - Google Patents
電池 Download PDFInfo
- Publication number
- WO2023149290A1 WO2023149290A1 PCT/JP2023/002191 JP2023002191W WO2023149290A1 WO 2023149290 A1 WO2023149290 A1 WO 2023149290A1 JP 2023002191 W JP2023002191 W JP 2023002191W WO 2023149290 A1 WO2023149290 A1 WO 2023149290A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solid electrolyte
- negative electrode
- positive electrode
- layer
- battery
- Prior art date
Links
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 211
- 239000011230 binding agent Substances 0.000 claims description 33
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 13
- 239000000203 mixture Substances 0.000 description 91
- 239000000758 substrate Substances 0.000 description 35
- 229910052744 lithium Inorganic materials 0.000 description 30
- 239000002904 solvent Substances 0.000 description 26
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 23
- 239000002002 slurry Substances 0.000 description 21
- 239000002245 particle Substances 0.000 description 19
- 239000007774 positive electrode material Substances 0.000 description 19
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 17
- 229910001416 lithium ion Inorganic materials 0.000 description 17
- 229910052751 metal Inorganic materials 0.000 description 17
- 239000002184 metal Substances 0.000 description 17
- 229910052782 aluminium Inorganic materials 0.000 description 16
- 238000000034 method Methods 0.000 description 16
- 239000011888 foil Substances 0.000 description 14
- 239000005001 laminate film Substances 0.000 description 14
- 239000007773 negative electrode material Substances 0.000 description 14
- 239000000463 material Substances 0.000 description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 12
- 229910000733 Li alloy Inorganic materials 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 11
- 239000001989 lithium alloy Substances 0.000 description 11
- 238000007789 sealing Methods 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- 239000010955 niobium Substances 0.000 description 9
- 239000011148 porous material Substances 0.000 description 9
- -1 Co Substances 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 8
- 239000010949 copper Substances 0.000 description 8
- 238000000465 moulding Methods 0.000 description 8
- 239000010936 titanium Substances 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 238000005275 alloying Methods 0.000 description 7
- 229910052758 niobium Inorganic materials 0.000 description 7
- 239000003960 organic solvent Substances 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 229910052718 tin Inorganic materials 0.000 description 7
- 229910052719 titanium Inorganic materials 0.000 description 7
- 229910052725 zinc Inorganic materials 0.000 description 7
- 229910052726 zirconium Inorganic materials 0.000 description 7
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 6
- 229910052787 antimony Inorganic materials 0.000 description 6
- 229910052733 gallium Inorganic materials 0.000 description 6
- 229910052732 germanium Inorganic materials 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 229910052749 magnesium Inorganic materials 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 229910052720 vanadium Inorganic materials 0.000 description 6
- 239000004925 Acrylic resin Substances 0.000 description 5
- 229920000178 Acrylic resin Polymers 0.000 description 5
- 229910052788 barium Inorganic materials 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 230000002706 hydrostatic effect Effects 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- 229910052750 molybdenum Inorganic materials 0.000 description 5
- 238000003825 pressing Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 239000002657 fibrous material Substances 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- 238000010030 laminating Methods 0.000 description 4
- 239000011572 manganese Substances 0.000 description 4
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 4
- 239000004745 nonwoven fabric Substances 0.000 description 4
- 229920001230 polyarylate Polymers 0.000 description 4
- 238000004080 punching Methods 0.000 description 4
- 230000001629 suppression Effects 0.000 description 4
- 239000008096 xylene Substances 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000001339 alkali metal compounds Chemical class 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 238000003490 calendering Methods 0.000 description 3
- 239000002134 carbon nanofiber Substances 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000006258 conductive agent Substances 0.000 description 3
- 238000002788 crimping Methods 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000005486 organic electrolyte Substances 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 238000001291 vacuum drying Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- LYQFWZFBNBDLEO-UHFFFAOYSA-M caesium bromide Chemical compound [Br-].[Cs+] LYQFWZFBNBDLEO-UHFFFAOYSA-M 0.000 description 2
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010277 constant-current charging Methods 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 150000004678 hydrides Chemical class 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 238000000462 isostatic pressing Methods 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 2
- 239000011255 nonaqueous electrolyte Substances 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 229920001955 polyphenylene ether Polymers 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- JAAGVIUFBAHDMA-UHFFFAOYSA-M rubidium bromide Chemical compound [Br-].[Rb+] JAAGVIUFBAHDMA-UHFFFAOYSA-M 0.000 description 2
- FGDZQCVHDSGLHJ-UHFFFAOYSA-M rubidium chloride Chemical compound [Cl-].[Rb+] FGDZQCVHDSGLHJ-UHFFFAOYSA-M 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- 239000002203 sulfidic glass Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- WNYHOOQHJMHHQW-UHFFFAOYSA-N 1-chloropyrene Chemical compound C1=C2C(Cl)=CC=C(C=C3)C2=C2C3=CC=CC2=C1 WNYHOOQHJMHHQW-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910005839 GeS 2 Inorganic materials 0.000 description 1
- 229910000846 In alloy Inorganic materials 0.000 description 1
- 239000002227 LISICON Substances 0.000 description 1
- 229910018111 Li 2 S-B 2 S 3 Inorganic materials 0.000 description 1
- 229910007786 Li2WO4 Inorganic materials 0.000 description 1
- 229910011790 Li4GeO4 Inorganic materials 0.000 description 1
- 229910010238 LiAlCl 4 Inorganic materials 0.000 description 1
- 229910015645 LiMn Inorganic materials 0.000 description 1
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 1
- 229910003327 LiNbO3 Inorganic materials 0.000 description 1
- 229910011328 LiNi0.6Co0.2Mn0.2O2 Inorganic materials 0.000 description 1
- 229910012657 LiTiO3 Inorganic materials 0.000 description 1
- 229910021543 Nickel dioxide Inorganic materials 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910020346 SiS 2 Inorganic materials 0.000 description 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical class [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- MTZQAAYXCJMINQ-UHFFFAOYSA-N azanide;rubidium(1+) Chemical compound [NH2-].[Rb+] MTZQAAYXCJMINQ-UHFFFAOYSA-N 0.000 description 1
- NFMAZVUSKIJEIH-UHFFFAOYSA-N bis(sulfanylidene)iron Chemical compound S=[Fe]=S NFMAZVUSKIJEIH-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Inorganic materials [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 description 1
- XQPRBTXUXXVTKB-UHFFFAOYSA-M caesium iodide Inorganic materials [I-].[Cs+] XQPRBTXUXXVTKB-UHFFFAOYSA-M 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- HOVYSSCJTQTKMV-UHFFFAOYSA-N cesium azanide Chemical compound [NH2-].[Cs+] HOVYSSCJTQTKMV-UHFFFAOYSA-N 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- CKFRRHLHAJZIIN-UHFFFAOYSA-N cobalt lithium Chemical compound [Li].[Co] CKFRRHLHAJZIIN-UHFFFAOYSA-N 0.000 description 1
- 239000002482 conductive additive Substances 0.000 description 1
- 238000010281 constant-current constant-voltage charging Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical class [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000007888 film coating Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229920006015 heat resistant resin Polymers 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- LHJOPRPDWDXEIY-UHFFFAOYSA-N indium lithium Chemical compound [Li].[In] LHJOPRPDWDXEIY-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910000339 iron disulfide Inorganic materials 0.000 description 1
- AFRJJFRNGGLMDW-UHFFFAOYSA-N lithium amide Chemical compound [Li+].[NH2-] AFRJJFRNGGLMDW-UHFFFAOYSA-N 0.000 description 1
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Inorganic materials [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 1
- 229910001386 lithium phosphate Inorganic materials 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical class [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical class [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 229920011301 perfluoro alkoxyl alkane Polymers 0.000 description 1
- 229920013653 perfluoroalkoxyethylene Polymers 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 239000003880 polar aprotic solvent Substances 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- AHLATJUETSFVIM-UHFFFAOYSA-M rubidium fluoride Inorganic materials [F-].[Rb+] AHLATJUETSFVIM-UHFFFAOYSA-M 0.000 description 1
- WFUBYPSJBBQSOU-UHFFFAOYSA-M rubidium iodide Inorganic materials [Rb+].[I-] WFUBYPSJBBQSOU-UHFFFAOYSA-M 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- PGWMQVQLSMAHHO-UHFFFAOYSA-N sulfanylidenesilver Chemical class [Ag]=S PGWMQVQLSMAHHO-UHFFFAOYSA-N 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- RIUWBIIVUYSTCN-UHFFFAOYSA-N trilithium borate Chemical compound [Li+].[Li+].[Li+].[O-]B([O-])[O-] RIUWBIIVUYSTCN-UHFFFAOYSA-N 0.000 description 1
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 1
- 230000036642 wellbeing Effects 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/18—Cells with non-aqueous electrolyte with solid electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to batteries with excellent output characteristics.
- lithium-ion secondary battery that uses an organic electrolyte containing an organic solvent and a lithium salt is widely used.
- lithium-ion secondary batteries are required to have a longer life and a higher capacity, as well as to ensure battery reliability.
- the organic electrolyte used in lithium-ion secondary batteries contains an organic solvent, which is a combustible substance. or the battery may catch fire.
- Batteries using solid electrolytes are not only highly safe, but also highly reliable, highly resistant to environmental conditions, and have a long service life. It is expected to be a maintenance-free battery that can By providing such batteries to society, among the 17 Sustainable Development Goals (SDGs) established by the United Nations, Goal 3 (ensure healthy lives and promote well-being for all at all ages). Goal 7 (Ensure access to affordable, reliable, sustainable and modern energy for all), Goal 11 (Inclusive, Safe, Resilient and Sustainable Cities and Human Settlements). and achieve Goal 12 (Ensure sustainable production and consumption patterns).
- SDGs Sustainable Development Goals
- Patent Document 2 In addition, in a battery using a solid electrolyte, there is also a proposal to stack a plurality of laminates each composed of a positive electrode, a solid electrolyte layer, and a negative electrode (Patent Document 2).
- the present invention has been made in view of the above circumstances, and its object is to provide a battery with excellent output characteristics.
- the battery of the present invention includes a laminated electrode body having a positive electrode, a negative electrode, and a plurality of solid electrolyte layers adjacent to each other via a positive electrode or a negative electrode, and the solid electrolyte layers adjacent to each other via a positive electrode or a negative electrode are separated from each other by an edge. It is characterized in that at least part of the parts are joined to each other.
- FIG. 1 is a plan view schematically showing an example of a battery of the present invention
- FIG. FIG. 2 is a sectional view taken along the line II of FIG. 1;
- the battery of the present invention includes a laminated electrode body having a positive electrode, a negative electrode, and a plurality of solid electrolyte layers adjacent to each other via the positive electrode or the negative electrode.
- the solid electrolyte layers adjacent to each other via the positive electrode or the negative electrode are joined to each other at least partly at the ends.
- the battery of the present invention the mobility of lithium ions between the positive electrode and the solid electrolyte layer and between the negative electrode and the solid electrolyte layer can be maintained satisfactorily, so that excellent output characteristics can be exhibited. .
- bonding between the ends of the solid electrolyte layers means that the solid electrolyte layers are in close contact with each other at the bonding portion to such an extent that they do not peel off during normal use of the battery, for example. means.
- FIG. 1 and 2 show drawings schematically showing an example of the battery of the present invention.
- 1 is a plan view of the battery
- FIG. 2 is a sectional view taken along the line II of FIG.
- a negative electrode 3B laminated on the lower side with a solid electrolyte layer 4 interposed therebetween and having a negative electrode mixture layer 31 on one side of a current collector 32 has a solid electrolyte layer 4 on the upper side of a positive electrode 2A arranged on the upper side in the figure. It has a laminated electrode body 5 laminated with an intervening layer.
- the laminated electrode body 5 is housed in a laminate film exterior body 6 composed of two metal laminate films to form the battery 1 .
- FIG. 2 does not show each layer of the metal laminate film forming the laminate film exterior body 6 .
- the current collectors 22 of the positive electrodes 2A and 2B are provided with exposed portions where the positive electrode mixture layer 21 is not formed, and these are collectively connected as lead bodies to the positive electrode external terminal 23.
- the negative electrodes 3A and 3B of the laminated electrode body are also provided with an exposed portion on the current collector where the negative electrode mixture layer is not formed, and these are combined as a lead body and connected to the negative electrode external terminal 33 inside the battery 1 .
- One end of each of the positive electrode external terminal 23 and the negative electrode external terminal 33 is drawn out of the laminate film exterior body 6 so as to be connectable to an external device or the like.
- the solid electrolyte layers 4 adjacent to each other via the positive electrode 2A or the negative electrode 3A are joined to each other at least part of their ends, that is, the ends on the left side in FIG. ing. 2A and 2B in the solid electrolyte layer 4, the current collector 22, which plays the role of the lead body of the positive electrode 2A, is connected to the positive electrode external terminal 23, so that the portion through which the current collector 22 passes Then, the solid electrolyte layers 4 adjacent to each other cannot be joined.
- the solid electrolyte layers adjacent to each other via the positive electrode or the negative electrode are joined to each other at least partly at the ends, thereby forming the positive electrode and the solid electrolyte layer in the laminated electrode body. and the adhesion between the negative electrode and the solid electrolyte layer can be maintained, thereby improving the output characteristics of the battery.
- the region where the solid electrolyte layers adjacent to each other through the positive electrode or the negative electrode are bonded to each other should account for 50% of the length of the entire circumference of the solid electrolyte layer.
- the end portions of the solid electrolyte layers adjacent to each other with the positive electrode or negative electrode interposed therebetween are joined at all portions except for the portion where the current collector (lead body) connected to the electrode external terminal is arranged. preferable.
- the width of the portion where the solid electrolyte layers are bonded is preferably 0.5 mm or more, more preferably 1.0 mm or more.
- the batteries of the present invention include primary batteries and secondary batteries.
- ⁇ Positive electrode> For the positive electrode of the battery, for example, one having a structure in which a positive electrode mixture layer containing a positive electrode active material and a solid electrolyte is formed on one side or both sides of a current collector can be used.
- the same positive electrode active material used in conventionally known non-aqueous electrolyte primary batteries can be used.
- manganese dioxide, lithium-containing manganese oxide for example, LiMn 3 O 6 , or the same crystal structure as manganese dioxide ( ⁇ -type, ⁇ -type, or a structure in which ⁇ -type and ⁇ -type are mixed) is used.
- a composite oxide having a Li content of 3.5% by mass or less, preferably 2% by mass or less, more preferably 1.5% by mass or less, and particularly preferably 1% by mass or less], Li a Ti Lithium-containing composite oxides such as 5/3 O 4 (4/3 ⁇ a ⁇ 7/3); vanadium oxides; niobium oxides; titanium oxides; sulfides such as iron disulfide ; silver sulfides such as S; nickel oxides such as NiO2 ;
- the battery when the battery is a secondary battery, the same positive electrode active material used in conventionally known non-aqueous electrolyte secondary batteries, that is, an active material capable of absorbing and releasing Li (lithium) ions, can be used. things can be used.
- Li 1-x M r Mn 2-r O 4 (where M is Li, Na, K, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Zr, Fe, Co , Ni, Cu, Zn, Al, Sn, Sb, In, Nb, Ta, Mo, W, Y, Ru and Rh, wherein 0 ⁇ x ⁇ 1,0 ⁇ r ⁇ 1), Li r Mn (1-st) Ni s M t O (2-u) F v (where M is Co, Mg, Al , B, Ti, V, Cr, Fe, Cu, Zn, Zr, Mo, Sn, Ca, Sr and W, and 0 ⁇ r ⁇ 1.2,0 ⁇ s ⁇ 0.5, 0 ⁇ t ⁇ 0.5, u + v ⁇ 1, ⁇ 0.1 ⁇ u ⁇ 0.2, 0 ⁇ v ⁇ 0.1), Li 1-x Co 1-rM r O 2 , where M is from the group consisting of Al, Mg, Ti,
- the average particle size of the positive electrode active material is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, and preferably 10 ⁇ m or less, and 8 ⁇ m or less. is more preferable.
- the positive electrode active material may be primary particles or secondary particles obtained by agglomeration of primary particles. When a positive electrode active material having an average particle size in the above range is used, a large interface with the solid electrolyte contained in the positive electrode can be obtained, so that the output characteristics of the battery are further improved.
- the average particle size of the positive electrode active material and other particles (negative electrode active material, solid electrolyte, etc.) referred to in this specification is measured using a particle size distribution analyzer (Microtrac particle size distribution analyzer "HRA9320" manufactured by Nikkiso Co., Ltd.). means the 50% diameter value (D 50 ) in the integrated fraction based on volume when the integrated volume is determined from particles with a small particle size.
- the positive electrode active material preferably has a reaction suppression layer on its surface for suppressing reaction with the solid electrolyte contained in the positive electrode.
- the solid electrolyte may oxidize to form a resistance layer, which may reduce the lithium ion conductivity in the positive electrode mixture layer.
- a reaction suppression layer that suppresses reaction with the solid electrolyte is provided on the surface of the positive electrode active material to prevent direct contact between the positive electrode active material and the solid electrolyte. A decrease in ionic conductivity can be suppressed.
- the reaction suppression layer may be composed of a material that has lithium ion conductivity and that can suppress the reaction between the positive electrode active material and the solid electrolyte.
- Materials that can constitute the reaction suppression layer include, for example, oxides containing Li and at least one element selected from the group consisting of Nb, P, B, Si, Ge, Ti and Zr, more specifically include Nb-containing oxides such as LiNbO3, Li3PO4 , Li3BO3 , Li4SiO4 , Li4GeO4 , LiTiO3 , LiZrO3 , Li2WO4 and the like .
- the reaction-suppressing layer may contain only one of these oxides, or may contain two or more of these oxides. may form Among these oxides, Nb-containing oxides are preferably used, and LiNbO 3 is more preferably used.
- the reaction suppressing layer is preferably present on the surface in an amount of 0.1 to 1.0 parts by mass with respect to 100 parts by mass of the positive electrode active material. Within this range, the reaction between the positive electrode active material and the solid electrolyte can be satisfactorily suppressed.
- Examples of methods for forming a reaction-suppressing layer on the surface of the positive electrode active material include the sol-gel method, mechanofusion method, CVD method, PVD method, and ALD method.
- the content of the positive electrode active material in the positive electrode mixture layer is preferably 60 to 98% by mass.
- the positive electrode mixture layer can contain a conductive aid.
- a conductive aid include carbon materials such as graphite (natural graphite, artificial graphite), graphene, carbon black, carbon nanofiber, and carbon nanotube.
- carbon materials such as graphite (natural graphite, artificial graphite), graphene, carbon black, carbon nanofiber, and carbon nanotube.
- the content is preferably 1 to 10% by mass.
- the positive electrode mixture layer can contain a binder.
- a binder include fluororesins such as polyvinylidene fluoride (PVDF) and acrylic resins.
- PVDF polyvinylidene fluoride
- acrylic resins acrylic resins.
- the positive electrode mixture layer may not contain a binder.
- a binder When a binder is required in the positive electrode mixture layer, its content is preferably 15% by mass or less, and preferably 0.5% by mass or more. On the other hand, when the positive electrode material mixture layer contains a sulfide-based solid electrolyte, the content of the binder is preferably 0.1% by mass or more and 15% by mass or less, and a more preferable content is 0.5%. It is more than mass % and below 5 mass %.
- the solid electrolyte to be contained in the positive electrode mixture layer is not particularly limited as long as it has lithium ion conductivity. Electrolytes and the like can be used.
- Sulfide-based solid electrolytes include particles of Li 2 SP 2 S 5 , Li 2 S--SiS 2 , Li 2 SP 2 S 5 -GeS 2 , Li 2 S--B 2 S 3 -based glasses, and the like.
- thio-LISICON type materials Li 10 GeP 2 S 12 , Li 9.54 Si 1.74 P 1.44 S 11.7 Cl 0 , which have recently attracted attention as having high lithium ion conductivity Li 12-12a-b+c+6d-e M 1 3+a-b-c-d M 2 b M 3 c M 4 d M 5 12-e X e , such as .3 , where M 1 is Si, Ge or Sn; M2 is P or V, M3 is Al, Ga, Y or Sb, M4 is Zn, Ca, or Ba, M5 is either S or S and O, X is F, Cl, Br or I, 0 ⁇ a ⁇ 3, 0 ⁇ b+c+d ⁇ 3, 0 ⁇ e ⁇ 3] and aldirodite type [Li 7-f+g PS 6-x Cl x+y such as Li 6 PS 5 Cl (where 0.
- Examples of hydride-based solid electrolytes include LiBH 4 , solid solutions of LiBH 4 and the following alkali metal compounds (for example, those having a molar ratio of LiBH 4 and alkali metal compounds of 1:1 to 20:1), and the like. mentioned.
- alkali metal compounds in the solid solution include lithium halides (LiI, LiBr, LiF, LiCl, etc.), rubidium halides (RbI, RbBr, RbF, RbCl, etc.), and cesium halides (CsI, CsBr, CsF, CsCl, etc.). , lithium amide, rubidium amide and cesium amide.
- known compounds described in, for example, International Publication No. 2020/070958 and International Publication No. 2020/070955 can be used.
- oxide-based solid electrolytes examples include garnet-type Li 7 La 3 Zr 2 O 12 , NASICON-type Li 1+O Al 1+O Ti 2-O (PO 4 ) 3 , Li 1+p Al 1+p Ge 2-p (PO 4 ) 3 and perovskite-type Li 3q La 2/3-q TiO 3 .
- solid electrolyte only one of the above examples may be used, or two or more may be used in combination.
- sulfide-based solid electrolytes are preferred because of their high lithium-ion conductivity, and sulfide-based solid electrolytes containing Li and P are more preferred, particularly those having high lithium-ion conductivity and chemical stability. Aldirodite-type sulfide-based solid electrolytes with high properties are more preferable.
- the content of the solid electrolyte in the positive electrode mixture layer is preferably 4-40% by mass.
- metal foil such as aluminum and stainless steel, punching metal, mesh, expanded metal, foam metal, carbon sheet, and the like can be used.
- a positive electrode mixture-containing composition obtained by dispersing a positive electrode active material and a solid electrolyte, a conductive agent, a binder, etc. added as necessary in a solvent is applied to a current collector. After coating and drying, pressure molding such as calendering may be performed as necessary to form a positive electrode material mixture layer on the surface of the current collector.
- Organic solvents such as water and N-methyl-2-pyrrolidone (NMP) can be used as the solvent for the composition containing the positive electrode mixture.
- NMP N-methyl-2-pyrrolidone
- sulfide-based solid electrolytes and hydride-based solid electrolytes are represented by hydrocarbon solvents such as hexane, heptane, octane, nonane, decane, decalin, toluene, and xylene, since chemical reactions occur with minute amounts of moisture. Preference is given to using non-polar aprotic solvents.
- a super-dehydrated solvent with a water content of 0.001% by mass (10 ppm) or less.
- fluorine-based solvents such as “Vertrel (registered trademark)” manufactured by Mitsui-DuPont Fluorochemicals, “Zeorolla (registered trademark)” manufactured by Nippon Zeon, “Novec (registered trademark)” manufactured by Sumitomo 3M, and , dichloromethane, and diethyl ether can also be used.
- the positive electrode mixture-containing composition is filled into the pores of the conductive porous substrate, After drying, the positive electrode can also be manufactured by a method of pressure molding such as calendering, if necessary.
- the thickness of the positive electrode mixture layer (the thickness per side of the current collector when it has a current collector) is preferably 10 to 1000 ⁇ m. Moreover, the thickness of the positive electrode current collector is preferably 0.01 to 0.1 mm.
- the thickness thereof is 30 to 4000 ⁇ m. preferable.
- the lead body of the positive electrode may be provided, for example, by providing an exposed portion in which the positive electrode mixture layer is not formed in a part of the positive electrode current collector, and cutting this into a predetermined shape. It may be formed by bonding an aluminum or nickel foil (plate) to the exposed portion of the body.
- the lead body of the positive electrode is connected to the positive electrode external terminal of the battery (for example, in the case of the sheet-shaped battery shown in FIGS. 1 and 2, the positive electrode external terminal 23. In the case of the flat battery described later, (sealing can or outer can).
- the lead bodies of all the positive electrodes constituting the laminated electrode body are integrated by welding or the like together, and the battery is formed using such a laminated electrode body.
- a part of the current collector of the positive electrode that constitutes the integrated lead body or the laminated electrode body is connected to the positive electrode external terminal of the battery.
- a structure having a negative electrode mixture layer containing a negative electrode active material on one or both sides of a current collector, a lithium sheet, or a lithium alloy sheet can be used.
- examples of negative electrode active materials include carbon materials such as graphite, simple substances containing elements such as Si and Sn, compounds (such as oxides), and alloys thereof. Lithium metal and lithium alloys (lithium-aluminum alloy, lithium-indium alloy, etc.) can also be used as the negative electrode active material.
- the content of the negative electrode active material in the negative electrode mixture layer is preferably 10 to 99% by mass.
- the negative electrode mixture layer can contain a conductive aid. Specific examples thereof include the same conductive aids exemplified above as those that can be contained in the positive electrode mixture layer.
- the content of the conductive aid in the negative electrode mixture layer is preferably 1 to 10% by mass.
- the negative electrode mixture layer can contain a binder. Specific examples thereof include the same binders as previously exemplified as those that can be contained in the positive electrode mixture layer.
- the negative electrode mixture layer contains a sulfide-based solid electrolyte (described later), good moldability can be secured in forming the negative electrode mixture layer without using a binder.
- the negative electrode mixture layer may not contain a binder.
- a binder When a binder is required in the negative electrode mixture layer, its content is preferably 15% by mass or less, and preferably 0.5% by mass or more.
- the preferable binder content is 0.3% by mass or more and 15% by mass or less, and a more preferable content is 0.7%. It is more than mass % and below 7 mass %.
- the negative electrode mixture layer contains a solid electrolyte.
- a solid electrolyte include the same solid electrolytes as exemplified above as those that can be used for the positive electrode mixture layer.
- solid electrolytes exemplified above it is more preferable to use a sulfide-based solid electrolyte because it has high lithium ion conductivity and has a function of improving the moldability of the negative electrode mixture layer.
- the content of the solid electrolyte in the negative electrode mixture layer is preferably 4 to 49% by mass.
- negative electrode current collector copper or nickel foil, punching metal, mesh, expanded metal, foamed metal, carbon sheet, etc. can be used.
- a negative electrode mixture-containing composition in which a negative electrode active material, a conductive agent added as necessary, a solid electrolyte, a binder, etc. are dispersed in a solvent is used as a current collector. It can be manufactured by a method in which the negative electrode mixture layer is formed on the surface of the current collector by applying the negative electrode mixture layer on the surface of the current collector after applying the negative electrode mixture layer on the surface of the current collector and drying the negative electrode mixture layer.
- An organic solvent such as water or NMP can be used as the solvent for the negative electrode mixture-containing composition.
- the solvent should not easily degrade the solid electrolyte. is preferably selected, and it is preferable to use the same solvents as the various solvents exemplified above as the solvent for the positive electrode mixture-containing composition.
- the negative electrode mixture-containing composition is filled into the pores of the conductive porous substrate, After drying, the negative electrode can be manufactured by a method of pressure molding such as calendering, if necessary.
- the thickness of the negative electrode mixture layer (the thickness per side of the current collector when it has a current collector) is preferably 10 to 1000 ⁇ m. Further, the thickness of the current collector of the negative electrode is preferably 0.01 to 0.1 mm.
- the thickness of the negative electrode is 30 to 4000 ⁇ m. preferable.
- a negative electrode having a lithium sheet or a lithium alloy sheet a negative electrode made of these sheets alone or a laminate of these sheets and a current collector is used.
- Alloy elements related to lithium alloys include aluminum, lead, bismuth, indium, and gallium, with aluminum and indium being preferred.
- the ratio of the alloying elements in the lithium alloy (the total ratio of the alloying elements when multiple alloying elements are included) is preferably 50 atomic % or less (in this case, the balance is lithium and unavoidable impurities).
- a layer containing alloying elements for forming a lithium alloy is laminated by pressure bonding on the surface of a lithium layer (a layer containing lithium) made of metal lithium foil or the like. It is also possible to form a lithium alloy on the surface of the lithium layer to form a negative electrode by using the laminated body and bringing this laminated body into contact with the solid electrolyte in the battery.
- a laminate having a layer containing an alloy element on only one side of the lithium layer may be used, or a laminate having a layer containing an alloy element on both sides of the lithium layer may be used.
- the laminate can be formed, for example, by press-bonding a metallic lithium foil and a foil made of an alloy element.
- the current collector can also be used when a lithium alloy is formed to form a negative electrode in a battery.
- a laminate having a layer containing an alloy element on the opposite side may be used, having a lithium layer on both sides of the negative electrode current collector, and the side opposite to the negative electrode current collector of each lithium layer
- a laminate having a layer containing an alloy element may also be used.
- the negative electrode current collector and the lithium layer may be laminated by pressure bonding or the like.
- the layer containing the alloying element of the laminate for the negative electrode for example, a foil made of these alloying elements can be used.
- the thickness of the layer containing the alloying element is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, preferably 20 ⁇ m or less, and more preferably 12 ⁇ m or less.
- a metallic lithium foil or the like can be used for the lithium layer of the laminate used as the negative electrode.
- the thickness of the lithium layer is preferably 0.1 to 1.5 mm.
- the thickness of the sheet of the negative electrode having a lithium or lithium alloy sheet is also preferably 0.1 to 1.5 mm.
- the current collector is the same as the current collector exemplified above as usable for the negative electrode having a negative electrode mixture layer. Available.
- the lead body of the negative electrode is, for example, a part of the negative electrode current collector that is exposed so as not to form a negative electrode active material layer (a negative electrode mixture layer or a layer formed of a metal sheet that becomes a negative electrode active material, etc.; the same applies hereinafter).
- a portion may be provided and cut into a predetermined shape, or the exposed portion of the current collector may be formed by attaching a foil (plate) made of copper or nickel.
- the lead body of the negative electrode is connected to the negative electrode external terminal of the battery (for example, in the case of the sheet-shaped battery shown in FIGS. (sealing can or outer can).
- the lead bodies of all the negative electrodes constituting the laminated electrode body are integrated together by welding, etc., and the battery is formed using such a laminated electrode body. is formed, a part of the current collector of the negative electrode constituting the integrated lead body or the laminated electrode body is connected to the negative electrode external terminal of the battery.
- Solid electrolyte layer As the solid electrolyte in the solid electrolyte layer, one or more of the solid electrolytes exemplified above for the positive electrode can be used. From the viewpoint of better bonding, it is preferable to use a sulfide-based solid electrolyte.
- the solid electrolyte layer contains a binder.
- the binder contained in the solid electrolyte layer desirably does not react with the solid electrolyte, and at least one resin selected from the group consisting of butyl rubber, chloropyrene rubber, acrylic resin and fluororesin is preferably used.
- a composition for forming a solid electrolyte layer prepared by dispersing a solid electrolyte in a solvent is applied on a substrate, a positive electrode, and a negative electrode, dried, and if necessary, pressurization such as press treatment is applied. It can be formed by molding.
- the solvent used in the composition for forming the solid electrolyte layer is desirably one that does not easily deteriorate the solid electrolyte, and the same solvents as the various solvents exemplified above as the solvent for the positive electrode mixture-containing composition are used. is preferred.
- the occurrence of defects such as cracks can be suppressed satisfactorily.
- the solid electrolyte layer containing the porous substrate can be configured using a solid electrolyte sheet having a structure in which the solid electrolyte is held in the pores of the porous substrate and includes the porous substrate and the solid electrolyte. can. Moreover, in the solid electrolyte sheet, it is preferable that both surfaces of the porous substrate are covered with the solid electrolyte in addition to the solid electrolyte being held in the voids of the porous substrate.
- porous substrate related to the solid electrolyte sheet examples include those composed of fibrous materials, such as woven fabrics, nonwoven fabrics, and meshes, among which nonwoven fabrics are preferred.
- the fiber diameter of the fibrous material constituting the porous substrate is preferably 5 ⁇ m or less, and preferably 0.5 ⁇ m or more.
- the material of the fibrous material is not particularly limited as long as it does not react with lithium metal and has insulating properties.
- examples include polyolefins such as polypropylene and polyethylene; polystyrene; aramid; polyamideimide; polyimide; nylon; Resins such as polyester such as (PET); polyarylate; cellulose and modified cellulose; Inorganic materials such as glass, alumina, silica, and zirconia may also be used.
- a preferred material is polyarylate.
- the fibrous material one or more of the above-exemplified materials can be used.
- the porous base material may be composed only of fibrous substances of the same material, or may be composed of a combination of two or more kinds of fibrous substances of different materials.
- the basis weight of the porous substrate is preferably 10 g/m 2 or less, more preferably 8 g/m 2 or less, so as to sufficiently retain the solid electrolyte in an amount sufficient to ensure good lithium ion conductivity. It is more preferably 3 g/m 2 or more, more preferably 4 g/m 2 or more, from the viewpoint of ensuring sufficient strength.
- the solid electrolyte to be contained in the solid electrolyte sheet is preferably in the form of particles, and the size thereof is set to an average particle size from the viewpoint of further increasing the filling properties in the pores of the porous substrate and ensuring good lithium ion conductivity.
- the diameter is preferably 5 ⁇ m or less, more preferably 2 ⁇ m or less.
- the average particle size of the solid electrolyte particles is preferably 0.3 ⁇ m or more, more preferably 0.5 ⁇ m or more.
- the solid electrolyte sheet in addition to better bonding of the solid electrolyte layers adjacent to each other via the positive or negative electrode, the solid electrolyte can be well retained in the pores of the porous substrate, It is preferable to bind the solid electrolyte using a binder in order to improve the adhesion of the solid electrolyte covering the surface of the sheet to the porous substrate and to enhance the shape retention of the solid electrolyte sheet.
- binder of the solid electrolyte sheet those exemplified above as those that can be contained in the solid electrolyte layer can be used.
- the ratio of the porous substrate in the solid electrolyte sheet (the ratio of the actual volume excluding the pore portion) is preferably 30% by volume or less, and 25% by volume or less. It is more preferable to have However, if the proportion of the porous base material in the solid electrolyte sheet is too small, the effect of improving the shape retention of the solid electrolyte sheet may be reduced. Therefore, from the viewpoint of increasing the strength of the solid electrolyte sheet, the proportion of the porous substrate in the solid electrolyte sheet is preferably 5% by volume or more, more preferably 10% by volume or more.
- the content of the binder in the solid electrolyte sheet should be 0.05% of the total amount of the solid electrolyte and the binder, from the viewpoint of better bonding of the solid electrolyte layers to each other and improved shape retention of the solid electrolyte sheet. It is preferably 5% by mass or more, preferably 1% by mass or more, and is 10% by mass or less from the viewpoint of suppressing a decrease in lithium ion conductivity by limiting the amount of the binder to some extent. preferably 7% by mass or less.
- the method for producing the solid electrolyte sheet is not particularly limited, but the solid electrolyte and optionally used binder are dispersed in a solvent to form a slurry or the like, and the slurry is wet-filled into the voids of the porous substrate. , preferably by a method comprising the step of forming a coating film of this slurry on the surface of a porous substrate. This improves the strength of the solid electrolyte sheet and facilitates the production of a large-area solid electrolyte sheet.
- a coating method such as a screen printing method, a doctor blade method, or an immersion method can be used. can be adopted.
- the slurry is prepared by adding a solid electrolyte and, if necessary, a binder to a solvent and mixing them.
- a solvent for the slurry it is desirable to select a solvent that does not easily deteriorate the solid electrolyte, and it is preferable to use the same various solvents as those previously exemplified as the solvent for the positive electrode mixture-containing composition.
- a solid electrolyte sheet can be obtained by performing pressure molding.
- the method for manufacturing the solid electrolyte sheet is not limited to the wet method described above.
- the solid electrolyte or a mixture of the solid electrolyte and the binder is dry-filled, and then pressure-molded. may be performed.
- a sheet obtained by molding a mixture of the solid electrolyte and the binder is placed on the surface of the sheet in which the pores of the porous substrate are filled with the solid electrolyte. You can paste it.
- the thickness of the solid electrolyte layer containing no porous substrate is preferably 100 to 300 ⁇ m.
- the thickness of the solid electrolyte layer containing the porous substrate is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and 50 ⁇ m or less. It is preferably 30 ⁇ m or less, more preferably 30 ⁇ m or less. Furthermore, the thickness of the porous substrate is preferably 3 ⁇ m or more, more preferably 8 ⁇ m or more, preferably 45 ⁇ m or less, and more preferably 25 ⁇ m or less.
- the laminated electrode body may be configured by (a) using one (one) positive electrode and one (one) negative electrode, and (b) one (one) positive electrode and two (two) negative electrodes. (c) two (two) positive electrodes and one (one) negative electrode may be used; (d) a plurality of positive electrodes and a plurality of negative electrodes may be used may be configured
- a solid electrolyte layer is interposed between the positive electrode and the negative electrode in the laminated electrode body. Therefore, in the laminated electrode body of the aspect (a), the solid electrolyte layer interposed between the positive electrode and the negative electrode is one layer, but the outer surface of the positive electrode of this laminated electrode body (the surface facing the negative electrode and the surface facing the negative electrode) A solid electrolyte layer is also disposed on the surface opposite to the positive electrode) and/or the outer surface of the negative electrode (the surface opposite to the surface facing the positive electrode). Therefore, the laminated electrode body of the aspect (a) has two or three solid electrolyte layers.
- the negative electrode is arranged on both sides of the positive electrode with the solid electrolyte layer interposed therebetween.
- the positive electrode is arranged on both sides of the negative electrode with the solid electrolyte layer interposed therebetween. Therefore, the laminated electrode body of the embodiment (b) and the laminated electrode body of the embodiment (c) have at least two solid electrolyte layers.
- the laminated electrode body of the aspect (d) is formed, for example, by alternately laminating a plurality of positive electrodes and a plurality of negative electrodes with solid electrolyte layers interposed therebetween. Also in the laminated electrode bodies of the modes (b), (c) and (d), as in the laminated electrode body of the mode (a), one of the electrodes positioned at the outermost part of the stacked electrode body or Solid electrolyte layers can be arranged on both outer surfaces.
- the laminated electrode bodies of the embodiments (b), (c) and (d) at least part of the plurality of solid electrolyte layers is interposed between the positive electrode and the negative electrode. That is, when the solid electrolyte is not arranged on the outer surface of one or both of the electrodes positioned at the outermost part of the laminated electrode body, all of the plurality of solid electrolyte layers of the laminated electrode body are positive electrodes and negative electrodes. but if the solid electrolyte is arranged on the outer surface of one or both of the electrodes positioned at the outermost part of the laminated electrode body, a plurality of solid electrolytes possessed by the laminated electrode body Only part of the layer will be interposed between the positive and negative electrodes.
- the solid electrolyte layers adjacent to each other via the positive electrode or the negative electrode are joined to each other at their ends. ing.
- the solid electrolyte layer is arranged on the outer surface of the laminated electrode body of the aspect (a) or the electrode arranged at the outermost part in any of the aspects (b), (c) and (d).
- the outermost solid electrolyte layer of the laminated electrode body is joined to the solid electrolyte layer arranged inside thereof at the end, so that the electrodes in the laminated electrode body Since misalignment can be well prevented, the handleability is improved, and impact resistance is improved by the action of the outermost solid electrolyte layer of the laminated electrode body.
- the solid electrolyte layer is protrudes from the electrodes (positive and negative electrodes).
- the length of the portion of the solid electrolyte layer that protrudes from the electrode is the solid electrolyte layer that is arranged adjacent to the positive electrode or the negative electrode, and the relationship that these solid electrolyte layers are joined to each other at the ends. It is desirably longer than the thickness of the positive electrode or negative electrode disposed between the layers, and specifically, it is preferably 0.5 mm or more.
- the upper limit of the length of the portion of the solid electrolyte layer protruding from the electrode in plan view is not particularly limited, but if it is too long, it will be necessary to increase the size of the outer package. 0 mm or less.
- the positive electrode in the laminated electrode body of embodiment (c) and the positive electrode in the case where one or both of the outermost electrodes in the laminated electrode body of embodiment (d) are positive electrodes are shown in FIG.
- the positive electrode may have a positive electrode mixture layer on one side, or may have a positive electrode mixture layer on both sides of a current collector.
- the negative electrode in the laminated electrode body of the aspect (b) and the negative electrode in the case where one or both of the outermost electrodes in the laminated electrode assembly of the aspect (d) are negative electrodes are as shown in FIG.
- the negative electrode may have a negative electrode active material layer on one side of the body, or the negative electrode may have a negative electrode active material layer on both sides of the current collector.
- a positive electrode having a positive electrode mixture layer on both sides of a current collector may be used as the positive electrode to be arranged other than the outermost layer of the laminated electrode body, and a positive electrode having a positive electrode mixture layer on one side of the current collector may be used. may be used.
- a negative electrode having a negative electrode active material layer on both sides of the current collector may be used. may be used.
- a laminated electrode body can be formed by laminating a plurality of unit electrode bodies formed by laminating the positive electrode mixture layer and the negative electrode active material layer so that the positive electrode mixture layer and the negative electrode active material layer face each other, with the solid electrolyte layer interposed therebetween.
- the number (number of sheets) of the positive electrode and the negative electrode included in the laminated electrode body of the aspect (d) is not particularly limited as long as it is plural, that is, two or more, but usually it is 100 or less.
- the solid electrolyte layers in the laminated electrode body may be joined together by a method of crimping (crimping or thermocompression bonding at room temperature) the ends of both, or by heat-sealing the ends of the solid electrolyte layers.
- an adhesive may be used to adhere.
- Pressure molding of the laminated electrode body by the hydrostatic pressing method can be carried out by enclosing the laminated electrode body in a packaging material, sealing it, and using a known hydrostatic pressing machine.
- Conditions for isostatic pressing may be, for example, a temperature of 20 to 90° C. and a pressure of 100 to 500 MPa.
- the shape of the battery is not particularly limited, and in addition to the sheet-like (laminate type) having a laminate film exterior body as shown in FIGS. Cylindrical shape, rectangular shape (rectangular tubular shape)], etc. can be used.
- a metal laminate film can be used, or a metal can having an opening (exterior can) and a lid (sealing can) can be used in combination. .
- a sheet-like (laminate) battery can be produced by stacking two metal laminate films or by folding one metal laminate film, pasting the periphery together, and sealing.
- a flat-shaped (coin-shaped, button-shaped, etc.) or cylindrical battery is produced by crimping a can and a sealing can through a gasket, or by welding and sealing an outer can and a sealing can. be able to.
- polypropylene polypropylene
- nylon nylon
- fluorine resins such as tetrafluoroethylene-perfluoroalkoxyethylene copolymer (PFA), polyphenylene ether (PEE), polysulfone (PSF), polyarylate (PAR) , polyether sulfone (PES), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), and other heat-resistant resins having a melting point or thermal decomposition temperature of 200° C. or higher can also be used.
- PFA tetrafluoroethylene-perfluoroalkoxyethylene copolymer
- PEE polyphenylene ether
- PSF polysulfone
- PAR polyarylate
- PES polyether sulfone
- PPS polyphenylene sulfide
- PEEK polyether ether ketone
- other heat-resistant resins having a melting point or thermal decomposition temperature of 200° C. or higher
- the shape of the exterior body in a plan view may be circular or polygonal such as quadrangular (square/rectangular). Moreover, in the case of a polygon, the corners thereof may be curved.
- Example 1 Preparation of solid electrolyte sheet> Using xylene (“super dehydrated” grade) as a solvent, particles of a sulfide-based solid electrolyte (Li 6 PS 5 Cl) with an average particle size of 1 ⁇ m, an acrylic resin binder, and a dispersant were mixed in a mass ratio of 100:3. : 1 and a solid content ratio of 40%, and stirred for 10 minutes with a thinky mixer to prepare a uniform slurry.
- xylene super dehydrated” grade
- This slurry was applied onto an Al foil having a thickness of 20 ⁇ m using an applicator with a gap of 200 ⁇ m, followed by vacuum drying at 120° C. to obtain a positive electrode having a positive electrode mixture layer on one side of the current collector.
- an exposed portion for use as a lead body was left on a part of the Al foil. Then, it was cut into a shape having a main body on which a 50 ⁇ 50 mm positive electrode mixture layer was formed and a 10 ⁇ 20 mm lead body (exposed portion of the current collector) to obtain a battery positive electrode.
- This slurry was applied to a SUS foil having a thickness of 20 ⁇ m using an applicator with a gap of 160 ⁇ m, followed by vacuum drying at 120° C. to obtain a negative electrode having a negative electrode mixture layer on one side of the current collector.
- an exposed portion for use as a lead body was left on a part of the SUS foil. Then, it was cut into a shape having a main body on which a negative electrode mixture layer of 52 ⁇ 52 mm was formed and a lead body (exposed portion of the current collector) of 10 ⁇ 20 mm to obtain a battery negative electrode.
- ⁇ Battery assembly> Four unit electrode bodies are formed by stacking the positive electrode and the negative electrode with the solid electrolyte sheet interposed therebetween so that the positive electrode mixture layer and the negative electrode mixture layer face each other, and performing pressure treatment. After stacking these unit electrode bodies with the solid electrolyte sheet interposed therebetween, they were sealed in an aluminum laminate film bag and subjected to hydrostatic pressing under the conditions of temperature: 25° C. and pressure: 300 MPa. rice field. After isostatic pressing, the laminated body is taken out of the bag, and all the positive electrode lead bodies are put together and welded to an aluminum plate (size: 5 ⁇ 70 mm, thickness: 0.3 mm) serving as a positive electrode external terminal.
- an aluminum plate size: 5 ⁇ 70 mm, thickness: 0.3 mm
- each solid electrolyte layer is joined to the solid electrolyte layer adjacent via the positive electrode or the negative electrode at the end portions thereof except for the portion where the lead body is located.
- the length of the portion where the solid electrolyte layer was formed was 91% of the total circumferential length of the solid electrolyte layer.
- the width of the joint portion of the solid electrolyte layer was 1 to 2 mm from the end of the solid electrolyte layer.
- Example 2 A battery (all-solid secondary battery) was produced in the same manner as in Example 1, except that the solid electrolyte sheet was cut into a size of 54.5 ⁇ 54.5 mm. The length of the portion joined to the adjacent solid electrolyte layer was 79% of the total circumferential length of the solid electrolyte layer. Also, the width of the joint portion of the solid electrolyte layer was 0.7 to 1.6 mm from the end of the solid electrolyte layer.
- Example 3 A battery (all-solid secondary battery) was produced in the same manner as in Example 1, except that the solid electrolyte sheet was cut into a size of 54 ⁇ 54 mm. The length of the portion joined to the adjacent solid electrolyte layer was 58% of the total circumferential length of the solid electrolyte layer. Also, the width of the joint portion of the solid electrolyte layer was 0.5 to 1.2 mm from the end of the solid electrolyte layer.
- Comparative example 1 A battery (all-solid secondary battery) was prepared in the same manner as in Example 1 except that the laminate obtained by laminating four unit electrode bodies each having a positive electrode, a solid electrolyte layer and a negative electrode was not subjected to hydrostatic pressing. was made.
- the batteries of Examples 1 to 3 each having a laminated electrode body in which each solid electrolyte layer is joined to an adjacent solid electrolyte layer via a positive electrode or a negative electrode at the ends are Compared to the battery of Comparative Example 1 using a laminated electrode body that is not bonded to other solid electrolyte layers, the battery had a high capacity retention rate when evaluating output characteristics, and had excellent output characteristics.
- the battery of the present invention can be applied to the same uses as conventionally known primary batteries and secondary batteries, but has excellent heat resistance because it has a solid electrolyte instead of an organic electrolyte. It can be preferably used for applications exposed to high temperatures.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
- Primary Cells (AREA)
Abstract
Description
電池の正極には、例えば、正極活物質および固体電解質を含有する正極合剤層を、集電体の片面または両面に形成した構造のものが使用できる。
電池の負極は、例えば、負極活物質を含有する負極合剤層を集電体の片面または両面に有する構造のものや、リチウムのシート、またはリチウム合金のシートを有するものが使用できる。
固体電解質層における固体電解質には、正極の固体電解質として先に例示したものと同じもののうちの1種または2種以上を使用することができるが、正極または負極を介して隣り合う固体電解質層同士をより良好に接合する観点からは、硫化物系固体電解質を使用することが好ましい。
より好ましい。
積層電極体は、(a)正極および負極を、それぞれ1個(1枚)ずつ用いて構成してもよく、(b)1個(1枚)の正極および2個(2枚)の負極を用いて構成してもよく、(c)2個(2枚)の正極および1個(1枚)の負極を用いて構成してもよく、(d)複数の正極と複数の負極とを用いて構成してもよい。
電池の形態については特に制限はなく、図1および図2に示すようなラミネートフィルム外装体を有するシート状(ラミネート形)のほかに、扁平形(コイン形、ボタン形を含む)、筒形〔円筒形、角形(角筒形)〕など、種々の形態とすることが可能である。積層電極体を内部に収容する外装体(電池ケース)には、金属ラミネートフィルムを用いたり、開口を有する金属製の缶(外装缶)と蓋(封口缶)を組み合わせて用いたりすることができる。
ンエーテル(PEE)、ポリスルフォン(PSF)、ポリアリレート(PAR)、ポリエーテルスルフォン(PES)、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)などの融点または熱分解温度が200℃以上の耐熱樹脂を使用することもできる。また、電池が耐熱性を要求される用途に適用される場合、その封口には、ガラスハーメチックシールを利用することもできる。
<固体電解質シートの作製>
溶媒としてキシレン(「超脱水」グレード)を用い、平均粒子径1μmの硫化物系固体電解質(Li6PS5Cl)の粒子と、アクリル樹脂バインダと、分散剤とを、質量比で100:3:1の割合とし、かつ固形分比が40%となるように混合し、シンキーミキサーで10分間攪拌して均一なスラリーを調製した。このスラリー中に、厚み:15μmで目付:8g/m2のPET製不織布(廣瀬製紙社製「05TH-8」)を通し、その後にアプリケータを用いて40μmのギャップを通して引き上げることで、PET不織布にスラリーを塗布した後、120℃で1時間の真空乾燥を行って固体電解質シートを得た。固体電解質シートにおける固体電解質粒子とバインダとの総量中、バインダの割合は2.9質量%であった。得られた固体電解質シートは55×55mmの大きさに切断して、後述する電池の組み立てに使用した。
溶媒としてキシレン(「超脱水」グレード)を用い、表面にLiとNbの非晶質複合酸化物が形成された平均粒子径3μmのLiNi0.6Co0.2Mn0.2O2と、硫化物固体電解質(Li6PS5Cl)、導電助剤であるカーボンナノチューブ〔昭和電工社製「VGCF」(商品名)〕と、アクリル樹脂バインダとを、質量比で70:24:3:3の割合とし、固形分比が60%となるように混合し、シンキーミキサーで10分間撹拌して均一なスラリーを調製した。このスラリーを、厚みが20μmのAl箔上にアプリケータを用いてギャップを200μmとして塗布し、120℃で真空乾燥を行って、集電体の片面に正極合剤層を有する正極を得た。なお、集電体となるAl箔上に前記スラリーを塗布する際には、Al箔の一部に、リード体として利用するための露出部が残るようにした。そして、50×50mmの正極合剤層が形成された本体部と、10×20mmのリード体(集電体の露出部)とを有する形状に切断して、電池用正極を得た。
溶媒としてキシレン(「超脱水」グレード)を用い、平均粒子径20μmの黒鉛と、硫化物固体電解質(Li6PS5Cl)と、導電助剤であるカーボンナノチューブ〔昭和電工社製「VGCF」(商品名)〕と、アクリル樹脂バインダとを、質量比で50:44:3:3の割合とし、固形分比が50%となるように混合し、シンキーミキサーで10分間撹拌して均一なスラリーを調製した。このスラリーを、厚みが20μmのSUS箔上にアプリケータを用いてギャップを160μmとして塗布し、120℃で真空乾燥を行って、集電体の片面に負極合剤層を有する負極を得た。なお、集電体となるSUS箔上に前記スラリーを塗布する際には、SUS箔の一部に、リード体として利用するための露出部が残るようにした。そして、52×52mmの負極合剤層が形成された本体部と、10×20mmのリード体(集電体の露出部)とを有する形状に切断して、電池用負極を得た。
前記の正極と前記の負極とを、前記の固体電解質シートを介し、正極合剤層と負極合剤層とが対向するように重ね合わせ、加圧処理を行って形成した単位電極体を4個用意し、これらの単位電極体を、前記の固体電解質シートを介して重ね合わせた後に、アルミニウムラミネートフィルムの袋に入れて密封し、温度:25℃、圧力:300MPaの条件で静水圧プレスを行った。静水圧プレス後の積層体を袋から取り出し、全ての正極のリード体を纏めて正極外部端子となるアルミニウム製の板(大きさ:5×70mm、厚み:0.3mm)に溶接し、また、全ての負極のリード体を纏めて負極外部端子となるニッケル製の板(大きさ:5×70mm、厚み:0.3mm)に溶接して、積層電極体を得た。得られた積層電極体においては、各固体電解質層が、正極または負極を介して隣り合う固体電解質層と、リード体が位置している箇所を除いて互いの端部において接合されており、接合している部分の長さは、固体電解質層の全周長さのうちの91%であった。また、固体電解質層の接合部分の幅は、固体電解質層の端から1~2mmであった。
固体電解質シートを54.5×54.5mmの大きさに切断して使用した以外は、実施例1と同様にして電池(全固体二次電池)を作製した。隣り合う固体電解質層と接合している部分の長さは、固体電解質層の全周長さのうちの79%であった。また、固体電解質層の接合部分の幅は、固体電解質層の端から0.7~1.6mmであった。
固体電解質シートを54×54mmの大きさに切断して使用した以外は、実施例1と同様にして電池(全固体二次電池)を作製した。隣り合う固体電解質層と接合している部分の長さは、固体電解質層の全周長さのうちの58%であった。また、固体電解質層の接合部分の幅は、固体電解質層の端から0.5~1.2mmであった。
正極、固体電解質層および負極を有する単位電極体を4個積層して得られた積層体について、静水圧プレスを行わなかった以外は、実施例1と同様にして電池(全固体二次電池)を作製した。
2A、2B 正極
21 正極合剤層
22 正極集電体
23 正極外部端子
3A、3B 負極
31 負極合剤層
32 負極集電体
33 負極外部端子
4 固体電解質層
5 積層電極体
6 ラミネートフィルム外装体
Claims (7)
- 正極と、負極と、正極または負極を介して隣り合う複数の固体電解質層とを有する積層電極体を備え、
正極または負極を介して隣り合う前記固体電解質層同士は、端部の少なくとも一部で互いに接合していることを特徴とする電池。 - 前記固体電解質層は、バインダを含有している請求項1に記載の電池。
- 前記固体電解質層は、硫化物系固体電解質を含有している請求項1に記載の電池。
- 正極または負極を介して隣り合う前記固体電解質層同士は、全周の長さのうちの50%以上の長さの部分で、互いに接合している請求項1に記載の電池。
- 正極または負極を介して隣り合う前記固体電解質層同士は、全周の長さのうちの75%以上の長さの部分で、互いに接合している請求項1に記載の電池。
- 正極または負極を介して隣り合う前記固体電解質層同士は、全周の長さのうちの90%以上の長さの部分で、互いに接合している請求項1に記載の電池。
- 前記正極および前記負極を、それぞれ複数有し、前記複数の固体電解質層のうちの少なくとも一部が前記正極と前記負極の間に介在する請求項1に記載の電池。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380015991.8A CN118511355A (zh) | 2022-02-01 | 2023-01-25 | 电池 |
JP2023578495A JPWO2023149290A1 (ja) | 2022-02-01 | 2023-01-25 | |
KR1020247021939A KR20240136327A (ko) | 2022-02-01 | 2023-01-25 | 전지 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-014272 | 2022-02-01 | ||
JP2022014272 | 2022-02-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023149290A1 true WO2023149290A1 (ja) | 2023-08-10 |
Family
ID=87552167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/002191 WO2023149290A1 (ja) | 2022-02-01 | 2023-01-25 | 電池 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPWO2023149290A1 (ja) |
KR (1) | KR20240136327A (ja) |
CN (1) | CN118511355A (ja) |
WO (1) | WO2023149290A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002042880A (ja) * | 2000-07-27 | 2002-02-08 | Mitsubishi Cable Ind Ltd | 電極積層体、およびそれを用いたシート状ポリマー電池 |
WO2020054081A1 (ja) | 2018-09-11 | 2020-03-19 | マクセルホールディングス株式会社 | 固体電解質シートおよび全固体リチウム二次電池 |
WO2020070955A1 (ja) | 2018-10-01 | 2020-04-09 | パナソニックIpマネジメント株式会社 | ハロゲン化物固体電解質材料およびこれを用いた電池 |
WO2020070958A1 (ja) | 2018-10-01 | 2020-04-09 | パナソニックIpマネジメント株式会社 | ハロゲン化物固体電解質材料およびこれを用いた電池 |
JP2020149867A (ja) * | 2019-03-13 | 2020-09-17 | マクセルホールディングス株式会社 | 全固体リチウム二次電池およびその製造方法 |
WO2021075208A1 (ja) | 2019-10-18 | 2021-04-22 | Jsr株式会社 | グリーンシート成形用バインダー組成物、グリーンシート成形用スラリー、グリーンシート及びその製造方法、並びにデバイス及びその製造方法 |
JP2021150204A (ja) * | 2020-03-19 | 2021-09-27 | マクセルホールディングス株式会社 | 全固体リチウム二次電池及びその製造方法 |
-
2023
- 2023-01-25 KR KR1020247021939A patent/KR20240136327A/ko unknown
- 2023-01-25 JP JP2023578495A patent/JPWO2023149290A1/ja active Pending
- 2023-01-25 CN CN202380015991.8A patent/CN118511355A/zh active Pending
- 2023-01-25 WO PCT/JP2023/002191 patent/WO2023149290A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002042880A (ja) * | 2000-07-27 | 2002-02-08 | Mitsubishi Cable Ind Ltd | 電極積層体、およびそれを用いたシート状ポリマー電池 |
WO2020054081A1 (ja) | 2018-09-11 | 2020-03-19 | マクセルホールディングス株式会社 | 固体電解質シートおよび全固体リチウム二次電池 |
WO2020070955A1 (ja) | 2018-10-01 | 2020-04-09 | パナソニックIpマネジメント株式会社 | ハロゲン化物固体電解質材料およびこれを用いた電池 |
WO2020070958A1 (ja) | 2018-10-01 | 2020-04-09 | パナソニックIpマネジメント株式会社 | ハロゲン化物固体電解質材料およびこれを用いた電池 |
JP2020149867A (ja) * | 2019-03-13 | 2020-09-17 | マクセルホールディングス株式会社 | 全固体リチウム二次電池およびその製造方法 |
WO2021075208A1 (ja) | 2019-10-18 | 2021-04-22 | Jsr株式会社 | グリーンシート成形用バインダー組成物、グリーンシート成形用スラリー、グリーンシート及びその製造方法、並びにデバイス及びその製造方法 |
JP2021150204A (ja) * | 2020-03-19 | 2021-09-27 | マクセルホールディングス株式会社 | 全固体リチウム二次電池及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023149290A1 (ja) | 2023-08-10 |
CN118511355A (zh) | 2024-08-16 |
KR20240136327A (ko) | 2024-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7538195B2 (ja) | 固体電解質シートの製造方法、および全固体リチウム二次電池の製造方法 | |
JP7345263B2 (ja) | 全固体リチウム二次電池の製造方法 | |
JP7579643B2 (ja) | 全固体リチウム二次電池及びその製造方法 | |
JP2020126790A (ja) | 全固体リチウム二次電池 | |
WO2023054333A1 (ja) | 全固体電池 | |
WO2023149290A1 (ja) | 電池 | |
WO2021241423A1 (ja) | 全固体二次電池用負極、その製造方法および全固体二次電池 | |
JP7374664B2 (ja) | 固体電解質シートおよび全固体リチウム二次電池 | |
WO2023054293A1 (ja) | 全固体電池 | |
WO2023189693A1 (ja) | 電池およびその製造方法 | |
JP2021144924A (ja) | 全固体電池用電極および全固体電池 | |
WO2024004877A1 (ja) | 電極積層体の製造方法、電気化学素子およびその製造方法 | |
WO2024101355A1 (ja) | 全固体電池 | |
WO2022092055A1 (ja) | 全固体二次電池用負極および全固体二次電池 | |
WO2023238926A1 (ja) | 電極積層体、その製造方法および電気化学素子 | |
WO2024071175A1 (ja) | 合金形成用積層シート、非水電解質電池用負極の製造方法および非水電解質電池の製造方法 | |
JP7376393B2 (ja) | 全固体二次電池用正極および全固体二次電池 | |
WO2023042579A1 (ja) | 電池 | |
JP7576400B2 (ja) | 全固体二次電池用正極および全固体二次電池 | |
WO2024024728A1 (ja) | 電気化学素子、その製造方法および電気化学素子のモジュール | |
JP2023047443A (ja) | 全固体電池 | |
JP2022140017A (ja) | 全固体電池 | |
JP2022140016A (ja) | 全固体電池 | |
JP2023037971A (ja) | 全固体電池 | |
JP2023038432A (ja) | 全固体電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23749606 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023578495 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202380015991.8 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023749606 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2023749606 Country of ref document: EP Effective date: 20240902 |