WO2024101355A1 - 全固体電池 - Google Patents

全固体電池 Download PDF

Info

Publication number
WO2024101355A1
WO2024101355A1 PCT/JP2023/040046 JP2023040046W WO2024101355A1 WO 2024101355 A1 WO2024101355 A1 WO 2024101355A1 JP 2023040046 W JP2023040046 W JP 2023040046W WO 2024101355 A1 WO2024101355 A1 WO 2024101355A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
negative electrode
current collector
electrode mixture
solid
Prior art date
Application number
PCT/JP2023/040046
Other languages
English (en)
French (fr)
Inventor
拓海 大塚
將之 山田
俊平 増田
政輝 西村
Original Assignee
マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセル株式会社 filed Critical マクセル株式会社
Publication of WO2024101355A1 publication Critical patent/WO2024101355A1/ja

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an all-solid-state battery that can reduce internal resistance.
  • lithium batteries particularly lithium ion batteries, that can meet this demand use lithium-containing composite oxides such as lithium cobalt oxide ( LiCoO2 ) and lithium nickel oxide ( LiNiO2 ) as the positive electrode active material, graphite or the like as the negative electrode active material, and an organic electrolyte solution containing an organic solvent and a lithium salt as the non-aqueous electrolyte.
  • lithium-containing composite oxides such as lithium cobalt oxide ( LiCoO2 ) and lithium nickel oxide ( LiNiO2 ) as the positive electrode active material, graphite or the like as the negative electrode active material, and an organic electrolyte solution containing an organic solvent and a lithium salt as the non-aqueous electrolyte.
  • lithium-ion batteries As devices that use lithium-ion batteries continue to develop, there is a demand for longer life, higher capacity, and higher energy density for lithium-ion batteries, as well as a high demand for the reliability of these longer life, higher capacity, and higher energy density lithium-ion batteries.
  • the organic electrolyte used in lithium-ion batteries contains organic solvents, which are flammable substances, and so there is a possibility that the organic electrolyte may generate abnormal heat if an abnormality such as a short circuit occurs in the battery. Furthermore, with the recent trend toward higher energy density in lithium-ion batteries and an increasing amount of organic solvent in organic electrolytes, there is an even greater demand for the reliability of lithium-ion batteries.
  • All-solid-state lithium batteries that do not use organic solvents (all-solid-state batteries) are also being considered.
  • All-solid-state lithium batteries use a molded solid electrolyte that does not use organic solvents instead of the conventional organic solvent-based electrolyte, and are highly reliable with no risk of abnormal heat generation from the solid electrolyte.
  • Solid-state batteries are also highly reliable and environmentally resistant, and have a long lifespan, making them promising maintenance-free batteries that can contribute to social development while also continuing to contribute to safety and security.
  • Providing solid-state batteries to society can contribute to the achievement of Goal 3 (Ensure healthy lives and promote well-being for all at all ages), Goal 7 (Ensure access to affordable, reliable, sustainable and modern energy for all), Goal 11 (Make cities and human settlements inclusive, safe, resilient and sustainable), and Goal 12 (Ensure sustainable consumption and production patterns) out of the 17 Sustainable Development Goals (SDGs) established by the United Nations.
  • SDGs Sustainable Development Goals
  • Patent Document 1 describes an invention for a battery module that includes an insulating substrate having a recess for accommodating a battery (power generating element) and two external electrodes on its bottom surface, a lid for covering the recess, a conductive sheet that is thought to function as a current collector disposed on the top surface of the power generating element, and wiring that electrically connects the conductive sheet to one of the two external electrodes, and that accommodates a thin-film all-solid-state battery as the battery in a battery package.
  • a battery module that includes an insulating substrate having a recess for accommodating a battery (power generating element) and two external electrodes on its bottom surface, a lid for covering the recess, a conductive sheet that is thought to function as a current collector disposed on the top surface of the power generating element, and wiring that electrically connects the conductive sheet to one of the two external electrodes, and that accommodates a thin-film all-solid-state battery as the battery in a battery package.
  • Patent Document 1 also proposes that the electrodes of the battery (power generating element) in the battery module and the conductive sheet of the battery package be joined with a conductive bonding agent made of solder or conductive adhesive to reduce the electrical resistance between the two and increase the reliability of the electrical connection.
  • Patent Document 1 In order to improve the characteristics of an all-solid-state battery, it is effective to reduce its internal resistance, and the technology described in Patent Document 1 is effective in this regard to a certain extent.
  • Patent Document 1 In order to improve the characteristics of an all-solid-state battery, it is effective to reduce its internal resistance, and the technology described in Patent Document 1 is effective in this regard to a certain extent.
  • the present invention was made in consideration of the above circumstances, and its purpose is to provide an all-solid-state battery that can reduce internal resistance.
  • the all-solid-state battery of the present invention comprises a power generating element having a positive electrode, a negative electrode, and a solid electrolyte layer between the positive electrode and the negative electrode, which are housed in an exterior body, the positive electrode having a positive electrode mixture layer constituted by a molded body of a positive electrode mixture containing a positive electrode active material, and a current collector constituted by a sheet-like porous conductive base material, the negative electrode having a negative electrode mixture layer constituted by a molded body of a negative electrode mixture containing a negative electrode active material, and a current collector constituted by a sheet-like porous conductive base material, the exterior body having a conductive path for the positive electrode and a conductive path for the negative electrode that lead from the inside to the outside, and is characterized in that at least one of the following (a) and (b) is satisfied: (a) The positive electrode current collector and the conductive path for the positive electrode are electrically connected via a conductive adhesive. (b) the negative electrode current collector and the
  • the present invention provides an all-solid-state battery that can reduce internal resistance.
  • FIG. 1 is a cross-sectional view illustrating a schematic diagram of an example of an all-solid-state battery of the present invention.
  • 1 is a scanning electron microscope photograph of a surface (positive electrode surface) of an example of a power generating element.
  • FIG. 2 is a cross-sectional view illustrating a schematic diagram of another example of the all-solid-state battery of the present invention.
  • FIG. 1 shows a schematic longitudinal cross-sectional view of an example of an all-solid-state battery of the present invention.
  • the all-solid-state battery 10 shown in FIG. 1 has a power generating element 20 having a positive electrode 21, a negative electrode 22, and a solid electrolyte layer 23 interposed between them, and this power generating element 20 is enclosed in an exterior body formed by an exterior container 40 and a lid 50.
  • External terminals 60, 70 are provided on the underside of the exterior container 40 in the figure for electrically connecting to a device to which the all-solid-state battery 10 is applied.
  • the external terminal 60 is electrically connected to the positive electrode 21 of the power generation element 20 through a conductive path 61 for the positive electrode.
  • the conductive path 71 for the negative electrode is composed of a lead 711 and a conductive portion 712 provided in the outer container 40, and the external terminal 70 is electrically connected to the negative electrode 22 in the power generating element 20 through the conductive path 71 for the negative electrode.
  • the positive electrode 21 constituting the power generating element 20 has a positive electrode mixture layer 211 and a current collector 212 made of a sheet-like porous conductive base material.
  • the current collector 212 of the positive electrode 21 and the conductive path 61 for the positive electrode are electrically connected via a conductive adhesive 30.
  • the negative electrode 22 constituting the power generating element 20 has a negative electrode mixture layer 221 and a current collector 222 made of a sheet-like porous conductive base material.
  • the current collector 222 of the negative electrode 22 and the conductive path 71 for the negative electrode are electrically connected via a conductive adhesive 31.
  • the all-solid-state battery of the present invention has a power generating element in which a positive electrode having a compact of a positive electrode mixture containing a positive electrode active material and a negative electrode having a compact of a negative electrode mixture containing a negative electrode active material are stacked with a solid electrolyte layer interposed between them.
  • a positive electrode consisting only of a compact of a positive electrode mixture or a negative electrode consisting only of a compact of a negative electrode mixture is a porous body having a relatively large number of pores, and therefore even if it is brought into direct contact with the conductive path of the battery's exterior body, the contact area is small and the contact resistance is relatively large, which results in a large internal resistance of the battery.
  • the inventors' studies have revealed that even if a conductive adhesive is interposed between a positive electrode consisting only of a compact of a positive electrode mixture or a negative electrode consisting only of a compact of a negative electrode mixture and the conductive path, the contact resistance cannot be reduced satisfactorily.
  • a current collector made of metal foil is placed on the surface (the surface opposite the solid electrolyte layer) of a positive electrode mixture layer made of a molded positive electrode mixture and on the surface (the surface opposite the solid electrolyte layer) of a negative electrode mixture layer made of a molded negative electrode mixture, the electrical connection between the positive electrode (its current collector) and the conductive path for the positive electrode, and the electrical connection between the negative electrode (its current collector) and the conductive path for the negative electrode can be improved by interposing a conductive adhesive.
  • a sheet-shaped porous conductive substrate is used for the positive electrode current collector and the negative electrode current collector, and a conductive adhesive is interposed between the positive electrode current collector and the conductive path for the positive electrode and/or between the negative electrode current collector and the conductive path for the negative electrode.
  • the positive electrode mixture layer composed of a molded body of the positive electrode mixture and the negative electrode mixture layer composed of a molded body of the negative electrode mixture have relatively rough surfaces. Therefore, when the positive electrode current collector and the negative electrode current collector are sheet-shaped porous conductive substrates, a part of the positive electrode mixture layer and a part of the negative electrode mixture layer penetrate into the pores on the surface, making it possible to reduce the contact resistance between them.
  • the contact resistance between the positive electrode current collector and the conductive path for the positive electrode and/or the contact resistance between the negative electrode current collector and the conductive path for the negative electrode can be reduced by the action of the conductive adhesive interposed between them.
  • the current collector and the conductive path are electrically connected via a conductive adhesive in either the positive electrode or the negative electrode.
  • the current collector and the conductive path are electrically connected via a conductive adhesive in both the positive electrode and the negative electrode.
  • the positive electrode 21 of the all-solid-state battery 10 shown in FIG. 1 has a porous metal substrate as the current collector 212, and the entire current collector 212, including the end on the positive electrode mixture layer 211 side, is embedded in the surface layer of the positive electrode mixture layer 211. That is, the entire location of the positive electrode current collector 212 made of a porous metal substrate corresponds to the area where the positive electrode mixture layer and the positive electrode current collector coexist. Furthermore, in the positive electrode 21, the end of the current collector 212 made of a porous metal substrate on the opposite side to the positive electrode mixture layer 211 side (the lower end in FIG. 1) is exposed.
  • the dotted line in the positive electrode 21 indicates the boundary between the area in the positive electrode mixture layer 211 where the current collector does not coexist and the area where the positive electrode mixture layer and the current collector coexist, and corresponds to the end of the current collector 212 on the positive electrode mixture layer 211 side.
  • the negative electrode 22 of the all-solid-state battery 10 shown in FIG. 1 has a porous metal substrate as the current collector 222, and the entirety of the current collector 222, including the end on the negative electrode mixture layer 221 side, is embedded in the surface layer of the negative electrode mixture layer 221. That is, the entire location of the negative electrode current collector 222 made of a porous metal substrate corresponds to the region where the negative electrode mixture layer and the negative electrode current collector coexist. Furthermore, in the negative electrode 22, the end of the current collector 222 made of a porous metal substrate on the opposite side to the negative electrode mixture layer 221 side (the upper end in FIG. 1) is exposed.
  • the dotted line in the negative electrode 22 indicates the boundary between the region in the negative electrode mixture layer 221 where the current collector does not coexist and the region where the negative electrode mixture layer and the current collector coexist, and corresponds to the end of the current collector 222 on the negative electrode mixture layer 221 side.
  • the positive electrode current collector is made of a porous metal substrate, at least a portion of which, including the end on the positive electrode mixture layer side, is embedded in the surface layer of the positive electrode mixture layer and integrated with the positive electrode mixture layer, and the other end of the positive electrode current collector is exposed on the surface of the positive electrode
  • the negative electrode current collector is made of a porous metal substrate, at least a portion of which, including the end on the negative electrode mixture layer side, is embedded in the surface layer of the negative electrode mixture layer and integrated with the negative electrode mixture layer, and the other end of the negative electrode current collector is exposed on the surface of the negative electrode.
  • the electrical connection between the positive electrode current collector and the positive electrode mixture layer, and the electrical connection between the negative electrode current collector and the negative electrode mixture layer are further improved, making it possible to further reduce the internal resistance of the all-solid-state battery.
  • the conductive path 71 for the negative electrode is composed of the lead 711 and the conductive portion 712 provided inside the outer container 40, as described above, which are electrically connected via the conductive adhesive 32.
  • the conductive path for the positive electrode or the conductive path for the negative electrode is composed of multiple conductive members, the conductive path may be formed by electrically connecting the members by directly contacting each other, or, as shown in FIG. 1, the conductive path may be formed by electrically connecting the members to each other via a conductive adhesive.
  • the power generating element 20 is housed within the exterior container 40 so that the positive electrode 21 is on the bottom side of the recess in the exterior container 40 and the negative electrode 22 is on the lid 50 side.
  • an all-solid-state battery can be constructed by housing the power generating element 20 so that the negative electrode 22 is on the bottom side of the recess in the exterior container 40 and the positive electrode 21 is on the lid 50 side.
  • the power generating element has a positive electrode, a negative electrode, and a solid electrolyte layer interposed between them.
  • the positive electrode has a positive electrode mixture layer containing a positive electrode active material and the like, and a current collector made of a sheet-like porous conductive substrate.
  • the positive electrode active material can be the same as the positive electrode active material used in conventionally known non-aqueous electrolyte primary batteries.
  • manganese dioxide, lithium-containing manganese oxide e.g., LiMn 3 O 6 , or a composite oxide having the same crystal structure as manganese dioxide ( ⁇ -type, ⁇ -type, or a structure in which ⁇ -type and ⁇ -type are mixed, etc.
  • lithium-containing composite oxide such as Li a Ti 5/3 O 4 (4/3 ⁇ a ⁇ 7/3); vanadium oxide; niobium oxide; titanium oxide; sulfides such as iron disulfide; graphite fluoride; silver sulfides such as Ag 2 S; nickel oxide such as NiO 2 : and the like can be mentioned.
  • the positive electrode active material may be the same as the positive electrode active material used in conventionally known non-aqueous electrolyte secondary batteries, etc.
  • a spinel-type lithium manganese composite oxide represented by Li 1-x M r Mn 2-r O 4 (wherein M is at least one element selected from the group consisting of Li, Na, K, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Zr, Fe, Co, Ni, Cu, Zn, Al, Sn, Sb, In, Nb, Ta, Mo, W, Y, Ru, and Rh, and 0 ⁇ x ⁇ 1, 0 ⁇ r ⁇ 1)
  • Li r Mn (1-s-t) Ni s M t O (2-u) F v a layered compound represented by Li 1-x Co 1-r M r O 2 (wherein M is at least one element selected from the group consisting of Co, Mg, Al, B, Ti, V, Cr, Fe
  • the average particle size of the positive electrode active material is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, and preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less.
  • the positive electrode active material may be either primary particles or secondary particles formed by agglomeration of primary particles.
  • the average particle diameter of various particles means the 50% diameter value ( D50 ) in the volume-based integrated fraction when the integrated volume is calculated from particles with small particle sizes using a particle size distribution measurement device (such as the Microtrack particle size distribution measurement device "HRA9320" manufactured by Nikkiso Co., Ltd.).
  • the positive electrode active material has a reaction suppression layer on its surface to suppress reaction with the solid electrolyte contained in the positive electrode.
  • the solid electrolyte may oxidize and form a resistive layer, which may reduce the ionic conductivity in the positive electrode mixture layer.
  • the reaction suppression layer may be made of a material that has ion conductivity and can suppress the reaction between the positive electrode active material and the solid electrolyte.
  • materials that can form the reaction suppression layer include oxides containing Li and at least one element selected from the group consisting of Nb, P, B, Si, Ge, Ti and Zr, more specifically, Nb-containing oxides such as LiNbO 3 , Li 3 PO 4 , Li 3 BO 3 , Li 4 SiO 4 , Li 4 GeO 4 , LiTiO 3 , LiZrO 3 , Li 2 WO 4 and the like.
  • the reaction suppression layer may contain only one of these oxides, or may contain two or more of them, and further, a plurality of these oxides may form a composite compound. Among these oxides, it is preferable to use an Nb-containing oxide, and it is more preferable to use LiNbO 3 .
  • the reaction suppression layer is preferably present on the surface in an amount of 0.1 to 1.0 parts by mass per 100 parts by mass of the positive electrode active material. This range allows for good suppression of the reaction between the positive electrode active material and the solid electrolyte.
  • Methods for forming a reaction suppression layer on the surface of the positive electrode active material include the sol-gel method, mechanofusion method, CVD method, PVD method, and ALD method.
  • the content of the positive electrode active material in the positive electrode mixture is preferably 60 to 85 mass % in order to increase the energy density of the all-solid-state battery.
  • the positive electrode mixture can contain a conductive assistant.
  • a conductive assistant include carbon materials such as graphite (natural graphite, artificial graphite), graphene, carbon black, carbon nanofibers, and carbon nanotubes.
  • carbon materials such as graphite (natural graphite, artificial graphite), graphene, carbon black, carbon nanofibers, and carbon nanotubes.
  • the conductive assistant when the conductive assistant is contained in the positive electrode mixture, the content is preferably 1.0 parts by mass or more, preferably 7.0 parts by mass or less, and more preferably 6.5 parts by mass or less, when the content of the positive electrode active material is 100 parts by mass.
  • the positive electrode mixture may contain a binder.
  • a binder is a fluororesin such as polyvinylidene fluoride (PVDF).
  • PVDF polyvinylidene fluoride
  • the positive electrode mixture may not contain a binder if good moldability can be ensured in forming the positive electrode mixture layer without using a binder, such as when a sulfide-based solid electrolyte is contained in the positive electrode mixture (described later).
  • the positive electrode mixture requires a binder, its content is preferably 15% by mass or less, and preferably 0.5% by mass or more. On the other hand, if the positive electrode mixture can obtain moldability without requiring a binder, its content is preferably 0.5% by mass or less, more preferably 0.3% by mass or less, and even more preferably 0% by mass (i.e., no binder is contained).
  • the positive electrode mixture contains a solid electrolyte.
  • the solid electrolyte contained in the positive electrode mixture is not particularly limited as long as it has lithium ion conductivity.
  • sulfide-based solid electrolytes, hydride-based solid electrolytes, halide-based solid electrolytes, oxide-based solid electrolytes, etc. can be used.
  • Examples of sulfide-based solid electrolytes include particles of Li 2 S-P 2 S 5 , Li 2 S-SiS 2 , Li 2 S -P 2 S 5 -GeS 2 , and Li 2 S -B 2 S 3 based glass.
  • thio - LISICON type electrolytes which have been attracting attention in recent years for their high Li ion conductivity , are also available .
  • M3 is Al, Ga, Y or Sb, M4 is Zn, Ca or Ba, M5 is S or either S and O, and X is F, Cl, Br or I, 0 ⁇ a ⁇ 3, 0 ⁇ b+c+d ⁇ 3, 0 ⁇ e ⁇ 3] or one having an argyrodite type crystal structure can also be used.
  • Examples of hydride-based solid electrolytes include LiBH 4 , solid solutions of LiBH 4 and the following alkali metal compounds (for example, those in which the molar ratio of LiBH 4 to the alkali metal compound is 1:1 to 20:1), etc.
  • Examples of the alkali metal compounds in the solid solutions include at least one selected from the group consisting of lithium halides (LiI, LiBr, LiF, LiCl, etc.), rubidium halides (RbI, RbBr, RbF, RbCl, etc.), cesium halides (CsI, CsBr, CsF, CsCl, etc.), lithium amide, rubidium amide, and cesium amide.
  • lithium halides LiI, LiBr, LiF, LiCl, etc.
  • rubidium halides RbI, RbBr, RbF, RbCl, etc.
  • cesium halides CsI, CsBr, CsF, Cs
  • Other known solid electrolytes that can be used include those described in, for example, WO 2020/070958 and WO 2020/070955.
  • oxide-based solid electrolytes examples include garnet-type Li 7 La 3 Zr 2 O 12 , NASICON-type Li 1+O Al 1+O Ti 2-O (PO 4 ) 3 and Li 1+p Al 1+p Ge 2-p (PO 4 ) 3 , and perovskite-type Li 3q La 2/3-q TiO 3 .
  • sulfide-based solid electrolytes are preferred due to their high lithium ion conductivity, sulfide-based solid electrolytes containing Li and P are more preferred, and sulfide-based solid electrolytes having an argyrodite crystal structure are even more preferred due to their higher lithium ion conductivity and high chemical stability.
  • sulfide-based solid electrolyte having an argyrodite-type crystal structure for example, one represented by the following general composition formula (1), the following general composition formula (2), or the following general composition formula (3), such as Li 6 PS 5 Cl, is particularly preferred.
  • X represents one or more halogen elements, and 0.2 ⁇ k ⁇ 2.0 or 0.2 ⁇ k ⁇ 1.8.
  • the average particle size of the solid electrolyte is preferably 0.1 ⁇ m or more, and more preferably 0.2 ⁇ m or more, from the viewpoint of reducing grain boundary resistance, while it is preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less, from the viewpoint of forming a sufficient contact interface between the active material and the solid electrolyte.
  • the content of the solid electrolyte in the positive electrode mixture is preferably 10 parts by mass or more, and more preferably 15 parts by mass or more, when the content of the positive electrode active material is 100 parts by mass.
  • the content of solid electrolyte in the positive electrode mixture is preferably 65 parts by mass or less, and more preferably 60 parts by mass or less, when the content of the positive electrode active material is 100 parts by mass.
  • the sheet-like porous conductive substrate constituting the positive electrode current collector can be a porous metal substrate or a carbon sheet, and it is preferable to use a foamed metal porous substrate as the porous metal substrate.
  • a foamed metal porous substrate is "Celmet (registered trademark)" by Sumitomo Electric Industries, Ltd.
  • such a porous metal substrate usually has a thickness before use in a positive electrode (power generating element) that is greater than the thickness (thickness within the positive electrode) (for example, the thickness before compression is preferably 0.1 mm or more, more preferably 0.3 mm or more, and particularly preferably 0.5 mm or more, while preferably 3 mm or less, more preferably 2 mm or less, and particularly preferably 1.5 mm or less).
  • the thickness is compressed in the thickness direction to the value described below.
  • the porosity of the porous metal substrate before compression is preferably 80% or more, more preferably 90% or more, and particularly preferably 95% or more, so that the pores of the porous metal substrate can be easily filled with the positive electrode mixture in the process of pressurizing the porous metal substrate and the positive electrode mixture layer, and the porous metal substrate and the positive electrode mixture layer can be easily integrated.
  • the porosity is preferably 99.5% or less, more preferably 99% or less, and particularly preferably 98.5% or less.
  • the thickness of the portion of the porous metal substrate that is embedded in the positive electrode mixture layer is preferably 10% or more, and more preferably 20% or more, of the thickness of the porous metal substrate (the thickness of the entire porous metal substrate, including the thickness of the portion where the positive electrode mixture layer coexists; unless otherwise specified, the same applies below to the thickness of the porous metal substrate) from the viewpoint of more reliably integrating the porous metal substrate and the positive electrode mixture layer.
  • the end of the porous metal substrate opposite to the positive electrode mixture layer side is not embedded in the positive electrode mixture layer, and the end of the positive electrode (the surface of the positive electrode) is composed only of the porous metal substrate. That is, when the porous metal substrate is compressed in the thickness direction during the production of the power generation element described later, it is desirable that the pores at the end of the porous metal substrate are crushed and eliminated, and only the porous metal substrate is exposed on the surface of the positive electrode.
  • some of the pores at the end of the porous metal substrate may not be crushed and may be filled with the positive electrode mixture, and it is also acceptable that some of the positive electrode mixture may be exposed on the surface of the positive electrode together with the end of the porous metal substrate, as long as it does not significantly affect the contact resistance with the conductive adhesive.
  • Figure 2 shows a scanning electron microscope (SEM) photograph of the surface of the positive electrode in an example of a power generation element.
  • SEM scanning electron microscope
  • the contact resistance between the porous metal substrate (current collector) and the conductive adhesive increases as the proportion (area ratio) of the positive electrode mixture exposed on the surface of the positive electrode increases, it is desirable to set the proportion of the area of the exposed positive electrode mixture on the positive electrode surface to 50% or less in plan view, more desirably 25% or less, even more desirably 15% or less, and particularly desirably 10% or less.
  • the thickness of the porous metal substrate is preferably 1% or more, more preferably 2% or more, and particularly preferably 3% or more of the total thickness of the positive electrode mixture layer (including the thickness of the portion coexisting with the porous metal substrate.
  • the "thickness of the positive electrode mixture layer" referred to below means the “total thickness of the positive electrode mixture layer” here).
  • the thickness of the porous metal substrate is preferably 30% or less, more preferably 20% or less, and particularly preferably 10% or less of the thickness of the positive electrode mixture layer.
  • the thickness of the porous metal substrate is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, and particularly preferably 30 ⁇ m or more, while it is preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less, and particularly preferably 100 ⁇ m or less.
  • the thickness of the positive electrode mixture layer is preferably 0.2 mm or more, more preferably 0.4 mm or more, and particularly preferably 0.6 mm or more, while it is preferably 2 mm or less, more preferably 1.7 mm or less, and particularly preferably 1.5 mm or less.
  • the thickness of the porous metal substrate, the thickness of the positive electrode mixture layer, and the thickness of the negative electrode mixture layer described later are determined from the maximum thickness-wise width of the area in which the porous metal substrate can be confirmed and the area in which the positive electrode mixture or the negative electrode mixture can be confirmed in an image of a cross section of the positive electrode or the negative electrode in the thickness direction observed by SEM at a magnification of 50 to 1000 times.
  • the thickness of the part of the porous metal substrate embedded in the positive electrode mixture layer or the negative electrode mixture layer is determined from the maximum thickness-wise width of the part where the area in which the porous metal substrate can be confirmed overlaps with the area in which the positive electrode mixture or the area in which the negative electrode mixture can be confirmed (the values in the examples described later are determined by these methods).
  • the proportion (area ratio) of the positive electrode mixture exposed on the surface of the positive electrode and the proportion (area ratio) of the negative electrode mixture exposed on the surface of the negative electrode are determined by the ratio (A/B) of the total area of the positive electrode mixture or negative electrode mixture exposed (A) to the area of the entire positive electrode or negative electrode (B) in an image of the positive electrode or negative electrode surface observed with an SEM at a magnification of 50 to 200 times (the values in the examples described later are determined by this method).
  • the negative electrode has a negative electrode mixture layer containing a negative electrode active material and the like, and a current collector made of a sheet-like porous conductive substrate.
  • negative electrode active materials include carbon materials such as graphite, lithium titanium oxides (lithium titanate, etc.), simple substances containing elements such as Si and Sn, compounds (oxides, etc.), and alloys thereof. Lithium metal and lithium alloys (lithium-aluminum alloy, lithium-indium alloy, etc.) can also be used as negative electrode active materials.
  • the content of the negative electrode active material in the negative electrode mixture is preferably 40 to 80 mass % in order to increase the energy density of the battery.
  • the negative electrode mixture may contain a conductive additive. Specific examples include the same conductive additives as those exemplified above as those that may be contained in the positive electrode mixture.
  • the content of the conductive additive in the negative electrode mixture is preferably 10 to 30 parts by mass when the content of the negative electrode active material is 100 parts by mass.
  • the negative electrode mixture may contain a binder.
  • a binder Specific examples include the same binders as those exemplified above as those that may be contained in the positive electrode mixture. Note that, for example, in the case where the negative electrode mixture contains a sulfide-based solid electrolyte (described later), if good moldability can be ensured in forming the negative electrode mixture layer without using a binder, the negative electrode mixture may not need to contain a binder.
  • the negative electrode mixture requires a binder, its content is preferably 15% by mass or less, and more preferably 0.5% by mass or more. On the other hand, if the negative electrode mixture can obtain moldability without requiring a binder, its content is preferably 0.5% by mass or less, more preferably 0.3% by mass or less, and even more preferably 0% by mass (i.e., no binder is contained).
  • a solid electrolyte in the negative electrode mixture.
  • Specific examples include the same solid electrolytes as those exemplified above as those that can be included in the positive electrode mixture.
  • a sulfide-based solid electrolyte because it has high lithium ion conductivity and also has the function of increasing the moldability of the negative electrode mixture.
  • the average particle size of the solid electrolyte in the negative electrode mixture is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, and is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less.
  • the content of the solid electrolyte in the negative electrode mixture is preferably 30 parts by mass or more, and more preferably 35 parts by mass or more, when the content of the negative electrode active material is 100 parts by mass.
  • the content of solid electrolyte in the negative electrode mixture is preferably 130 parts by mass or less, and more preferably 110 parts by mass or less, when the content of the negative electrode active material is 100 parts by mass.
  • the sheet-like porous conductive substrate constituting the negative electrode current collector can be a porous metal substrate or a carbon sheet, as in the case of the positive electrode, and it is preferable to use a foamed metal porous body as the porous metal substrate.
  • a foamed metal porous body is "Celmet (registered trademark)" by Sumitomo Electric Industries, Ltd.
  • such a porous metal substrate usually has a thickness before use in the negative electrode (power generation element) that is greater than the thickness (thickness in the negative electrode) (for example, the thickness before compression is preferably 0.1 mm or more, more preferably 0.3 mm or more, and particularly preferably 0.5 mm or more, while preferably 3 mm or less, more preferably 2 mm or less, and particularly preferably 1.5 mm or less).
  • the thickness is compressed in the thickness direction to the value described below.
  • the porosity of the porous metal substrate before compression is preferably 80% or more, more preferably 90% or more, and particularly preferably 95% or more, so that the pores of the porous metal substrate can be easily filled with the negative electrode mixture in the process of pressurizing the porous metal substrate and the negative electrode mixture layer, and so that the porous metal substrate and the negative electrode mixture layer can be easily integrated.
  • the porosity is preferably 99.5% or less, more preferably 99% or less, and particularly preferably 98.5% or less.
  • the thickness of the portion of the porous metal substrate that is embedded in the negative electrode mixture layer is preferably 10% or more, and more preferably 20% or more, of the thickness of the porous metal substrate (the thickness of the entire porous metal substrate, including the thickness of the portion where the negative electrode mixture layer coexists; unless otherwise specified, the same applies below to the thickness of the porous metal substrate) from the viewpoint of more reliably integrating the porous metal substrate and the negative electrode mixture layer.
  • the end of the porous metal substrate opposite the negative electrode mixture layer is not embedded in the negative electrode mixture layer, and the end of the negative electrode (the surface of the negative electrode) is composed only of the porous metal substrate. That is, when the porous metal substrate is compressed in the thickness direction during the production of the power generating element described below, it is desirable that the pores at the end of the porous metal substrate are crushed and eliminated, and only the porous metal substrate is exposed on the surface of the negative electrode.
  • some of the pores at the end of the porous metal substrate may not be crushed and may be filled with the negative electrode mixture, and it is also acceptable that some of the negative electrode mixture may be exposed on the surface of the negative electrode together with the end of the porous metal substrate, as long as it does not significantly affect the contact resistance with the conductive adhesive.
  • the contact resistance between the porous metal substrate (current collector) and the conductive adhesive increases as the proportion (area ratio) of the negative electrode mixture exposed on the surface of the negative electrode increases, it is desirable to set the proportion of the area of the exposed negative electrode mixture on the negative electrode surface to 50% or less in plan view, more desirably 25% or less, even more desirably 15% or less, and particularly desirably 10% or less.
  • the thickness of the porous metal substrate is preferably 1% or more, more preferably 2% or more, and particularly preferably 3% or more of the total thickness of the negative electrode mixture layer (including the thickness of the portion coexisting with the porous metal substrate.
  • the "thickness of the negative electrode mixture layer" referred to below means the “total thickness of the negative electrode mixture layer” here).
  • the thickness of the porous metal substrate is preferably 30% or less, more preferably 20% or less, and particularly preferably 10% or less of the thickness of the negative electrode mixture layer.
  • the thickness of the porous metal substrate is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, and particularly preferably 30 ⁇ m or more, while it is preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less, and particularly preferably 100 ⁇ m or less.
  • the thickness of the negative electrode mixture layer is preferably 0.2 mm or more, more preferably 0.5 mm or more, and particularly preferably 0.7 mm or more, while it is preferably 2 mm or less, more preferably 1.7 mm or less, and particularly preferably 1.5 mm or less.
  • Solid electrolyte layer In the power generating element, a solid electrolyte layer is interposed between the positive electrode and the negative electrode.
  • Specific examples of the solid electrolyte constituting the solid electrolyte layer include the same solid electrolytes as those exemplified above as those that can be contained in the positive electrode mixture.
  • a sulfide-based solid electrolyte because it has high lithium ion conductivity and has a function of improving moldability, and it is more preferable to use a sulfide-based solid electrolyte having an argyrodite-type crystal structure, and it is even more preferable to use one represented by the general composition formula (1), the general composition formula (2), or the general composition formula (3).
  • the solid electrolyte layer may have a porous body such as a resin nonwoven fabric as a support.
  • the thickness of the solid electrolyte layer is preferably 10 to 200 ⁇ m.
  • the power generating element can be manufactured, for example, by a manufacturing method including the following first to third steps.
  • the electrode mixture (positive electrode mixture or negative electrode mixture) is poured into a mold and pressure molded.
  • the surface pressure for pressure molding in the first step is preferably, for example, 30 to 500 MPa.
  • a sheet-shaped porous conductive substrate is placed on the electrode mixture formed by pressure molding in the first step, and in the next third step, the electrode mixture and the porous conductive substrate are pressurized to form an electrode (positive or negative electrode).
  • the electrode mixture is further compressed while the porous metal substrate is embedded in the electrode mixture from the end on the electrode mixture side by the pressure in the third step, and the porous metal substrate is compressed in the thickness direction to form an electrode (positive or negative electrode) in which the electrode mixture layer (positive electrode mixture layer or negative electrode mixture layer) and the porous metal substrate are integrated.
  • the porous metal substrate is compressed in the thickness direction in the third step.
  • the degree of compression is preferably 30% or less of the thickness before compression, more preferably 20% or less, and particularly preferably 10% or less.
  • the thickness of the porous metal substrate after compression in the third step is preferably 1% or more of the thickness before compression, and more preferably 2% or more.
  • the surface pressure during the third step is preferably 800 MPa or more, more preferably 1000 MPa or more, and particularly preferably 1200 MPa or more, in order to compress and mold the electrode mixture and sufficiently increase the density of the electrode mixture layer.
  • the upper limit is usually around 2000 MPa.
  • a porous metal substrate is used as the sheet-like porous conductive substrate, by going through the first to third steps, it is possible to obtain an electrode (positive or negative electrode) in which at least a portion of the porous metal substrate, including the end portion on the electrode mixture layer side (a certain range in the thickness direction from the end portion of the porous metal substrate), is embedded in the surface layer of the electrode mixture layer and is integrated with the electrode mixture layer, and the other end portion of the porous metal substrate is exposed on the surface of the electrode.
  • the positive and negative electrodes are produced through the first, second and third steps described above, and are then arranged on both sides of the solid electrolyte layer, and if necessary, pressurized to form a power generating element.
  • a preliminary step is performed in which the solid electrolyte is placed in a mold and pressure-molded, and an electrode mixture (positive electrode mixture or negative electrode mixture) is placed on the solid electrolyte that has been pressure-molded in this preliminary step. Then, the first, second, and third steps are performed in sequence to produce an integrated product of the solid electrolyte layer and the electrode (positive electrode or negative electrode), which can be used as a power generation element.
  • the surface pressure during pressure molding in the preliminary process is preferably, for example, 30 to 120 MPa.
  • a power generating element can be manufactured by forming one of the positive and negative electrodes on one side of a solid electrolyte layer through a preliminary process, followed by the first, second and third processes, and then sequentially carrying out the first, second and third processes on the other side of the solid electrolyte layer to form the other electrode (negative or positive electrode).
  • the exterior body of the all-solid-state battery may have an exterior container and a lid, the exterior container having a conductive path leading from the inside to the outside of the exterior container, and a current collector of the electrodes (positive and negative electrodes) of the power generating element being connected to the conductive path via a conductive adhesive to provide electrical continuity between the electrodes and the conductive path, and may have a configuration as shown in Fig. 1, for example.
  • the exterior container may be made of ceramics or resin.
  • the lid may be made of ceramics, resin, or metal (such as an iron-nickel alloy or an iron-based alloy such as an iron-nickel-cobalt alloy).
  • the conductive path connecting the electrodes and the external terminals can be made of metals such as manganese, cobalt, nickel, copper, molybdenum, silver, palladium, tungsten, platinum, gold, etc., or alloys containing these metals.
  • metal plates such as stainless steel, nickel, aluminum, iron, copper, clad materials combining these materials, or materials plated with nickel, chromium, nickel chromium, etc., can also be used.
  • metal plates such as stainless steel, nickel, aluminum, iron, copper, clad materials combining these, and materials plated with nickel, chrome, nickel chrome, etc., can be used.
  • the thickness of the external terminals is preferably 10 to 300 ⁇ m.
  • the outer container and the lid can be sealed by bonding them together with an adhesive, or, if a metal lid is used, the lid side of the side wall of the recess in the outer container can be made of metal (such as an iron-nickel alloy or an iron-based alloy such as an iron-nickel-cobalt alloy) and then welded to the lid to seal.
  • metal such as an iron-nickel alloy or an iron-based alloy such as an iron-nickel-cobalt alloy
  • the exterior body of an all-solid-state battery can be a flat type, known as a coin type or button type, which has an exterior can and a sealing can.
  • FIG. 3 shows a schematic longitudinal cross-sectional view of an example of an all-solid-state battery equipped with an exterior body having an exterior can and a sealing can.
  • a power generating element 20 formed by stacking a positive electrode 21 and a negative electrode 22 with a solid electrolyte layer 23 interposed therebetween is enclosed in an exterior body formed of a metal exterior can 80, a metal sealing can 90, and a resin gasket 100 interposed therebetween.
  • the sealing can 90 is fitted into the opening of the exterior can 80 via the gasket 100, and the open end of the exterior can 80 is tightened inward, and the gasket 100 comes into contact with the sealing can 90, sealing the opening of the exterior can 80 and forming an airtight structure inside the battery.
  • the positive electrode 21 constituting the power generating element 20 has a porous metal substrate as the current collector 212 composed of a sheet-like porous conductive substrate, as in the all-solid-state battery 10 shown in FIG. 1, and the entirety of the current collector 212, including the end on the positive electrode mixture layer 211 side, is embedded in the surface layer of the positive electrode mixture layer 211.
  • the end of the current collector 212 composed of a porous metal substrate opposite the positive electrode mixture layer 211 side (the lower end in FIG. 3) is exposed.
  • the dotted line in the positive electrode 21 indicates the boundary between the region in the positive electrode mixture layer 211 where the current collector does not coexist and the region where the positive electrode mixture layer and the current collector coexist, and corresponds to the end of the current collector 212 on the positive electrode mixture layer 211 side.
  • the negative electrode 22 constituting the power generating element 20 also has a porous metal substrate as the current collector 222 composed of a sheet-shaped porous conductive substrate, as in the all-solid-state battery 10 shown in FIG. 1, and the entirety of the current collector 222, including the end on the negative electrode mixture layer 221 side, is embedded in the surface layer of the negative electrode mixture layer 221.
  • the end of the current collector 222 composed of a porous metal substrate on the opposite side to the negative electrode mixture layer 221 side (the upper end in FIG. 3) is exposed.
  • the dotted line in the negative electrode 22 indicates the boundary between the region in the negative electrode mixture layer 221 where the current collector does not coexist and the region where the negative electrode mixture layer and the current collector coexist, and corresponds to the end of the current collector 222 on the negative electrode mixture layer 221 side.
  • a metal exterior can 80 forms a conductive path on the positive electrode 21 side, and the current collector 212 of the positive electrode 21 and the inner surface of the exterior can 80 are electrically connected via a conductive adhesive 30.
  • a metal sealing can 90 forms a conductive path on the negative electrode 22 side, and the current collector 222 of the negative electrode 22 and the inner surface of the sealing can 90 are electrically connected via a conductive adhesive 31.
  • the exterior can 80 also serves as the external terminal for the positive electrode
  • the sealing can 90 also serves as the external terminal for the negative electrode.
  • the battery can be configured so that the exterior can also serves as the external terminal for the negative electrode, and the sealing can also serves as the external terminal for the positive electrode.
  • examples include a case in which the exterior can and the sealing can are crimped and sealed with a gasket, as shown in Figure 3, and a case in which the exterior can and the sealing can are bonded with a resin.
  • the outer can and the sealing can can be made of stainless steel or the like.
  • the gasket can be made of polypropylene, nylon, or the like.
  • a heat-resistant resin with a melting point of more than 240°C can be used.
  • the heat-resistant resin include fluororesin (such as tetrafluoroethylene-perfluoroalkoxyethylene copolymer (PFA)), polyphenylene ether (PPE), polysulfone (PSF), polyarylate (PAR), polyethersulfone (PES), polyphenylene sulfide (PPS), polyetheretherketone (PEEK), and the like.
  • a glass hermetic seal can be used for the sealing.
  • the shape of the exterior body of the solid-state battery in a plan view may be circular or polygonal, such as a quadrilateral (square or rectangle).
  • the conductive adhesive may be one in which at least one conductive filler selected from silver, nickel, carbon, stainless steel, aluminum, etc. is dispersed in the resin (epoxy resin, acrylic resin, phenolic resin, urethane resin, silicone resin, etc.) that is the adhesive component.
  • the resin epoxy resin, acrylic resin, phenolic resin, urethane resin, silicone resin, etc.
  • Some conductive adhesives containing such conductive fillers are commercially available, and such commercially available conductive adhesives can be used for all-solid-state batteries.
  • a silicone resin-based conductive adhesive cannot be used because silicone resin cannot be cured in the presence of sulfur.
  • the action of the current collectors of the positive and negative electrodes prevents direct contact between the sulfide-based solid electrolyte in the positive electrode mixture layer and the sulfide-based solid electrolyte in the negative electrode mixture layer and the conductive adhesive containing silver. Therefore, it is also possible to apply a conductive adhesive containing silver as a conductive filler while containing a sulfide-based solid electrolyte in the positive and negative electrode mixture layers.
  • the resistivity of the conductive adhesive placed on the opposing surfaces of the positive electrode current collector and the conductive path, and on the opposing surfaces of the negative electrode current collector and the conductive path, is preferably 1 ⁇ 10 ⁇ cm or less, and more preferably 1 ⁇ 10 ⁇ cm or less, from the viewpoint of effectively reducing the contact resistance between them.
  • the conductive adhesive may be disposed over the entire surface of the opposing surface between the positive electrode collector and the conductive path, and the opposing surface between the negative electrode collector and the conductive path, or may be disposed only partially. From the viewpoint of effectively reducing the contact resistance between them, the application area of the conductive adhesive disposed on the opposing surface between the positive electrode collector and the conductive path, and the opposing surface between the negative electrode collector and the conductive path, is preferably 30% or more, and more preferably 50% or more, of the area of the opposing surface of the collector with the conductive path.
  • the conductive adhesive may be disposed over the entire surface of the opposing surface between the positive electrode collector and the conductive path, and the opposing surface between the negative electrode collector and the conductive path, and therefore the preferred upper limit of the application area of the conductive adhesive disposed on these surfaces is 100% of the area of the opposing surface of the collector with the conductive path.
  • the conductive adhesive When the conductive adhesive is placed on only a portion of the opposing surface between the positive electrode current collector and the conductive path, or on only a portion of the opposing surface between the negative electrode current collector and the conductive path, the conductive adhesive can be placed uniformly at regular intervals or at non-uniform intervals, but from the perspective of further improving the battery characteristics, it is more preferable to place the conductive adhesive uniformly at regular intervals.
  • Example 1 A negative electrode mixture was prepared by mixing lithium titanate (Li 4 Ti 5 O 12 , negative electrode active material) having an average particle size of 2 ⁇ m, a sulfide-based solid electrolyte (Li 6 PS 5 Cl) having an average particle size of 0.7 ⁇ m, and graphene (conductive additive) in a mass ratio of 50:41:9.
  • lithium titanate Li 4 Ti 5 O 12 , negative electrode active material
  • Li 6 PS 5 Cl sulfide-based solid electrolyte
  • graphene conductive additive
  • LiCoO 2 positive electrode active material
  • LiNbO 3 coating layer formed on its surface LiNbO 3
  • Si 6 PS 5 Cl sulfide-based solid electrolyte having an average particle size of 0.7 ⁇ m
  • graphene were mixed in a mass ratio of 65:30.7:4.3 to prepare a positive electrode mixture.
  • a powder of sulfide-based solid electrolyte (Li 6 PS 5 Cl) having an average particle size of 0.7 ⁇ m was placed in a powder molding die, and pressure molding was performed at a surface pressure of 70 MPa using a press machine to form a provisionally molded layer of the solid electrolyte layer.
  • the negative electrode mixture was placed on the upper surface of the provisionally molded layer of the solid electrolyte layer and pressure molding was performed at a surface pressure of 50 MPa, and a provisionally molded layer of the negative electrode was further formed on the provisionally molded layer of the solid electrolyte layer.
  • a nickel-made porous metal foam (nickel "Celmet” (registered trademark)) made by Sumitomo Electric Industries, Ltd., cut to a diameter of 7.25 mm (thickness: 1.2 mm, porosity: 98%) was placed on the provisionally molded layer of the negative electrode formed on the provisionally molded layer of the solid electrolyte layer, and pressure molding was performed with a surface pressure of 300 MPa to form an integrated body of the solid electrolyte layer and the negative electrode.
  • nickel "Celmet” registered trademark
  • the positive electrode mixture was placed on the upper surface of the solid electrolyte layer in the mold (the surface opposite to the surface having the negative electrode) and pressure molding was performed with a surface pressure of 50 MPa, forming a preformed layer for the positive electrode on the solid electrolyte layer.
  • the thickness of the negative electrode mixture layer of the negative electrode, the thickness of the porous metal substrate, and the thickness of the portion of the porous metal substrate embedded in the negative electrode mixture layer were 1400 ⁇ m, 60 ⁇ m (5% of the thickness of the porous metal substrate before use in the negative electrode), and 60 ⁇ m (100% of the total thickness of the porous metal substrate), respectively.
  • the area ratio of the portion of the negative electrode mixture exposed on the surface of the negative electrode was 7%.
  • the thickness of the positive electrode mixture layer of the positive electrode, the thickness of the porous metal substrate, and the thickness of the portion of the porous metal substrate embedded in the positive electrode mixture layer were 800 ⁇ m and 60 ⁇ m (5% of the thickness of the porous metal substrate before use in the positive electrode), and 60 ⁇ m (100% of the total thickness of the porous metal substrate), respectively.
  • the area ratio of the portion of the positive electrode mixture exposed on the surface of the positive electrode was 7%.
  • the surface of the positive electrode collector of the power generating element was coated with an epoxy resin-based conductive adhesive (product name "3331D" by ThreeBond Co., Ltd.) containing silver as a conductive filler in an amount that would cover 70% of the area of the collector's conductive path, and the container was placed on the bottom of the recess of an outer container having a cross-sectional structure similar to that shown in FIG. 1, with the lid side of the recess's side wall made of an iron-nickel-cobalt alloy and the other parts made of ceramics, so that the surface coated with the conductive adhesive was in contact with the conductive path at the bottom of the recess of the outer container, and the conductive adhesive was cured.
  • an epoxy resin-based conductive adhesive product name "3331D” by ThreeBond Co., Ltd.
  • the surface of the negative electrode collector of the power generating element was coated with the same epoxy resin-based conductive adhesive as that applied to the positive electrode collector in an amount that would cover 70% of the area of the collector's conductive path, and a lead (nickel foil) was placed on top of it.
  • the same epoxy resin-based conductive adhesive was also applied to a predetermined part of the lead, and the lead was placed so that the adhesive was in contact with the conductive part of the outer container (712 in FIG. 1).
  • a lid made of an iron-nickel-cobalt alloy was placed on the side wall of the recess in the outer container, and the lid and the outer container were welded together to seal the outer container and lid, resulting in an all-solid-state secondary battery.
  • Example 2 An all-solid-state secondary battery was produced in the same manner as in Example 1, except that the conductive adhesive applied to the positive electrode current collector, the negative electrode current collector, and the lead was changed to an epoxy resin-based adhesive containing carbon as a conductive filler ["SSHS-01C" (product name) manufactured by Satsuma Research Institute Co., Ltd.].
  • Example 1 A power generation element consisting of only a positive electrode mixture compact (positive electrode mixture layer), a solid electrolyte layer, and a negative electrode mixture compact (negative electrode mixture layer) was produced in the same manner as in Example 1, except that a porous metal substrate serving as a positive electrode and negative electrode current collector was not used, and an all-solid-state secondary battery was produced in the same manner as in Example 1, except that this power generation element was used.
  • Comparative Example 2 An all-solid-state secondary battery was produced in the same manner as in Example 2, except that a power generating element consisting of only a compact of a positive electrode mixture (positive electrode mixture layer), a solid electrolyte layer, and a compact of a negative electrode mixture (negative electrode mixture layer) produced in the same manner as in Comparative Example 1 was used.
  • Comparative Example 3 A power generation element was produced by bonding a nickel plate having a thickness of 400 ⁇ m to each of the surfaces of the positive electrode side and the negative electrode side of a laminate of a compact of a positive electrode mixture (positive electrode mixture layer), a solid electrolyte layer, and a compact of a negative electrode mixture (negative electrode mixture layer) formed in the same manner as in Comparative Example 1, and an all-solid-state secondary battery was produced in the same manner as in Example 2 except for using this power generation element.
  • Comparative Example 4 An all-solid-state secondary battery was produced in the same manner as in Example 2, except that a power generation element produced in the same manner as in Comparative Example 3 was used and a rubber spacer having a thickness of 100 ⁇ m was placed on the upper side (lid side) of the lead before welding the outer container and the lid.
  • the all-solid-state secondary batteries of the Examples and Comparative Examples were charged at a constant current of 2 mA until the voltage reached 2.6 V, then charged at a constant voltage of 2.6 V until the current reached 0.2 mA, and then discharged at a constant current of 0.5 mA until the voltage reached 1 V. After that, the batteries were charged at a constant current of 2 mA until the voltage reached 2.6 V, then charged at a constant voltage of 2.6 V until the current reached 0.2 mA, and then the internal resistance of each battery was measured at an applied voltage of 10 mV and 1 kHz. These results are shown in Table 1.
  • the all-solid-state secondary batteries of Examples 1 and 2 which have a power generating element including a positive electrode having a positive electrode mixture layer made of a molded body of a positive electrode mixture containing a positive electrode active material and a current collector made of a sheet-shaped porous conductive substrate, and a negative electrode having a negative electrode mixture layer made of a molded body of a negative electrode mixture containing a negative electrode active material and a current collector made of a sheet-shaped porous conductive substrate, and in which a conductive adhesive is interposed between the positive electrode current collector and the conductive path of the exterior body, and between the negative electrode current collector and the conductive path of the exterior body, had low internal resistance.
  • the batteries of Comparative Examples 1 and 2 which used generating elements that did not use positive and negative current collectors made of a sheet-like porous conductive substrate, had high internal resistance regardless of the presence or absence of conductive adhesive between the positive and negative electrodes and the conductive paths of the exterior body.
  • the battery of Comparative Example 3 which used a generating element with metal plates on the positive and negative current collectors instead of a sheet-like porous conductive substrate, had an internal resistance that was so high that it was impossible to measure.
  • the battery of Comparative Example 4 which used the same generating element as the battery of Comparative Example 3 and used a rubber spacer to improve contact between the positive and negative electrodes of the generating element and the conductive paths of the exterior body, had an internal resistance that was reduced to a measurable level, but was higher than that of the battery of the Example.
  • Example 3 Lithium titanate (Li 4 Ti 5 O 12 , negative electrode active material) with an average particle size of 2 ⁇ m, an oxide-based solid electrolyte (Li 0.35 La 0.55 TiO 3 ) with an average particle size of 0.5 ⁇ m, acetylene black (manufactured by Denka Co., Ltd., conductive assistant) and PVDF (binder) were mixed in a mass ratio of 46:46:7:1, NMP (N-methyl-2-pyrrolidone, solvent) was added so that the solid content ratio was 70 mass%, and the mixture was mixed at 2000 rpm for 10 minutes using a rotation and revolution mixer. The mixture was then dried at 120 ° C. to remove the NMP, and crushed to prepare a negative electrode mixture.
  • NMP N-methyl-2-pyrrolidone, solvent
  • LiCoO 2 positive electrode active material having an average particle size of 5 ⁇ m and a coating layer of LiNbO 3 formed on the surface
  • an oxide-based solid electrolyte Li 0.35 La 0.55 TiO 3 ) having an average particle size of 0.5 ⁇ m
  • acetylene black manufactured by Denka Co., Ltd., conductive additive
  • PVDF binder
  • a solid-state secondary battery was fabricated in the same manner as in Example 1, except that the above-mentioned negative electrode mixture and positive electrode mixture were used (however, the thickness of the negative electrode mixture layer was 300 ⁇ m, and the thickness of the positive electrode mixture layer was 200 ⁇ m).
  • Example 4 An all-solid-state secondary battery was produced in the same manner as in Example 3, except that the conductive adhesive applied to the positive electrode current collector, the negative electrode current collector, and the lead was changed to a silicone resin-based adhesive containing silver as a conductive filler ["3333F" (product name) manufactured by ThreeBond Co., Ltd.].
  • Example 5 A power generation element consisting of only a positive electrode mixture compact (positive electrode mixture layer), a solid electrolyte layer, and a negative electrode mixture compact (negative electrode mixture layer) was produced in the same manner as in Example 3, except that a porous metal substrate serving as a positive electrode and negative electrode current collector was not used, and an all-solid-state secondary battery was produced in the same manner as in Example 1, except that this power generation element was used.
  • the all-solid-state secondary batteries of Examples 3 and 4 and Comparative Example 5 were charged and discharged under the same conditions as those of Examples 1 and 2 and Comparative Examples 1 to 4, and the internal resistance was measured at 1 kHz with an applied voltage of 10 mV.
  • the battery of Example 3 was 70 ⁇
  • the battery of Example 4 was 72 ⁇ , resulting in both batteries showing equivalent values.
  • the internal resistance of the all-solid-state secondary battery of Comparative Example 5 was 2000 ⁇ .
  • the all-solid-state secondary batteries of Examples 3 and 4 which had a power generating element including a positive electrode having a positive electrode mixture layer made of a molded body of a positive electrode mixture containing a positive electrode active material and a current collector made of a sheet-shaped porous conductive substrate, and a negative electrode having a negative electrode mixture layer made of a molded body of a negative electrode mixture containing a negative electrode active material and a current collector made of a sheet-shaped porous conductive substrate, and in which a conductive adhesive was interposed between the positive electrode current collector and the conductive path of the exterior body, and between the negative electrode current collector and the conductive path of the exterior body, had low internal resistance.
  • the battery of Comparative Example 5 which used a power generating element that did not use a positive electrode current collector and a negative electrode current collector made of a sheet-shaped porous conductive substrate, had high internal resistance.
  • the all-solid-state battery of the present invention can be used in the same applications as conventionally known primary and secondary batteries, but because it has a solid electrolyte instead of an organic electrolyte, it has excellent heat resistance and can be preferably used in applications where it is exposed to high temperatures.

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

内部抵抗を低減し得る全固体電池を提供する。本発明の全固体電池は、SDGsの目標3、7、11、および12に関係する。 本発明の全固体電池は、正極、負極、および正極と負極との間に固体電解質層を有する発電素子が、外装体内に収容されてなり、正極は、正極活物質を含有する正極合剤の成形体で構成される正極合剤層と、シート状の多孔質導電性基材で構成される集電体とを有し、負極は、負極活物質を含有する負極合剤の成形体で構成される負極合剤層と、シート状の多孔質導電性基材で構成される集電体とを有し、外装体は、内部から外部に通じる正極用の導電経路および負極用の導電経路を有し、下記(a)および下記(b)のうちの少なくとも一方を満たす。 (a)正極の集電体と正極用の導電経路とが、導電性接着剤を介して電気的に接続している。 (b)負極の集電体と負極用の導電経路とが、導電性接着剤を介して電気的に接続している。

Description

全固体電池
 本発明は、内部抵抗を低減し得る全固体電池に関するものである。
 近年、携帯電話、ノート型パーソナルコンピュータなどのポータブル電子機器の発達や、電気自動車の実用化などに伴い、小型・軽量で、かつ高容量・高エネルギー密度の電池が必要とされるようになってきている。
 現在、この要求に応え得るリチウム電池、特にリチウムイオン電池では、正極活物質にコバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)などのリチウム含有複合酸化物が用いられ、負極活物質に黒鉛などが用いられ、非水電解質として有機溶媒とリチウム塩とを含む有機電解液が用いられている。
 そして、リチウムイオン電池の適用機器の更なる発達に伴って、リチウムイオン電池のさらなる長寿命化・高容量化・高エネルギー密度化が求められていると共に、長寿命化・高容量化・高エネルギー密度化したリチウムイオン電池の信頼性も高く求められている。
 しかし、リチウムイオン電池に用いられている有機電解液は、可燃性物質である有機溶媒を含んでいるため、電池に短絡などの異常事態が発生した際に、有機電解液が異常発熱する可能性がある。また、近年のリチウムイオン電池の高エネルギー密度化および有機電解液中の有機溶媒量の増加傾向に伴い、より一層リチウムイオン電池の信頼性が求められている。
 以上のような状況において、有機溶媒を用いない全固体型のリチウム電池(全固体電池)も検討されている。全固体型のリチウム電池は、従来の有機溶媒系電解質に代えて、有機溶媒を用いない固体電解質の成形体を用いるものであり、固体電解質の異常発熱の虞がなく、高い信頼性を備えている。
 また、全固体電池は、高い安全性だけではなく、高い信頼性および高い耐環境性を有し、かつ長寿命であるため、社会の発展に寄与すると同時に安心、安全にも貢献し続けることができるメンテナンスフリーの電池として期待されている。全固体電池の社会への提供により、国際連合が制定する持続可能な開発目標(SDGs)の17の目標のうち、目標3(あらゆる年齢のすべての人々の健康的な生活を確保し、福祉を促進する)、目標7(すべての人々の、安価かつ信頼できる持続可能な近代的エネルギーへのアクセスを確保する)、目標11〔包摂的で安全かつ強靭(レジリエント)で持続可能な都市および人間居住を実現する〕、および目標12(持続可能な生産消費形態を確保する)の達成に貢献することができる。
 さらに、全固体電池においては、その特性向上を図るべく、種々の改良が試みられている。例えば、特許文献1には、電池(発電要素)を収容する凹部を有し、かつ底面に2つの外部電極を有する絶縁基板と、前記凹部を塞ぐ蓋体とを備え、集電体として機能すると考えられる導電性シートを発電要素の上面に配置し、前記導電性シートを前記2つの外部電極のうちの一方と電気的に接続する配線を有する電池用パッケージに、前記電池として薄膜型の全固体電池を収容した電池モジュールの発明が記載されている。そして、特許文献1では、前記電池モジュールにおける電池(発電素子)の電極と、電池用パッケージの前記導電性シートとを、はんだや導電性接着剤からなる導電性接合剤で接合することで、両者の間の電気抵抗を小さくしたり、電気的な接続の信頼性を高めたりすることを提案している。
国際公開第2022/030424号(請求の範囲、[0056]、[0104]など)
 全固体電池の特性を向上させるには、その内部抵抗の低減を図ることが有効であり、特許文献1に記載の技術は、こうした点において一定の効果がある。しかしながら、最近の全固体電池においては、その用途の広がりから特性向上への要求がより高まっており、前記の技術においても改善の余地がある。
 本発明は、前記事情に鑑みてなされたものであり、その目的は、内部抵抗を低減し得る全固体電池を提供することにある。
 本発明の全固体電池は、正極、負極、および前記正極と前記負極との間に固体電解質層を有する発電素子が、外装体内に収容されてなり、前記正極は、正極活物質を含有する正極合剤の成形体で構成される正極合剤層と、シート状の多孔質導電性基材で構成される集電体とを有し、前記負極は、負極活物質を含有する負極合剤の成形体で構成される負極合剤層と、シート状の多孔質導電性基材で構成される集電体とを有し、前記外装体は、内部から外部に通じる正極用の導電経路および負極用の導電経路を有し、下記(a)および下記(b)のうちの少なくとも一方を満たすことを特徴とするものである。
(a)前記正極の集電体と前記正極用の導電経路とが、導電性接着剤を介して電気的に接続している。
(b)前記負極の集電体と前記負極用の導電経路とが、導電性接着剤を介して電気的に接続している。
 本発明によれば、内部抵抗を低減し得る全固体電池を提供することができる。
本発明の全固体電池の一例を模式的に表す断面図である。 発電素子の一例における表面(正極の表面)の走査型電子顕微鏡写真である。 本発明の全固体電池の他の例を模式的に表す断面図である。
 図1に、本発明の全固体電池の一例を模式的に表す縦断面図を示す。図1に示す全固体電池10は、正極21、負極22およびこれらの間に介在する固体電解質層23を有する発電素子20を有しており、この発電素子20が、外装容器40と蓋体50とで形成された外装体内に封入されて構成されている。
 外装容器40の図中下面には、全固体電池10が適用される機器と電気的に接続するための外部端子60、70が設けられている。また、外部端子60は、発電素子20における正極21と、正極用の導電経路61を通じて電気的に接続されている。
 さらに、全固体電池10においては、負極用の導電経路71が、リード711と外装容器40内に設けられた導電部712とで構成されており、外部端子70が、発電素子20における負極22と、負極用の導電経路71を通じて電気的に接続されている。
 発電素子20を構成する正極21は、正極合剤層211と、シート状の多孔質導電性基材で構成された集電体212とを有している。そして、正極21の集電体212と、正極用の導電経路61とは、導電性接着剤30を介して電気的に接続している。
 また、発電素子20を構成する負極22は、負極合剤層221と、シート状の多孔質導電性基材で構成された集電体222とを有している。そして、負極22の集電体222と、負極用の導電経路71とは、導電性接着剤31を介して電気的に接続している。
 本発明の全固体電池においては、正極活物質を含有する正極合剤の成形体を有する正極と、負極活物質を含有する負極合剤の成形体を有する負極とが、固体電解質層を介して積層されてなる発電素子を有しているが、例えば、正極合剤の成形体のみからなる正極や、負極合剤の成形体のみからなる負極は、比較的多くの空孔を有する多孔質体となるため、電池の外装体が有する導電経路と直接接触させても、その接触面積が小さく、接触抵抗が比較的大きくなることから、電池の内部抵抗も大きくなってしまう。また、正極合剤の成形体のみからなる正極や負極合剤の成形体のみからなる負極と導電経路との間に、導電性接着剤を介在させた場合でも、その接触抵抗を良好に低減し得ないことが、本発明者らの検討によって明らかとなった。
 他方、発電素子において、正極合剤の成形体からなる正極合剤層の表面(固体電解質層とは反対側の表面)、および負極合剤の成形体からなる負極合剤層の表面(固体電解質層とは反対側の表面)に、金属箔からなる集電体を配置した場合には、正極(その集電体)と正極用の導電経路との間の電気的接続、および負極(その集電体)と負極用の導電経路との間の電気的接続は、導電性接着剤を介在させることで良好にすることができる。その一方で、正極合剤の成形体からなる正極合剤層と金属箔からなる正極集電体との接触抵抗、および負極合剤の成形体からなる負極合剤層と金属箔からなる負極集電体との接触抵抗については、比較的大きいといった問題もある。
 そこで、本発明の全固体電池においては、正極集電体および負極集電体に、シート状の多孔質導電性基材を使用すると共に、正極集電体と正極用の導電経路との間、および/または負極集電体と負極用の導電経路との間に、導電性接着剤を介在させることとした。正極合剤の成形体で構成された正極合剤層および負極合剤の成形体で構成された負極合剤層は、表面が比較的粗いため、正極集電体および負極集電体がシート状の多孔質導電性基材の場合、その表面の孔内に正極合剤層の一部および負極合剤層の一部が侵入することから、これらの間の接触抵抗を低減することが可能となる。そして、正極集電体と正極用の導電経路との接触抵抗、および/または負極集電体と負極用の導電経路との接触抵抗については、これらの間に介在する導電性接着剤の作用によって低減することできる。
 本発明の全固体電池においては、これらの作用が相乗的に働くため、内部抵抗を低減することが可能となる。
 全固体電池においては、正極および負極のうちのいずれか一方において、集電体と導電経路とが導電性接着剤を介して電気的に接続していればよい。ただし、電池の内部抵抗をより低減させるには、正極および負極の両方において、集電体と導電経路とが導電性接着剤を介して電気的に接続していることが好ましい。
 また、図1に示す全固体電池10の正極21においては、集電体212として多孔質金属基材を有しており、その正極合剤層211側の端部を含む全体が、正極合剤層211の表層部に埋設されている。すなわち、多孔質金属基材で構成された正極の集電体212の存在箇所の全体が、正極合剤層と正極の集電体とが共存する領域に該当する。さらに、正極21においては、多孔質金属基材で構成された集電体212の正極合剤層211側とは反対側の端部(図1中下側の端部)が露出している。なお、正極21における点線は、正極合剤層211における、集電体が共存していない領域と、正極合剤層と集電体とが共存している領域との境界を示しており、集電体212の正極合剤層211側の端部に該当する。
 さらに、図1に示す全固体電池10の負極22においては、集電体222として多孔質金属基材を有しており、その負極合剤層221側の端部を含む全体が、負極合剤層221の表層部に埋設されている。すなわち、多孔質金属基材で構成された負極の集電体222の存在箇所の全体が、負極合剤層と負極の集電体とが共存する領域に該当する。さらに、負極22においては、多孔質金属基材で構成された集電体222の負極合剤層221側とは反対側の端部(図1中上側の端部)が露出している。なお、負極22における点線は、負極合剤層221における、集電体が共存していない領域と、負極合剤層と集電体とが共存している領域との境界を示しており、集電体222の負極合剤層221側の端部に該当する。
 特に、全固体電池においては、図1に示すように、正極の集電体が多孔質金属基材で構成され、その正極合剤層側の端部を含む少なくとも一部が正極合剤層の表層部に埋設されて正極合剤層と一体化しており、かつ正極の集電体の他方の端部が正極の表面に露出していることが好ましく、また、負極の集電体が多孔質金属基材で構成され、その負極合剤層側の端部を含む少なくとも一部が負極合剤層の表層部に埋設されて負極合剤層と一体化しており、かつ負極の集電体の他方の端部が負極の表面に露出していることが好ましい。この場合には、正極の集電体と正極合剤層との間の電気的接続、および負極の集電体と負極合剤層との間の電気的接続が、さらに良好になることから、全固体電池の内部抵抗をさらに低減することが可能となる。
 なお、図1に示す全固体電池10において、負極用の導電経路71は、前記の通り、リード711と外装容器40の内部に設けられた導電部712とで構成されており、これらは、導電性接着剤32を介して電気的に接続している。正極の導電経路や負極の導電経路を、導電性を有する複数の部材から構成する場合には、各部材同士を直接接触させることで電気的に接続して導電経路を形成してもよく、図1に示すように、各部材同士を、導電性接着剤を介して電気的に接続して導電経路を形成してもよい。
 また、図1に示す全固体電池10においては、正極21が外装容器40の凹部の底面側となり、かつ負極22が蓋体50側となるように発電素子20を外装体内に収容しているが、必要に応じて、負極22が外装容器40の凹部の底面側となり、かつ正極21が蓋体50側となるように発電素子20を収容して、全固体電池を構成することもできる。
 以下には、全固体電池の詳細について説明する。
<発電素子>
 発電素子は、正極と、負極と、これらの間に介在する固体電解質層とを有している。
(正極)
 正極は、正極活物質などを含有する正極合剤層と、シート状の多孔質導電性基材で構成された集電体とを有している。
 全固体電池が一次電池である場合の正極活物質には、従来から知られている非水電解質一次電池などに用いられている正極活物質と同じものが使用できる。具体的には、例えば、二酸化マンガン、リチウム含有マンガン酸化物〔例えば、LiMnや、二酸化マンガンと同じ結晶構造(β型、γ型、またはβ型とγ型が混在する構造など)を有し、Liの含有量が3.5質量%以下、好ましくは2質量%以下、より好ましくは1.5質量%以下、特に好ましくは1質量%以下である複合酸化物など〕、LiTi5/3(4/3≦a<7/3)などのリチウム含有複合酸化物;バナジウム酸化物;ニオブ酸化物;チタン酸化物;二硫化鉄などの硫化物;フッ化黒鉛;AgSなどの銀硫化物;NiOなどのニッケル酸化物:などが挙げられる。
 また、全固体電池が二次電池の正極である場合の正極活物質には、従来から知られている非水電解質二次電池などに用いられている正極活物質と同じものが使用できる。具体的には、Li1-xMn2-r(ただし、Mは、Li、Na、K、B、Mg、Ca、Sr、Ba、Ti、V、Cr、Zr、Fe、Co、Ni、Cu、Zn、Al、Sn、Sb、In、Nb、Ta、Mo、W、Y、RuおよびRhよりなる群から選択される少なくとも1種の元素であり、0≦x≦1、0≦r≦1)で表されるスピネル型リチウムマンガン複合酸化物、LiMn(1-s-t)Ni(2-u)(ただし、Mは、Co、Mg、Al、B、Ti、V、Cr、Fe、Cu、Zn、Zr、Mo、Sn、Ca、SrおよびWよりなる群から選択される少なくとも1種の元素であり、0≦r≦1.2、0<s<0.5、0≦t≦0.5、u+v<1、-0.1≦u≦0.2、0≦v≦0.1)で表される層状化合物、Li1-xCo1-r(ただし、Mは、Al、Mg、Ti、V、Cr、Zr、Fe、Ni、Cu、Zn、Ga、Ge、Nb、Mo、Sn、SbおよびBaよりなる群から選択される少なくとも1種の元素であり、0≦x≦1、0≦r≦0.5)で表されるリチウムコバルト複合酸化物、Li1-xNi1-r(ただし、Mは、Al、Mg、Ti、Zr、Fe、Co、Cu、Zn、Ga、Ge、Nb、Mo、Sn、SbおよびBaよりなる群から選択される少なくとも1種の元素であり、0≦x≦1、0≦r≦0.5)で表されるリチウムニッケル複合酸化物、Li1+s-x1-rPO(ただし、Mは、Fe、MnおよびCoよりなる群から選択される少なくとも1種の元素で、Nは、Al、Mg、Ti、Zr、Ni、Cu、Zn、Ga、Ge、Nb、Mo、Sn、Sb、VおよびBaよりなる群から選択される少なくとも1種の元素であり、0≦x≦1、0≦r≦0.5、0≦s≦1)で表されるオリビン型複合酸化物、Li2-x1-r(ただし、Mは、Fe、MnおよびCoよりなる群から選択される少なくとも1種の元素で、Nは、Al、Mg、Ti、Zr、Ni、Cu、Zn、Ga、Ge、Nb、Mo、Sn、Sb、VおよびBaよりなる群から選択される少なくとも1種の元素であり、0≦x≦2、0≦r≦0.5)で表されるピロリン酸化合物などが例示でき、これらのうちの1種のみを用いてもよく、2種以上を併用してもよい。
 全固体電池が二次電池の場合には、正極活物質の平均粒子径は、1μm以上であることが好ましく、2μm以上であることがより好ましく、また、10μm以下であることが好ましく、8μm以下であることがより好ましい。なお、正極活物質は一次粒子でも一次粒子が凝集した二次粒子であってもよい。平均粒子径が前記範囲の正極活物質を使用すると、正極に含まれる固体電解質との界面を多くとれるため、電池の出力特性がより向上する。
 本明細書でいう各種粒子(正極活物質、固体電解質など)の平均粒子径は、粒度分布測定装置(日機装株式会社製マイクロトラック粒度分布測定装置「HRA9320」など)を用いて、粒度の小さい粒子から積分体積を求める場合の体積基準の積算分率における50%径の値(D50)を意味している。
 全固体電池が二次電池の場合、正極活物質は、その表面に、正極に含まれる固体電解質との反応を抑制するための反応抑制層を有していることが好ましい。
 正極合剤層内において、正極活物質と固体電解質とが直接接触すると、固体電解質が酸化して抵抗層を形成し、正極合剤層内のイオン伝導性が低下する虞がある。正極活物質の表面に、固体電解質との反応を抑制する反応抑制層を設け、正極活物質と固体電解質との直接の接触を防止することで、固体電解質の酸化による正極合剤層内のイオン伝導性の低下を抑制することができる。
 反応抑制層は、イオン伝導性を有し、正極活物質と固体電解質との反応を抑制できる材料で構成されていればよい。反応抑制層を構成し得る材料としては、例えば、Liと、Nb、P、B、Si、Ge、TiおよびZrよりなる群から選択される少なくとも1種の元素とを含む酸化物、より具体的には、LiNbOなどのNb含有酸化物、LiPO、LiBO、LiSiO、LiGeO、LiTiO、LiZrO、LiWOなどが挙げられる。反応抑制層は、これらの酸化物のうちの1種のみを含有していてもよく、また、2種以上を含有していてもよく、さらに、これらの酸化物のうちの複数種が複合化合物を形成していてもよい。これらの酸化物の中でも、Nb含有酸化物を使用することが好ましく、LiNbOを使用することがより好ましい。
 反応抑制層は、正極活物質:100質量部に対して0.1~1.0質量部で表面に存在することが好ましい。この範囲であれば正極活物質と固体電解質との反応を良好に抑制することができる。
 正極活物質の表面に反応抑制層を形成する方法としては、ゾルゲル法、メカノフュージョン法、CVD法、PVD法、ALD法などが挙げられる。
 正極合剤における正極活物質の含有量は、全固体電池のエネルギー密度をより大きくする観点から、60~85質量%であることが好ましい。
 正極合剤には、導電助剤を含有させることができる。その具体例としては、黒鉛(天然黒鉛、人造黒鉛)、グラフェン、カーボンブラック、カーボンナノファイバー、カーボンナノチューブなどの炭素材料などが挙げられる。なお、例えば活物質にAgSを用いる場合には放電反応の際に導電性のあるAgが生成するため、導電助剤は含有させなくてもよい。正極合剤において導電助剤を含有させる場合には、その含有量は、正極活物質の含有量を100質量部としたときに、1.0質量部以上であることが好ましく、7.0質量部以下であることが好ましく、6.5質量部以下であることがより好ましい。
 また、正極合剤にはバインダを含有させることができる。その具体例としては、ポリフッ化ビニリデン(PVDF)などのフッ素樹脂などが挙げられる。なお、例えば正極合剤に硫化物系固体電解質を含有させる場合(後述する)のように、バインダを使用しなくても、正極合剤層を形成する上で良好な成形性が確保できる場合には、正極合剤にはバインダを含有させなくてもよい。
 正極合剤において、バインダを要する場合には、その含有量は、15質量%以下であることが好ましく、また、0.5質量%以上であることが好ましい。他方、正極合剤において、バインダを要しなくても成形性が得られる場合には、その含有量が、0.5質量%以下であることが好ましく、0.3質量%以下であることがより好ましく、0質量%である(すなわち、バインダを含有させない)ことがさらに好ましい。
 正極合剤には、固体電解質を含有させることが好ましい。
 正極合剤に含有させる固体電解質は、リチウムイオン伝導性を有していれば特に限定されず、例えば、硫化物系固体電解質、水素化物系固体電解質、ハロゲン化物系固体電解質、酸化物系固体電解質などが使用できる。
 硫化物系固体電解質としては、LiS-P、LiS-SiS、LiS-P-GeS、LiS-B系ガラスなどの粒子が挙げられる他、近年、Liイオン伝導性が高いものとして注目されているthio-LISICON型のもの〔Li10GeP12、Li9.54Si1.741.4411.7Cl0.3などの、Li12-12a-b+c+6d-e 3+a-b-c-d 12-e(ただし、MはSi、GeまたはSn、MはPまたはV、MはAl、Ga、YまたはSb、MはZn、Ca、またはBa、MはSまたはSおよびOのいずれかであり、XはF、Cl、BrまたはI、0≦a<3、0≦b+c+d≦3、0≦e≦3〕や、アルジロダイト型結晶構造を有するものも使用することができる。
 水素化物系固体電解質としては、例えば、LiBH、LiBHと下記のアルカリ金属化合物との固溶体(例えば、LiBHとアルカリ金属化合物とのモル比が1:1~20:1のもの)などが挙げられる。前記固溶体におけるアルカリ金属化合物としては、ハロゲン化リチウム(LiI、LiBr、LiF、LiClなど)、ハロゲン化ルビジウム(RbI、RbBr、RbF、RbClなど)、ハロゲン化セシウム(CsI、CsBr、CsF、CsClなど)、リチウムアミド、ルビジウムアミドおよびセシウムアミドよりなる群から選択される少なくとも1種が挙げられる。
 ハロゲン化物系固体電解質としては、例えば、単斜晶型のLiAlCl、欠陥スピネル型または層状構造のLiInBr、単斜晶型のLi6-3m(ただし、0<m<2かつX=ClまたはBr)などが挙げられ、その他にも例えば国際公開第2020/070958や国際公開第2020/070955に記載の公知のものを使用することができる。
 酸化物系固体電解質としては、例えば、ガーネット型のLiLaZr12、NASICON型のLi1+OAl1+OTi2-O(PO、Li1+pAl1+pGe2-p(PO、ペロブスカイト型のLi3qLa2/3-qTiOなどが挙げられる。
 これらの固体電解質の中でも、リチウムイオン伝導性が高いことから、硫化物系固体電解質が好ましく、LiおよびPを含む硫化物系固体電解質がより好ましく、アルジロダイト型結晶構造を有する硫化物系固体電解質が、リチウムイオン伝導性がより高く、化学的に安定性が高いことから、さらに好ましい。
 アルジロダイト型結晶構造を有する硫化物系固体電解質としては、例えば、LiPSClなどの、下記一般組成式(1)、下記一般組成式(2)または下記一般組成式(3)で表されるものが、特に好ましい。
  Li7-kPS6-k     (1)
 前記一般組成式(1)中、Xは1種以上のハロゲン元素を示し、0.2<k<2.0または0.2<k<1.8である。
  Li7-x+yPS6-xClx+y  (2)
 前記一般組成式(2)中、0.05≦y≦0.9、-3.0x+1.8≦y≦-3.0x+5.7である。
  Li7-aPS6-aClBr  (3)
 前記一般組成式(3)中、a=b+c、0<a≦1.8、0.1≦b/c≦10.0である。
 固体電解質の平均粒子径は、粒界抵抗軽減の観点から、0.1μm以上であることが好ましく、0.2μm以上であることがより好ましく、一方、活物質と固体電解質との間での十分な接触界面形成の観点から、10μm以下であることが好ましく、5μm以下であることがより好ましい。
 正極合剤における固体電解質の含有量は、正極内でのイオン伝導性をより高めて、全固体電池の出力特性をより向上させる観点から、正極活物質の含有量を100質量部としたときに、10質量部以上であることが好ましく、15質量部以上であることがより好ましい。ただし、正極合剤中の固体電解質の量が多すぎると、他の成分の量が少なくなって、それらによる効果が小さくなる虞がある。よって、正極合剤における固体電解質の含有量は、正極活物質の含有量を100質量部としたときに、65質量部以下であることが好ましく、60質量部以下であることがより好ましい。
 正極の集電体を構成するシート状の多孔質導電性基材には、多孔質金属基材やカーボンシートなどを用いることができ、多孔質金属基材としては、発泡状金属多孔質体を使用することが好ましい。発泡状金属多孔質体の具体例としては、住友電気工業株式会社の「セルメット(登録商標)」などが挙げられる。なお、このような多孔質金属基材は、正極(発電素子)に使用する前の厚みが、前記の厚み(正極内での厚み)よりも大きいことが通常であり(例えば、圧縮される前の厚みが0.1mm以上であることが好ましく、0.3mm以上であることがより好ましく、0.5mm以上であることが特に好ましく、一方、3mm以下であることが好ましく、2mm以下であることがより好ましく、1.5mm以下であることが特に好ましい。)、後述する発電素子の製造時において、厚み方向に圧縮されて、その厚みが後記のような値となる。
 多孔質金属基材の圧縮される前の空孔率は、多孔質金属基材と正極合剤とを加圧する工程において、多孔質金属基材の空孔内に正極合剤が充填されやすくし、多孔質金属基材と正極合剤層とが容易に一体化できるようにするために、80%以上とすることが好ましく、90%以上とすることがより好ましく、95%以上とすることが特に好ましい。一方、基材の量を一定以上にして導電性を高めるために、空孔率は、99.5%以下とすることが好ましく、99%以下とすることがより好ましく、98.5%以下とすることが特に好ましい。
 正極において、多孔質金属基材のうち、正極合剤層中に埋設している部分の厚みは、多孔質金属基材と正極合剤層とをより確実に一体化させる観点から、多孔質金属基材の厚み(多孔質金属基材全体の厚みであって、正極合剤層が共存している部分の厚みを含む。特に断らない限り、多孔質金属基材の厚みについて、以下同じ。)のうちの、10%以上であることが好ましく、20%以上であることがより好ましい。
 また、正極において、導電経路との間に介在する導電性接着剤との抵抗を低減するためには、多孔質金属基材の正極合剤層側とは反対側の端部は正極合剤層に埋設されず、正極の端部(正極の表面)が多孔質金属基材のみで構成されていることが望ましい。すなわち、後述する発電素子の製造時において、多孔質金属基材が厚み方向に圧縮される際に、多孔質金属基材の端部の空孔が押しつぶされて無くなり、多孔質金属基材のみが正極の表面に露出している状態となることが望ましい。ただし、多孔質金属基材の端部の空孔の一部は押しつぶされず、その中に正極合剤が充填された状態となっていてもよく、導電性接着剤との接触抵抗に大きな影響を及ぼさない範囲で、多孔質金属基材の端部とともに正極合剤の一部が正極の表面に露出しても構わない。
 図2に、発電素子の一例における正極の表面の走査型電子顕微鏡(SEM)写真を示す。図2に示す正極の表面においては、集電体である多孔質金属基材212の端部が露出しているが、正極合剤211aの一部も、多孔質金属基材の端部に存在する空孔に入り込むことにより正極の表面に露出している。
 ただし、正極の表面に露出している正極合剤の割合(面積比)が大きくなるほど、集電体である多孔質金属基材と、導電性接着剤との接触抵抗が大きくなるため、正極表面における、露出した正極合剤の面積の割合を、平面視で50%以下とすることが望ましく、25%以下とすることがより望ましく、15%以下とすることがさらに望ましく、10%以下とすることが特に望ましい。
 正極において、正極合剤層に多孔質金属基材の少なくとも一部を埋設させるにあたり、多孔質金属基材と正極合剤層とをより確実に一体化させる観点からは、多孔質金属基材の厚みは、正極合剤層の全体の厚み(多孔質金属基材と共存している部分の厚みを含む。以下にいう「正極合剤層の厚み」は、特に断らない限り、ここでいう「正極合剤層の全体の厚み」を意味する。)の、1%以上であることが好ましく、2%以上であることがより好ましく、3%以上であることが特に好ましい。また、正極における正極合剤層の充填性を高める観点から、多孔質金属基材の厚みは、正極合剤層の厚みの、30%以下であることが好ましく、20%以下であることがより好ましく、10%以下であることが特に好ましい。
 なお、正極において、多孔質金属基材の厚みは、10μm以上であることが好ましく、20μm以上であることがより好ましく、30μm以上であることが特に好ましく、一方、300μm以下であることが好ましく、200μm以下であることがより好ましく、100μm以下であることが特に好ましい。また、正極合剤層の厚みは、0.2mm以上であることが好ましく、0.4mm以上であることがより好ましく、0.6mm以上であることが特に好ましく、一方、2mm以下であることが好ましく、1.7mm以下であることがより好ましく、1.5mm以下であることが特に好ましい。
 本明細書でいう多孔質金属基材の厚み、正極合剤層の厚み、および後記の負極合剤層の厚みは、それぞれ、正極または負極の厚み方向の断面をSEMにより倍率50~1000倍で観察した画像において、多孔質金属基材が確認できる領域と、正極合剤または負極合剤が確認できる領域の厚み方向の幅の最大値により求められる。また、多孔質金属基材のうち正極合剤層内または負極合剤層内に埋設されている部分の厚みは、前記多孔質金属基材が確認できる領域と前記正極合剤が確認できる領域または前記負極合剤が確認できる領域とが重なっている部分の厚み方向の幅の最大値により求められる(後述する実施例における各値は、これらの方法によって求めたものである)。
 また、正極の表面に露出している正極合剤の割合(面積比)および負極の表面に露出している負極合剤の割合(面積比)は、正極または負極の表面をSEMにより倍率50~200倍で観察した画像において、正極合剤または負極合剤が露出している部分の面積の総和:Aと、正極または負極全体の面積:Bとの比(A/B)により求められる(後述する実施例における値は、この方法によって求めたものである)。
(負極)
 負極は、負極活物質などを含有する負極合剤層と、シート状の多孔質導電性基材で構成される集電体とを有している。
 負極活物質としては、例えば、黒鉛などの炭素材料や、リチウムチタン酸化物(チタン酸リチウムなど)、Si、Snなどの元素を含む単体、化合物(酸化物など)およびその合金などが挙げられる。また、リチウム金属やリチウム合金(リチウム-アルミニウム合金、リチウム-インジウム合金など)も負極活物質として用いることができる。
 負極合剤における負極活物質の含有量は、電池のエネルギー密度をより大きくする観点から、40~80質量%であることが好ましい。
 負極合剤には、導電助剤を含有させることができる。その具体例としては、正極合剤に含有させ得るものとして先に例示した導電助剤と同じものなどが挙げられる。負極合剤における導電助剤の含有量は、負極活物質の含有量を100質量部としたときに、10~30質量部であることが好ましい。
 また、負極合剤にはバインダを含有させることができる。その具体例としては、正極合剤に含有させ得るものとして先に例示したバインダと同じものなどが挙げられる。なお、例えば負極合剤に硫化物系固体電解質を含有させる場合(後述する)のように、バインダを使用しなくても、負極合剤層を形成する上で良好な成形性が確保できる場合には、負極合剤にはバインダを含有させなくてもよい。
 負極合剤において、バインダを要する場合には、その含有量は、15質量%以下であることが好ましく、また、0.5質量%以上であることが好ましい。他方、負極合剤において、バインダを要しなくても成形性が得られる場合には、その含有量が、0.5質量%以下であることが好ましく、0.3質量%以下であることがより好ましく、0質量%である(すなわち、バインダを含有させない)ことがさらに好ましい。
 負極合剤には固体電解質を含有させることが好ましい。その具体例としては、正極合剤に含有させ得るものとして先に例示した固体電解質と同じものなどが挙げられる。前記例示の固体電解質の中でも、リチウムイオン伝導性が高く、また、負極合剤の成形性を高める機能を有していることから、硫化物系固体電解質を用いることが好ましく、アルジロダイト型結晶構造を有する硫化物系固体電解質を用いることがより好ましく、前記一般組成式(1)、前記一般組成式(2)または前記一般組成式(3)で表されるものを用いることがさらに好ましい。
 負極合剤に係る固体電解質の平均粒子径は、正極合剤の場合と同じ理由から、0.1μm以上であることが好ましく、0.2μm以上であることがより好ましく、また、10μm以下であることが好ましく、5μm以下であることがより好ましい。
 負極合剤における固体電解質の含有量は、負極内でのイオン伝導性をより高めて、全固体電池の出力特性をより向上させる観点から、負極活物質の含有量を100質量部としたときに、30質量部以上であることが好ましく、35質量部以上であることがより好ましい。ただし、負極合剤中の固体電解質の量が多すぎると、他の成分の量が少なくなって、それらによる効果が小さくなる虞がある。よって、負極合剤における固体電解質の含有量は、負極活物質の含有量を100質量部としたときに、130質量部以下であることが好ましく、110質量部以下であることがより好ましい。
 負極の集電体を構成するシート状の多孔質導電性基材には、正極同様に多孔質金属基材やカーボンシートなどを用いることができ、多孔質金属基材としては、発泡状金属多孔質体を使用することが好ましい。発泡状金属多孔質体の具体例としては、住友電気工業株式会社の「セルメット(登録商標)」などが挙げられる。なお、このような多孔質金属基材は、負極(発電素子)に使用する前の厚みが、前記の厚み(負極内での厚み)よりも大きいことが通常であり(例えば、圧縮される前の厚みが0.1mm以上であることが好ましく、0.3mm以上であることがより好ましく、0.5mm以上であることが特に好ましく、一方、3mm以下であることが好ましく、2mm以下であることがより好ましく、1.5mm以下であることが特に好ましい。)、後述する発電素子の製造時において、厚み方向に圧縮されて、その厚みが後記のような値となる。
 多孔質金属基材の圧縮される前の空孔率は、多孔質金属基材と負極合剤とを加圧する工程において、多孔質金属基材の空孔内に負極合剤が充填されやすくし、多孔質金属基材と負極合剤層とが容易に一体化できるようにするために、80%以上とすることが好ましく、90%以上とすることがより好ましく、95%以上とすることが特に好ましい。一方、基材の量を一定以上にして導電性を高めるために、空孔率は、99.5%以下とすることが好ましく、99%以下とすることがより好ましく、98.5%以下とすることが特に好ましい。
 負極において、多孔質金属基材のうち、負極合剤層中に埋設している部分の厚みは、多孔質金属基材と負極合剤層とをより確実に一体化させる観点から、多孔質金属基材の厚み(多孔質金属基材全体の厚みであって、負極合剤層が共存している部分の厚みを含む。特に断らない限り、多孔質金属基材の厚みについて、以下同じ。)のうちの、10%以上であることが好ましく、20%以上であることがより好ましい。
 また、負極において、導電経路との間に介在する導電性接着剤との抵抗を低減するためには、多孔質金属基材の負極合剤層側とは反対側の端部は負極合剤層に埋設されず、負極の端部(負極の表面)が多孔質金属基材のみで構成されていることが望ましい。すなわち、後述する発電素子の製造時において、多孔質金属基材が厚み方向に圧縮される際に、多孔質金属基材の端部の空孔が押しつぶされて無くなり、多孔質金属基材のみが負極の表面に露出している状態となることが望ましい。ただし、多孔質金属基材の端部の空孔の一部は押しつぶされず、その中に負極合剤が充填された状態となっていてもよく、導電性接着剤との接触抵抗に大きな影響を及ぼさない範囲で、多孔質金属基材の端部とともに負極合剤の一部が負極の表面に露出しても構わない。
 ただし、負極の表面に露出している負極合剤の割合(面積比)が大きくなるほど、集電体である多孔質金属基材と、導電性接着剤との接触抵抗が大きくなるため、負極表面における、露出した負極合剤の面積の割合を、平面視で50%以下とすることが望ましく、25%以下とすることがより望ましく、15%以下とすることがさらに望ましく、10%以下とすることが特に望ましい。
 負極において、負極合剤層に多孔質金属基材の少なくとも一部を埋設させるにあたり、多孔質金属基材と負極合剤層とをより確実に一体化させる観点からは、多孔質金属基材の厚みは、負極合剤層の全体の厚み(多孔質金属基材と共存している部分の厚みを含む。以下にいう「負極合剤層の厚み」は、特に断らない限り、ここでいう「負極合剤層の全体の厚み」を意味する。)の、1%以上であることが好ましく、2%以上であることがより好ましく、3%以上であることが特に好ましい。また、負極における負極合剤層の充填性を高める観点から、多孔質金属基材の厚みは、負極合剤層の厚みの、30%以下であることが好ましく、20%以下であることがより好ましく、10%以下であることが特に好ましい。
 なお、負極において、多孔質金属基材の厚みは、10μm以上であることが好ましく、20μm以上であることがより好ましく、30μm以上であることが特に好ましく、一方、300μm以下であることが好ましく、200μm以下であることがより好ましく、100μm以下であることが特に好ましい。また、負極合剤層の厚みは、0.2mm以上であることが好ましく、0.5mm以上であることがより好ましく、0.7mm以上であることが特に好ましく、一方、2mm以下であることが好ましく、1.7mm以下であることがより好ましく、1.5mm以下であることが特に好ましい。
(固体電解質層)
 発電素子において、正極と負極との間には固体電解質層を介在させる。固体電解質層を構成する固体電解質の具体例としては、正極合剤に含有させ得るものとして先に例示した固体電解質と同じものなどが挙げられる。前記例示の固体電解質の中でも、リチウムイオン伝導性が高く、また、成形性を高める機能を有していることから、硫化物系固体電解質を用いることが好ましく、アルジロダイト型結晶構造を有する硫化物系固体電解質を用いることがより好ましく、前記一般組成式(1)、前記一般組成式(2)または前記一般組成式(3)で表されるものを用いることがさらに好ましい。
 固体電解質層は、樹脂製の不織布などの多孔質体を支持体として有していてもよい。
 固体電解質層の厚みは、10~200μmであることが好ましい。
(発電素子の製造方法)
 発電素子は、例えば以下の第1工程~第3工程を有する製造方法によって製造することができる。
 第1工程では、電極合剤(正極合剤または負極合剤)を金型に投入して加圧成形する。第1工程での加圧成形の面圧は、例えば30~500MPaであることが好ましい。
 次の第2工程では、第1工程で加圧成形された前記電極合剤上にシート状の多孔質導電性基材を載置し、その次の第3工程で前記電極合剤と前記多孔質導電性基材とを加圧して、電極(正極または負極)を形成する。このとき、前記多孔質導電性基材として多孔質金属基材を用いた場合には、この第3工程における加圧によって、多孔質金属基材を電極合剤側の端部から電極合剤内に埋設させつつ前記電極合剤をさらに圧縮すると共に、多孔質金属基材を厚み方向に圧縮して、電極合剤層(正極合剤層または負極合剤層)と前記多孔質金属基材とを一体化させた電極(正極または負極)を形成できる。
 前記の通り、シート状の多孔質導電性基材として多孔質金属基材を用いた場合には、この第3工程において、多孔質金属基材を厚み方向に圧縮するが、その圧縮の程度としては、多孔質金属基材と電極合剤層とをより確実にする観点から、圧縮後の多孔質金属基材の厚みを、圧縮前の厚みの30%以下とすることが好ましく、20%以下とすることがより好ましく、10%以下とすることが特に好ましい。また、多孔質金属基材の空隙内に一定以上の電極合剤を保持させて、多孔質金属基材と電極合剤層との接合強度を高める観点からは、第3工程における圧縮後の多孔質金属基材の厚みを、圧縮前の厚みの1%以上とすることが好ましく、2%以上とすることがより好ましい。
 第3工程における加圧時の面圧は、電極合剤を圧縮成形して電極合剤層の密度を十分に高めるため、例えば800MPa以上であることが好ましく、1000MPa以上であることがより好ましく、1200MPa以上であることが特に好ましい。第3工程における加圧時の面圧の上限値は特に規定されないが、一般的な加圧装置では、通常は2000MPa程度が上限値となる。
 シート状の多孔質導電性基材として多孔質金属基材を用いた場合には、前記第1工程から前記第3工程を経ることで、多孔質金属基材の電極合剤層側の端部を含む少なくとも一部(多孔質金属基材の端部から厚み方向に一定の範囲)が電極合剤層の表層部に埋設されて電極合剤層と一体化しており、かつ多孔質金属基材の他方の端部が当該電極の表面に露出している構成の電極(正極または負極)を得ることができる。
 なお、第3工程における加圧時の面圧が高くなると、多孔質金属基材が圧縮される際に亀裂を生じる可能性もあるが、切断されて破片が生じる場合でも、その端部が電極の表面に露出するのであれば、接触抵抗の低減に寄与することができる。
 前記の第1工程、第2工程および第3工程を経て正極および負極を作製し、これらを固体電解質層の両面に配置し、必要に応じて加圧して発電素子を形成することができる。
 さらに、第1工程の前に、固体電解質を金型に投入して加圧成形する予備工程を設け、この予備工程で加圧成形された固体電解質上に電極合剤(正極合剤または負極合剤)を載置し、その後に第1工程、第2工程および第3工程を順次実施することで、固体電解質層と電極(正極または負極)との一体化物を製造し、これを発電素子に使用することもできる。
 予備工程における加圧成形時の面圧は、例えば、30~120MPaとすることが好ましい。
 また、予備工程から第1工程、第2工程および第3工程を経て、片面に正極および負極のうちの一方の電極を形成した固体電解質層の他面に、さらに第1工程、第2工程および第3工程を順次実施して他方の電極(負極または正極)を形成することで、発電素子を製造することもできる。
<外装体>
 全固体電池の外装体は、外装容器と蓋体とを有し、外装容器が、外装容器の内部から外部に通じる導電経路を有し、発電素子の電極(正極および負極)の集電体を、導電性接着剤を介して前記導電経路と接続して、前記電極と前記導電経路とを導通させ得る構造のものであればよく、例えば、図1に示すような形態のものを使用することができる。このような外装体において、外装容器は、セラミックスや樹脂で構成されるものが使用できる。また、蓋体は、セラミックスや樹脂、金属(鉄-ニッケル合金や、鉄-ニッケル-コバルト合金などの鉄基合金など)で構成されるものが使用できる。
 外装容器において、電極と外部端子とを接続する導電経路は、マンガン、コバルト、ニッケル、銅、モリブデン、銀、パラジウム、タングステン、白金、金などの金属や、これらを含む合金で構成することができる。また、図1中のリード711については、ステンレス鋼、ニッケル、アルミニウム、鉄、銅、これらを組み合わせたクラッド材料や、これら材料にニッケルやクロム、ニッケルクロムなどのめっき処理を施した材料などの金属製の板などを使用することもできる。
 さらに、外装容器における外部端子には、ステンレス鋼、ニッケル、アルミニウム、鉄、銅、これらを組み合わせたクラッド材料や、これら材料にニッケルやクロム、ニッケルクロムなどのめっき処理を施した材料などの金属製の板などを使用することができる。外部端子の厚みは、10~300μmであることが好ましい。
 外装容器と蓋体とは、接着剤で貼り合わせて封止することができる他、金属製の蓋体を使用する場合には、外装容器の凹部の側壁の蓋体側を金属(鉄-ニッケル合金や、鉄-ニッケル-コバルト合金などの鉄基合金など)で構成しておき、これと蓋体とを溶接することで封止することもできる。
 また、全固体電池の外装体には、外装缶と封口缶とを有する、コイン形やボタン形と称される扁平形のものを使用することもできる。
 図3に、外装缶と封口缶とを有する外装体を備えた全固体電池の一例を模式的に表す縦断面図を示す。図1に示す全固体電池11は、正極21と負極22とが固体電解質層23を介して積層されて構成された発電素子20が、金属製の外装缶80と、金属製の封口缶90と、これらの間に介在する樹脂製のガスケット100とで形成された外装体内に封入されている。封口缶90は、外装缶80の開口部にガスケット100を介して嵌合しており、外装缶80の開口端部が内方に締め付けられ、これによりガスケット100が封口缶90に当接することで、外装缶80の開口部が封口されて電池内部が密閉構造となっている。
 発電素子20を構成する正極21は、図1に示す全固体電池10と同様に、シート状の多孔質導電性基材で構成される集電体212として多孔質金属基材を有しており、その正極合剤層211側の端部を含む全体が、正極合剤層211の表層部に埋設されている。また、正極21においては、多孔質金属基材で構成された集電体212の正極合剤層211側とは反対側の端部(図3中下側の端部)が露出している。そして、正極21における点線は、正極合剤層211における、集電体が共存していない領域と、正極合剤層と集電体とが共存している領域との境界を示しており、集電体212の正極合剤層211側の端部に該当する。
 さらに、発電素子20を構成する負極22においても、図1に示す全固体電池10と同様に、シート状の多孔質導電性基材で構成される集電体222として多孔質金属基材を有しており、その負極合剤層221側の端部を含む全体が、負極合剤層221の表層部に埋設されている。また、負極22においては、多孔質金属基材で構成された集電体222の負極合剤層221側とは反対側の端部(図3中上側の端部)が露出している。そして、負極22における点線は、負極合剤層221における、集電体が共存していない領域と、負極合剤層と集電体とが共存している領域との境界を示しており、集電体222の負極合剤層221側の端部に該当する。
 図3に示す全固体電池11においては、金属製の外装缶80が、正極21側の導電経路を形成しており、正極21の集電体212と外装缶80の内面とが、導電性接着剤30を介して電気的に接続している。
 また、図3に示す全固体電池11においては、金属製の封口缶90が、負極22側の導電経路を形成しており、負極22の集電体222と封口缶90の内面とが、導電性接着剤31を介して電気的に接続している。
 なお、図3に示す全固体電池11においては、外装缶80が正極の外部端子を兼ね、封口缶90が負極の外部端子を兼ねているが、必要に応じて、外装缶が負極の外部端子を兼ね、かつ封口缶が正極の外部端子を兼ねるように電池を構成することもできる。
 全固体電池の外装体が外装缶と封口缶とを有するケースの場合、図3に示すように、外装缶と封口缶とをガスケットを介してカシメ封口したものが挙げられるほか、外装缶と封口缶とを、樹脂で接着したものも例示できる。
 外装缶および封口缶にはステンレス鋼製のものなどが使用できる。また、ガスケットの素材には、ポリプロピレン、ナイロンなどを使用できるほか、全固体電池の用途との関係で耐熱性が要求される場合には、融点が240℃を超える耐熱樹脂を使用することもできる。上記耐熱樹脂としては、フッ素樹脂〔テトラフルオロエチレン-パーフルオロアルコキシエチレン共重合体(PFA)など〕、ポリフェニレンエーテル(PPE)、ポリスルフォン(PSF)、ポリアリレート(PAR)、ポリエーテルスルフォン(PES)、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)などが挙げられる。また、全固体電池が耐熱性を要求される用途に適用される場合、その封口には、ガラスハーメチックシールを利用することもできる。
 全固体電池の外装体の平面視での形状は、円形でもよく、四角形(正方形・長方形)などの多角形であってもよい。
<導電性接着剤>
 導電性接着剤には、接着剤成分である樹脂(エポキシ樹脂、アクリル樹脂、フェノール樹脂、ウレタン樹脂、シリコーン樹脂など)中に、銀、ニッケル、カーボン、ステンレス鋼、アルミニウムなどのうちの少なくとも1種の導電性フィラーが分散しているものを使用することができる。このような導電性フィラーを含有する導電性接着剤には市販されているものがあり、全固体電池には、こうした市販の導電性接着剤を使用することができる。ただし、正極および負極の合剤層に硫化物固体電解質を用いる場合には、シリコーン樹脂は硫黄の存在下で硬化できないため、シリコーン樹脂系導電性接着剤を使用することはできない。
 なお、硫化物系固体電解質は銀と反応して絶縁性の硫化銀を生成しやすいため、硫化物系固体電解質を電極(正極および負極)の合剤層に含有する全固体電池の場合、電極と導電経路との間に銀を含有する導電性接着剤を適用すると、硫化物系固体電解質と銀が反応して絶縁体の硫化銀が生成することで電子伝導の経路が損なわれ、電池の特性が損なわれる虞があるが、本発明の全固体電池においては、正極および負極が有する集電体の作用によって、正極合剤層中の硫化物系固体電解質や負極合剤層中の硫化物系固体電解質と、銀を含有する導電性接着剤との直接の接触が抑制される。よって、正極および負極の合剤層中に硫化物系固体電解質を含有させつつ、銀を導電性フィラーとする導電性接着剤を適用することも可能である。
 正極の集電体と導電経路との対向面、および負極の集電体と導電経路との対向面に配置する導電性接着剤の比抵抗は、これらの間の接触抵抗を良好に低減する観点から、1×10―2Ω・cm以下であることが好ましく、1×10―3Ω・cm以下であることがより好ましい。
 導電性接着剤は、正極の集電体と導電経路との対向面、および負極の集電体と導電経路との対向面の全面に配置してもよく、一部にのみ配置することも可能である。正極の集電体と導電経路との対向面、および負極の集電体と導電経路との対向面に配置する導電性接着剤の塗布面積は、これらの間の接触抵抗を良好に低減する観点から、集電体の導電経路との対向面の面積のうちの、30%以上であることが好ましく、50%以上であることがより好ましい。導電性接着剤は、前記の通り、正極の集電体と導電経路との対向面、および負極の集電体と導電経路との対向面の全面に配置してもよいため、これらに配置する導電性接着剤の塗布面積の好適上限値は、集電体の導電経路との対向面の面積のうちの100%である。
 導電性接着剤を、正極の集電体と導電経路との対向面の一部のみに配置したり、負極の集電体と導電経路との対向面の一部にのみ配置したりする場合、導電性接着剤は、一定の間隔で均一に配置することも、不均一な間隔で配置することも可能であるが、電池特性をより高める観点からは、一定の間隔で均一に配置することがより好ましい。
 以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。
(実施例1)
 平均粒子径が2μmのチタン酸リチウム(LiTi12、負極活物質)と、平均粒子径が0.7μmの硫化物系固体電解質(LiPSCl)と、グラフェン(導電助剤)とを、質量比が50:41:9となる割合で混合して負極合剤を調製した。
 また、表面にLiNbOの被覆層が形成された平均粒子径が5μmのLiCoO(正極活物質)と、平均粒子径が0.7μmの硫化物系固体電解質(LiPSCl)と、グラフェンとを、質量比が65:30.7:4.3となる割合で混合して正極合剤を調製した。
 次に、平均粒子径が0.7μmの硫化物系固体電解質(LiPSCl)の粉末を粉末成形金型に入れ、プレス機を用いて70MPaの面圧で加圧成形を行い、固体電解質層の仮成形層を形成した。さらに、固体電解質層の仮成形層の上面に、前記負極合剤を配置して50MPaの面圧で加圧成形を行い、固体電解質層の仮成形層の上に、さらに負極の仮成形層を形成した。
 次に、固体電解質層の仮成形層上に形成した負極の仮成形層の上に、住友電気工業株式会社のニッケル製の発泡状金属多孔質体〔ニッケル製の「セルメット」(登録商標)〕を直径7.25mmに切断したもの(厚み:1.2mm、空孔率:98%)を載置し、300MPaの面圧で加圧成形を行って、固体電解質層と負極との一体化物を形成した。
 さらに、前記金型を上下反転させた後、金型内の固体電解質層の上面(負極を有する面の反対側)に前記正極合剤を配置して50MPaの面圧で加圧成形を行い、固体電解質層の上に、正極の仮成形層を形成した。
 次に、固体電解質層上に形成した正極の仮成形層の上に、負極に用いたものと同じニッケル製の発泡状金属多孔質体を切断したものを載置し、1400MPaの面圧で加圧成形を行って、発電素子を得た。
 得られた発電素子においては、負極の負極合剤層の厚み、多孔質金属基材の厚み、および負極合剤層中に埋設されている多孔質金属基材の部分の厚みは、それぞれ、1400μm、60μm(負極に使用する前の多孔質金属基材の厚みの5%)および60μm(多孔質金属基材の全体厚みの100%)であった。また、負極の表面に露出している負極合剤の部分の面積割合は、7%であった。
 また、得られた発電素子においては、正極の正極合剤層の厚み、多孔質金属基材の厚み、および正極合剤層中に埋設されている多孔質金属基材の部分の厚みは、それぞれ、800μmおよび60μm(正極に使用する前の多孔質金属基材の厚みの5%)および60μm(多孔質金属基材の全体厚みの100%)であった。また、正極の表面に露出している正極合剤の部分の面積割合は、7%であった。
 前記の発電素子の正極集電体の表面に、導電性フィラーとして銀を含有するエポキシ樹脂系の導電性接着剤〔株式会社スリーボンド製「3331D」(商品名)〕を、塗布面積が、集電体の導電経路との面積のうちの70%となる量で塗布し、図1に示すものと同様の断面構造を有し、凹部の側壁の蓋体側の部分を鉄-ニッケル-コバルト合金で構成し、他の部分をセラミックスで構成した外装容器の凹部の底に、導電性接着剤の塗布面が外装容器の凹部底面の導電経路と接するように載置し、導電性接着剤を硬化させた。そして、発電素子の負極集電体の表面に、正極集電体に塗布したものと同じエポキシ樹脂系の導電性接着剤を、塗布面積が、集電体の導電経路との面積のうちの70%となる量で塗布し、その上にリード(ニッケル箔)を載せた。この際、リードの所定箇所にも、前記と同じエポキシ樹脂系の導電性接着剤を塗布しておき、その部分が外装容器の導電部(図1中712)と接触するように、リードを配置した。そして、負極集電体およびリードに塗布した導電性接着剤を硬化させてから、外装容器の凹部の側壁上に、鉄-ニッケル-コバルト合金で構成した蓋体を被せ、蓋体と外装容器とを溶接することで、外装容器と蓋体とからなる外装体を封止して、全固体二次電池を得た。
(実施例2)
 正極集電体、負極集電体およびリードに塗布する導電性接着剤を、導電性フィラーとして炭素を含有するエポキシ樹脂系のもの〔薩摩総研株式会社製「SSHS―01C」(商品名)〕に変更した以外は、実施例1と同様にして全固体二次電池を作製した。
(比較例1)
 正極および負極の集電体となる多孔質金属基材を用いない以外は実施例1と同様にして、正極合剤の成形体(正極合剤層)、固体電解質層および負極合剤の成形体(負極合剤層)のみからなる発電素子を作製し、この発電素子を用いた以外は実施例1と同様にして全固体二次電池を作製した。
(比較例2)
 比較例1と同様にして作製した正極合剤の成形体(正極合剤層)、固体電解質層および負極合剤の成形体(負極合剤層)のみからなる発電素子を用いた以外は、実施例2と同様にして全固体二次電池を作製した。
(比較例3)
 比較例1と同様にして形成した正極合剤の成形体(正極合剤層)、固体電解質層および負極合剤の成形体(負極合剤層)の積層体の、正極側および負極側の表面のそれぞれに、厚みが400μmのニッケル板を貼り合わせて発電素子を作製し、この発電素子を用いた以外は実施例2と同様にして全固体二次電池を作製した。
(比較例4)
 比較例3と同様に作製した発電素子を使用し、外装容器と蓋体との溶接前に、リードの上側(蓋体側)に厚みが100μmのゴム製スペーサーを配置した以外は、実施例2と同様にして全固体二次電池を作製した。
 実施例および比較例の全固体二次電池について、2mAの電流値で電圧が2.6Vになるまで定電流充電し、引き続いて2.6Vの電圧で電流値が0.2mAになるまで定電圧充電を行った後、0.5mAの電流値で電圧が1Vになるまで定電流放電を行った。その後、2mAの電流値で電圧が2.6Vになるまで定電流充電し、引き続いて2.6Vの電圧で電流値が0.2mAになるまで定電圧充電を行った後の各電池について、印加電圧10mVで1kHzの内部抵抗を測定した。これらの結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示す通り、正極活物質を含有する正極合剤の成形体で構成される正極合剤層とシート状の多孔質導電性基材で構成される集電体とを有する正極、および負極活物質を含有する負極合剤の成形体で構成される負極合剤層とシート状の多孔質導電性基材で構成される集電体とを有する負極を備える発電素子の、正極集電体と外装体の導電経路との間、および負極集電体と外装体の導電経路との間に、導電性接着剤を介在させた実施例1、2の全固体二次電池は、内部抵抗が低かった。
 これに対し、シート状の多孔質導電性基材で構成された正極集電体および負極集電体を使用していない発電素子を用いた比較例1、2の電池は、正負極と外装体の導電経路との間の導電性接着剤の有無に関わらず、内部抵抗が高くなった。また、シート状の多孔質導電性基材に代えて金属板を正負極の集電体に有する発電素子を用いた比較例3の電池は、測定不能になるほど内部抵抗が増大した。他方、比較例3の電池と同様の発電素子を使用するとともに、ゴム製のスペーサーを用いて、発電素子の正負極と外装体の導電経路との接触性を高めた比較例4の電池は、内部抵抗が測定可能な程度に低減したが、実施例の電池に比べると高くなった。
(実施例3)
 平均粒子径が2μmのチタン酸リチウム(LiTi12、負極活物質)と、平均粒子径が0.5μmの酸化物系固体電解質(Li0.35La0.55TiO)と、アセチレンブラック(デンカ株式会社製、導電助剤)とPVDF(バインダ)とを、質量比が46:46:7:1となる割合で混合して、固形分比率が70質量%になるようにNMP(N-メチル-2-ピロリドン。溶剤。)を添加し、自転公転ミキサを用いて2000rpmで10分間混合した。その後120℃で乾燥させてNMPを除去し、破砕して負極合剤を調製した。
 また、表面にLiNbOの被覆層が形成された平均粒子径が5μmのLiCoO(正極活物質)と、平均粒子径が0.5μmの酸化物系固体電解質(Li0.35La0.55TiO)と、アセチレンブラック(デンカ株式会社製、導電助剤)とPVDF(バインダ)とを、質量比が56:38:5:1となる割合で混合して、固形分比率が70質量%になるようにNMPを添加し、自転公転ミキサを用いて2000rpmで10分間混合した。その後120℃で乾燥させてNMPを除去し、破砕して正極合剤を調製した。
 負極合剤および正極合剤に前記のものを用いた以外は、実施例1と同様にして全固体二次電池を作製した(ただし、負極合剤層の厚みが300μm、正極合剤層の厚みが200μmとなるようにした)。
(実施例4)
 正極集電体、負極集電体およびリードに塗布する導電性接着剤を、導電性フィラーとして銀を含有するシリコーン樹脂系のもの〔株式会社スリーボンド製「3333F」(商品名)〕に変更した以外は、実施例3と同様にして全固体二次電池を作製した。
(比較例5)
 正極および負極の集電体となる多孔質金属基材を用いない以外は実施例3と同様にして、正極合剤の成形体(正極合剤層)、固体電解質層および負極合剤の成形体(負極合剤層)のみからなる発電素子を作製し、この発電素子を用いた以外は実施例1と同様にして全固体二次電池を作製した。
 実施例3、4および比較例5の全固体二次電池について、実施例1、2、比較例1~4と同様の前記の条件で充放電を行い、印加電圧10mVで1kHzの内部抵抗を測定したところ、実施例3の電池が70Ω、実施例4の電池が72Ωとなり、両者が同等の値を示す結果となった。また、比較例5の全固体二次電池の内部抵抗は2000Ωとなった。
 実施例1、2および比較例1、2の電池の場合と同様に、正極活物質を含有する正極合剤の成形体で構成される正極合剤層とシート状の多孔質導電性基材で構成される集電体とを有する正極、および負極活物質を含有する負極合剤の成形体で構成される負極合剤層とシート状の多孔質導電性基材で構成される集電体とを有する負極を備える発電素子の、正極集電体と外装体の導電経路との間、および負極集電体と外装体の導電経路との間に、導電性接着剤を介在させた実施例3、4の全固体二次電池は、内部抵抗が低かった。一方、シート状の多孔質導電性基材で構成された正極集電体および負極集電体を使用していない発電素子を用いた比較例5の電池は、内部抵抗が高くなった。
 また、正極および負極の合剤層に硫化物系固体電解質を用いた全固体二次電池では、前述のように、シリコーン系樹脂を接着成分とした導電性接着剤は樹脂が硬化しないために使用できないが、合剤層に酸化物系固体電解質を用いた全固体二次電池では問題なく使用でき、接着成分が異なる他の導電性接着剤を適用した場合と同等の特性を有することが確認できた。
 本発明は、その趣旨を逸脱しない範囲で、前記以外の形態としても実施が可能である。本出願に開示された実施形態は一例であって、本発明は、これらの実施形態には限定されない。本発明の範囲は、前記の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれる。
 本発明の全固体電池は、従来から知られている一次電池や二次電池と同様の用途に適用し得るが、有機電解液に代えて固体電解質を有していることから耐熱性に優れており、高温に曝されるような用途に好ましく使用することができる。
  10、11  全固体電池
  20  発電素子
  21  正極
 211  正極合剤層
 212  集電体
  22  負極
 221  負極合剤層
 222  集電体
  23  固体電解質層
  30、31、32  導電性接着剤
  40  外装容器
  50  蓋体
  60  外部端子
  61  正極用の導電経路
  70  外部端子
  71  負極用の導電経路
 711  リード
 712  導電部
  80  外装缶
  90  封口缶
 100  ガスケット

Claims (10)

  1.  正極、負極、および前記正極と前記負極との間に固体電解質層を有する発電素子が、外装体内に収容されてなる全固体電池であって、
     前記正極は、正極活物質を含有する正極合剤の成形体で構成される正極合剤層と、シート状の多孔質導電性基材で構成される集電体とを有し、
     前記負極は、負極活物質を含有する負極合剤の成形体で構成される負極合剤層と、シート状の多孔質導電性基材で構成される集電体とを有し、
     前記外装体は、内部から外部に通じる正極用の導電経路および負極用の導電経路を有し、
     下記(a)および下記(b)のうちの少なくとも一方を満たすことを特徴とする全固体電池。
    (a)前記正極の集電体と前記正極用の導電経路とが、導電性接着剤を介して電気的に接続している。
    (b)前記負極の集電体と前記負極用の導電経路とが、導電性接着剤を介して電気的に接続している。
  2.  前記(a)および前記(b)の両方を満たしている請求項1に記載の全固体電池。
  3.  前記正極の集電体は、多孔質金属基材で構成され、前記正極合剤層側の端部を含む少なくとも一部が前記正極合剤層の表層部に埋設されて前記正極合剤層と一体化しており、前記正極の集電体の他方の端部は、前記正極の表面に露出しており、
     前記負極の集電体は、多孔質金属基材で構成され、前記負極合剤層側の端部を含む少なくとも一部が前記負極合剤層の表層部に埋設されて前記負極合剤層と一体化しており、前記負極の集電体の他方の端部は、前記負極の表面に露出している請求項1に記載の全固体電池。
  4.  前記導電性接着剤は、導電性フィラーとして、銀、ニッケル、カーボン、ステンレス鋼またはアルミニウムを含有している請求項1に記載の全固体電池。
  5.  前記(a)を満たす場合、前記正極の集電体と前記正極用の導電経路との対向面に配置する前記導電性接着剤の塗布面積が、前記正極の集電体の前記正極用の導電経路との対向面の面積のうちの30%以上であり、
     前記(b)を満たす場合、前記負極の集電体と前記負極用の導電経路との対向面に配置する前記導電性接着剤の塗布面積が、前記負極の集電体の前記負極用の導電経路との対向面の面積のうちの30%以上である請求項1に記載の全固体電池。
  6.  前記(a)を満たす場合、前記正極の集電体と前記正極用の導電経路との対向面に配置する前記導電性接着剤の塗布面積が、前記正極の集電体の前記正極用の導電経路との対向面の面積のうちの50%以上であり、
     前記(b)を満たす場合、前記負極の集電体と前記負極用の導電経路との対向面に配置する前記導電性接着剤の塗布面積が、前記負極の集電体の前記負極用の導電経路との対向面の面積のうちの50%以上である請求項1に記載の全固体電池。
  7.  前記正極用の導電経路および前記負極用の導電経路のうちの少なくとも一方が複数の導電性部材から構成されており、前記複数の導電性部材同士が、導電性接着剤を介して電気的に接続されている請求項1に記載の全固体電池。
  8.  前記正極合剤層および前記負極合剤層のうちの少なくとも一方が、硫化物系固体電解質を含有する請求項1に記載の全固体電池。
  9.  前記正極合剤層および前記負極合剤層のうちの少なくとも一方が、酸化物系固体電解質を含有する請求項1に記載の全固体電池。
  10.  前記導電性接着剤は、接着剤成分としてシリコーン樹脂を含有する請求項9に記載の全固体電池。
PCT/JP2023/040046 2022-11-07 2023-11-07 全固体電池 WO2024101355A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-178173 2022-11-07
JP2022178173 2022-11-07

Publications (1)

Publication Number Publication Date
WO2024101355A1 true WO2024101355A1 (ja) 2024-05-16

Family

ID=91032407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/040046 WO2024101355A1 (ja) 2022-11-07 2023-11-07 全固体電池

Country Status (1)

Country Link
WO (1) WO2024101355A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013077486A (ja) * 2011-09-30 2013-04-25 Kyocera Corp 二次電池
JP2020091972A (ja) * 2018-12-04 2020-06-11 昭和電工株式会社 充電池パック
JP2021150228A (ja) * 2020-03-23 2021-09-27 本田技研工業株式会社 リチウムイオン二次電池
WO2022113989A1 (ja) * 2020-11-25 2022-06-02 マクセル株式会社 ケース付き全固体電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013077486A (ja) * 2011-09-30 2013-04-25 Kyocera Corp 二次電池
JP2020091972A (ja) * 2018-12-04 2020-06-11 昭和電工株式会社 充電池パック
JP2021150228A (ja) * 2020-03-23 2021-09-27 本田技研工業株式会社 リチウムイオン二次電池
WO2022113989A1 (ja) * 2020-11-25 2022-06-02 マクセル株式会社 ケース付き全固体電池

Similar Documents

Publication Publication Date Title
JP6704295B2 (ja) 全固体リチウム二次電池及びその製造方法
JP6259704B2 (ja) 全固体電池用電極の製造方法及び全固体電池の製造方法
US20240120524A1 (en) Battery and method for producing battery
JP2020161364A (ja) 全固体リチウム二次電池およびその製造方法
JP7246196B2 (ja) 全固体リチウム二次電池
JP5132614B2 (ja) リチウム電池
WO2023054333A1 (ja) 全固体電池
WO2024101355A1 (ja) 全固体電池
JP6963866B2 (ja) 全固体電池用負極および全固体電池
JP2021039860A (ja) 全固体電池用負極および全固体電池
WO2024018982A1 (ja) 全固体電池
JP2021144924A (ja) 全固体電池用電極および全固体電池
WO2024004877A1 (ja) 電極積層体の製造方法、電気化学素子およびその製造方法
WO2023238926A1 (ja) 電極積層体、その製造方法および電気化学素子
WO2024070579A1 (ja) 全固体電池およびその製造方法
WO2024070724A1 (ja) フレキシブル電池
WO2023140311A1 (ja) 全固体電池用正極、並びに全固体電池およびその製造方法
WO2023189693A1 (ja) 電池およびその製造方法
JP2020149867A (ja) 全固体リチウム二次電池およびその製造方法
WO2023054293A1 (ja) 全固体電池
WO2023149290A1 (ja) 電池
WO2021241423A1 (ja) 全固体二次電池用負極、その製造方法および全固体二次電池
JP7376393B2 (ja) 全固体二次電池用正極および全固体二次電池
JP2022083502A (ja) 全固体電池用正極および全固体電池
WO2022138886A1 (ja) 全固体電池用電極および全固体電池