WO2023145512A1 - 二次電池用セパレータおよびその製造方法、ならびに二次電池 - Google Patents

二次電池用セパレータおよびその製造方法、ならびに二次電池 Download PDF

Info

Publication number
WO2023145512A1
WO2023145512A1 PCT/JP2023/001001 JP2023001001W WO2023145512A1 WO 2023145512 A1 WO2023145512 A1 WO 2023145512A1 JP 2023001001 W JP2023001001 W JP 2023001001W WO 2023145512 A1 WO2023145512 A1 WO 2023145512A1
Authority
WO
WIPO (PCT)
Prior art keywords
polysaccharide
secondary battery
porous substrate
battery separator
separator
Prior art date
Application number
PCT/JP2023/001001
Other languages
English (en)
French (fr)
Inventor
千咲希 長谷川
雪尋 沖
充朗 白髪
和子 浅野
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202380016035.1A priority Critical patent/CN118743096A/zh
Priority to JP2023576796A priority patent/JPWO2023145512A1/ja
Publication of WO2023145512A1 publication Critical patent/WO2023145512A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure mainly relates to separators for secondary batteries.
  • Patent Literature 1 proposes a manganese dry battery characterized by having a separator coated with a paste containing xanthan gum. It is described that xanthan gum can provide a manganese dry battery with excellent liquid-leakage prevention, discharge performance and pulse discharge characteristics due to its liquid-retaining power, gel-forming properties, and viscosity stability against pH and temperature.
  • Patent Document 2 aims to obtain a battery separator coating liquid that exhibits excellent fine particle dispersibility even when exposed to severe conditions, has excellent storage stability, and has good coatability. proposed a separator coating solution containing fine particles, fibrous cellulose with a fiber width of 1000 nm or less, and a water-soluble polymer.
  • Patent Document 3 discloses that at least one region selected from the group consisting of (a) a polyolefin base material and (b) a surface of the base material and part of pores present in the base material is a mixture of inorganic particles and a binder.
  • inorganic particles are connected and fixed by a binder, and a pore structure is formed by interstitial volumes between the inorganic particles.
  • the proposed separator for batteries enhances the binder-inorganic and substrate-binder adhesive strength, and prevents internal short-circuiting in advance by self-healing against partial damage to the separator. It is described that the adhesive strength with the negative electrode can be improved and the elution of the positive electrode material transition metal can be dealt with.
  • a secondary battery containing a lithium ion conductive non-aqueous electrolyte tends to increase the amount of metal ions eluted from the positive electrode as the end-of-charge voltage increases.
  • the eluted metal ions reach the negative electrode by electrophoresis, they are deposited as metal on the negative electrode, which causes deterioration of the safety and load characteristics of the battery.
  • the separator By coating the separator with an organic polymer that has an anionic functional group capable of trapping metal ions, it is expected to suppress metal deposition on the negative electrode. However, it is difficult to uniformly apply an organic polymer having a highly polar anionic functional group on the surface of a separator having a low polarity. Even if it can be applied, the organic polymer tends to aggregate and the pores of the separator are clogged with the organic polymer, which tends to lower the load characteristics of the battery.
  • One aspect of the present disclosure includes a porous substrate having a first surface and a second surface opposite said first surface, and a first polysaccharide attached to inner pore walls of said porous substrate. and a separator for a secondary battery, wherein the first polysaccharide has a carboxyl group.
  • Another aspect of the present disclosure includes a positive electrode, a negative electrode, a lithium ion conductive non-aqueous electrolyte, and a separator interposed between the positive electrode and the negative electrode, wherein the separator is the separator for a secondary battery, It relates to a secondary battery, wherein the first surface faces the positive electrode.
  • Yet another aspect of the present disclosure is providing a porous substrate having a first surface and a second surface opposite said first surface, and providing a solution of a first polysaccharide having carboxyl groups. and a coating step of coating the solution on the porous substrate, and a drying step of drying the porous substrate coated with the solution.
  • the polysaccharide having a carboxyl group attached to the porous substrate has a high effect of trapping metal ions, does not easily clog the pores of the porous substrate, and improves the wettability of the separator with respect to the non-aqueous electrolyte. , metal deposition on the negative electrode is suppressed and the load characteristics of the secondary battery are improved.
  • FIG. 1 is a vertical cross-sectional view schematically showing the internal structure of a secondary battery according to an embodiment of the present disclosure
  • any of the illustrated lower limits and any of the illustrated upper limits can be arbitrarily combined as long as the lower limit is not greater than or equal to the upper limit.
  • a plurality of materials are exemplified, one of them may be selected and used alone, or two or more may be used in combination.
  • the secondary battery separator according to the present disclosure includes a porous substrate and a polysaccharide adhering to inner walls of pores of the porous substrate.
  • "attached to the inner wall of the pore” means that the polysaccharide is attached so as to cover at least a part of the inner wall of the pore while maintaining the space in the pore.
  • the polysaccharide may cover at least a portion of the inner wall of the pore in the form of a film along the shape of the inner wall of the pore.
  • Carboxymethyl cellulose (CMC) and its derivatives for example, tend to agglomerate and hardly enter into pores, and even when they do enter, they tend to block the spaces in pores. Therefore, at least CMC and its derivatives are excluded from polysaccharides that adhere to the inner pore walls of the porous substrate.
  • Polysaccharides have one or more carboxyl groups (—CO 2 X or —CO 2 ⁇ ) in the molecule. Since the polysaccharide contains many hydrophilic groups and has a relatively large molecular weight, it hardly dissolves in the non-aqueous electrolyte in the battery and can be fixed on the porous substrate for a long period of time without being peeled off.
  • the carboxyl group can be in any type (type) of an acid form (--CO 2 X (where X is H)), a salt form (--CO 2 X (where X is a cation)) and an anion form (--CO 2 ⁇ ). There may be.
  • the cation contained in the carboxyl group as X may be a metal ion, an organic cation, or an ammonium ion (NH 4 + ).
  • the metal ions can be cations such as alkali metals and alkaline earth metals, and can be cations such as barium, calcium, magnesium, potassium, sodium, and lithium.
  • the multiple carboxyl groups that the polysaccharide has in the molecule may be of the same type (type) or of different types.
  • a polysaccharide with carboxyl groups in salt form may have two or more carboxyl groups with different cations.
  • a plurality of types of polysaccharides having different molecular structures may be used in combination and attached to the porous substrate, or only one type of polysaccharide may be attached to the porous substrate.
  • the porous substrate has a first surface and a second surface opposite the first surface.
  • the porous substrate may have the form of a membrane, sheet or film.
  • Porous substrates can be stretched films, nonwovens, wovens, and the like.
  • Both the first surface and the second surface of the porous substrate may be made of polyolefin.
  • the first polysaccharide having a carboxyl group By attaching the first polysaccharide having a carboxyl group to the inner walls of the pores of the porous substrate whose first surface and second surface are both made of polyolefin, metal deposition at the negative electrode is suppressed, A secondary battery separator having the effect of improving the load characteristics of the secondary battery can be obtained.
  • the first polysaccharide having a carboxyl group to the porous substrate by a predetermined method, it is possible to attach the first polysaccharide to the inner walls of the pores.
  • a secondary battery separator containing a porous substrate and a first polysaccharide adhering to the porous substrate can suppress metal deposition on the negative electrode and improve the load characteristics of the secondary battery. The reasons for this are as follows.
  • the first polysaccharide can serve as a barrier that suppresses movement of metal ions between electrodes.
  • the carboxyl group of the first polysaccharide efficiently traps impurities and metal ions eluted from the positive electrode. The ability of the carboxyl group to trap metal ions is high.
  • first polysaccharides there are species that have the property of easily adhering to the porous substrate, but are difficult to clog the pores of the porous substrate. Since such a first polysaccharide exhibits high solubility in a predetermined hydrophilic solvent, it is easy to adhere thinly and uniformly along the pore inner walls of the porous substrate. Therefore, it is possible to easily avoid the phenomenon that the first polysaccharide blocks the opening of the pores and the filling of the pores with the first polysaccharide. It is considered that the highly ionic properties of the carboxyl groups contribute to the high solubility of the first polysaccharide.
  • the first polysaccharide tends to improve the wettability of the porous substrate (that is, the separator) to the non-aqueous electrolyte. While the first polysaccharide is almost insoluble in non-aqueous electrolytes, it has an affinity with non-aqueous electrolytes compared to the material (especially polyolefin) of porous substrates generally used as separators in secondary batteries. is high.
  • a separator composed of a porous substrate to which the first polysaccharide is attached has higher wettability with respect to a non-aqueous electrolyte than a separator that does not contain the first polysaccharide.
  • the load characteristics of a secondary battery using a separator composed of a porous substrate to which the first polysaccharide is attached are improved as compared to a secondary battery using a separator that does not contain the first polysaccharide.
  • the effect of suppressing the movement of metal ions by the first polysaccharide is remarkable, for example, when impurity metals such as copper and iron are present in the secondary battery.
  • impurity metals such as copper and iron are present in the secondary battery.
  • metal ions are eluted from the impurity metal into the non-aqueous electrolyte.
  • metal ions can also be eluted from the active material particles in the positive electrode.
  • the positive electrode potential of a secondary battery whose upper limit voltage exceeds 4.3 V is high and the positive electrode active material particles contain metal components (transition metals in many cases), metal ions can be eluted.
  • Metal ions eluted into the non-aqueous electrolyte move from the positive electrode side to the negative electrode side and are deposited as impurity metals.
  • the separator contains the first polysaccharide, the migration of the eluted metal ions between the electrodes is significantly suppressed.
  • metal ions that can be deposited as impurity metals in the negative electrode are also referred to as impurity metal ions.
  • the impurity metal ions eluted into the non-aqueous electrolyte on the positive electrode side pass through the separator when moving to the negative electrode side. . Therefore, the probability that impurity metal ions are trapped by the first polysaccharide is increased.
  • the trapped metal ions like the first polysaccharide, settle on the porous substrate and have limited freedom of movement. Therefore, migration of impurity metal ions from the positive electrode side to the negative electrode side is greatly suppressed.
  • the first polysaccharide Since the first polysaccharide exhibits high solubility in a predetermined hydrophilic solvent, it easily permeates into the porous substrate. Therefore, the first polysaccharide adheres thinly along the inner walls of the pores of the porous substrate, and does not adhere excessively thickly to the surface of the porous substrate.
  • the polysaccharide covers at least a portion of the inner walls of the pores in a very thin film along the shape of the inner walls of the pores.
  • the thickness of the first polysaccharide adhering to the inner walls of the pores of the porous substrate is preferably 40 nm or less, and may be 20 nm or less.
  • the thickness of the first polysaccharide is obtained by selecting 10 portions where the inner walls of the pores are covered with the first polysaccharide in the cross section obtained by cutting the separator along the thickness direction, and the 10 portions have the maximum thickness. The thickness may be measured and calculated as the average value.
  • the separator may be filled with a thermosetting resin and cured.
  • a cross-sectional sample of the separator can be obtained by a CP (cross-section polisher) method, an FIB (focused ion beam) method, or the like.
  • the distance in the thickness direction between the first polysaccharide arranged on the outermost side on the first surface side and the polyolefin arranged on the outermost side on the first surface side is It may be 10 nm or less. Such a distance can effectively correspond to the thickness of the film formed by the first polysaccharide.
  • the secondary battery separator according to the present disclosure (that is, a separator containing a porous substrate and a first polysaccharide attached thereto (hereinafter also referred to as "separator (S)”)) defined in JIS P 8117
  • the air permeability measured by the method may be, for example, 100 seconds/100 mL or more and 500 seconds/100 mL or less, or 400 seconds/100 mL or less. Since the first polysaccharide hardly clogs the pores of the porous substrate, such a low air permeability can be easily ensured. In general, the smaller the air permeability, the larger the pore volume of the separator.
  • Polysaccharide is a general term for polymers having a structure in which multiple monosaccharide molecules are linked via glycosidic bonds.
  • the first polysaccharide is not particularly limited, but from the viewpoint of ensuring ease of manufacturing the separator, for example, a mixed solvent of water and alcohol (for example, a mixed solvent of water and ethanol at a volume ratio of 50:50). It is desirable to have dissolving properties. Water contributes to dissolving the first polysaccharide, and alcohol or ethanol contributes to improving the permeability of the first polysaccharide dissolved in water into the porous substrate.
  • Examples of the basic structure of the first polysaccharide that can be used include aldose, ketose, pyranose and furanose.
  • Monosaccharide molecules (monomers) constituting the first polysaccharide include triose, tetrose, pentose, hexose, and heptose. Among them, aldopentose, ketopentose, aldohexose, ketohexose and the like are preferable, and for example, galactose, glucose and mannose classified as aldohexose can be used.
  • the first polysaccharide may have a backbone of a galactose polymer, a glucose polymer, a mannose polymer. The first polysaccharide may be obtained by introducing a carboxyl group into a polymer of these monosaccharides.
  • a polysaccharide originally having a carboxyl group can also be used as the first polysaccharide.
  • Polysaccharides having carboxyl groups include, for example, gum arabic, xanthan gum, pectin, gellan gum, agar, alginic acid, heparin, hyaluronic acid, and gelatin.
  • the first polysaccharide may be obtained by introducing a carboxyl group into pullulan, mannan, guar gum, starch, glycogen, chitin, agarose, carrageenan, glucomannan, gelatin, dextran and the like.
  • the first polysaccharide preferably contains at least one of gum arabic and xanthan gum.
  • the content of gum arabic and/or xanthan gum contained in the first polysaccharide attached to the porous substrate (that is, contained in the separator) may be, for example, 70% by mass or more, or 100% by mass.
  • a second polysaccharide having a sulfo group may be attached to the porous substrate in addition to the first polysaccharide.
  • a sulfo group is also a group exhibiting high hydrophilicity like a carboxyl group. and can improve the load characteristics of the secondary battery.
  • Examples of basic structures of secondary polysaccharides include aldose, ketose, pyranose and furanose.
  • Monosaccharide molecules (monomers) constituting the second polysaccharide include triose, tetrose, pentose, hexose, and heptose. Among them, aldopentose, ketopentose, aldohexose, ketohexose and the like are preferable, and for example, galactose classified as aldohexose can be used.
  • the second polysaccharide may have a backbone of galactose polymers. The second polysaccharide may be obtained by subjecting these monosaccharide polymers to sulfate esterification.
  • Polysaccharides originally having a sulfo group may be used, and pectin, alginic acid, pullulan, mannan, xanthan gum, guar gum, starch, glycogen, chitin, dextran, agarose, carrageenan, heparin, hyaluronic acid, glucomannan, Gum arabic, gelatin, tremel gum, etc. may be sulfated to obtain the second polysaccharide.
  • carrageenan can be preferably used.
  • Carrageenan is classified into types such as kappa, iota, and lambda, and any of them may be used.
  • the content of carrageenan contained in the second polysaccharide attached to the porous substrate may be, for example, 70% by mass or more, and the carrageenan may be 100% by mass of the second polysaccharide.
  • the mass ratio of the attachment amounts of the first polysaccharide and the second polysaccharide is not particularly limited.
  • the content of the first polysaccharide in the total of the first polysaccharide and the second polysaccharide may be, for example, 50% by mass or more, 70% by mass or more, or 90% by mass or more.
  • the separator contains the first polysaccharide can be easily confirmed by analyzing the infrared absorption spectrum obtained by FT-IR measurement of the separator.
  • the separator contains the second polysaccharide
  • peaks attributed to monosaccharide molecular species for example, C—O bonds contained in the galactose skeleton in the case of carrageenan
  • S O bonds
  • C—O—S bonds and the like are observed.
  • the separator contains a carboxyl group that binds to the first polysaccharide.
  • mass spectrometry for example, GC-MS (gas chromatography mass spectrometry), etc.
  • FT-IR FT-IR
  • the number of moles of carboxyl groups contained in the first polysaccharide per unit mass is, for example, 1.0 ⁇ 10 ⁇ 6 mol/g or more and 1.0 ⁇ 10 ⁇ 2 mol/g or less, and 1.0 ⁇ 10 ⁇ 5 mol/g or more and 1.0 ⁇ 10 ⁇ 2 mol/g or less, or 1.0 ⁇ 10 ⁇ 4 mol/g or more and 1.0 ⁇ 10 ⁇ 2 mol/g or less, or 1.0 ⁇ It may be 10 ⁇ 3 mol/g or more and 1.0 ⁇ 10 ⁇ 2 mol/g or less.
  • Polysaccharides with a high carboxyl group content have the ability to trap more metal ions, have excellent solubility in mixed solvents of water and alcohol (especially ethanol), Easy to adhere thinly and evenly along the surface.
  • the amount of the first polysaccharide attached to the porous substrate per apparent unit area is, for example, 1.0 ⁇ 10 -5 g/m 2 or more. 5.0 ⁇ 10 ⁇ 1 g/m 2 or less, 1.0 ⁇ 10 ⁇ 5 g/m 2 or more and 1.0 ⁇ 10 ⁇ 1 g/m 2 or less, and 1.0 ⁇ 10 ⁇ 5 g /m 2 or more and 5.0 ⁇ 10 ⁇ 2 g/m 2 or less, 1.0 ⁇ 10 ⁇ 5 g/m 2 or more and 1.0 ⁇ 10 ⁇ 2 g/m 2 or less, and 1.0 ⁇ It may be 10 ⁇ 4 g/m 2 or more and 1.0 ⁇ 10 ⁇ 2 g/m 2 or less, or 1.0 ⁇ 10 ⁇ 3 g/m 2 or more and 1.0 ⁇ 10 ⁇ 2 g/m 2 or less.
  • the apparent unit area is one unit (1 m 2 ) of the area surrounded by the outline of
  • the areal density of the first polysaccharide first, a sample of a predetermined size is cut out from the separator, the sample is dried by heating at 60°C for 1 hour or more, and then the dry mass W1 is obtained. Next, the dry sample is immersed in a mixed solvent of water and ethanol at a volume ratio of 50:50 (20° C. to 30° C.) for 1 hour, and then in a mixed solvent of water and ethanol at a volume ratio of 50:50. After thoroughly washing and drying by heating at 60° C. for 1 hour or longer, the dry mass W2 is determined. The first polysaccharide is virtually completely removed by soaking in the mixed solvent and washing with the mixed solvent. After that, the areal density of the first polysaccharide is obtained from the dry weights W1, W2 and the sample size (apparent area).
  • DMC dimethyl carbonate
  • the distribution of the first polysaccharide may be changed in the thickness direction of the porous substrate. For example, more of the first polysaccharide may be distributed near the surface facing the positive electrode, which is the elution source of metal ions. This shortens the migration distance of the metal ions eluted from the positive electrode, further reducing the probability of the metal ions reaching the negative electrode.
  • the second region included in the first region The content C1 of the first polysaccharide may be greater than the content C2 of the first polysaccharide contained in the second region.
  • the ratio of the content C1 to the content C2: C1/C2 is greater than 1, may be 1.1 or more, may be 1.2 or more, or may be 1.5 or more.
  • the thickness of the separator (S) or porous substrate is T
  • the probability P1 and the existence probability P2 of the first polysaccharide existing in the second region from the position of 0.5T (the center in the thickness direction) to the second surface satisfy 1 ⁇ P1/P2, and P1/P2 may be 1.2 or more, or 1.5 or more.
  • the production method includes a step (I) of preparing a porous substrate having a first surface and a second surface opposite to the first surface; solution”), a coating step (III) of coating the polysaccharide solution on the porous substrate, and a drying step of drying the porous substrate coated with the polysaccharide solution ( IV) (that is, the step of obtaining a separator).
  • porous substrates include stretched films (or microporous thin films), nonwoven fabrics, and woven fabrics, which are generally used as separators for secondary batteries (especially lithium ion batteries).
  • the porous sheet used can be used.
  • the porous sheet has moderate mechanical strength and insulating properties.
  • both the first surface and the second surface of the porous substrate are made of polyolefin.
  • polyolefins such as polypropylene and polyethylene are used.
  • the porous substrate may further have a heat-resistant layer attached to at least one of the first surface and the second surface. That is, the separator according to the present embodiment includes the case of having a porous substrate having a heat-resistant layer and the case of having a porous substrate without a heat-resistant layer.
  • the heat-resistant layer contains at least one of inorganic particles and a heat-resistant resin, and has higher heat resistance than the porous substrate.
  • the heat-resistant layer may contain an inorganic oxide filler, which is an inorganic particle, as a main component (for example, 80% by mass or more), or may contain a heat-resistant resin as a main component (for example, 40% by mass or more).
  • Inorganic fillers include inorganic particles such as alumina, silica, and titania.
  • heat-resistant resins include polyamide resins such as aromatic polyamide (aramid), polyimide resins, and polyamide-imide resins.
  • the first polysaccharide Since the first polysaccharide exhibits high solubility in a predetermined hydrophilic solvent, it easily permeates into the porous substrate. Therefore, the first polysaccharide adheres thinly and uniformly along the inner walls of the pores of the porous substrate, and does not adhere excessively thickly to the surface of the porous substrate.
  • the porous substrate has a heat-resistant layer
  • the first polysaccharide may be present in both the heat-resistant layer present on the surface layer of the porous substrate and the porous substrate. This can be confirmed, for example, by analyzing an infrared absorption spectrum obtained by FT-IR measurement.
  • the intensity of the peak attributed to the carboxyl group in the infrared absorption spectrum reflected by the porous substrate may be greater than the intensity of the peak attributed to the carboxyl group in the infrared absorption spectrum reflected by the heat-resistant layer. It's okay.
  • the infrared absorption spectrum reflected on the heat-resistant layer side of the porous substrate having a heat-resistant layer, and the exposed porous substrate by removing the heat-resistant layer from the porous substrate having the heat-resistant layer By comparing with the reflected infrared absorption spectrum, it is possible to confirm the magnitude of the intensity of the peak.
  • the thickness of the porous substrate is not particularly limited, it is, for example, 1 to 50 ⁇ m, and may be 5 to 30 ⁇ m.
  • a polysaccharide solution is prepared by mixing a first polysaccharide with a solvent to dissolve the first polysaccharide in the solvent.
  • the polysaccharide solution may further contain additives other than solvents, such as alcohols, phosphorus compounds, boron compounds, and sulfur compounds.
  • Polysaccharide solutions include, but are not limited to, for example, mixed solvents of water and ethanol, and polysaccharides dissolved in such mixed solvents.
  • Water, alcohol e.g., ethanol
  • a mixed solvent of water and alcohol is desirable in that it easily penetrates the porous substrate and allows the first polysaccharide to adhere to the surface of the porous substrate and the inner walls of the pores.
  • the solvent is not particularly limited as long as it can dissolve the first polysaccharide.
  • ethers such as tetrahydrofuran, amides such as dimethylformamide, ketones such as cyclohexanone, N-methyl-2-pyrrolidone (NMP), mixed solvents thereof, and the like may be used.
  • NMP N-methyl-2-pyrrolidone
  • a mixed solvent of water and ethanol is preferable.
  • water/ethanol 45/55 to 55/45.
  • a mixed solvent of water and ethanol easily penetrates into the porous substrate.
  • Penetration into the porous substrate can be confirmed, for example, by measuring a cross section obtained by cutting the separator along the thickness direction with FT-IR.
  • a solvent that dissolves both the first polysaccharide and the second polysaccharide may be selected to prepare a polysaccharide solution.
  • the method of applying the polysaccharide solution to the porous substrate is not particularly limited.
  • a coating method using various coaters, an immersion method, a spray method, and the like are applied.
  • coaters include bar coaters, gravure coaters, blade coaters, roll coaters, comma coaters, die coaters, and lip coaters.
  • the polysaccharide solution may be applied only to the first surface of the porous substrate.
  • the polysaccharide solution may be applied only to the first surface side of the porous substrate using various coaters, or the polysaccharide solution may be sprayed only to the first surface side of the porous substrate.
  • the first polysaccharide content C1 contained in the first region on the first surface side of the porous substrate is contained in the second region on the second surface side of the porous substrate. It can be greater than the first polysaccharide content C2.
  • the ratio of the content C1 to the content C2: C1/C2 may be controlled to 1.1 or more by controlling the coating amount of the applied polysaccharide solution and/or controlling the drying conditions described later.
  • (IV) Drying Step In the drying step, the porous substrate coated with the polysaccharide solution is dried to complete the separator.
  • the first polysaccharide may migrate to the first surface side together with the solvent by appropriately controlling the drying conditions. As a result, the first polysaccharide is unevenly distributed on the first surface side.
  • the separator may be rolled.
  • a separator with high flatness can be obtained by rolling.
  • the porous substrate coated with the polysaccharide solution may be rolled while being heated by hot rolls having a temperature lower than the melting point of the material of the porous substrate, and drying and rolling may be performed at the same time.
  • a secondary battery according to an embodiment of the present disclosure includes a positive electrode, a negative electrode, a lithium ion conductive non-aqueous electrolyte, and the secondary battery separator (separator (S)) interposed between the positive electrode and the negative electrode. ).
  • Secondary batteries include at least non-aqueous electrolyte secondary batteries such as lithium ion batteries, lithium metal secondary batteries, and all-solid-state batteries.
  • the separator is positioned with the first surface facing the positive electrode.
  • the non-aqueous electrolyte may be liquid as a whole (that is, an electrolytic solution), or may be used as a solid electrolyte or a gel electrolyte by holding the electrolytic solution in a matrix material.
  • the end-of-charge voltage may be set to 4.3 V or higher, further 4.4 V or higher, and further 4.5 V or higher.
  • a secondary battery having such a charge termination voltage that is, an upper limit voltage
  • the amount of metal ions eluted from the positive electrode generally tends to increase.
  • the secondary battery according to the present disclosure includes a separator (S) containing a polysaccharide having a plurality of carboxyl groups, the probability that eluted metal ions reach the negative electrode is low, and metal deposition at the negative electrode is significant. suppressed by
  • the configuration of the secondary battery will be specifically described below, taking a lithium-ion secondary battery as an example.
  • the positive electrode includes, for example, a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is carried on one or both surfaces of the positive electrode current collector.
  • the positive electrode active material layer is, for example, a positive electrode mixture layer made of a positive electrode mixture.
  • the positive electrode mixture contains a positive electrode active material as an essential component and may contain optional components.
  • Optional components may include binders, conductive agents, thickeners, and the like.
  • the positive electrode active material layer can be formed, for example, by applying a positive electrode slurry in which a positive electrode mixture is dispersed in a dispersion medium to the surface of the positive electrode current collector and drying it.
  • the dried coating film may be rolled if necessary.
  • a sheet-like conductive material (metal foil, mesh, net, punching sheet, etc.) is used as the positive electrode current collector.
  • metal foil is preferred.
  • materials for the positive electrode current collector include stainless steel, aluminum, aluminum alloys, and titanium.
  • the thickness of the positive electrode current collector is not particularly limited, but is, for example, 1 to 50 ⁇ m, and may be 5 to 30 ⁇ m.
  • the thickness of the positive electrode active material layer is not particularly limited.
  • a plurality of layers having different shapes may form one positive electrode active material layer.
  • two or more layers containing active material particles having different average particle sizes may be laminated, or two or more layers having different types or compositions of positive electrode active materials may be laminated.
  • the average particle size of the particles of the positive electrode active material is, for example, 3 ⁇ m or more and 30 ⁇ m or less, and may be 5 ⁇ m or more and 25 ⁇ m or less.
  • the average particle diameter is the median diameter (D 50 ) at which the cumulative volume is 50% in the volume-based particle size distribution obtained by a laser diffraction particle size distribution analyzer.
  • the active material particles may be separated and recovered from the positive electrode.
  • "LA-750" manufactured by HORIBA, Ltd. can be used as the measuring device.
  • the positive electrode active material may contain a lithium-containing transition metal oxide.
  • the lithium-containing transition metal oxide preferably contains lithium-nickel oxide (composite oxide N) containing Li and Ni and having a layered rock salt crystal structure.
  • the ratio of the composite oxide N in the positive electrode active material is, for example, 70% by mass or more, may be 90% by mass or more, or may be 95% by mass or more.
  • the ratio of Ni to the metal elements other than Li contained in the composite oxide N may be 50 atomic % or more.
  • the composite oxide N is represented, for example, by formula (1): Li ⁇ Ni x1 M1 x2 M2 (1 ⁇ x1 ⁇ x2) O 2+ ⁇ .
  • the element M1 is at least one selected from the group consisting of V, Co and Mn.
  • Element M2 is at least one selected from the group consisting of Mg, Al, Ca, Ti, Cu, Zn and Nb.
  • formula (1) is 0.9 ⁇ ⁇ ⁇ 1.1, -0.05 ⁇ ⁇ ⁇ 0.05, 0.5 ⁇ x1 ⁇ 1, 0 ⁇ x2 ⁇ 0.5, 0 ⁇ 1-x1- satisfies x2 ⁇ 0.5.
  • increases and decreases due to charging and discharging.
  • the composite oxide N contains Ni and may contain at least one selected from the group consisting of Co, Mn and Al as the element M1 and the element M2. Co, Mn and Al contribute to stabilization of the crystal structure of the composite oxide N.
  • the ratio of Co in the metal elements other than Li contained in the composite oxide N is preferably 0 atomic % or more and 20 atomic % or less, and 0 atomic % or more and 15 atoms. % or less is more desirable.
  • the proportion of Mn in metal elements other than Li may be 30 atomic % or less, or may be 20 atomic % or less.
  • the ratio of Mn to the metal elements other than Li may be 1 atomic % or more, 3 atomic % or more, or 5 atomic % or more.
  • the ratio of Al to the metal elements other than Li may be 10 atomic % or less, or may be 5 atomic % or less.
  • the ratio of Al to the metal elements other than Li may be 1 atomic % or more, 3 atomic % or more, or 5 atomic % or more.
  • the composite oxide N can be represented, for example, by formula (2): Li ⁇ Ni (1-y1-y2-y3-z) Co y1 Mn y2 Al y3 M z O 2+ ⁇ .
  • Mn and/or Al contribute to stabilization of the crystal structure of the composite oxide N with a reduced Co content.
  • Element M is an element other than Li, Ni, Co, Mn, Al and oxygen, and consists of Ti, Zr, Nb, Mo, W, Fe, Zn, B, Si, Mg, Ca, Sr, Sc and Y. At least one selected from the group may be used.
  • formula (2) is 0.9 ⁇ 1.1, ⁇ 0.05 ⁇ 0.05, 0 ⁇ y1 ⁇ 0.1, 0 ⁇ y2 ⁇ 0.6, 0 ⁇ y3 ⁇ 0.
  • the ratio of Co to the metal elements other than Li may be 2.0 atomic % or less, or 1.5 atomic % or less. If the Co content of the composite oxide N can be reduced and the Ni content can be increased, it is advantageous in terms of cost and can ensure a high capacity. On the other hand, such Co-free or Co-containing composite oxide N generally tends to easily elute metal ions. In contrast, since the secondary battery according to the present disclosure includes a separator containing a polysaccharide having a carboxyl group, the probability that eluted metal ions reach the negative electrode is low, and metal deposition at the negative electrode is significantly suppressed. be.
  • Conductive agents that can be included as optional components in the positive electrode active material layer include carbon nanotubes (CNT), carbon fibers other than CNT, and conductive particles (eg, carbon black and graphite).
  • CNT carbon nanotubes
  • carbon fibers other than CNT carbon fibers other than CNT
  • conductive particles eg, carbon black and graphite
  • the negative electrode includes at least a negative electrode current collector, for example, a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is supported on one or both surfaces of the negative electrode current collector.
  • the negative electrode active material layer may be a negative electrode mixture layer composed of a negative electrode mixture.
  • the negative electrode mixture layer is membranous or film-like.
  • the negative electrode mixture contains particles of a negative electrode active material as an essential component, and may contain a binder, a conductive agent, a thickener, and the like as optional components. Also, a lithium metal foil or a lithium alloy foil may be attached to the negative electrode current collector as the negative electrode active material layer.
  • the negative electrode mixture layer can be formed, for example, by applying a negative electrode slurry in which a negative electrode mixture containing particles of a negative electrode active material, a binder, etc. is dispersed in a dispersion medium on the surface of the negative electrode current collector and drying the slurry. .
  • the dried coating film may be rolled if necessary.
  • a sheet-shaped conductive material (metal foil, mesh, net, punching sheet, etc.) is used as the negative electrode current collector.
  • metal foil is preferred.
  • materials for the negative electrode current collector include stainless steel, nickel, nickel alloys, copper, and copper alloys.
  • the thickness of the negative electrode current collector is not particularly limited, but is, for example, 1 to 50 ⁇ m, and may be 5 to 30 ⁇ m.
  • Negative electrode active materials include materials that electrochemically absorb and release lithium ions, lithium metal, and lithium alloys. Carbon materials, alloy materials, and the like are used as materials that electrochemically occlude and release lithium ions. Examples of carbon materials include graphite, graphitizable carbon (soft carbon), and non-graphitizable carbon (hard carbon). Among them, graphite is preferable because it has excellent charging/discharging stability and low irreversible capacity. Examples of alloy-based materials include those containing at least one metal capable of forming an alloy with lithium, and specific examples include silicon, tin, silicon alloys, tin alloys, and silicon compounds. Silicon oxide, tin oxide, and the like may also be used.
  • a lithium ion conductive phase and a composite material in which silicon particles are dispersed in the lithium ion conductive phase can be used.
  • the lithium ion conductive phase for example, a silicon oxide phase, a silicate phase, a carbon phase, or the like can be used.
  • a major component (eg, 95-100% by weight) of the silicon oxide phase can be silicon dioxide.
  • a composite material composed of a silicate phase and silicon particles dispersed in the silicate phase is preferable in terms of high capacity and low irreversible capacity.
  • a lithium silicate phase (a silicate phase containing lithium) having a small irreversible capacity and a high initial charge-discharge efficiency is preferable.
  • the lithium silicate phase may be an oxide phase containing lithium (Li), silicon (Si), and oxygen (O), and may contain other elements.
  • the atomic ratio of O to Si: O/Si in the lithium silicate phase is greater than 2 and less than 4, for example.
  • O/Si is greater than 2 and less than 3.
  • the atomic ratio of Li to Si in the lithium silicate phase: Li/Si is greater than 0 and less than 4, for example.
  • Elements other than Li, Si and O that can be contained in the lithium silicate phase include, for example, iron (Fe), chromium (Cr), nickel (Ni), manganese (Mn), copper (Cu), molybdenum (Mo), Examples include zinc (Zn) and aluminum (Al).
  • the carbon phase can be composed of, for example, amorphous carbon with low crystallinity (that is, amorphous carbon).
  • Amorphous carbon may be, for example, hard carbon, soft carbon, or otherwise.
  • a resin material is used as the binder.
  • binders include polyacrylic acid, polyacrylic acid salts and derivatives thereof, fluororesins, polyolefin resins, polyamide resins, polyimide resins, acrylic resins, vinyl resins, and rubber particles.
  • the binder may be used alone or in combination of two or more.
  • Conductive agents include carbon nanotubes (CNT), carbon fibers other than CNT, and conductive particles (eg, carbon black and graphite).
  • CNT carbon nanotubes
  • conductive particles eg, carbon black and graphite
  • thickeners examples include carboxymethyl cellulose (CMC) and modified products thereof (including salts such as Na salts), cellulose derivatives such as methyl cellulose (cellulose ethers, etc.); polymer cellulose having a vinyl acetate unit such as polyvinyl alcohol; compound; polyether (polyalkylene oxide such as polyethylene oxide, etc.), and the like.
  • CMC carboxymethyl cellulose
  • modified products thereof including salts such as Na salts
  • cellulose derivatives such as methyl cellulose (cellulose ethers, etc.)
  • polymer cellulose having a vinyl acetate unit such as polyvinyl alcohol
  • compound compound
  • polyether polyalkylene oxide such as polyethylene oxide, etc.
  • the nonaqueous electrolyte may be a liquid electrolyte (electrolytic solution), a gel electrolyte, or a solid electrolyte.
  • the liquid electrolyte (electrolytic solution) is, for example, an electrolytic solution containing a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent.
  • the lithium salt concentration in the electrolytic solution is, for example, 0.5 mol/L or more and 2 mol/L or less.
  • the electrolytic solution may contain known additives.
  • the gel electrolyte contains a lithium salt and a matrix polymer, or contains a lithium salt, a non-aqueous solvent and a matrix polymer.
  • the matrix polymer for example, a polymer material that gels by absorbing a non-aqueous solvent is used.
  • polymer materials include fluorine resins, acrylic resins, polyether resins, polyethylene oxide, and the like.
  • the solid electrolyte may be an inorganic solid electrolyte.
  • a known material for example, an oxide-based solid electrolyte, a sulfide-based solid electrolyte, a halide-based solid electrolyte, etc. is used for all-solid-state lithium ion secondary batteries and the like.
  • non-aqueous solvent for example, cyclic carbonate, chain carbonate, cyclic carboxylate, and the like are used.
  • Cyclic carbonates include propylene carbonate (PC) and ethylene carbonate (EC).
  • Chain carbonates include diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC) and the like.
  • Cyclic carboxylic acid esters include ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL).
  • the non-aqueous solvent may be used singly or in combination of two or more.
  • Lithium salts include, for example, lithium salts of chlorine-containing acids ( LiClO4 , LiAlCl4 , LiB10Cl10 , etc.), lithium salts of fluorine-containing acids ( LiPF6 , LiBF4 , LiSbF6 , LiAsF6 , LiCF3SO3 ) . , LiCF3CO2 , etc.
  • LiN( SO2F ) 2 lithium salts of fluorine - containing acid imides (LiN( SO2F ) 2 , LiN ( CF3SO2 ) 2 , LiN( CF3SO2 ) ( C4F9SO2 ) , LiN ( C2F5SO2 ) 2 , etc.), lithium halides (LiCl, LiBr, LiI, etc.).
  • Lithium salts may be used singly or in combination of two or more.
  • a secondary battery there is a structure in which an electrode group, in which a positive electrode and a negative electrode are wound with a separator interposed therebetween, is housed in an outer package together with an electrolytic solution.
  • an electrode group in which a positive electrode and a negative electrode are wound with a separator interposed therebetween
  • an electrolytic solution e.g., aqueous solution
  • a laminated electrode group in which a positive electrode and a negative electrode are laminated with a separator interposed therebetween may be used.
  • the form of the secondary battery is also not limited, and may be, for example, cylindrical, square, coin, button, laminate, or the like.
  • FIG. 1 is a vertical cross-sectional view of a cylindrical non-aqueous secondary battery 10 that is an example of the present embodiment.
  • the present disclosure is not limited to the following configurations.
  • the secondary battery 10 includes an electrode group 18, an electrolytic solution (not shown), and a bottomed cylindrical battery can 22 that accommodates them.
  • a sealing member 11 is crimped and fixed to the opening of the battery can 22 via a gasket 21 . The inside of the battery is thereby sealed.
  • the sealing body 11 includes a valve body 12 , a metal plate 13 , and an annular insulating member 14 interposed between the valve body 12 and the metal plate 13 .
  • the valve body 12 and the metal plate 13 are connected to each other at their respective centers.
  • a positive electrode lead 15 a led out from the positive electrode plate 15 is connected to the metal plate 13 . Therefore, the valve body 12 functions as a positive external terminal.
  • a negative lead 16 a led out from the negative plate 16 is connected to the inner surface of the bottom of the battery can 22 .
  • An annular groove 22 a is formed near the open end of the battery can 22 .
  • a first insulating plate 23 is arranged between one end face of the electrode group 18 and the annular groove portion 22a.
  • a second insulating plate 24 is arranged between the other end face of the electrode group 18 and the bottom of the battery can 22 .
  • the electrode group 18 is formed by winding the positive electrode plate 15 and the negative electrode plate 16 with the separator 17 interposed therebetween.
  • (IV) Drying step In the drying step, the porous substrate coated with the polysaccharide solution is placed on a mounting substrate with the first surface side facing upward, and the second surface side is placed on a mounting substrate, and dried at 60°C for 3 hours. It was dried for a period of time to complete a separator with the first polysaccharide attached.
  • the air permeability of the obtained separator was 100 seconds/100 mL or more and 500 seconds/100 mL or less.
  • GC-MS confirmed the presence of a carboxyl group.
  • PC propylene carbonate
  • Example 2 Except that in the step of preparing the polysaccharide solution, a polysaccharide solution containing 0.175 parts by mass of xanthan gum (first polysaccharide), 49.825 parts by mass of water, and 50 parts by mass of ethanol was prepared. A separator was produced in the same manner as in Example 1 and evaluated.
  • the air permeability of the obtained separator was 100 seconds/100 mL or more and 500 seconds/100 mL or less.
  • GC-MS confirmed the presence of a carboxyl group.
  • Table 1 shows the results of evaluation by dropping PC in the same manner as in Example 1.
  • the air permeability of the obtained separator was 100 seconds/100 mL or more and 500 seconds/100 mL or less.
  • various peaks attributed to ⁇ -carrageenan containing C—O bonds were observed.
  • GC-MS confirmed the presence of a carboxyl group and a sulfo group. Table 1 shows the results of evaluation by dropping PC in the same manner as in Example 1.
  • the air permeability of the obtained separator was 100 seconds/100 mL or more and 500 seconds/100 mL or less.
  • GC-MS confirmed the presence of a carboxyl group and a sulfo group. Table 1 shows the results of evaluation by dropping PC in the same manner as in Example 1.
  • Table 1 shows the results of evaluation by dropping PC in the same manner as in Example 1 onto the microporous thin film before attaching the first polysaccharide.
  • the diameter of the PC dropped on the separators of Examples 1 and 2, to which the first polysaccharide having a carboxyl group was attached, after 5 minutes was the diameter of the microporous thin film before attaching the first polysaccharide (Comparative Example 1). It was larger than the diameter of the PC dropped 5 minutes after being dropped into it. It was confirmed that the wettability or permeability of the separator to the electrolytic solution was enhanced by the adhesion of the first polysaccharide. It is presumed that the first polysaccharide adhered thinly and uniformly along the inner walls of the pores without clogging the pores of the separator, and the wettability of the separator to the electrolytic solution was significantly improved.
  • the separators of Examples 3 and 4 in which the second polysaccharide having a sulfo group was attached together with the first polysaccharide, yielded results similar to those of the separators of Examples 1 and 2.
  • the second polysaccharide also has high solubility in a mixed solvent of water and ethanol. This is believed to improve the wettability with the electrolytic solution.
  • a secondary battery separator according to the present disclosure and a secondary battery including the same are useful as main power sources for mobile communication devices, portable electronic devices, electric vehicles, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Cell Separators (AREA)

Abstract

第1表面および前記第1表面の反対側の第2表面を有する多孔質基材と、前記多孔質基材に付着する多糖類と、を含み、前記多糖類が、カルボキシル基を有する、二次電池用セパレータ。

Description

二次電池用セパレータおよびその製造方法、ならびに二次電池
 本開示は、主に二次電池用セパレータに関する。
 従来、電池特性の向上を目的としたセパレータの改良が検討されている。
 例えば、特許文献1は、キサンタンガムを含む糊剤ペーストを塗布したセパレータを備えたことを特徴とするマンガン乾電池を提案している。キサンタンガムの保液力、ゲル形成性およびpHや温度に対する粘度安定性により、漏液防止性ならびに放電性能およびパルス放電特性に優れたマンガン乾電池を提供することができると記載されている。
 また、外部からの衝撃や基材となるフィルムの熱収縮に伴う短絡を抑制するために、無機微粒子を含有する電池用セパレータが開発されている。特許文献2は、過酷条件に曝された場合であっても優れた微粒子分散性を発揮し、保存安定性に優れて、塗工性が良好である電池用セパレータ塗液を得ることを目的として、微粒子と、繊維幅が1000nm以下の繊維状セルロースと、水溶性高分子とを含むセパレータ塗液を提案している。
 特許文献3は、(a)ポリオレフィン系基材および(b)基材の表面および基材に存在する気孔部の一部からなる群から選択された1種以上の領域が無機物粒子およびバインダーの混合物でコートされた活性層を含み、活性層はバインダーによって無機物粒子同士が連結および固定され、無機物粒子間のインタースティシャル・ボリューム(interstitial volume)によって気孔構造が形成された電池用分離膜を提案している。提案された電池用分離膜により、バインダー-無機物、基材-バインダーの接着力を高めるとともに、分離膜の一部損傷に対して自己治癒機能によって内部短絡を事前に防止し、分離膜と正極及び負極との接着力を向上させ、正極材遷移金属の溶出に対応することができると記載されている。
特開平6-231744号公報 特開2018-63924号公報 特許第6824558号
 リチウムイオン伝導性の非水電解質を含む二次電池は、充電終止電圧が高くなるほど、正極からの金属イオン溶出量が増加する傾向がある。溶出した金属イオンは、泳動により負極に到達すると負極で金属として析出するため、電池の安全性と負荷特性を低下させる原因になる。
 金属イオンをトラップ可能なアニオン性官能基を有する有機ポリマーをセパレータに塗布することにより、負極での金属析出の抑制が期待される。しかし、極性の低いセパレータ表面に極性の高いアニオン性官能基を有する有機ポリマーを均一に塗布することは難しい。仮に塗布できた場合でも、有機ポリマーが凝集しやすく、セパレータの細孔が有機ポリマーで閉塞されるため、電池の負荷特性が低下する傾向がある。
 本開示の一側面は、第1表面および前記第1表面の反対側の第2表面を有する多孔質基材と、前記多孔質基材の細孔内壁に付着する第1多糖類と、を含み、前記第1多糖類が、カルボキシル基を有する、二次電池用セパレータに関する。
 本開示の他の側面は、正極、負極、リチウムイオン伝導性の非水電解質、および、前記正極と前記負極との間に介在するセパレータを備え、前記セパレータが上記二次電池用セパレータであり、前記第1表面が前記正極と対向している、二次電池に関する。
 本開示の更に他の側面は、第1表面および前記第1表面の反対側の第2表面を有する多孔質基材を準備する工程と、カルボキシル基を有する第1多糖類の溶液を準備する工程と、前記多孔質基材に前記溶液を塗布する塗布工程と、前記溶液が塗布された前記多孔質基材を乾燥する乾燥工程と、を具備する、二次電池用セパレータの製造方法に関する。
 多孔質基材に付着させたカルボキシル基を有する多糖類は、金属イオンをトラップする作用が高く、多孔質基材の細孔を閉塞しにくく、かつセパレータの非水電解質に対する濡れ性を向上させるため、負極での金属析出が抑制されるとともに二次電池の負荷特性が向上する。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
本開示の実施形態に係る二次電池の内部構造を概略的に示す縦断面図である。
 以下では、本開示に係る二次電池用セパレータおよびそれを用いた二次電池の実施形態について例を挙げて説明するが、本開示は以下で説明する例に限定されない。以下の説明では、具体的な数値や材料を例示する場合があるが、本開示の効果が得られる限り、他の数値や材料を適用してもよい。この明細書において、「数値A~数値B」という記載は、数値Aおよび数値Bを含み、「数値A以上で数値B以下」と読み替えることが可能である。以下の説明において、特定の物性や条件などに関する数値の下限と上限とを例示した場合、下限が上限以上とならない限り、例示した下限のいずれかと例示した上限のいずれかを任意に組み合わせることができる。複数の材料が例示される場合、その中から1種を選択して単独で用いてもよく、2種以上を組み合わせて用いてもよい。
A.二次電池用セパレータ
 本開示に係る二次電池用セパレータは、多孔質基材と、多孔質基材の細孔内壁に付着する多糖類と、を含む。ここで、「細孔内壁に付着する」とは、細孔内の空間を保持しつつ、細孔内壁の少なくとも一部を覆うように多糖類が付着していることをいう。多糖類は、細孔内壁の形状に沿って、細孔内壁の少なくとも一部を膜状に覆っていてもよい。なお、例えばカルボキシメチルセルロース(CMC)およびその誘導体は、凝集しやすく、細孔内に侵入しにくく、侵入した場合でも細孔内の空間を閉塞する傾向がある。従って、少なくとも、CMCおよびその誘導体は、多孔質基材の細孔内壁に付着する多糖類から除かれる。
 多糖類は、分子内に1つ以上もしくは複数のカルボキシル基(-COXまたは-CO )を有する。多糖類は、親水性基を多く含み、かつ分子量が比較的大きいため、電池内の非水電解質にはほとんど溶解せず、長期間にわたって多孔質基材から剥がれずに定着し得る。
 カルボキシル基は、酸型(-COX(ただしXはH))、塩型(-COX(ただしXはカチオン))およびアニオン型(-CO )のいずれの型(タイプ)であってもよい。Xとしてカルボキシル基に含まれるカチオンは、金属イオンでもよく、有機カチオンでもよく、アンモニウムイオン(NH )でもよい。
 金属イオンは、アルカリ金属、アルカリ土類金属などのカチオンであり得るが、例えばバリウム、カルシウム、マグネシウム、カリウム、ナトリウム、リチウムなどのカチオンであり得る。
 多糖類が分子内に有する複数のカルボキシル基は、同じ型(タイプ)であってもよく、異なる型であってもよい。例えば、塩型のカルボキシル基を有する多糖類は、異なるカチオンを有する2種以上のカルボキシル基を有してもよい。また、分子構造の異なる複数種の多糖類を併用して多孔質基材に付着させてもよく、1種のみの多糖類を多孔質基材に付着させてもよい。
 多孔質基材は、第1表面および第1表面の反対側の第2表面を有する。換言すれば、多孔質基材は、膜、シートもしくはフィルムの形態を有してもよい。多孔質基材は、延伸フィルム、不織布、織布などであり得る。
 多孔質基材は、第1表面および第2表面が、いずれもポリオレフィンで構成されていてもよい。カルボキシル基を有する第1多糖類を、第1表面および第2表面が、いずれもポリオレフィンで構成されている多孔質基材の細孔内壁に付着させることで、負極での金属析出を抑制し、二次電池の負荷特性を向上させる作用を有する二次電池用セパレータが得られる。通常、第1表面および第2表面がいずれもポリオレフィンで構成されている多孔質基材の細孔内壁に親水性の高い多糖類を付着させることは困難である。しかし、所定の方法でカルボキシル基を有する第1多糖類を多孔質基材に付着させることで、細孔内壁にまで第1多糖類を付着させることが可能である。
 多孔質基材と、多孔質基材に付着する第1多糖類とを含む二次電池用セパレータは、負極での金属析出を抑制し、かつ二次電池の負荷特性を向上させ得る。その理由としては以下が考えられる。
 第1に、第1多糖類は、電極間における金属イオンの移動を抑制するバリアとなり得る。第1多糖類のカルボキシル基は、不純物や正極から溶出する金属イオンを効率よくトラップする。カルボキシル基の金属イオンをトラップする能力は高い。
 第2に、第1多糖類の中には、多孔質基材に付着しやすい性質を有する一方で、多孔質基材の細孔を閉塞しにくい種が存在する。そのような第1多糖類は、所定の親水性溶媒に対して高い溶解性を示すため、多孔質基材の細孔内壁に沿って薄く均一に付着させることが容易である。そのため、第1多糖類が細孔の開口を塞ぐ現象や、第1多糖類が細孔内に充填されることは容易に回避できる。第1多糖類の高い溶解性には、イオン性の高いカルボキシル基の性質が寄与していると考えられる。
 第3に、第1多糖類は、多孔質基材(すなわち、セパレータ)の非水電解質に対する濡れ性を向上させる傾向がある。第1多糖類は、非水電解質にはほとんど溶解しない一方で、一般的に二次電池のセパレータとして使用されている多孔質基材の材質(特にポリオレフィン)に比べると非水電解質との親和性が高い。第1多糖類が付着した多孔質基材で構成されたセパレータは、第1多糖類を含まないセパレータよりも非水電解質に対する濡れ性が高くなる。その結果、第1多糖類を含まないセパレータを用いた二次電池よりも第1多糖類が付着した多孔質基材で構成されたセパレータを用いた二次電池の負荷特性が改善される。
 第1多糖類による金属イオンの移動抑制の効果は、例えば、二次電池内に、銅、鉄などの不純物金属が存在する場合に顕著である。不純物金属が正極電位に晒されると、不純物金属から金属イオンが非水電解質に溶出する。また、上限電圧が高い二次電池では、正極中の活物質粒子からも金属イオンが溶出し得る。例えば、上限電圧が4.3Vを超える二次電池の正極電位は高く、かつ正極活物質粒子は金属成分(多くの場合、遷移金属)を含むため、金属イオンが溶出し得る。非水電解質中に溶出した金属イオンは、正極側から負極側に移動し、不純物金属として析出する。これに対し、セパレータ内に第1多糖類を含ませる場合、溶出した金属イオンの電極間での移動が顕著に抑制される。以下、負極で不純物金属として析出し得る金属イオンを不純物金属イオンとも称する。
 セパレータ内の第1多糖類が多孔質基材の細孔内壁に定着している一方で、正極側で非水電解質中に溶出した不純物金属イオンは、負極側へ移動する際にセパレータを通過する。従って、第1多糖類により不純物金属イオンがトラップされる確率が高められる。トラップされた金属イオンは、第1多糖類と同様に多孔質基材に定着し、移動の自由度が制限される。よって、正極側から負極側への不純物金属イオンの移動が大幅に抑制される。
 第1多糖類は所定の親水性溶媒に対して高い溶解性を示すため、多孔質基材に浸透しやすい。そのため、第1多糖類は多孔質基材の細孔内壁に沿って薄く付着し、多孔質基材表面には過剰に厚く付着しにくい。
 多糖類は、細孔内壁の形状に沿って、細孔内壁の少なくとも一部を非常に薄い膜状に覆っていると考えられる。多孔質基材の細孔内壁に付着する第1多糖類の厚さは、40nm以下であることが好ましく、20nm以下であってもよい。第1多糖類の厚さは、セパレータを厚さ方向に沿って切断して得られる断面において、細孔内壁が第1多糖類で覆われている部分を10箇所選択し、当該10箇所で最大の厚さを測定し、その平均値として算出してもよい。その際、セパレータに熱硬化性樹脂を充填して硬化させてもよい。例えば、CP(クロスセクションポリッシャー)法、FIB(集束イオンビーム)法などによりセパレータの断面試料を得ることができる。また、多孔質基材の厚さ方向において、第1表面側の最も外側に配置された第1多糖類と、第1表面側の最も外側に配置されたポリオレフィンとの厚さ方向における距離は、10nm以下であってもよい。このような距離は、事実上、第1多糖類により形成される膜の厚さに相当し得る。
 本開示に係る二次電池用セパレータ(すなわち、多孔質基材とこれに付着する第1多糖類とを含むセパレータ(以下、「セパレータ(S)」とも称する。))のJIS P 8117に規定される方法で測定される透気度は、例えば、100秒/100mL以上500秒/100mL以下でもよく、400秒/100mL以下でもよい。第1多糖類が多孔質基材の細孔を閉塞しにくいため、このような低い透気度を容易に確保することができる。なお、一般的には透気度の数値が小さいほど、セパレータの細孔体積は大きくなる傾向がある。
 多糖類は、複数の単糖分子がグリコシド結合を介して結合した構造を有する重合体の総称である。第1多糖類は、特に限定されないが、セパレータの製造の容易さを確保する観点から、例えば、水とアルコールとの混合溶媒(例えば、水とエタノールとの体積比50:50の混合溶媒)に溶解する性質を有することが望ましい。水は第1多糖類の溶解に寄与し、アルコールもしくはエタノールは水に溶解した第1多糖類の多孔質基材への浸透性の向上に寄与する。
 使用し得る第1多糖類の基本構造の例としては、アルドース、ケトース、ピラノースおよびフラノースが挙げられる。第1多糖類を構成する単糖分子(モノマー)としては、トリオース、テトロース、ペントース、ヘキソース、ヘプトースなどが挙げられる。中でもアルドペントース、ケトペントース、アルドヘキソース、ケトヘキソースなどが望ましく、例えば、アルドヘキソースに分類されるガラクトース、グルコース、マンノースを用い得る。例えば、第1多糖類は、ガラクトース重合体、グルコース重合体、マンノース重合体の骨格を有してもよい。これらの単糖の重合体にカルボキシル基を導入することで第1多糖類を得てもよい。
 第1多糖類として、元々カルボキシル基を有する多糖類を用いることもできる。カルボキシル基を有する多糖類としては、例えば、アラビアガム、キサンタンガム、ペクチン、ジェランガム、寒天、アルギン酸、ヘパリン、ヒアルロン酸、ゼラチンなどが挙げられる。また、プルラン、マンナン、グアーガム、デンプン、グリコーゲン、キチン、アガロース、カラギーナン、グルコマンナン、ゼラチン、デキストランなどにカルボキシル基を導入することで第1多糖類を得てもよい。
 第1多糖類としては、アラビアガムおよびキサンタンガムの少なくとも一方を含むことが好ましい。多孔質基材に付着させる(すなわちセパレータに含まれる)第1多糖類に含まれるアラビアガムおよび/またはキサンタンガムの含有率は、例えば、70質量%以上でもよく、100質量%でもよい。
 多孔質基材には、第1多糖類の他に、スルホ基を有する第2多糖類を付着させてもよい。スルホ基もカルボキシル基と同様に高い親水性を示す基であり、スルホ基を有する第2多糖類を含むセパレータも、カルボキシル基を有する第1多糖類を含むセパレータと同様に、負極での金属析出を抑制する作用を有し、かつ二次電池の負荷特性を向上させ得る。
 第2多糖類の基本構造の例としては、アルドース、ケトース、ピラノースおよびフラノースが挙げられる。第2多糖類を構成する単糖分子(モノマー)としては、トリオース、テトロース、ペントース、ヘキソース、ヘプトースなどが挙げられる。中でもアルドペントース、ケトペントース、アルドヘキソース、ケトヘキソースなどが望ましく、例えば、アルドヘキソースに分類されるガラクトースを用い得る。例えば、第2多糖類は、ガラクトース重合体の骨格を有してもよい。これらの単糖の重合体を硫酸エステル化することで第2多糖類を得てもよい。
 元々スルホ基を有する多糖類(例えばカラギーナン)を用いてもよいし、ペクチン、アルギン酸、プルラン、マンナン、キサンタンガム、グアーガム、デンプン、グリコーゲン、キチン、デキストラン、アガロース、カラギーナン、ヘパリン、ヒアルロン酸、グルコマンナン、アラビアガム、ゼラチン、トレメルガムなどを硫酸エステル化して第2多糖類を得てもよい。中でも、カラギーナンを好ましく用いることができる。カラギーナンは、カッパ、イオタ、ラムダなどのタイプに分類されるが、いずれを用いてもよい。
 多孔質基材に付着させる(すなわちセパレータに含まれる)第2多糖類に含まれるカラギーナンの含有率は、例えば、70質量%以上でもよく、カラギーナンが第2多糖類の100質量%でもよい。
 多孔質基材に、第1多糖類とともに第2多糖類を付着させるとき、第1多糖類と第2多糖類の付着量の質量比は、特に限定されない。第1多糖類と第2多糖類との合計に占める第1多糖類の含有率は、例えば、50質量%以上でもよく、70質量%以上でもよく、90質量%以上でもよい。
 セパレータが第1多糖類を含むことは、簡易的には、セパレータのFT-IR測定で得られる赤外線吸収スペクトルを分析することにより確認することができる。様々な第1多糖類がそれぞれに特有のスペクトルを示す。スペクトルには、例えば、単糖分子種(例えばアラビアガムであればガラクトース骨格およびグルコース骨格に含まれるC-O結合など)、C=O結合、O-H結合などに帰属されるピークが観測される。
 セパレータが第2多糖類を含む場合も同様に、セパレータのFT-IR測定で得られる赤外線吸収スペクトルを分析することにより確認することができる。スペクトルには、例えば、単糖分子種(例えばカラギーナンであればガラクトース骨格に含まれるC-O結合など)、S=O結合、C-O-S結合などに帰属されるピークが観測される。
 また、セパレータが第1多糖類に結合するカルボキシル基を含むことは質量分析(例えばGC-MS(ガスクロマトグラフ質量分析)など)、FT-IRなどで確認することができる。セパレータが第2多糖類を含む場合も同様に、これらの方法で確認することができる。
 単位質量あたりの第1多糖類に含まれるカルボキシル基のモル数は、例えば、1.0××10-6mol/g以上1.0×10-2mol/g以下であり、1.0×10-5mol/g以上1.0×10-2mol/g以下でもよく、1.0×10-4mol/g以上1.0×10-2mol/g以下でもよく、1.0×10-3mol/g以上1.0×10-2mol/g以下でもよい。カルボキシル基の含有率が大きい多糖類は、より多くの金属イオンをトラップする能力を有し、水とアルコール(特にエタノール)との混合溶媒に対する溶解性に優れ、多孔質基材の細孔内壁に沿って薄く均一に付着しやすい。
 見かけの単位面積あたりの多孔質基材に付着する第1多糖類の量(以下、「第1多糖類の面積密度」とも称する)は、例えば、1.0×10-5g/m以上5.0×10-1g/m以下であり、1.0×10-5g/m以上1.0×10-1g/m以下であり、1.0×10-5g/m以上5.0×10-2g/m以下であり、1.0×10-5g/m以上1.0×10-2g/m以下であり、1.0×10-4g/m以上1.0×10-2g/m以下でもよく、1.0×10-3g/m以上1.0×10-2g/m以下でもよい。見かけの単位面積とは、多孔質基材の第1表面および第2表面の法線方向から見たときの多孔質基材の投影像の輪郭で囲まれた面積の一単位(1m)を意味する。
 第1多糖類の面積密度を求めるには、まず、セパレータから所定サイズのサンプルを切り出し、サンプルを60℃で1時間以上加熱乾燥し、その後、乾燥質量W1を求める。次に、乾燥状態のサンプルを水とエタノールとの体積比50:50の混合溶媒(20℃~30℃)に1時間浸漬し、その後、水とエタノールとの体積比50:50の混合溶媒で十分に洗浄し、60℃で1時間以上加熱乾燥した後、乾燥質量W2を求める。第1多糖類は、混合溶媒への浸漬と混合溶媒での洗浄により事実上完全に除去される。その後、乾燥質量W1、W2およびサンプルのサイズ(見かけの面積)から第1多糖類の面積密度を求める。
 完全放電状態(SOC=0%)の二次電池から取り出されたセパレータのサンプルから第1多糖類の面積密度を求めてもよい。その場合、セパレータを、ジメチルカーボネート(DMC)を用いて十分に洗浄し、その後、真空乾燥した後にサンプルとして用いればよい。
 セパレータ(S)において、第1多糖類の分布を多孔質基材の厚さ方向において変化させてもよい。例えば、金属イオンの溶出源となる正極と対向する表面の付近により多くの第1多糖類を分布させてもよい。これにより、正極から溶出した金属イオンが泳動できる距離がより短くなり、金属イオンが負極に到達する確率が更に低くなる。
 具体的には、多孔質基材を同じ厚みを有する第1表面側(正極側)の第1領域と第2表面側(負極側)の第2領域に分けるとき、第1領域に含まれる第1多糖類の含有量C1を、第2領域に含まれる第1多糖類の含有量C2よりも大きくしてもよい。このとき、含有量C1と含有量C2との比:C1/C2は1より大きく、1.1以上でもよく、1.2以上でもよく、1.5以上でもよい。換言すれば、セパレータ(S)もしくは多孔質基材の厚さをTとするとき、第1表面から0.5T(厚さ方向の中心)までの第1領域に存在する第1多糖類の存在確率P1と、0.5Tの位置(厚さ方向の中心)から第2表面までの第2領域に存在する第1多糖類の存在確率P2とは、1<P1/P2を満たし、P1/P2は1.2以上でもよく、1.5以上でもよい。
<セパレータの製造方法>
 次に、本開示の実施形態に係る二次電池用セパレータ(セパレータ(S))の製造方法の一例について説明する。
 当該製造方法は、第1表面および第1表面の反対側の第2表面を有する多孔質基材を準備する工程(I)と、複数のカルボキシル基を有する多糖類の溶液(以下、「多糖類溶液」とも称する。)を準備する工程(II)と、多孔質基材に多糖類溶液を塗布する塗布工程(III)と、多糖類溶液が塗布された多孔質基材を乾燥する乾燥工程(IV)(すなわち、セパレータを得る工程)と、を具備する。
(I)多孔質基材を準備する工程
 多孔質基材としては、例えば、延伸フィルム(もしくは微多孔薄膜)、不織布、織布などの二次電池(特にリチウムイオン電池)のセパレータとして一般的に用いられている多孔質シートを用い得る。多孔質シートは、適度な機械的強度を有し、かつ絶縁性を備える。
 多孔質基材は、前述したように、第1表面および第2表面が、いずれもポリオレフィンで構成されていることが好ましい。例えば、ポリプロピレン、ポリエチレンなどのポリオレフィンが用いられる。
 多孔質基材は、更に、第1表面および第2表面の少なくとも一方に付着している耐熱層を有してもよい。すなわち、本実施形態に係るセパレータは、耐熱層を有する多孔質基材を具備する場合と、耐熱層を有さない多孔質基材を具備する場合とを包含する。耐熱層は、無機粒子および耐熱樹脂の少なくとも一方を含み、多孔質基材よりも耐熱性が高い。耐熱層は、無機粒子である無機酸化物フィラーを主成分(例えば80質量%以上)として含んでもよく、耐熱樹脂を主成分(例えば40質量%以上)として含んでもよい。無機フィラーとしては、アルミナ、シリカ、チタニアなどの無機粒子が挙げられる。耐熱樹脂としては、芳香族ポリアミド(アラミド)などのポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂などが挙げられる。
 第1多糖類は所定の親水性溶媒に対して高い溶解性を示すため、多孔質基材に浸透しやすい。そのため、第1多糖類は多孔質基材の細孔内壁に沿って薄く均一に付着し、多孔質基材表面に過剰に厚く付着しない。多孔質基材が耐熱層を有する場合、第1多糖類は、多孔質基材の表層部に存在する耐熱層と、多孔質基材とに同様に存在してもよい。このことは、例えば、FT-IR測定によって得られる赤外線吸収スペクトルを分析することにより確認することができる。多孔質基材で反射する赤外吸収スペクトルにおいてカルボキシル基に帰属されるピーク強度は、耐熱層で反射する赤外吸収スペクトルにおいてカルボキシル基に帰属されるピークの強度よりも大きくてもよく、同じ程度でもよい。例えば、耐熱層を有する多孔質基材の耐熱層側で反射される赤外吸収スペクトルと、耐熱層を有する多孔質基材から当該耐熱層を剥がして除去し、露出させた多孔質基材で反射される赤外吸収スペクトルとを比較すれば、ピークの強度の大小を確認することができる。
 多孔質基材の厚さは、特に限定されないが、例えば、1~50μmであり、5~30μmであってもよい。
(II)多糖類溶液を準備する工程
 多糖類溶液は、第1多糖類を溶媒と混合して第1多糖類を溶媒に溶解させることにより調製される。多糖類溶液は、更に溶媒以外のアルコール、リン化合物、ホウ素化合物、硫黄化合物などの添加剤を含んでもよい。多糖類溶液は、例えば、水とエタノールとの混合溶媒と、そのような混合溶媒に溶解する多糖類とを含むが、これに限定されない。
 多孔質基材に浸透しやすく、多孔質基材の表面および細孔内壁に第1多糖類を付着させ得る点で、水、アルコール(例えば、エタノール)、または水とアルコールとの混合溶媒が望ましいが、第1多糖類を溶解できる溶媒であれば、特に限定されない。溶媒の少なくとも一部として、テトラヒドロフランなどのエーテル、ジメチルホルムアミドなどのアミド、シクロヘキサノンなどのケトン、N-メチル-2-ピロリドン(NMP)、これらの混合溶媒などを用いてもよい。中でも、水とエタノールとの混合溶媒が望ましく、水とエタノールとの体積比は、例えば、水/エタノール=20/80~80/20であり、水/エタノール=40/60~60/40でもよく、水/エタノール=45/55~55/45でもよい。特に水とエタノールとの混合溶媒は多孔質基材に浸透しやすく、例えば、多孔質基材の厚さをTとすると、多孔質基材の表面から0.5T以上の位置にまで浸透することができる。多孔質基材への浸透は、例えば、セパレータを厚さ方向に沿って切断して得られる断面を、FT-IRで測定することにより確認することができる。多孔質基材に、第1多糖類とともに第2多糖類を付着させるときには、第1多糖類および第2多糖類がともに溶解する溶媒を選択し、多糖類溶液を調製してもよい。
(III)塗布工程
 多孔質基材に多糖類溶液を塗布する方法は、特に限定されない。例えば、各種コータを用いた塗布法、浸漬法、スプレー法などが適用される。コータとしては、例えば、バーコータ、グラビアコータ、ブレードコータ、ロールコータ、コンマコータ、ダイコータ、リップコータなどが用いられる。
 塗布工程において、多孔質基材の第1表面のみに多糖類溶液を塗布してもよい。例えば、多孔質基材の第1表面側のみに各種コータを用いて多糖類溶液を塗布してもよいし、多孔質基材の第1表面側のみに多糖類溶液をスプレーしてもよい。このような方法によれば、多孔質基材の第1表面側の第1領域に含まれる第1多糖類の含有量C1を、多孔質基材の第2表面側の第2領域に含まれる第1多糖類の含有量C2よりも大きくすることができる。塗布される多糖類溶液の塗布量の制御および/または後述の乾燥条件の制御により、含有量C1と含有量C2との比:C1/C2を1.1以上に制御してもよい。
(IV)乾燥工程
 乾燥工程では、多糖類溶液が塗布された多孔質基材を乾燥して、セパレータを完成させる。C1/C2比を上記のように制御する場合、乾燥の際の条件を適宜に制御することで、溶媒とともに、第1多糖類を第1表面側にマイグレーションさせてもよい。その結果、第1多糖類は、第1表面側において偏在した状態になる。
 乾燥工程の後、セパレータを圧延してもよい。圧延により平坦性の高いセパレータが得られる。多孔質基材の材質の融点より低い温度の熱ロールで加熱しながら多糖類溶液が塗布された多孔質基材を圧延し、乾燥と圧延とを同時に行ってもよい。
B.二次電池
 本開示の実施形態に係る二次電池は、正極、負極、リチウムイオン伝導性の非水電解質、および、正極と負極との間に介在する上記二次電池用セパレータ(セパレータ(S))を備える。二次電池には、少なくともリチウムイオン電池、リチウム金属二次電池、全固体電池などの非水電解質二次電池が含まれる。C1/C2比を上記のように制御する場合、セパレータは第1表面が正極と対向するように配置される。非水電解質は、全体として液状(つまり電解液)でもよく、電解液をマトリックス材料に保持させて固体電解質もしくはゲル電解質として用いてもよい。
 本開示に係る二次電池は、充電終止電圧が4.3V以上、更には4.4V以上、更には4.5V以上に設定されていてもよい。このような充電終止電圧(すなわち、上限電圧)を有する二次電池においては、一般に正極からの金属イオン溶出量が増加する傾向がある。一方、本開示に係る二次電池は、複数のカルボキシル基を有する多糖類を含むセパレータ(S)を具備するため、溶出した金属イオンが負極に到達する確率が低く、負極での金属析出が顕著に抑制される。
 以下、リチウムイオン二次電池を例に挙げて、二次電池の構成を具体的に説明する。
[正極]
 正極は、例えば、正極集電体と正極活物質層とを含む。正極活物質層は、正極集電体の一方または両方の表面に担持されている。
 正極活物質層は、例えば、正極合剤で構成された正極合剤層である。正極合剤は、必須成分として正極活物質を含み、任意成分を含んでもよい。任意成分としては、結着剤、導電剤、増粘剤などを含み得る。
 正極活物質層は、例えば、正極合剤を分散媒に分散させた正極スラリーを、正極集電体の表面に塗布し、乾燥させることにより形成できる。乾燥後の塗膜を、必要により圧延してもよい。
 正極集電体としては、シート状の導電性材料(金属箔、メッシュ、ネット、パンチングシートなど)が使用される。中でも金属箔が好ましい。正極集電体の材質としては、例えば、ステンレス鋼、アルミニウム、アルミニウム合金、チタンなどが例示できる。正極集電体の厚さは、特に限定されないが、例えば、1~50μmであり、5~30μmであってもよい。
 正極活物質層の厚さは、特に限定されないが、例えば、30μm以上400μm以下でもよく、50μm以上250μm以下でもよい。互いに異なる形態を有する複数の層で1つの正極活物質層を形成してもよい。例えば、互いに平均粒子径の異なる活物質粒子を含む2層以上を積層してもよく、互いに正極活物質の種類もしくは組成が異なる2層以上を積層してもよい。
 正極活物質の粒子の平均粒子径は、例えば、3μm以上30μm以下であり、5μm以上25μm以下でもよい。ここで、平均粒子径とは、レーザー回折式粒度分布測定装置で得られる体積基準の粒度分布において積算体積が50%となるメディアン径(D50)である。活物質粒子は、正極から分離回収すればよい。測定装置には、例えば、株式会社堀場製作所(HORIBA)製「LA-750」を用いることができる。
 正極活物質は、リチウム含有遷移金属酸化物を含んでもよい。高容量化の観点から、リチウム含有遷移金属酸化物は、LiとNiとを含み、層状岩塩型の結晶構造を有するリチウムニッケル酸化物(複合酸化物N)を含むことが望ましい。正極活物質に占める複合酸化物Nの割合は、例えば、70質量%以上であり、90質量%以上でもよく、95質量%以上でもよい。複合酸化物Nに含まれるLi以外の金属元素に占めるNiの割合は50原子%以上であってもよい。
 複合酸化物Nは、例えば、式(1):LiαNix1M1x2M2(1-x1-x2)2+βで表される。ここで、元素M1は、V、CoおよびMnからなる群より選択される少なくとも1種である。元素M2は、Mg、Al、Ca、Ti、Cu、ZnおよびNbからなる群より選択される少なくとも1種である。ただし式(1)は、0.9≦α≦1.1、-0.05≦β≦0.05、0.5≦x1<1、0≦x2≦0.5、0<1-x1-x2≦0.5を満たす。αは充放電により増減する。
 複合酸化物Nは、Niを含むとともに、元素M1および元素M2として、Co、MnおよびAlからなる群より選択される少なくとも1種を含んでもよい。Co、MnおよびAlは、複合酸化物Nの結晶構造の安定化に寄与する。
 低コスト化および高容量化の観点からは、複合酸化物Nに含まれるLi以外の金属元素に占めるCoの割合は、0原子%以上、20原子%以下が望ましく、0原子%以上、15原子%以下がより望ましい。
 Li以外の金属元素に占めるMnの割合は30原子%以下でもよく、20原子%以下でもよい。Li以外の金属元素に占めるMnの割合は1原子%以上でもよく、3原子%以上でもよく、5原子%以上でもよい。
 Li以外の金属元素に占めるAlの割合は10原子%以下でもよく、5原子%以下でもよい。Li以外の金属元素に占めるAlの割合は1原子%以上でもよく、3原子%以上でもよく、5原子%以上でもよい。
 複合酸化物Nは、例えば、式(2):LiαNi(1-y1-y2-y3-z)Coy1Mny2Aly32+βで表され得る。Mnおよび/またはAlは、Co含有量が低減された複合酸化物Nの結晶構造の安定化に寄与する。元素Mは、Li、Ni、Co、Mn、Alおよび酸素以外の元素であり、Ti、Zr、Nb、Mo、W、Fe、Zn、B、Si、Mg、Ca、Sr、ScおよびYからなる群より選択された少なくとも1種であってもよい。ただし式(2)は、0.9≦α≦1.1、-0.05≦β≦0.05、0≦y1≦0.1、0≦y2≦0.6、0≦y3≦0.1、0≦z≦0.10を満たす。Niの原子比を示す1-y1-y2-y3-z(=v)は、例えば0.5以上であり、0.6以上でも0.8以上でも0.85以上でもよく、0.90以上もしくは0.95以上でもよい。また、Niの原子比を示すvは、0.98以下でもよく、0.95以下でもよい。
 複合酸化物NがCoを含む場合、Li以外の金属元素に占めるCoの割合は2.0原子%以下でもよく、1.5原子%以下であってもよい。複合酸化物NのCo含有量を低減して、Ni含有量を多くすることができれば、コスト的に有利であるとともに、高容量を確保することができる。一方、このようなCoフリーもしくはCo含有量が少ない複合酸化物Nからは、一般に金属イオンが溶出しやすい傾向がある。これに対し、本開示に係る二次電池は、カルボキシル基を有する多糖類を含むセパレータを具備するため、溶出した金属イオンが負極に到達する確率が低く、負極での金属析出が顕著に抑制される。
 正極活物質層に任意成分として含まれ得る導電剤としては、カーボンナノチューブ(CNT)、CNT以外の炭素繊維、導電性粒子(例えば、カーボンブラック、黒鉛)などが挙げられる。
[負極]
 負極は、少なくとも負極集電体を含み、例えば、負極集電体と負極活物質層とを含む。負極活物質層は、負極集電体の一方または両方の表面に担持されている。
 負極活物質層は、負極合剤で構成された負極合剤層であってもよい。負極合剤層は、膜状もしくはフィルム状である。負極合剤は、負極活物質の粒子を必須成分として含み、任意成分として結着剤、導電剤、増粘剤などを含み得る。また、リチウム金属箔あるいはリチウム合金箔を負極活物質層として負極集電体に貼り付けてもよい。
 負極合剤層は、例えば、負極活物質の粒子、結着剤などを含む負極合剤を分散媒に分散させた負極スラリーを、負極集電体の表面に塗布し、乾燥させることにより形成できる。乾燥後の塗膜を、必要により圧延してもよい。
 負極集電体としては、シート状の導電性材料(金属箔、メッシュ、ネット、パンチングシートなど)が使用される。中でも金属箔が好ましい。負極集電体の材質としては、例えば、ステンレス鋼、ニッケル、ニッケル合金、銅、銅合金などが例示できる。負極集電体の厚さは、特に限定されないが、例えば、1~50μmであり、5~30μmであってもよい。
 負極活物質は、電気化学的にリチウムイオンを吸蔵および放出する材料、リチウム金属、リチウム合金などを含む。電気化学的にリチウムイオンを吸蔵および放出する材料としては、炭素材料、合金系材料などが用いられる。炭素材料としては、例えば、黒鉛、易黒鉛化炭素(ソフトカーボン)、難黒鉛化炭素(ハードカーボン)などが例示できる。中でも、充放電の安定性に優れ、不可逆容量も少ない黒鉛が好ましい。合金系材料としては、リチウムと合金形成可能な金属を少なくとも1種類含むものが挙げられ、具体的には、ケイ素、スズ、ケイ素合金、スズ合金、ケイ素化合物などが挙げられる。酸化ケイ素、酸化スズなどを用いてもよい。
 ケイ素を含む合金系材料としては、例えば、リチウムイオン導電相と、リチウムイオン導電相にシリコン粒子が分散した複合材料を用いることができる。リチウムイオン導電相としては、例えば、ケイ素酸化物相、シリケート相、炭素相などを用いることができる。ケイ素酸化物相の主成分(例えば95~100質量%)は二酸化ケイ素であり得る。中でも、シリケート相とシリケート相に分散したシリコン粒子とで構成される複合材料は、高容量であり、かつ不可逆容量が少ない点で好ましい。また、シリケート相としては、不可逆容量が小さく、初期の充放電効率が高いリチウムシリケート相(リチウムを含むシリケート相)が好ましい。
 リチウムシリケート相は、リチウム(Li)と、ケイ素(Si)と、酸素(O)とを含む酸化物相であればよく、他の元素を含んでもよい。リチウムシリケート相におけるSiに対するOの原子比:O/Siは、例えば、2より大きく、4未満である。好ましくは、O/Siは、2より大きく、3未満である。リチウムシリケート相におけるSiに対するLiの原子比:Li/Siは、例えば、0より大きく、4未満である。リチウムシリケート相は、式:Li2zSiO2+z(0<z<2)で表される組成を有し得る。zは、0<z<1の関係を満たすことが好ましく、z=1/2がより好ましい。リチウムシリケート相に含まれ得るLi、SiおよびO以外の元素としては、例えば、鉄(Fe)、クロム(Cr)、ニッケル(Ni)、マンガン(Mn)、銅(Cu)、モリブデン(Mo)、亜鉛(Zn)、アルミニウム(Al)などが挙げられる。
 炭素相は、例えば、結晶性の低い無定形炭素(すなわちアモルファス炭素)で構成され得る。無定形炭素は、例えばハードカーボンでもよく、ソフトカーボンでもよく、それ以外でもよい。
 結着剤としては、例えば、樹脂材料が用いられる。結着剤としては、例えば、ポリアクリル酸およびポリアクリル酸塩並びにそれらの誘導体、フッ素樹脂、ポリオレフィン樹脂、ポリアミド樹脂、ポリイミド樹脂、アクリル樹脂、ビニル樹脂、ゴム粒子などが挙げられる。結着剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 導電剤としては、カーボンナノチューブ(CNT)、CNT以外の炭素繊維、導電性粒子(例えば、カーボンブラック、黒鉛)などが挙げられる。
 増粘剤としては、例えば、カルボキシメチルセルロース(CMC)およびその変性体(Na塩などの塩も含む)、メチルセルロースなどのセルロース誘導体(セルロースエーテルなど);ポリビニルアルコールなどの酢酸ビニルユニットを有するポリマーのケン化物;ポリエーテル(ポリエチレンオキシドなどのポリアルキレンオキサイドなど)などが挙げられる。
[非水電解質]
 非水電解質は、液状電解質(電解液)でもよく、ゲル状電解質でもよく、固体電解質でもよい。液状電解質(電解液)は、例えば、非水溶媒と、非水溶媒に溶解したリチウム塩を含む電解液である。電解液におけるリチウム塩の濃度は、例えば、0.5mol/L以上2mol/L以下である。電解液は、公知の添加剤を含有してもよい。
 ゲル状電解質は、リチウム塩とマトリックスポリマーを含み、あるいは、リチウム塩と非水溶媒とマトリックスポリマーとを含む。マトリックスポリマーとしては、例えば、非水溶媒を吸収してゲル化するポリマー材料が使用される。ポリマー材料としては、フッ素樹脂、アクリル樹脂、ポリエーテル樹脂、ポリエチレンオキシド等が挙げられる。
 固体電解質は、無機固体電解質でもよい。無機固体電解質としては、例えば、全固体リチウムイオン二次電池等で公知の材料(例えば、酸化物系固体電解質、硫化物系固体電解質、ハロゲン化物系固体電解質等)が使用される。
 非水溶媒としては、例えば、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステルなどが用いられる。環状炭酸エステルとしては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)などが挙げられる。鎖状炭酸エステルとしては、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)などが挙げられる。環状カルボン酸エステルとしては、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)などが挙げられる。非水溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 リチウム塩としては、例えば、塩素含有酸のリチウム塩(LiClO4、LiAlCl4、LiB10Cl10など)、フッ素含有酸のリチウム塩(LiPF6、LiBF4、LiSbF6、LiAsF6、LiCF3SO3、LiCF3CO2など)、フッ素含有酸イミドのリチウム塩(LiN(SOF)、LiN(CF3SO22、LiN(CF3SO2)(C49SO2)、LiN(C25SO22など)、リチウムハライド(LiCl、LiBr、LiIなど)などが挙げられる。リチウム塩は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 二次電池の構造の一例としては、正極および負極がセパレータを介して巻回されてなる電極群が電解液と共に外装体に収容された構造が挙げられる。ただし、これに限られず、他の形態の電極群が適用されてもよい。例えば、正極と負極とがセパレータを介して積層された積層型の電極群でもよい。二次電池の形態も限定されず、例えば、円筒型、角型、コイン型、ボタン型、ラミネート型などであればよい。
 以下、二次電池の構造を、図1を参照しながら説明する。図1は、本実施形態の一例である円筒形の非水系二次電池10の縦断面図である。ただし、本開示は以下の構成に限定されるものではない。
 二次電池10は、電極群18と、電解液(図示せず)と、これらを収容する有底円筒形の電池缶22とを具備する。電池缶22の開口部にガスケット21を介して封口体11がかしめ固定されている。これにより電池内部が密閉されている。封口体11は、弁体12と、金属板13と、弁体12と金属板13との間に介在する環状の絶縁部材14と、を具備する。弁体12と金属板13は、それぞれの中心部において、互いに接続されている。正極板15から導出された正極リード15aは、金属板13に接続されている。よって、弁体12は、正極の外部端子として機能する。負極板16から導出された負極リード16aは、電池缶22の底部内面に接続されている。電池缶22の開口端の近傍には環状溝部22aが形成されている。電極群18の一方の端面と環状溝部22aとの間には、第1絶縁板23が配置されている。電極群18の他方の端面と電池缶22の底部との間には、第2絶縁板24が配置されている。電極群18は、正極板15と負極板16とをセパレータ17を介して捲回して形成されている。
 以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
《実施例1》
 下記の手順で、セパレータを作製した。
(I)多孔質基材を準備する工程
 多孔質基材として、厚さ12μmのポリエチレン製の微多孔薄膜(透気度108秒/100mL)を準備した。微多孔薄膜は、そのままリチウムイオン二次電池のセパレータとして一般的に使用されている二軸延伸フィルムである。
(II)多糖類溶液を準備する工程
 アラビアガム(第1多糖類)を0.25質量部と、水49.75質量部と、エタノール50質量部とを含む多糖類溶液を調製した。多糖類溶液中においてアラビアガムは完全に溶解させた。
(III)塗布工程
 微多孔薄膜の一方の表面(すなわち、第1表面)のみに、多糖類溶液をスプレー塗布した。これにより、微多孔薄膜の第1表面側の第1領域に含まれる第1多糖類の含有量C1を第2表面側の第2領域に含まれる第1多糖類の含有量C2よりも大きくすることができた。
(IV)乾燥工程
 乾燥工程では、多糖類溶液が塗布された多孔質基材を、第1表面側を上方に向け、第2表面側を載置用基板上に配置して、60℃で3時間乾燥させ、第1多糖類が付着したセパレータを完成させた。
 得られたセパレータの透気度は、100秒/100mL以上500秒/100mL以下であった。セパレータのIRスペクトルをFT-IRで測定したところ、C=O結合、O-H結合、C-O結合を含むアラビアガムに帰属される各種ピークが観測された。また、GC-MSにより、カルボキシル基の存在が確認された。
 プロピレンカーボネート(PC)2μLを、第1多糖類を付着させたセパレータに滴下した。5分経過後、PCの直径を測定した。結果を表1に示す。
《実施例2》
 多糖類溶液を準備する工程において、キサンタンガム(第1多糖類)を0.175質量部と、水49.825質量部と、エタノール50質量部とを含む多糖類溶液を調製したこと以外、実施例1と同様にしてセパレータを作製し、評価した。
 得られたセパレータの透気度は、100秒/100mL以上500秒/100mL以下であった。セパレータのIRスペクトルをFT-IRで測定したところ、C=O結合、O-H結合、C-O結合を含むキサンタンガムに帰属される各種ピークが観測された。また、GC-MSにより、カルボキシル基の存在が確認された。実施例1と同様にPCを滴下して評価を行った結果を表1に示す。
《実施例3》
 多糖類溶液を準備する工程において、アラビアガム(第1多糖類)を0.125質量部と、κカラギーナン(第2多糖類)を0.125質量部と、水49.75質量部と、エタノール50質量部とを含む多糖類溶液を調製したこと以外、実施例1と同様にしてセパレータを作製し、評価した。
 得られたセパレータの透気度は、100秒/100mL以上500秒/100mL以下であった。セパレータのIRスペクトルをFT-IRで測定したところ、C=O結合、O-H結合、C-O結合を含むアラビアガムに帰属される各種ピークと、S=O結合、C-O-S結合、C-O結合を含むκカラギーナンに帰属される各種ピークが観測された。また、GC-MSにより、カルボキシル基およびスルホ基の存在が確認された。実施例1と同様にPCを滴下して評価を行った結果を表1に示す。
《実施例4》
 多糖類溶液を準備する工程において、キサンタンガム(第1多糖類)を0.088質量部と、κカラギーナン(第2多糖類)を0.125質量部と、水49.787質量部と、エタノール50質量部とを含む多糖類溶液を調製したこと以外、実施例1と同様にしてセパレータを作製し、評価した。
 得られたセパレータの透気度は、100秒/100mL以上500秒/100mL以下であった。セパレータのIRスペクトルをFT-IRで測定したところ、C=O結合、O-H結合、C-O結合を含むキサンタンガムに帰属される各種ピークと、S=O結合、C-O-S結合、C-O結合を含むκカラギーナンに帰属される各種ピークが観測された。また、GC-MSにより、カルボキシル基およびスルホ基の存在が確認された。実施例1と同様にPCを滴下して評価を行った結果を表1に示す。
《比較例1》
 第1多糖類を付着させる前の微多孔薄膜に、実施例1と同様にPCを滴下して評価を行った結果を表1に示す。
《比較例2》
 多糖類溶液を準備する工程において、多糖類であるローカストビーンガムの溶液を実施例1と同様にして調製しようとしたが、ローカストビーンガムは水とエタノールとの混合溶媒に溶解せず、多糖類溶液を得ることはできなかった。
《比較例3》
 多糖類溶液を準備する工程において、多糖類であるグアーガムの溶液を実施例1と同様にして調製しようとしたが、グアーガムは水とエタノールとの混合溶媒に溶解せず、多糖類溶液を得ることはできなかった。
Figure JPOXMLDOC01-appb-T000001
 カルボキシル基を有する第1多糖類を付着させた実施例1および実施例2のセパレータへ滴下したPCの5分後の直径は、第1多糖類を付着させる前の微多孔薄膜(比較例1)へ滴下したPCの5分後の直径と比較して大きくなっていた。セパレータの電解液に対する濡れ性もしくは浸透性が、第1多糖類の付着により高められていることが確認された。第1多糖類がセパレータの細孔を閉塞せずに細孔内壁に沿って薄く均一に付着し、セパレータの電解液に対する濡れ性が顕著に向上したためと推定される。
 また、スルホ基を有する第2多糖類を第1多糖類とともに付着させた実施例3および実施例4のセパレータにおいても、実施例1および実施例2のセパレータと同様の結果が得られた。第2多糖類も第1多糖類と同様に水とエタノールとの混合溶媒への溶解性が高いため、セパレータの細孔を閉塞せずに細孔内壁に沿って薄く均一に付着し、セパレータの電解液に対する濡れ性を向上させるものと考えられる。
 本開示に係る二次電池用セパレータおよびこれを含む二次電池は、移動体通信機器、携帯電子機器、電気自動車などの主電源に有用である。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
 10:二次電池、11:封口体、12:弁体、13:金属板、14:絶縁部材、15:正極板、15a:正極リード、16:負極板、16a:負極リード、17:セパレータ、18:電極群、21:ガスケット、22:電池缶、22a:溝部、23:第1絶縁板、24:第2絶縁板

Claims (21)

  1.  第1表面および前記第1表面の反対側の第2表面を有する多孔質基材と、
     前記多孔質基材の細孔内壁に付着する第1多糖類と、を含み、
     前記第1多糖類が、カルボキシル基を有する、二次電池用セパレータ。
  2.  前記第1多糖類が、少なくとも前記第1表面に付着している、請求項1に記載の二次電池用セパレータ。
  3.  前記第1表面および前記第2表面が、いずれもポリオレフィンで構成されている、請求項1または2に記載の二次電池用セパレータ。
  4.  前記多孔質基材の細孔内壁に付着する第1多糖類の厚さが、40nm以下である、請求項1~3のいずれか1項に記載の二次電池用セパレータ。
  5.  JIS P 8117に規定される方法で測定される透気度が、100秒/100mL以上500秒/100mL以下である、請求項1~4のいずれか1項に記載の二次電池用セパレータ。
  6.  更に、前記多孔質基材の前記第1表面および前記第2表面の少なくとも一方に付着する耐熱層を有し、
     前記耐熱層が、無機粒子および耐熱樹脂の少なくとも一方を含む、請求項1~5のいずれか1項に記載の二次電池用セパレータ。
  7.  前記多孔質基材で反射する赤外吸収スペクトルにおいてカルボキシル基に帰属されるピーク強度が、前記耐熱層で反射する赤外吸収スペクトルにおいてカルボキシル基に帰属されるピークの強度よりも大きい、請求項6に記載の二次電池用セパレータ。
  8.  前記第1多糖類が、アラビアガムおよびキサンタンガムの少なくとも一方を含む、請求項1~7のいずれか1項に記載の二次電池用セパレータ。
  9.  前記多孔質基材に付着する第2多糖類を有し、
     前記第2多糖類が、スルホ基を有する、請求項1~8のいずれか1項に記載の二次電池用セパレータ。
  10.  前記第2多糖類が、カラギーナンを含む、請求項1~9のいずれか1項に記載の二次電池用セパレータ。
  11.  単位質量あたりの前記第1多糖類に含まれる前記カルボキシル基のモル数が、1.0××10-6mol/g以上1.0×10-2mol/g以下である、請求項1~10のいずれか1項に記載の二次電池用セパレータ。
  12.  見かけの単位面積あたりの前記多孔質基材に付着する前記第1多糖類の量が、1.0×10-5g/m2以上5.0×10-1g/m2以下である、請求項1~11のいずれか1項に記載の二次電池用セパレータ。
  13.  前記多孔質基材を同じ厚みを有する前記第1表面側の第1領域と前記第2表面側の第2領域に分けるとき、
     前記第1領域に含まれる前記第1多糖類の含有量C1が、前記第2領域に含まれる前記第1多糖類の含有量C2よりも大きい、請求項1~12のいずれか1項に記載の二次電池用セパレータ。
  14.  前記含有量C1と前記含有量C2との比:C1/C2が1.1以上である、請求項13に記載の二次電池用セパレータ。
  15.  正極、負極、リチウムイオン伝導性の非水電解質、および、前記正極と前記負極との間に介在するセパレータを備え、
     前記セパレータが、請求項1~14のいずれか一項に記載の二次電池用セパレータであり、
     前記第1表面が前記正極と対向している、二次電池。
  16.  充電終止電圧が4.3V以上である、請求項15に記載の二次電池。
  17.  前記正極は、活物質粒子として、リチウム含有遷移金属酸化物を含み、
     前記リチウム含有遷移金属酸化物は、LiとNiとを含み、層状岩塩型の結晶構造を有するリチウムニッケル酸化物を含み、
     前記リチウムニッケル酸化物に含まれるLi以外の金属元素に占めるNiの割合は50原子%以上である、請求項15または16に記載の二次電池。
  18.  前記リチウムニッケル酸化物がCoを含む場合、Li以外の金属元素に占めるCoの割合が2.0原子%以下である、請求項17に記載の二次電池。
  19.  第1表面および前記第1表面の反対側の第2表面を有する多孔質基材を準備する工程と、
     カルボキシル基を有する第1多糖類の溶液を準備する工程と、
     前記多孔質基材に前記溶液を塗布する塗布工程と、
     前記溶液が塗布された前記多孔質基材を乾燥する乾燥工程と、
    を具備する、二次電池用セパレータの製造方法。
  20.  前記溶液は、水とエタノールとの混合溶媒と、前記混合溶媒に溶解する前記第1多糖類と、を含む、請求項19に記載の二次電池用セパレータの製造方法。
  21.  前記塗布工程では、前記多孔質基材の前記第1表面に前記溶液を塗布する、請求項19または20に記載の二次電池用セパレータの製造方法。
     
PCT/JP2023/001001 2022-01-28 2023-01-16 二次電池用セパレータおよびその製造方法、ならびに二次電池 WO2023145512A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202380016035.1A CN118743096A (zh) 2022-01-28 2023-01-16 二次电池用分隔件和其制造方法、以及二次电池
JP2023576796A JPWO2023145512A1 (ja) 2022-01-28 2023-01-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-011907 2022-01-28
JP2022011907 2022-01-28

Publications (1)

Publication Number Publication Date
WO2023145512A1 true WO2023145512A1 (ja) 2023-08-03

Family

ID=87471370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001001 WO2023145512A1 (ja) 2022-01-28 2023-01-16 二次電池用セパレータおよびその製造方法、ならびに二次電池

Country Status (3)

Country Link
JP (1) JPWO2023145512A1 (ja)
CN (1) CN118743096A (ja)
WO (1) WO2023145512A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06231744A (ja) 1993-02-09 1994-08-19 Toshiba Battery Co Ltd マンガン乾電池
JP2005500658A (ja) * 2001-08-20 2005-01-06 パワー ペーパー リミテッド 自己形成型のセパレーターを伴う薄層電気化学的電池
EP3085432A1 (en) * 2015-04-22 2016-10-26 Karlsruher Institut für Technologie Separator for an electrochemical device and method for the production thereof
JP2018063924A (ja) 2016-10-14 2018-04-19 王子ホールディングス株式会社 電池用セパレータ塗液及び電池用セパレータ
JP2019537202A (ja) * 2017-01-06 2019-12-19 エルジー・ケム・リミテッド 機能性バインダーが適用された電池用分離膜及びこれを適用した電気化学素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06231744A (ja) 1993-02-09 1994-08-19 Toshiba Battery Co Ltd マンガン乾電池
JP2005500658A (ja) * 2001-08-20 2005-01-06 パワー ペーパー リミテッド 自己形成型のセパレーターを伴う薄層電気化学的電池
EP3085432A1 (en) * 2015-04-22 2016-10-26 Karlsruher Institut für Technologie Separator for an electrochemical device and method for the production thereof
JP2018063924A (ja) 2016-10-14 2018-04-19 王子ホールディングス株式会社 電池用セパレータ塗液及び電池用セパレータ
JP2019537202A (ja) * 2017-01-06 2019-12-19 エルジー・ケム・リミテッド 機能性バインダーが適用された電池用分離膜及びこれを適用した電気化学素子
JP6824558B2 (ja) 2017-01-06 2021-02-03 エルジー・ケム・リミテッド 機能性バインダーが適用された電池用分離膜及びこれを適用した電気化学素子

Also Published As

Publication number Publication date
JPWO2023145512A1 (ja) 2023-08-03
CN118743096A (zh) 2024-10-01

Similar Documents

Publication Publication Date Title
JP5137312B2 (ja) 非水電解質電池
KR102236766B1 (ko) 전지
JP2018520490A (ja) ポリドーパミンを含む複合コーティング層が形成されたリチウム−硫黄電池用分離膜、この製造方法及びこれを含むリチウム−硫黄電池
JP2019517719A (ja) 硫黄−炭素複合体、この製造方法及びこれを含むリチウム−硫黄電池
CN107636881B (zh) 锂离子二次电池用离子捕捉剂、电解液、间隔件和锂离子二次电池
JP7324737B2 (ja) 非水電解質二次電池用負極及びこれを備える非水電解質二次電池
JP5761098B2 (ja) 活物質及びこれを用いたリチウムイオン二次電池
DE102022101767A1 (de) Negative elektrode zur verwendung in einer sekundärbatterie mit nicht-wässrigem elektrolyt und sekundärbatterie mit nicht- wässrigem elektrolyt, welche diese umfasst
JPH11329415A (ja) リチウム電池及びリチウム電池の正極の製造方法
JP4561041B2 (ja) リチウム二次電池
JP6102916B2 (ja) リチウムイオン二次電池
WO2023145512A1 (ja) 二次電池用セパレータおよびその製造方法、ならびに二次電池
TWI803543B (zh) 離子捕捉劑、鋰離子電池用分離件及鋰離子二次電池
JP7096184B2 (ja) リチウムイオン二次電池及びその製造方法
WO2023120032A1 (ja) 二次電池用セパレータおよびその製造方法、ならびに二次電池
JP3981866B2 (ja) リチウム電池用正極の製造方法およびリチウム電池用正極
JP7361742B2 (ja) 多孔質シリコン材料の製造方法、多孔質シリコン材料及び蓄電デバイス
JP2003173821A (ja) 非水電解質電池
KR20130107927A (ko) 복합 양극활물질, 이를 포함하는 리튬 이차 전지용 전극 및 리튬 이차 전지
JP7493971B2 (ja) 非水電解質二次電池用負極及びこれを備える非水電解質二次電池並びにその製造方法
KR101976170B1 (ko) 전해질용 필러, 상기 필러의 제조방법, 상기 필러를 포함하는 전해질, 및 상기 전해질을 포함하는 리튬 이차 전지
EP4456305A1 (en) Secondary battery separator, production method for same, and secondary battery
JP4479159B2 (ja) 非水電解質電池
JP2002042874A (ja) ポリマー二次電池
DE102022101030B4 (de) Sekundärbatterie mit nichtwässrigem elektrolyt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746726

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023576796

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2023746726

Country of ref document: EP

Effective date: 20240828