WO2023142693A1 - 一种锂离子电池 - Google Patents

一种锂离子电池 Download PDF

Info

Publication number
WO2023142693A1
WO2023142693A1 PCT/CN2022/137108 CN2022137108W WO2023142693A1 WO 2023142693 A1 WO2023142693 A1 WO 2023142693A1 CN 2022137108 W CN2022137108 W CN 2022137108W WO 2023142693 A1 WO2023142693 A1 WO 2023142693A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
ion battery
material layer
lithium ion
aqueous electrolyte
Prior art date
Application number
PCT/CN2022/137108
Other languages
English (en)
French (fr)
Inventor
邓永红
钱韫娴
刘中波
胡时光
王勇
黄雄
Original Assignee
深圳新宙邦科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳新宙邦科技股份有限公司 filed Critical 深圳新宙邦科技股份有限公司
Publication of WO2023142693A1 publication Critical patent/WO2023142693A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of energy storage battery devices, and in particular relates to a lithium ion battery.
  • lithium-ion batteries Due to the advantages of high working voltage, wide working temperature range, high energy density and power density, no memory effect and long cycle life, lithium-ion batteries have been widely used in the field of 3C digital products such as mobile phones and notebook computers, as well as in the field of new energy vehicles. Applications. In recent years, with the continuous development of thinner and thinner 3C digital products, the battery industry has higher and higher requirements for high energy density of lithium-ion batteries. At the same time, for the consideration of users, good safety performance has become the basic requirement of batteries.
  • LiCoO 2 In terms of positive electrode, LiCoO 2 has the highest volume energy density among many positive electrode materials, and it also has good rate performance. However, as the battery voltage gradually increases, LiCoO 2 enters a higher delithiation state, and the structural stability of the material will change. Poor, the Co in the positive electrode is prone to disproportionation reaction, and dissolves in the electrolyte in the form of ions, causing structural damage to the positive electrode, and the risk of thermal runaway is prone to occur under high temperature and high pressure.
  • the dissolved Co migrates to the interface of the negative electrode, ion-exchanges with the lithium in the negative electrode, and occupies the position of lithium intercalation in the negative electrode, resulting in a decrease in the lithium storage capacity of the negative electrode and deterioration of various performances of the battery. Rapid growth with a sharp decline in capacity. Gas production in the battery will lead to an increase in internal pressure, which may further develop into dangerous situations such as explosion and combustion of the battery. Therefore, high-voltage batteries need to be matched with electrolytes with better safety performance.
  • the design of the electrolyte is particularly important for safety performance.
  • the invention provides a lithium-ion battery.
  • the invention provides a lithium ion battery, comprising a positive pole, a negative pole and a non-aqueous electrolyte, the negative pole comprises a negative electrode material layer, the positive pole comprises a positive pole material layer, the positive pole material layer comprises a positive pole active material, and the positive pole is active
  • the material includes LiCoO 2
  • the non-aqueous electrolyte includes a non-aqueous organic solvent, a lithium salt and an additive
  • the additive includes a compound shown in structural formula 1:
  • n 0 or 1
  • A is selected from C or O
  • X is selected from R 1 and R 2 are each independently selected from H
  • R1 and R2 are not selected from H at the same time
  • X, R1 and R2 contain at least one sulfur atom
  • the lithium ion battery meets the following conditions:
  • a is the percentage value of the non-aqueous electrolyte mass and the positive electrode material layer mass, and the unit is %;
  • m is the mass percentage of the compound shown in structural formula 1 in the non-aqueous electrolyte, in %;
  • n is the compacted density of the negative electrode material layer, and the unit is g/cm 3 .
  • the lithium-ion battery meets the following conditions:
  • the percentage a of the mass of the non-aqueous electrolyte to the mass of the positive electrode material layer is 10%-40%.
  • the mass percentage m of the compound represented by structural formula 1 in the non-aqueous electrolyte is 0.05%-3%.
  • the compacted density n of the negative electrode material layer is 1.6g/cm 3 -1.85g/cm 3 .
  • the compound represented by the structural formula 1 is selected from one or more of the following compounds 1-22:
  • the porosity of the negative electrode material layer is less than 50%.
  • the lithium salt is selected from LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiBOB, LiSbF 6 , LiAsF 6 , LiCF 3 SO 3 , LiDFOB, LiN(SO 2 CF 3 ) 2 , LiC(SO 2 CF 3 ) 3 , LiN(SO 2 C 2 F 5 ) 2 , LiN(SO 2 F) 2 , LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiAlCl 4 , lithium chloroborane, with 4 At least one of lower aliphatic lithium carboxylate, lithium tetraphenylborate and lithium imide with less than 2 carbon atoms.
  • the non-aqueous electrolyte also includes auxiliary additives
  • the auxiliary additives include cyclic sulfate ester compounds, sultone compounds, cyclic carbonate compounds, unsaturated phosphoric acid ester compounds and nitrile At least one kind of compound, based on the total mass of the non-aqueous electrolyte solution as 100%, the additive amount of the auxiliary additive is 0.01%-30%.
  • the cyclic sulfate ester compound is selected from at least one of vinyl sulfate, propylene sulfate or vinyl methyl sulfate;
  • the sultone compound is selected from at least one of 1,3-propane sultone, 1,4-butane sultone or 1,3-propene sultone;
  • the cyclic carbonate compound is selected from at least one of vinylene carbonate, ethylene carbonate, fluoroethylene carbonate or the compound shown in structural formula 2,
  • R 21 , R 22 , R 23 , R 24 , R 25 , and R 26 are each independently selected from a hydrogen atom, a halogen atom, and a C1-C5 group;
  • the unsaturated phosphate compound is selected from at least one of the compounds shown in structural formula 3:
  • R 31 , R 32 , and R 33 are each independently selected from C1-C5 saturated hydrocarbon groups, unsaturated hydrocarbon groups, halogenated hydrocarbon groups, -Si(C m H 2m+1 ) 3 , m is 1 to A natural number of 3, and at least one of R 31 , R 32 , and R 33 is an unsaturated hydrocarbon group;
  • the nitrile compound is selected from succinonitrile, glutaronitrile, ethylene glycol bis(propionitrile) ether, hexanetrinitrile, adiponitrile, pimelonitrile, suberonitrile, azelanitrile, sebaconitrile one or more of .
  • LiCoO2 is used as the positive electrode active material and the negative electrode material layer with high compaction density can effectively improve the energy density of the battery, and at the same time, the compound shown in structural formula 1 is added as an additive in the non-aqueous electrolyte , the inventor found through a lot of research that when the percentage value a of the mass of the non-aqueous electrolyte and the mass of the positive electrode material layer, the mass percentage m of the compound shown in structural formula 1 in the non-aqueous electrolyte, and the compaction density n of the negative electrode material layer satisfy condition When , the compound shown in structural formula 1 can decompose at the positive and negative electrode interface to form a more stable and denser passivation film in structure and composition, which helps to reduce the dissolution of Co ions in the positive electrode and avoid the problem of thermal runaway due to structural damage of the positive electrode material , At the same time, it also improves the stability of the negative electrode, inhibits the growth of the
  • An embodiment of the present invention provides a lithium ion battery, including a positive electrode, a negative electrode and a non-aqueous electrolyte, the negative electrode includes a negative electrode material layer, the positive electrode includes a positive electrode material layer, the positive electrode material layer includes a positive electrode active material, the The positive electrode active material includes LiCoO 2 , and the non-aqueous electrolyte includes a non-aqueous organic solvent, a lithium salt and an additive, and the additive includes a compound shown in structural formula 1:
  • n 0 or 1
  • A is selected from C or O
  • X is selected from R 1 and R 2 are each independently selected from H
  • R1 and R2 are not selected from H at the same time
  • X, R1 and R2 contain at least one sulfur atom
  • the lithium ion battery meets the following conditions:
  • a is the percentage value of the non-aqueous electrolyte mass and the positive electrode material layer mass, and the unit is %;
  • m is the mass percentage of the compound shown in structural formula 1 in the non-aqueous electrolyte, in %;
  • n is the compacted density of the negative electrode material layer, and the unit is g/cm 3 .
  • the inventor has found through a lot of research that when the percentage value a of the mass of the non-aqueous electrolyte to the mass of the positive electrode material layer, the mass percentage m of the compound shown in structural formula 1 in the non-aqueous electrolyte, and the compaction density n of the negative electrode material layer meet the conditions
  • the compound shown in structural formula 1 can decompose at the positive and negative electrode interface to form a more stable and denser passivation film in structure and composition, which helps to reduce the dissolution of Co ions in the positive electrode and avoid the problem of thermal runaway due to structural damage of the positive electrode material ,
  • it also improves the stability of the negative electrode, inhibits the growth of the negative electrode impedance, thereby avoiding the internal heat accumulation of the battery caused by too much impedance, and effectively improving the safety performance of the battery.
  • the compound represented by the structural formula 1 is:
  • A is selected from C or O
  • X is selected from R 1 and R 2 are each independently selected from H
  • R1 and R2 are not selected from H at the same time
  • X, R1 and R2 contain at least one sulfur atom.
  • the compound represented by the structural formula 1 is:
  • A is selected from C or O
  • X is selected from R 1 and R 2 are each independently selected from H
  • R1 and R2 are not selected from H at the same time
  • X, R1 and R2 contain at least one sulfur atom.
  • the lithium-ion battery meets the following conditions:
  • the quality of the non-aqueous electrolyte is correlated with the percentage value a of the mass of the positive electrode material layer, the mass percentage content m of the compound shown in structural formula 1 in the non-aqueous electrolyte, and the compaction density n of the negative electrode material layer, so that the positive electrode can be integrated to a certain extent. , negative electrode and non-aqueous electrolyte on the performance of the battery to obtain a lithium-ion battery with excellent safety performance.
  • the percentage value a of the mass of the non-aqueous electrolyte to the mass of the positive electrode material layer can be 8%, 9%, 10%, 13%, 15%, 16%, 18%, 21%, 23% %, 24%, 26%, 27%, 29%, 30%, 32%, 33%, 35%, 39%, 41%, 43%, 46%, 49%, 53%, 56% or 58%.
  • the percentage a of the mass of the non-aqueous electrolyte to the mass of the positive electrode material layer is 10%-40%.
  • the positive electrode material layer is a porous material
  • the compound shown in structural formula 1 decomposes on the surface of the positive electrode material layer to form a passivation film, and the percentage value a of the non-aqueous electrolyte quality and the positive electrode material layer quality affects the non-aqueous electrolyte for the positive electrode material.
  • the infiltration of the layer affects the surface contact efficiency between the compound shown in structural formula 1 and the positive electrode material layer in the non-aqueous electrolyte.
  • the mass percent content m of the shown compound jointly determines the total amount of the compound shown in structural formula 1 in the battery, therefore, the percentage value a of the non-aqueous electrolyte mass and the positive electrode material layer mass is a limiting condition directly related to the battery system, If the percentage value a of the nonaqueous electrolyte quality and the positive electrode material layer quality is too large, then the free nonaqueous electrolyte in the lithium ion battery increases, which increases the probability of battery gas production; the ratio of the nonaqueous electrolyte quality to the positive electrode material layer quality If the percentage value a is too small, it will affect the insertion and extraction efficiency of lithium ions in the positive electrode material layer, resulting in an increase in battery impedance. At the same time, there is not enough structural formula 1 compound to react with the positive electrode material layer to form a passivation film. Organic solvents participate in the decomposition reaction, which also brings about the problems of gas production and cycle performance degradation.
  • the mass percentage m of the compound represented by structural formula 1 in the non-aqueous electrolyte can be 0.05%, 0.05%, 0.1%, 0.12%, 0.15%, 0.3%, 0.5%, 0.8% , 0.9%, 1.0%, 1.2%, 1.4%, 1.7%, 1.9%, 2.1%, 2.2%, 2.4%, 2.7%, 2.9%, 3.1%, 3.3%, 3.5%, 3.7%, 4.2%, 4.4 %, 4.7%, 4.9%, or 5.0%.
  • the mass percentage m of the compound represented by structural formula 1 in the non-aqueous electrolyte is 0.05%-3%.
  • the mass percentage m of the compound represented by structural formula 1 in the non-aqueous electrolyte is 0.1%-2%.
  • the content of the compound shown in structural formula 1 in the non-aqueous electrolyte is too small, it will affect the generation quality of the passivation film on the surface of the positive and negative electrodes, and it is difficult to effectively suppress the stripping of Co ions in the positive electrode and protect the negative electrode material layer; Excessive content of the compound in the non-aqueous electrolyte will lead to an increase in the viscosity of the non-aqueous electrolyte, affecting the infiltration of the non-aqueous electrolyte to the positive and negative electrode materials, resulting in an increase in impedance and affecting battery performance.
  • the compacted density n of the negative electrode material layer can be 1.55g/cm 3 , 1.6g/ cm 3 , 1.65g/cm 3 , 1.7g/cm 3 , 1.75g/cm 3 , 1.8 g/cm 3 , 1.83g/cm 3 , 1.86g/cm 3 , 1.89g/cm 3 or 1.9g/cm 3
  • the compacted density n of the negative electrode material layer is 1.6 g/cm 3 -1.85 g/cm 3 .
  • the compacted density n of the negative electrode material layer is 1.65g/cm 3 -1.85g/cm 3 .
  • the negative electrode material layer has a porous structure, and the charging and discharging process of the battery actually includes the liquid phase conduction of lithium ions in the negative electrode material layer, so the abundance of pores in the negative electrode material layer will directly affect the electrochemical performance of the battery. Under other conditions being the same, the smaller the compaction density of the negative electrode material layer, the more developed its pore structure, which is more conducive to the liquid phase conduction of active ions, especially under the harsh conditions of repeated expansion of the battery after repeated charging and discharging. Down.
  • the compaction density of the negative electrode will affect the wetting effect of the non-aqueous electrolyte on the negative electrode and the volume expansion rate of the negative electrode, the compaction size is also directly related to the performance of the battery system.
  • the compacted density of the negative electrode material layer is in the above range, the lithium ion battery has the best performance.
  • the compound represented by structural formula 1 is selected from one or more of the following compounds 1-22:
  • compound 7 can be prepared by the following method:
  • the porosity of the negative electrode material layer is less than 50%, preferably less than 35%.
  • the lithium salt is selected from LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiBOB, LiSbF 6 , LiAsF 6 , LiCF 3 SO 3 , LiDFOB, LiN(SO 2 CF 3 ) 2 , LiC(SO 2 CF 3 ) 3 , LiN(SO 2 C 2 F 5 ) 2 , LiN(SO 2 F) 2 , LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiAlCl 4 , lithium chloroborane, At least one of lower aliphatic lithium carboxylate, lithium tetraphenylborate, and lithium imide having 4 or less carbon atoms.
  • lithium salts can be inorganic lithium salts such as LiBF 4 , LiClO 4 , LiAlF 4 , LiSbF 6 , LiTaF 6 , LiWF 7 ; lithium fluorophosphate salts such as LiPF 6 ; lithium tungstate salts such as LiWOF 5 ; HCO 2 Li , CH 3 CO 2 Li, CH 2 FCO 2 Li, CHF 2 CO 2 Li, CF 3 CO 2 Li, CF 3 CH 2 CO 2 Li, CF 3 CF 2 CO 2 Li, CF 3 CF 2 CO 2 Li, CF 3 CF 2 CF 2 CO 2 Li , CF 3 CF 2 CF 2 CO 2 Li and other lithium carboxylate salts; CH 3 SO 3 Li and other lithium sulfonate salts; LiN(FCO 2 ) 2 , LiN(FCO)(FSO 2 ), LiN(FSO 2 ) 2 , LiN(FSO 2 )(CF 3 SO 2 ), LiN(CF 3 SO 2 ) 2
  • the lithium salt in the electrolyte is the transfer unit of lithium ions
  • the concentration of lithium salt directly affects the transfer speed of lithium ions
  • the transfer speed of lithium ions will affect the potential change of the negative electrode.
  • the concentration of the lithium salt in the non-aqueous electrolyte is 0.5-3.5 mol/L.
  • the total concentration of the lithium salt in the electrolyte can be 0.5mol/L-2.0mol/L, 0.5mol/L-0.6mol/L, 0.6mol/L-0.7mol/L, 0.7mol/L ⁇ 0.8mol/L, 0.8mol/L ⁇ 0.9mol/L, 0.9mol/L ⁇ 1.0mol/L, 1.0mol/L ⁇ 1.1mol/L, 1.1mol/L ⁇ 1.2mol/L, 1.2mol/L ⁇ 1.3mol/L, 1.3mol/L ⁇ 1.4mol/L, 1.4mol/L ⁇ 1.5mol/L, 1.5mol/L ⁇ 1.6mol/L, 1.6mol/L ⁇ 1.7mol/L, 1.7mol/L ⁇ 1.8mol/L, 1.8mol/L ⁇ 1.9mol/L, or 1.9mol/L ⁇ 2.0mol/L, more preferably 0.6mol/L ⁇ 1.8mol/L, 0.7mol/L ⁇ 1.7mol/L, or 0.8mol/L ⁇ 1.5mol/L.
  • the non-aqueous electrolyte also includes auxiliary additives, and the auxiliary additives include cyclic sulfate compounds, sultone compounds, cyclic carbonate compounds, phosphoric acid ester compounds, boric acid At least one of ester compounds and nitrile compounds;
  • the cyclic sulfate ester compound is selected from at least one of vinyl sulfate, propylene sulfate or vinyl methyl sulfate;
  • the sultone compound is selected from methylene disulfonate, 1,3-propane sultone, 1,4-butane sultone or 1,3-propene sultone at least one of
  • the cyclic carbonate compound is selected from at least one of ethylene carbonate, fluoroethylene carbonate or the compound shown in structural formula 2,
  • R 21 , R 22 , R 23 , R 24 , R 25 , and R 26 are each independently selected from a hydrogen atom, a halogen atom, and a C1-C5 group;
  • the phosphoric acid ester compound is selected from at least one of tris(trimethylsilyl) phosphate and the compound shown in structural formula 3:
  • R 31 , R 32 , and R 33 are each independently selected from C1-C5 saturated hydrocarbon groups, unsaturated hydrocarbon groups, halogenated hydrocarbon groups, -Si(C m H 2m+1 ) 3 , m is 1 to 3, and at least one of R 31 , R 32 , and R 33 is an unsaturated hydrocarbon group.
  • the unsaturated phosphate compound can be tris(trimethylsilane) phosphate, tripropargyl phosphate, dipropargyl methyl phosphate, dipropargyl ethyl phosphate , Dipropargyl propyl phosphate, Dipropargyl trifluoromethyl phosphate, Dipropargyl-2,2,2-trifluoroethyl phosphate, Dipropargyl-3,3,3- Trifluoropropyl Phosphate, Dipropargyl Hexafluoroisopropyl Phosphate, Triallyl Phosphate, Diallyl Methyl Phosphate, Diallyl Ethyl Phosphate, Diallyl Propyl Phosphate ester, diallyl trifluoromethyl phosphate, diallyl-2,2,2-trifluoroethyl phosphate, diallyl-3,3,3-trifluoropropyl phosphate, di
  • the borate compound is selected from three (trimethylsilane) borates;
  • the nitrile compound is selected from succinonitrile, glutaronitrile, ethylene glycol bis(propionitrile) ether, hexanetrinitrile, adiponitrile, pimelonitrile, suberonitrile, azelanitrile, sebaconitrile one or more of .
  • the auxiliary additives may also include other additives that can improve battery performance: for example, additives that improve battery safety performance, specifically flame retardant additives such as fluorophosphate esters and cyclophosphazene, or tert-amyl Benzene, tert-butylbenzene and other anti-overcharge additives.
  • additives that improve battery safety performance specifically flame retardant additives such as fluorophosphate esters and cyclophosphazene, or tert-amyl Benzene, tert-butylbenzene and other anti-overcharge additives.
  • the amount of the auxiliary additive added is 0.01%-30%.
  • the addition amount of any optional substance in the auxiliary additive in the non-aqueous electrolyte is less than 10%, preferably, the addition amount is 0.1-5%, more Preferably, the added amount is 0.1%-2%.
  • the addition amount of any optional substance in the auxiliary additive can be 0.05%, 0.08%, 0.1%, 0.5%, 0.8%, 1%, 1.2%, 1.5%, 1.8%, 2%, 2.2% %, 2.5%, 2.8%, 3%, 3.2%, 3.5%, 3.8%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 7.8%, 8%, 8.5%, 9%, 9.5%, 10%.
  • the auxiliary additive is selected from fluoroethylene carbonate, based on 100% of the total mass of the non-aqueous electrolyte, the added amount of the fluoroethylene carbonate is 0.05%-30%.
  • the positive electrode further includes a positive electrode current collector, and the positive electrode material layer covers the surface of the positive electrode current collector.
  • the positive electrode current collector is selected from metal materials that can conduct electrons.
  • the positive electrode current collector includes one or more of Al, Ni, tin, copper, and stainless steel.
  • the positive electrode The current collector is selected from aluminum foil.
  • the positive electrode active material layer also includes a positive electrode binder and a positive electrode conductive agent, and the positive electrode active material, the positive electrode binder and the positive electrode conductive agent are blended to obtain the positive electrode material layer .
  • the positive electrode binder includes polyvinylidene fluoride, copolymer of vinylidene fluoride, polytetrafluoroethylene, copolymer of vinylidene fluoride-hexafluoropropylene, copolymer of tetrafluoroethylene-hexafluoropropylene, tetrafluoroethylene- Copolymer of perfluoroalkyl vinyl ether, copolymer of ethylene-tetrafluoroethylene, copolymer of vinylidene fluoride-tetrafluoroethylene, copolymer of vinylidene fluoride-trifluoroethylene, copolymer of vinylidene fluoride-trichloroethylene Copolymers, vinylidene fluoride-fluoroethylene copolymers, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymers, thermoplastic polyimides, thermoplastic resins such as polyethylene and polypropy
  • the positive electrode conductive agent includes one or more of conductive carbon black, conductive carbon spheres, conductive graphite, conductive carbon fibers, carbon nanotubes, graphene or reduced graphene oxide.
  • the anode material layer includes an anode active material
  • the anode active material includes one or more of a carbon-based anode, a tin-based anode, a silicon-based anode, and a lithium anode.
  • the carbon-based negative electrode can include graphite, hard carbon, soft carbon, graphene, mesocarbon microspheres, etc.
  • the silicon-based negative electrode can include one or more of silicon materials, silicon oxides, silicon-carbon composite materials, and silicon alloy materials.
  • tin-based negative electrodes can include tin, tin carbon, tin oxide, tin metal compounds
  • lithium negative electrodes can include metallic lithium or lithium alloys.
  • the lithium alloy may be at least one of lithium-silicon alloy, lithium-sodium alloy, lithium-potassium alloy, lithium-aluminum alloy, lithium-tin alloy and lithium-indium alloy.
  • the negative electrode further includes a negative electrode current collector, and the negative electrode material layer covers the surface of the negative electrode current collector.
  • the material of the negative electrode current collector may be the same as that of the positive electrode current collector, and will not be repeated here.
  • the negative electrode current collector is selected from copper foil.
  • the negative electrode material layer further includes a negative electrode binder and a negative electrode conductive agent, and the negative electrode active material, the negative electrode binder and the negative electrode conductive agent are blended to obtain the negative electrode material layer.
  • the negative electrode binder and the negative electrode conductive agent may be the same as the positive electrode binder and the positive electrode conductive agent respectively, and will not be repeated here.
  • the battery further includes a separator, and the separator is located between the positive electrode and the negative electrode.
  • the diaphragm can be an existing conventional diaphragm, which can be a ceramic diaphragm, a polymer diaphragm, a non-woven fabric, an inorganic-organic composite diaphragm, etc., including but not limited to single-layer PP (polypropylene), single-layer PE (polyethylene), Double-layer PP/PE, double-layer PP/PP and triple-layer PP/PE/PP separators.
  • This embodiment is used to illustrate the lithium-ion battery disclosed in the present invention and its preparation method, including the following steps:
  • the positive electrode active material LiCoO 2 , conductive carbon black and binder PVDF Disperse the positive electrode active material LiCoO 2 , conductive carbon black and binder PVDF into the non-aqueous organic solvent NMP (N-methyl-2-pyrrolidone) and mix uniformly to obtain the positive electrode slurry; apply the positive electrode slurry evenly on On the aluminum foil of the positive electrode current collector, after drying, rolling, and cutting into pieces, the positive electrode sheet is obtained.
  • the weight ratio of the positive electrode active material, conductive carbon black and binder PVDF is 96:2:2.
  • the positive pole piece, the separator and the negative pole piece are stacked in sequence, and then the pouch battery is made after top and side sealing, injection of non-aqueous electrolyte and other processes.
  • the injection volume of the non-aqueous electrolyte is shown in Table 1.
  • Examples 2-37 are used to illustrate the lithium-ion battery disclosed in the present invention and its preparation method, including most of the operation steps in Example 1, the differences are:
  • Comparative Examples 1-15 are used to compare and illustrate the battery disclosed in the present invention and its preparation method, including most of the operation steps in Example 1, the difference being:
  • the lithium-ion battery aside for 5 minutes, charge it with a constant current at a rate of 1C to 4.48V, then charge it with a constant voltage until the current is less than or equal to 0.05C, and then leave it for 5 minutes. Then place the battery in a high-temperature box, set the temperature of the high-temperature box to increase from 25°C to 130°C at a rate of 2°C/min, and keep it warm for 1 hour. During the heating process and heat preservation process, the battery surface temperature and battery status of the battery are monitored.
  • Capacity retention rate (%) after 700 cycles discharge capacity of the 700th cycle/discharge capacity of the 1st cycle ⁇ 100%.
  • DCIR growth rate (%) after 700 cycles (discharge DCIR of the 700th cycle ⁇ discharge DCIR of the first cycle)/discharge DCIR of the first cycle.
  • the dissolution of ions improves the stability of the positive electrode material and avoids the problem of thermal runaway caused by the structural damage of the positive electrode material. At the same time, it also inhibits the growth of the negative electrode impedance, avoids the accumulation of heat inside the battery due to too much impedance, and reduces the temperature in the thermal shock state. Battery surface temperature, improve battery safety performance and high temperature cycle performance.
  • the content of the non-aqueous electrolyte is too high, resulting in the increase of the viscosity of the non-aqueous electrolyte, which affects the infiltration effect of the non-aqueous electrolyte on the positive electrode or the negative electrode, and affects the cycle performance of the lithium-ion battery;
  • the percentage value of the nonaqueous electrolyte quality and the positive electrode material layer quality is too low, then it is not conducive to the infiltration of the positive electrode material layer by the nonaqueous electrolyte, resulting in an increase in impedance; and in comparative example 13, the nonaqueous electrolyte quality and the positive electrode material If the percentage value of the layer mass is too high, there will be too much free non-aqueous electrolyte in the lithium-ion battery, and the risk of gas production and decomposition of the non-aqueous electrolyte will easily occur at high temperature.
  • lithium-ion batteries have the best overall battery performance.
  • the am/n value When it is in the preferred range, the lithium-ion battery has better safety and cycle performance.
  • the am/n value exceeds the preferred range, there will be too much free non-aqueous electrolyte in the lithium-ion battery, and the safety performance and cycle performance of the battery will decrease. .
  • Example 9 From the test results of Example 9 and Examples 29 to 33, it can be seen that when using different compounds shown in structural formula 1 as additives for non-aqueous electrolytes, the relational formula It shows that the cyclic sulfur-containing groups commonly contained in the compounds shown in different structural formulas 1 play a decisive role in the formation of passivation films on the surface of positive and negative electrodes.
  • the film can effectively inhibit the dissolution of Co ions and form a better protective effect on the negative electrode material layer.
  • the relationship limitation provided by the present invention has universal applicability to the compounds shown in different structural formula 1, and has great advantages for the high-temperature cycle performance of lithium-ion batteries. Enhance the effect.
  • PS (1,3-propane sultone), DTD (ethylene sulfate), tripropargyl phosphate Or succinonitrile can further improve the capacity retention performance of the battery and reduce the impedance growth of the battery as an auxiliary additive, presumably because the compound shown in structural formula 1 and the added PS (1,3-propane sultone), DTD (sulfuric acid Vinyl ester), tripropargyl phosphate and succinonitrile have a certain common decomposition reaction, which can participate in the formation of a passivation film on the electrode surface, and the obtained passivation film can improve the stability of the non-aqueous electrolyte and maintain High temperature stability and safety performance of battery cycle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

为克服现有高电压高压实的锂离子电池存在安全性能不足的问题,本发明提供了一种锂离子电池,包括正极、负极和非水电解液,所述负极包括负极材料层,所述正极包括正极材料层,所述正极材料层包括正极活性材料,所述正极活性材料包括LiCoO2,所述非水电解液包括非水有机溶剂、锂盐和添加剂,所述添加剂包括结构式1所示化合物:(I) 其中,n为0或1,A选自C或O,X选自(II)或(III),R 1、R 2各自独立选自H、(IV) (V) (VI) (VII) 或(VIII) R 1和R 2不同时选自H,且X、R 1和R 2中至少含有一个硫原子;所述锂离子电池满足以下条件:(IX) (X)本发明提供的锂离子电池有效地改善了电池的安全性能。

Description

一种锂离子电池 技术领域
本发明属于储能电池器件技术领域,具体涉及一种锂离子电池。
背景技术
锂离子电池因具有工作电压高、工作温度范围广、能量密度和功率密度大、无记忆效应和循环寿命长等优点,在手机、笔记本电脑等3C数码产品领域以及新能源汽车领域都得到了广泛的应用。近年来,随着3C数码产品轻薄化的不断发展,电池行业对锂离子电池高能量密度化的要求也越来越高,同时出于用户端考虑,良好的安全性能已成为电池的基本要求。
正极方面,LiCoO 2在众多正极材料中具有最高的体积能量密度,同时有较好的倍率性能,但是随着电池电压的逐渐提高,LiCoO 2进入更高的脱锂态,材料结构稳定性会变差,正极中的Co容易发生歧化反应,以离子的形式溶于电解液中,造成正极结构破坏,在高温高压下容易出现热失控风险。并且,溶出的Co迁移到负极界面,与负极中的锂发生离子交换,占据负极嵌锂位置,导致负极储锂能力降低,电池各项性能变差,具体表现为:电池发生产气,内阻快速增长,容量急剧下降。电池产气会导致内压增大,更进一步可能会发展为电池的爆炸、燃烧等危险情况,因此高电压电池需要匹配安全性能更好的电解液。
负极角度,为提升能量密度,高压实已经成为业界普遍采用的手段,通过降低负极的孔隙率,达到承载更多活性物质的目的。但是锂离子电池负极材料压实密度越高,对电解液的要求也就越高。适用于常规压实负极的电解液在高压实体系,容易出现电池析锂、循环寿命下降、倍率性能下降等一系列问题,并且正极溶出的Co离子对负极的破坏在高压实情况下会更加严重,造成电池发生安全事故的风险进一步增长。
因此在使用高电压LiCoO 2配合高压实负极的电池体系,电解液的设计对安全性能尤为重要。
发明内容
针对现有高电压高压实的锂离子电池存在安全性能不足的问题,本发明提供了一种锂离子电池。
本发明解决上述技术问题所采用的技术方案如下:
本发明提供了一种锂离子电池,包括正极、负极和非水电解液,所述负极包括负极材料层,所述正极包括正极材料层,所述正极材料层包括正极活性材料,所述正极活性材料包括LiCoO 2,所述非水电解液包括非水有机溶剂、锂盐和添加剂,所述添加剂包括结构式1所示化合物:
Figure PCTCN2022137108-appb-000001
其中,n为0或1,A选自C或O,X选自
Figure PCTCN2022137108-appb-000002
R 1、R 2各自独立 选自H、
Figure PCTCN2022137108-appb-000003
R 1和R 2不同时选自H,且X、R 1和R 2中至少含有一个硫原子;
所述锂离子电池满足以下条件:
Figure PCTCN2022137108-appb-000004
且8%≤a≤58%,0.05%≤m≤5%,1.55g/cm 3≤n≤1.9g/cm 3
其中,a为非水电解液质量与正极材料层质量的百分比值,单位为%;
m为非水电解液中结构式1所示化合物的质量百分含量,单位为%;
n为负极材料层的压实密度,单位为g/cm 3
可选的,所述锂离子电池满足以下条件:
Figure PCTCN2022137108-appb-000005
可选的,所述非水电解液质量与正极材料层质量的百分比值a为10%~40%。
可选的,所述非水电解液中结构式1所示化合物的质量百分含量m为0.05%~3%。
可选的,所述负极材料层的压实密度n为1.6g/cm 3~1.85g/cm 3
可选的,所述结构式1所示的化合物选自以下化合物1~22中的一种或多种:
Figure PCTCN2022137108-appb-000006
Figure PCTCN2022137108-appb-000007
Figure PCTCN2022137108-appb-000008
可选的,所述负极材料层的孔隙率为50%以下。
可选的,所述锂盐选自LiPF 6、LiPO 2F 2、LiBF 4、LiBOB、LiSbF 6、LiAsF 6、LiCF 3SO 3、LiDFOB、LiN(SO 2CF 3) 2、LiC(SO 2CF 3) 3、LiN(SO 2C 2F 5) 2、LiN(SO 2F) 2、LiCl、LiBr、LiI、LiClO 4、LiBF 4、LiB 10Cl 10、LiAlCl 4、氯硼烷锂、具有4个以下的碳原子的低级脂族羧酸锂、四苯基硼酸锂以及亚氨基锂中的至少一种。
可选的,所述非水电解液中还包括辅助添加剂,所述辅助添加剂包括环状硫酸酯类化合物、磺酸内酯类化合物、环状碳酸酯类化合物、不饱和磷酸酯类化合物和腈类化合物中的至少一种,以所述非水电解液的总质量为100%计,所述辅助添加剂的添加量为0.01%~30%。
可选的,所述环状硫酸酯类化合物选自硫酸乙烯酯、硫酸丙烯酯或甲基硫酸乙烯酯中的至少一种;
所述磺酸内酯类化合物选自1,3-丙烷磺酸内酯、1,4-丁烷磺酸内酯或1,3-丙烯磺酸内酯中的至少一种;
所述环状碳酸酯类化合物选自碳酸亚乙烯酯、碳酸乙烯亚乙酯、氟代碳酸乙烯酯或结构式2所示化合物中的至少一种,
Figure PCTCN2022137108-appb-000009
Figure PCTCN2022137108-appb-000010
所述结构式2中,R 21、R 22、R 23、R 24、R 25、R 26各自独立地选自氢原子、卤素原子、C1-C5基团中的一种;
所述不饱和磷酸酯类化合物选自结构式3所示化合物中的至少一种:
Figure PCTCN2022137108-appb-000011
所述结构式3中,R 31、R 32、R 33各自独立的选自C1-C5的饱和烃基、不饱和烃基、卤代烃基、-Si(C mH 2m+1) 3,m为1~3的自然数,且R 31、R 32、R 33中至少有一个为不饱和烃基;
所述腈类化合物选自丁二腈、戊二腈、乙二醇双(丙腈)醚、己烷三腈、己二腈、庚二腈、辛二腈、壬二腈、癸二腈中的一种或多种。
根据本发明提供的锂离子电池,采用LiCoO 2作为正极活性材料以及采用高压实密度的负极材料层,能够有效提高电池的能量密度,同时在非水电解液中加入结构式1所示化合物作为添加剂,发明人通过大量研究发现,当非水电解液质量与正极材料层质量的百分比值a、非水电解液中结构式1所示化合物的质量百分含量m和负极材料层的压实密度n满足条件
Figure PCTCN2022137108-appb-000012
时,结构式1所示化合物能够在正负极界面分解生成结构和组成更加稳定和更加致密的钝化膜,有助于减少正极中Co离子的溶出,避免因正极材料结构破坏出现热失控的问题,同时也提高了负极的稳定性,抑制负极阻抗的增长,从而避免因阻抗太大导致的电池内部热量聚集,有效地改善了电池的安全性能。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例提供了一种锂离子电池,包括正极、负极和非水电解液,所述负极包括负极材料层,所述正极包括正极材料层,所述正极材料层包括正极活性材料,所述正极活性材料包括LiCoO 2,所述非水电解液包括非水有机溶剂、锂盐和添加剂,所述添加剂包括结构式1所示化合物:
Figure PCTCN2022137108-appb-000013
其中,n为0或1,A选自C或O,X选自
Figure PCTCN2022137108-appb-000014
R 1、R 2各自独立 选自H、
Figure PCTCN2022137108-appb-000015
R 1和R 2不同时选自H,且X、R 1和R 2中至少含有一个硫原子;
所述锂离子电池满足以下条件:
Figure PCTCN2022137108-appb-000016
且8%≤a≤58%,0.05%≤m≤5%,1.55g/cm 3≤n≤1.9g/cm 3
其中,a为非水电解液质量与正极材料层质量的百分比值,单位为%;
m为非水电解液中结构式1所示化合物的质量百分含量,单位为%;
n为负极材料层的压实密度,单位为g/cm 3
发明人通过大量研究发现,当非水电解液质量与正极材料层质量的百分比值a、非水电解液中结构式1所示化合物的质量百分含量m和负极材料层的压实密度n满足条件
Figure PCTCN2022137108-appb-000017
时,结构式1所示化合物能够在正负极界面分解生成结构和组成更加稳定和更加致密的钝化膜,有助于减少正极中Co离子的溶出,避免因正极材料结构破坏出现热失控的问题,同时也提高了负极的稳定性,抑制负极阻抗的增长,从而避免因阻抗太大导致的电池内部热量聚集,有效地改善了电池的安全性能。
在一些实施例中,当n为0时,所述结构式1所示的化合物为:
Figure PCTCN2022137108-appb-000018
其中,A选自C或O,X选自
Figure PCTCN2022137108-appb-000019
R 1、R 2各自独立选自H、
Figure PCTCN2022137108-appb-000020
R 1和R 2不同时选自H,且X、R 1和R 2中至少含有一个硫原子。
在一些实施例中,当n为1时,所述结构式1所示的化合物为:
Figure PCTCN2022137108-appb-000021
其中,A选自C或O,X选自
Figure PCTCN2022137108-appb-000022
R 1、R 2各自独立选自H、
Figure PCTCN2022137108-appb-000023
R 1和R 2不同时选自H,且X、R 1和R 2中至少含有一个硫原子。
在优选的实施例中,所述锂离子电池满足以下条件:
Figure PCTCN2022137108-appb-000024
将非水电解液质量与正极材料层质量的百分比值a、非水电解液中结构式1所示化合物的质量百分含量m和负极材料层的压实密度n相关联,能够一定程度上综合正极、负极以及非水电解液对于电池性能的影响,以得到一种安全性能优异的锂离子电池。
在具体的实施例中,所述非水电解液质量与正极材料层质量的百分比值a可以为8%、9%、10%、13%、15%、16%、18%、21%、23%、24%、26%、27%、29%、30%、32%、33%、35%、39%、41%、43%、46%、49%、53%、56%或58%。
在优选的实施例中,所述非水电解液质量与正极材料层质量的百分比值a为10%~40%。
由于正极材料层为多孔材料,结构式1所示化合物在正极材料层的表面分解形成钝化膜,而非水电解液质量与正极材料层质量的百分比值a影响非水电解液对于所述正极材料层的浸润,进而影响非水电解液中结构式1所示化合物与正极材料层的表面接触效率,同时,非水电解液质量与正极材料层质量的百分比值a也与非水电解液中结构式1所示化合物的质量百分含量m共同决定电池中结构式1所示的化合物的总量,因此,非水电解液质量与正极材料层质量的百分比值a是与该电池体系直接相关的限制条件,非水电解液质量与正极材料层质量的百分比值a过大,则锂离子电池中游离的非水电解液增加,增加了电池产气的概率;而非水电解液质量与正极材料层质量的百分比值a过小,则影响正极材料层中锂离子的嵌入和脱出效率,导致电池阻抗增加,同时也没有足够的结构式1化合物与正极材料层反应形成钝化膜,非水电解液中非水有机溶剂参与分解反应,同样带来了产气和循环性能下降的问题。
在具体的实施例中,所述非水电解液中结构式1所示化合物的质量百分含量m可以为0.05%、0.05%、0.1%、0.12%、0.15%、0.3%、0.5%、0.8%、0.9%、1.0%、1.2%、1.4%、1.7%、1.9%、2.1%、2.2%、2.4%、2.7%、2.9%、3.1%、3.3%、3.5%、3.7%、4.2%、4.4%、4.7%、4.9%或5.0%。
在优选的实施例中,所述非水电解液中结构式1所示化合物的质量百分含量m为0.05%~3%。
在更优选的实施例中,所述非水电解液中结构式1所示化合物的质量百分含量m为0.1%~2%。
若结构式1所示化合物在非水电解液中的含量过少,则会影响正负极表面钝化膜的生成质量,难以有效抑制正极中Co离子的溶出和保护负极材料层;若结构式1所示化合物在非水电解液中的含量过多,则会导致非水电解液的粘度增大,影响非水电解液对于正负极材料的浸润,导致阻抗增大而影响电池性能。
在具体的实施例中,所述负极材料层的压实密度n可以为1.55g/cm 3、1.6g/cm 3、1.65g/cm 3、1.7g/cm 3、1.75g/cm 3、1.8g/cm 3、1.83g/cm 3、1.86g/cm 3、1.89g/cm 3或1.9g/cm 3
在优选的实施例中,所述负极材料层的压实密度n为1.6g/cm 3~1.85g/cm 3
在更优选的实施例中,所述负极材料层的压实密度n为1.65g/cm 3~1.85g/cm 3
所述负极材料层为多孔结构,电池的充放电过程实际包含锂离子在负极材料层中的液相传导,故负极材料层中的孔道丰富程度将直接影响电池的电化学性能。在其它条件相同的情况下,负极材料层的压实密度越小,则其孔道结构越发达,越有利于活性离子的液相传导,尤其是在电池经历多次充放电反复膨胀的严苛条件下。但压实密度过小,会导致负极极片脱膜掉粉,充电时电子电导率较差而产生析锂,影响电池的电化学性能,同时也会降低电池的能量密度。由于负极压实密度会影响非水电解液对负极的浸润效果和负极的体积膨胀率,因此压实大小同样与该电池体系性能直接相关。当负极材料层的压实密度处于上述范围中时,锂离子电池具有最佳的性能。
在一些实施例中,所述结构式1所示的化合物选自以下化合物1~22中的一种或多种:
Figure PCTCN2022137108-appb-000025
Figure PCTCN2022137108-appb-000026
Figure PCTCN2022137108-appb-000027
需要说明的是,以上仅是本发明优选的化合物,并不代表对于本发明的限制。
本领域技术人员在知晓结构式1所示的化合物的结构式的情况下,根据化学合成领域的公知常识可以知晓上述化合物的制备方法。例如:化合物7可通过以下方法制成:
将山梨醇、碳酸二甲酯、甲醇碱性物质催化剂氢氧化钾以及DMF等有机溶剂置于反应容器中,在加热条件下进行反应数小时后,加入一定量的草酸调节pH至中性,过滤、重结晶后即可得到中间产物1,接着将中间产物1、碳酸酯、二氯亚砜等在高温条件下发生酯化反应得到中间产物2,再使用高碘酸钠等氧化剂将中间产物2氧化即可得到化合物7。
在一些实施例中,所述负极材料层的孔隙率为50%以下,优选35%以下。
在一些实施例中,所述锂盐选自LiPF 6、LiPO 2F 2、LiBF 4、LiBOB、LiSbF 6、LiAsF 6、LiCF 3SO 3、LiDFOB、LiN(SO 2CF 3) 2、LiC(SO 2CF 3) 3、LiN(SO 2C 2F 5) 2、LiN(SO 2F) 2、LiCl、LiBr、LiI、LiClO 4、LiBF 4、LiB 10Cl 10、LiAlCl 4、氯硼烷锂、具有4个以下的碳原子的低级脂族羧酸锂、四苯基硼酸锂以及亚氨基锂中的至少一种。具体的,锂盐可以为LiBF 4、LiClO 4、LiAlF 4、LiSbF 6、LiTaF 6、LiWF 7等无机锂盐;LiPF 6等氟磷酸锂盐类;LiWOF 5等钨酸锂盐类;HCO 2Li、CH 3CO 2Li、CH 2FCO 2Li、CHF 2CO 2Li、CF 3CO 2Li、CF 3CH 2CO 2Li、CF 3CF 2CO 2Li、CF 3CF 2CF 2CO 2Li、CF 3CF 2CF 2CF 2CO 2Li等羧酸锂盐类;CH 3SO 3Li等磺酸锂盐类;LiN(FCO 2) 2、LiN(FCO)(FSO 2)、LiN(FSO 2) 2、LiN(FSO 2)(CF 3SO 2)、LiN(CF 3SO 2) 2、LiN(C 2F 5SO 2) 2、环状1,2-全氟乙二磺酰亚胺锂、环状1,3-全氟丙二磺酰亚胺锂、LiN(CF 3SO 2)(C 4F 9SO 2)等酰亚胺锂盐类;LiC(FSO 2) 3、LiC(CF 3SO 2) 3、LiC(C 2F 5SO 2) 3等甲基锂盐类;二氟草酸根合硼酸锂、二(草酸根合)硼酸锂、四氟草酸根合磷酸锂、二氟二(草酸根合)磷酸锂、三(草酸根合)磷酸锂等草酸锂盐类;以及LiPF 4(CF 3) 2、LiPF 4(C 2F 5) 2、LiPF 4(CF 3SO 2) 2、LiPF 4(C 2F 5SO 2) 2、LiBF 3CF 3、LiBF 3C 2F 5、LiBF 3C 3F 7、LiBF 2(CF 3) 2、LiBF 2(C 2F 5) 2、LiBF 2(CF 3SO 2) 2、LiBF 2(C 2F 5SO 2) 2等含氟有机锂盐类等。
通常,电解液中的锂盐是锂离子的传递单元,锂盐的浓度大小直接影响锂离子的传递速度,而锂离子的传递速度会影响负极的电位变化。在电池快速充电过程中,需要尽量提高锂离子的移动速度,防止负极电位下降过快导致锂枝晶的形成,给电池带来安全隐患,同时还能防止电池的循环容量过快衰减。
在优选的实施例中,所述非水电解液中所述锂盐的浓度为0.5-3.5mol/L。
在优选的实施例中,所述锂盐在电解液中的总浓度可以为0.5mol/L~2.0mol/L、0.5mol/L~0.6mol/L、0.6mol/L~0.7mol/L、0.7mol/L~0.8mol/L、0.8mol/L~0.9mol/L、0.9mol/L~1.0mol/L、1.0mol/L~1.1mol/L、1.1mol/L~1.2mol/L、1.2mol/L~1.3mol/L、1.3mol/L~1.4mol/L、1.4mol/L~1.5mol/L、1.5mol/L~1.6mol/L、1.6mol/L~1.7mol/L、1.7mol/L~1.8mol/L、1.8mol/L~1.9mol/L、或1.9mol/L~2.0mol/L,进一步优选的可以为0.6mol/L~1.8mol/L、0.7mol/L~1.7mol/L、或0.8mol/L~1.5mol/L。
在一些实施例中,所述非水电解液中还包括辅助添加剂,所述辅助添加剂包括环状硫酸酯类化合物、磺酸内酯类化合物、环状碳酸酯类化合物、磷酸酯类化合物、硼酸酯类化合物 和腈类化合物中的至少一种;
在优选的实施例中,所述环状硫酸酯类化合物选自硫酸乙烯酯、硫酸丙烯酯或甲基硫酸乙烯酯中的至少一种;
所述磺酸内酯类化合物选自甲基二磺酸亚甲酯、1,3-丙烷磺酸内酯、1,4-丁烷磺酸内酯或1,3-丙烯磺酸内酯中的至少一种;
所述环状碳酸酯类化合物选自碳酸乙烯亚乙酯、氟代碳酸乙烯酯或结构式2所示化合物中的至少一种,
Figure PCTCN2022137108-appb-000028
所述结构式2中,R 21、R 22、R 23、R 24、R 25、R 26各自独立地选自氢原子、卤素原子、C1-C5基团中的一种;
所述磷酸酯类化合物选自三(三甲基硅烷)磷酸酯、结构式3所示化合物中的至少一种:
Figure PCTCN2022137108-appb-000029
所述结构式3中,R 31、R 32、R 33各自独立的选自C1-C5的饱和烃基、不饱和烃基、卤代烃基、-Si(C mH 2m+1) 3,m为1~3的自然数,且R 31、R 32、R 33中至少有一个为不饱和烃基。
在优选的实施例中,所述不饱和磷酸酯类化合物可为三(三甲基硅烷)磷酸酯、磷酸三炔丙酯、二炔丙基甲基磷酸酯、二炔丙基乙基磷酸酯、二炔丙基丙基磷酸酯、二炔丙基三氟甲基磷酸酯、二炔丙基-2,2,2-三氟乙基磷酸酯、二炔丙基-3,3,3-三氟丙基磷酸酯、二炔丙基六氟异丙基磷酸酯、磷酸三烯丙酯、二烯丙基甲基磷酸酯、二烯丙基乙基磷酸酯、二烯丙基丙基磷酸酯、二烯丙基三氟甲基磷酸酯、二烯丙基-2,2,2-三氟乙基磷酸酯、二烯丙基-3,3,3-三氟丙基磷酸酯、二烯丙基六氟异丙基磷酸酯中的至少一种。
所述硼酸酯类化合物选自三(三甲基硅烷)硼酸酯;
所述腈类化合物选自丁二腈、戊二腈、乙二醇双(丙腈)醚、己烷三腈、己二腈、庚二腈、辛二腈、壬二腈、癸二腈中的一种或多种。
在另一些实施例中,所述辅助添加剂还可包括其它能改善电池性能的添加剂:例如,提升电池安全性能的添加剂,具体如氟代磷酸酯、环磷腈等阻燃添加剂,或叔戊基苯、叔丁基苯等防过充添加剂。
在一些实施例中,以所述非水电解液的总质量为100%计,所述辅助添加剂的添加量为 0.01%~30%。
需要说明的是,除非特殊说明,一般情况下,所述辅助添加剂中任意一种可选物质在非水电解液中的添加量为10%以下,优选的,添加量为0.1-5%,更优选的,添加量为0.1%~2%。具体的,所述辅助添加剂中任意一种可选物质的添加量可以为0.05%、0.08%、0.1%、0.5%、0.8%、1%、1.2%、1.5%、1.8%、2%、2.2%、2.5%、2.8%、3%、3.2%、3.5%、3.8%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、7.8%、8%、8.5%、9%、9.5%、10%。
在一些实施例中,当辅助添加剂选自氟代碳酸乙烯酯时,以所述非水电解液的总质量为100%计,所述氟代碳酸乙烯酯的添加量为0.05%~30%。
在一些实施例中,所述正极还包括正极集流体,所述正极材料层覆盖于所述正极集流体的表面。
所述正极集流体选自可传导电子的金属材料,优选的,所述正极集流体包括Al、Ni、锡、铜、不锈钢的一种或多种,在更优选的实施例中,所述正极集流体选自铝箔。
在一些实施例中,所述正极活性材料层还包括有正极粘结剂和正极导电剂,所述正极活性材料、所述正极粘结剂和所述正极导电剂共混得到所述正极材料层。
所述正极粘结剂包括聚偏氟乙烯、偏氟乙烯的共聚物、聚四氟乙烯、偏氟乙烯-六氟丙烯的共聚物、四氟乙烯-六氟丙烯的共聚物、四氟乙烯-全氟烷基乙烯基醚的共聚物、乙烯-四氟乙烯的共聚物、偏氟乙烯-四氟乙烯的共聚物、偏氟乙烯-三氟乙烯的共聚物、偏氟乙烯-三氯乙烯的共聚物、偏氟乙烯-氟代乙烯的共聚物、偏氟乙烯-六氟丙烯-四氟乙烯的共聚物、热塑性聚酰亚胺、聚乙烯及聚丙烯等热塑性树脂;丙烯酸类树脂;以及苯乙烯丁二烯橡胶中的一种或多种。
所述正极导电剂包括导电炭黑、导电碳球、导电石墨、导电碳纤维、碳纳米管、石墨烯或还原氧化石墨烯中的一种或多种。
在一些实施例中,所述负极材料层包括负极活性材料,所述负极活性材料包括碳基负极、锡基负极、硅基负极、锂负极中的一种或多种。其中碳基负极可包括石墨、硬碳、软碳、石墨烯、中间相碳微球等;硅基负极可包括硅材料、硅的氧化物、硅碳复合材料以及硅合金材料中的一种或多种;锡基负极可包括锡、锡碳、锡氧、锡金属化合物;锂负极可包括金属锂或锂合金。锂合金具体可以是锂硅合金、锂钠合金、锂钾合金、锂铝合金、锂锡合金和锂铟合金中的至少一种。
在一些实施例中,所述负极还包括负极集流体,所述负极材料层覆盖于所述负极集流体的表面。所述负极集流体的材料可与所述正极集流体相同,在此不再赘述。在更优选的实施例中,所述负极集流体选自铜箔。
在一些实施例中,所述负极材料层还包括有负极粘结剂和负极导电剂,所述负极活性材料、所述负极粘结剂和所述负极导电剂共混得到所述负极材料层。所述负极粘结剂和负极导电剂可分别与所述正极粘接剂和正极导电剂相同,在此不再赘述。
在一些实施例中,所述电池中还包括有隔膜,所述隔膜位于所述正极和所述负极之间。
所述隔膜可为现有常规隔膜,可以是陶瓷隔膜、聚合物隔膜、无纺布、无机-有机复合隔膜等,包括但不限于单层PP(聚丙烯)、单层PE(聚乙烯)、双层PP/PE、双层PP/PP和三层PP/PE/PP等隔膜。
以下通过实施例对本发明进行进一步的说明。
以下实施例和对比例涉及的化合物如下表1所示:
表1
Figure PCTCN2022137108-appb-000030
表2实施例和对比例各参数设计
Figure PCTCN2022137108-appb-000031
Figure PCTCN2022137108-appb-000032
Figure PCTCN2022137108-appb-000033
实施例1
本实施例用于说明本发明公开的锂离子电池及其制备方法,包括以下操作步骤:
1)正极极片的制备
将正极活性材料LiCoO 2、导电炭黑及粘结剂PVDF分散至非水有机溶剂NMP(N-甲基-2-吡咯烷酮)中进行混合均匀,得到正极浆料;将正极浆料均匀涂布于正极集流体铝箔上,经烘干、辊压、裁片后,得到正极极片,正极活性材料、导电炭黑及粘结剂PVDF的重量比为96:2:2。
2)负极极片的制备
将负极活性物质石墨、导电剂、CMC及SBR按照重量比96:1:1:2分散于去离子水中进行搅拌,得到负极浆料;将负极浆料均匀涂布于负极集流体铜箔上,烘干、辊压、裁片后,得到负极极片,负极极片的压实密度如表1所示。
3)非水电解液的制备
将碳酸乙烯酯(EC)和碳酸二乙酯(DEC)以重量比30:70混合均匀,加入LiPF 6至1mol/L,再加入结构式1所示化合物溶解于上述非水有机溶剂中,得到非水电解液,结构式1所示化合物在非水电解液中的含量如表1所示,含量按照占非水电解液的总质量的百分比计。
4)锂离子电池的制备
采用叠片工艺,将正极极片、隔离膜及负极极片依次层叠,再经顶侧封、注入非水电解液等工序后,制成软包电池。非水电解液的注入量如表1所示。
5)化成
按以下步骤进行化成:0.05C恒流充电180min,0.1C恒流充电180min,搁置24hr后整形封口,然后进一步以0.2C的电流恒流充电至截至电压,常温搁置24hr后,以0.2C的电流恒流放电至3.0V。
实施例2~37
实施例2~37用于说明本发明公开的锂离子电池及其制备方法,包括实施例1中大部分操作步骤,其不同之处在于:
采用表1所示的负极压实密度、电解液添加组分和电解液的注入比例。
对比例1~15
对比例1~15用于对比说明本发明公开的电池及其制备方法,包括实施例1中大部分操作步骤,其不同之处在于:
采用表1所示的负极压实密度、电解液添加组分和电解液的注入比例。
性能测试
对上述制备得到的锂离子电池进行如下性能测试:
(1)热冲击测试
25℃下,将锂离子电池搁置5分钟,以1C倍率恒流充电至4.48V,再恒压充电至电流小于等于0.05C,之后搁置5分钟。然后将电池放置于高温箱中,设置高温箱温度以2℃/min的 升温速率从25℃升温至130℃,并保温1小时。在升温过程及保温过程中监控电池的电池表面温度及电池状态。
(2)高温循环性能测试
45℃下,将锂离子二次电池搁置5分钟,以1C倍率恒流充电至4.48V,再恒压充电至电流小于等于0.05C,之后搁置5分钟,再以1C倍率恒流放电至3.0V,按照此方式进行700圈循环充放电测试,记录每一圈循环的放电容量,放电DCIR,则循环700圈容量保持率和DCIR增长率计算方法如下:
循环700圈后的容量保持率(%)=第700圈循环的放电容量/第1圈循环的放电容量×100%。
循环700圈后的DCIR增长率(%)=(第700圈的放电DCIR-第1圈的放电DCIR)/第1圈的放电DCIR。
(1)实施例1~28和对比例1~15得到的测试结果填入表3。
表3
Figure PCTCN2022137108-appb-000034
Figure PCTCN2022137108-appb-000035
由实施例1~28和对比例1~15的测试结果可知,锂离子电池中非水电解液质量与正极材料层质量的百分比值a、非水电解液中结构式1所示化合物的质量百分含量m和负极材料层的压实密度n具有相互关联的作用,当非水电解液质量与正极材料层质量的百分比值a、非水电解液中结构式1所示化合物的质量百分含量m和负极材料层的压实密度n满足关系式
Figure PCTCN2022137108-appb-000036
且8%≤a≤58%,0.05%≤m≤5%,1.55g/cm 3≤n≤1.9g/cm 3时,得到的锂离子电池在抗热冲击和高温循环性能上均有较大的提升,推测是由于结构式1所示的化合物在该添加比例和负极压实密度的条件下,能够在正负极界面上生成在高温下较为稳定和致密的钝化膜,减少了正极中Co离子的溶出,提高了正极材料的稳定性,避免正极材料结构破坏出现热失控的问题,同时也抑制了负极阻抗的增长,避免因阻抗太大导致电池内部热量的聚集,在热冲击状态下降低电池表面温度,提高电池安全性能和高温循环性能。
而从对比例1~8的测试结果可知,即使a值、m值和n值均满足其参数范围限定,但am/n值过大或过小时,均会导致电池安全性能和高温循环性能的下降,说明锂离子电池中非水电解液质量与正极材料层质量的百分比值a、非水电解液中结构式1所示化合物的质量百分含量m和负极材料层的压实密度n在提升电池安全性能和高温循环性能方面是相互影响的,当且仅当三者达到较好的平衡状态时,才能够对电池在高温条件下的电化学性能产生较为明显给的提升。同时,从对比例10~15的测试结果可知,当a值、m值和n值中有一个参数超过限定范围,即使能满足关系式:
Figure PCTCN2022137108-appb-000037
的要求,电池在高温条件下的容量保持率和阻抗增长率也较差,电池抗热冲击能力不足,说明当非水电解液质量与正极材料层质量的百分比值a、非水电解液中结构式1所示化合物的质量百分含量m和负极材料层的压实密度n过高或过低时,均会影响正负极表面钝化膜的形成,以及电池在高温条件下性能的稳定性,例如,对比例11中,非水电解液的含量过高,导致非水电解液的粘度提升,影响非水电解液对于正极或负极的浸润效果,影响锂离子电池的循环性能;对比例12中,非水电解液质量与正极材料层质量的百分比值过低,则同样不利于非水电解液对于正极材料层的浸润,导致阻抗提升;而对比例13中,非水电解液质量与正极材料层质量的百分比值过高,则锂离子电池中游离的非水电解液过多,高温下易出现产气和非水电解液分解的风险,由对比例14和对比例15可以看出负极材料层的压实密度过低,则负极在循环过程中易掉粉,负极材料层的压实密度过高,则非水电解液难以进入负极材料层内部,均会影响电池在高温下的循环性能。
由实施例1~28的测试结果可以看出,当关系式满足
Figure PCTCN2022137108-appb-000038
时,锂离子电池具有最佳的电池综合性能。例如,由实施例8、9、17和实施例18的测试结果可以看出,当负极材料层的压实密度和非水电解液中结构式1所示化合物的添加量一致时,am/n值处于优选范围中时,锂离子电池具有较好的安全性和循环性能,当am/n值超出优选范围时,锂离子电池中游离的非水电解液过多,电池的安全性能和循环性能下降。
由实施例1~7和实施例14~19的测试结果可知,在本发明提供的锂离子电池中,随着结构式1所示的化合物的添加量的提高,锂离子电池在高温条件下的容量保持率逐渐提高、阻抗增长率则下降,说明结构式1所示化合物有利于提高正负极表面钝化膜的致密度,且当结构式1所示的化合物含量过高时,则锂离子电池在高温条件下循环性能会有所下降,说明过量添加的结构式1所示的化合物会在增加正极和负极表面钝化膜的厚度,进而影响锂离子的迁移效率,反而不利于高温循环下容量保持率的提升。
(2)实施例9、实施例29~33得到的测试结果填入表4。
表4
Figure PCTCN2022137108-appb-000039
由实施例9和实施例29~33的测试结果可知,当采用不同的结构式1所示的化合物作为非水电解液的添加剂时,同样满足关系式
Figure PCTCN2022137108-appb-000040
的限定,说明不同结构式1所示的化合物中共同含有的环状含硫基团在参与正负极表面钝化膜的形成过程中起到了决定性作用,其分解产生的富含S元素的钝化膜能够有效抑制Co离子的溶出,并对负极材料层形成较好的保护效果,本发明提供的关系限定对于不同的结构式1所示的化合物具有普适性,对于锂离子电池的高温循环性能具有提升效果。
(3)实施例9、实施例34~37得到的测试结果填入表5。
表5
Figure PCTCN2022137108-appb-000041
由实施例9和实施例34~37的测试结果可知,在本发明提供的电池的基础上,加入PS(1,3- 丙烷磺内酯)、DTD(硫酸乙烯酯)、磷酸三炔丙酯或丁二腈作为辅助添加剂,能够进一步提高电池的容量保持性能和降低电池的阻抗增长,推测是由于结构式1所示的化合物和加入的PS(1,3-丙烷磺内酯)、DTD(硫酸乙烯酯)、磷酸三炔丙酯和丁二腈之间存在一定的共同分解反应,能够共同参与电极表面钝化膜的形成,且得到的钝化膜能够提高非水电解液的稳定性,保持电池循环的高温稳定性和安全性能。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (15)

  1. 一种锂离子电池,其特征在于,包括正极、负极和非水电解液,所述负极包括负极材料层,所述正极包括正极材料层,所述正极材料层包括正极活性材料,所述正极活性材料包括LiCoO 2,所述非水电解液包括非水有机溶剂、锂盐和添加剂,所述添加剂包括结构式1所示化合物:
    Figure PCTCN2022137108-appb-100001
    其中,n为0或1,A选自C或O,X选自
    Figure PCTCN2022137108-appb-100002
    R 1、R 2各自独立选自H、
    Figure PCTCN2022137108-appb-100003
    R 1和R 2不同时选自H,且X、R 1和R 2中至少含有一个硫原子;
    所述锂离子电池满足以下条件:
    Figure PCTCN2022137108-appb-100004
    且8%≤a≤58%,0.05%≤m≤5%,1.55g/cm 3≤n≤1.9g/cm 3
    其中,a为非水电解液质量与正极材料层质量的百分比值,单位为%;
    m为非水电解液中结构式1所示化合物的质量百分含量,单位为%;
    n为负极材料层的压实密度,单位为g/cm 3
  2. 根据权利要求1所述的锂离子电池,其特征在于,所述锂离子电池满足以下条件:
    Figure PCTCN2022137108-appb-100005
  3. 根据权利要求1所述的锂离子电池,其特征在于,所述非水电解液质量与正极材料层质量的百分比值a为10%~40%。
  4. 根据权利要求1所述的锂离子电池,其特征在于,所述非水电解液中结构式1所示化合物的质量百分含量m为0.05%~3%。
  5. 根据权利要求1所述的锂离子电池,其特征在于,所述负极材料层的压实密度n为1.6g/cm 3~1.85g/cm 3
  6. 根据权利要求1所述的锂离子电池,其特征在于,所述结构式1所示的化合物选自以下化合物1~22中的一种或多种:
    Figure PCTCN2022137108-appb-100006
    Figure PCTCN2022137108-appb-100007
    Figure PCTCN2022137108-appb-100008
  7. 根据权利要求1所述的锂离子电池,其特征在于,所述负极材料层的孔隙率为50%以下。
  8. 根据权利要求1所述的锂离子电池,其特征在于,所述锂盐选自LiPF 6、LiPO 2F 2、LiBF 4、LiBOB、LiSbF 6、LiAsF 6、LiCF 3SO 3、LiDFOB、LiN(SO 2CF 3) 2、LiC(SO 2CF 3) 3、LiN(SO 2C 2F 5) 2、LiN(SO 2F) 2、LiCl、LiBr、LiI、LiClO 4、LiBF 4、LiB 10Cl 10、LiAlCl 4、氯硼烷锂、具有4个以下的碳原子的低级脂族羧酸锂、四苯基硼酸锂以及亚氨基锂中的至少一种。
  9. 根据权利要求1所述的锂离子电池,其特征在于,所述非水电解液中还包括辅助添加剂,所述辅助添加剂包括环状硫酸酯类化合物、磺酸内酯类化合物、环状碳酸酯类化合物、不饱和磷酸酯类化合物和腈类化合物中的至少一种。
  10. 根据权利要求9所述的锂离子电池,其特征在于,以所述非水电解液的总质量为100%计,所述辅助添加剂的添加量为0.01%~30%。
  11. 根据权利要求9所述的锂离子电池,其特征在于,所述环状硫酸酯类化合物选自硫酸乙烯酯、硫酸丙烯酯或甲基硫酸乙烯酯中的至少一种。
  12. 根据权利要求9所述的锂离子电池,其特征在于,所述磺酸内酯类化合物选自1,3-丙烷磺酸内酯、1,4-丁烷磺酸内酯或1,3-丙烯磺酸内酯中的至少一种。
  13. 根据权利要求9所述的锂离子电池,其特征在于,所述环状碳酸酯类化合物选自碳酸亚乙烯酯、碳酸乙烯亚乙酯、氟代碳酸乙烯酯或结构式2所示化合物中的至少一种,
    Figure PCTCN2022137108-appb-100009
    所述结构式2中,R 21、R 22、R 23、R 24、R 25、R 26各自独立地选自氢原子、卤素原子、C1-C5基团中的一种。
  14. 根据权利要求9所述的锂离子电池,其特征在于,所述不饱和磷酸酯类化合物选自结构式3所示化合物中的至少一种:
    Figure PCTCN2022137108-appb-100010
    所述结构式3中,R 31、R 32、R 33各自独立的选自C1-C5的饱和烃基、不饱和烃基、卤代烃基、-Si(C mH 2m+1) 3,m为1~3的自然数,且R 31、R 32、R 33中至少有一个为不饱和烃基。
  15. 根据权利要求9所述的锂离子电池,其特征在于,所述腈类化合物选自丁二腈、戊二腈、乙二醇双(丙腈)醚、己烷三腈、己二腈、庚二腈、辛二腈、壬二腈、癸二腈中的一种或多种。
PCT/CN2022/137108 2022-01-25 2022-12-07 一种锂离子电池 WO2023142693A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210086571.6A CN114583270B (zh) 2022-01-25 2022-01-25 一种锂离子电池
CN202210086571.6 2022-01-25

Publications (1)

Publication Number Publication Date
WO2023142693A1 true WO2023142693A1 (zh) 2023-08-03

Family

ID=81772586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137108 WO2023142693A1 (zh) 2022-01-25 2022-12-07 一种锂离子电池

Country Status (2)

Country Link
CN (1) CN114583270B (zh)
WO (1) WO2023142693A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116960319A (zh) * 2023-09-14 2023-10-27 宁德时代新能源科技股份有限公司 锂离子电池和用电装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114583270B (zh) * 2022-01-25 2023-12-15 深圳新宙邦科技股份有限公司 一种锂离子电池
CN115036572A (zh) * 2022-06-21 2022-09-09 深圳新宙邦科技股份有限公司 一种锂二次电池
CN114824486A (zh) * 2022-06-29 2022-07-29 天鹏锂能技术(淮安)有限公司 一种锂离子电池用电解液及其制备方法、锂离子电池
CN115020814B (zh) * 2022-08-09 2022-12-06 深圳新宙邦科技股份有限公司 一种锂离子电池
CN115064770B (zh) * 2022-08-18 2022-12-06 深圳新宙邦科技股份有限公司 一种锂离子电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017097995A (ja) * 2015-11-19 2017-06-01 日立マクセル株式会社 非水電解質二次電池およびその製造方法
CN112151855A (zh) * 2020-10-15 2020-12-29 宁德新能源科技有限公司 电化学装置和电子装置
CN112271337A (zh) * 2020-11-25 2021-01-26 深圳新宙邦科技股份有限公司 一种非水电解液及锂离子电池
CN114583270A (zh) * 2022-01-25 2022-06-03 深圳新宙邦科技股份有限公司 一种锂离子电池
CN115020813A (zh) * 2022-08-09 2022-09-06 深圳新宙邦科技股份有限公司 一种锂离子电池
CN115020814A (zh) * 2022-08-09 2022-09-06 深圳新宙邦科技股份有限公司 一种锂离子电池
CN115064770A (zh) * 2022-08-18 2022-09-16 深圳新宙邦科技股份有限公司 一种锂离子电池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108110317A (zh) * 2016-11-25 2018-06-01 深圳新宙邦科技股份有限公司 一种锂离子电池非水电解液及锂离子电池
CN110931863B (zh) * 2019-11-12 2022-03-29 深圳市比克动力电池有限公司 电池电解液用添加剂、锂离子电池电解液、锂离子电池
KR20210059232A (ko) * 2019-11-15 2021-05-25 주식회사 엘지화학 비수 전해액 및 이를 포함하는 리튬 이차 전지
CN111129590A (zh) * 2019-12-23 2020-05-08 东莞市杉杉电池材料有限公司 一种高电压锂离子电池非水电解液及高电压锂离子电池
CN113659206B (zh) * 2021-08-13 2023-05-09 深圳新宙邦科技股份有限公司 一种高压实锂离子电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017097995A (ja) * 2015-11-19 2017-06-01 日立マクセル株式会社 非水電解質二次電池およびその製造方法
CN112151855A (zh) * 2020-10-15 2020-12-29 宁德新能源科技有限公司 电化学装置和电子装置
CN112271337A (zh) * 2020-11-25 2021-01-26 深圳新宙邦科技股份有限公司 一种非水电解液及锂离子电池
CN114583270A (zh) * 2022-01-25 2022-06-03 深圳新宙邦科技股份有限公司 一种锂离子电池
CN115020813A (zh) * 2022-08-09 2022-09-06 深圳新宙邦科技股份有限公司 一种锂离子电池
CN115020814A (zh) * 2022-08-09 2022-09-06 深圳新宙邦科技股份有限公司 一种锂离子电池
CN115064770A (zh) * 2022-08-18 2022-09-16 深圳新宙邦科技股份有限公司 一种锂离子电池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116960319A (zh) * 2023-09-14 2023-10-27 宁德时代新能源科技股份有限公司 锂离子电池和用电装置

Also Published As

Publication number Publication date
CN114583270B (zh) 2023-12-15
CN114583270A (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
CN114583270B (zh) 一种锂离子电池
WO2021208955A1 (zh) 电解液添加剂、二次电池电解液、二次电池和终端
CN110176630B (zh) 电解液和使用其的电化学装置
CN111430793B (zh) 电解液及使用其的电化学装置和电子装置
US20220153690A1 (en) Electrolyte, and electrochemical device and electronic device including same
WO2023134334A1 (zh) 锂离子电池
WO2023124604A1 (zh) 二次电池
CN114497692B (zh) 二次电池
CN113067033B (zh) 电化学装置及电子装置
WO2021120434A1 (zh) 一种电解液及电化学装置
WO2024037187A1 (zh) 一种锂离子电池
WO2023124831A1 (zh) 锂离子电池
US20190372166A1 (en) Electrolyte and lithium-ion battery
WO2023098477A1 (zh) 一种锂离子电池
CN110416611B (zh) 一种锂离子电池非水电解液及使用该电解液的锂离子电池
CN111697267A (zh) 电解液和包含电解液的电化学装置及电子装置
WO2022127796A1 (zh) 电池电解液、二次电池和终端
CN110911748A (zh) 一种锂二次电池电解液和锂二次电池
WO2023104038A1 (zh) 一种二次电池
WO2023109259A1 (zh) 电解液添加剂、电解液以及包含其的锂离子二次电池
WO2023016411A1 (zh) 一种非水电解液及电池
WO2023279953A1 (zh) 一种非水电解液及电池
CN110970660A (zh) 非水电解液及锂离子电池
CN110649317B (zh) 硅基锂离子电池电解液和锂离子二次电池
CN110797573B (zh) 锂二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923484

Country of ref document: EP

Kind code of ref document: A1