WO2023130530A1 - 非导电膜及其形成方法、芯片封装结构及方法 - Google Patents

非导电膜及其形成方法、芯片封装结构及方法 Download PDF

Info

Publication number
WO2023130530A1
WO2023130530A1 PCT/CN2022/076142 CN2022076142W WO2023130530A1 WO 2023130530 A1 WO2023130530 A1 WO 2023130530A1 CN 2022076142 W CN2022076142 W CN 2022076142W WO 2023130530 A1 WO2023130530 A1 WO 2023130530A1
Authority
WO
WIPO (PCT)
Prior art keywords
film layer
chip
layer
film
conductive film
Prior art date
Application number
PCT/CN2022/076142
Other languages
English (en)
French (fr)
Inventor
张志伟
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Priority to US17/662,641 priority Critical patent/US20230215832A1/en
Publication of WO2023130530A1 publication Critical patent/WO2023130530A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4803Insulating or insulated parts, e.g. mountings, containers, diamond heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof

Definitions

  • the present disclosure relates to the field of semiconductor technology, and relates to but not limited to a non-conductive film and its forming method, chip packaging structure and method.
  • the non-conductive film (Non Conductive Film, NCF) is used to paste the upper and lower chips during stack packaging, and the non-conductive film is used to paste the entire wafer to protect the bump (Bump).
  • the wafer passes through the Backside Via Reveal (BVR) process and the cutting and slicing (Dicing) process to form multiple chips for a stacked chip structure; when stacking chips, Thermal Compression Bond (TCB) is used The process bonds the chips together.
  • BVR Backside Via Reveal
  • TCB Thermal Compression Bond
  • the heating and extrusion of the hot pressing process causes the non-conductive film between the chips to be extruded out of the chip, forming a thicker non-conductive film barrier layer at the edge of the chip, and the thicker barrier layer extruding out of the chip will affect The next chip stack proceeds.
  • embodiments of the present disclosure provide a non-conductive film and a method for forming the same, and a chip packaging structure and method.
  • an embodiment of the present disclosure provides a non-conductive film, at least comprising: a first film layer and a second film layer;
  • the surface of the first film layer has a grid-shaped groove structure, and the depth of each groove in the groove structure is smaller than the thickness of the first film layer;
  • the second film layer is located in the groove on the surface of the first film layer
  • the fluidity of the first film layer is greater than the fluidity of the second film layer.
  • the first film layer includes a first preset concentration of non-conductive material; the second film layer includes a second preset concentration of the non-conductive material;
  • the second preset density is greater than the first preset density.
  • the first film layer has a first melting point; the second film layer has a second melting point;
  • the second melting point is greater than the first melting point.
  • the second film layer is located at least at a corner position of the non-conductive film, or the second film layer is located at least at a position adjacent to the corner position of the non-conductive film.
  • the non-conductive film further includes a support layer
  • the first surface of the first film layer has the grid-shaped groove structure, wherein the first surface is any surface of the first film layer along the thickness direction of the first film layer;
  • the supporting layer is located on the surface of the second film layer and part of the first surface of the first film layer.
  • an embodiment of the present disclosure provides a method for forming a non-conductive film, including:
  • a second film layer having a plurality of grooves is formed on the support layer; wherein, the grooves expose the surface of the support layer;
  • a first film layer is formed on the surface of the groove and the second film layer; wherein, under the same conditions, the fluidity of the first film layer is greater than that of the second film layer.
  • a second membrane layer having a plurality of grooves is formed on the support layer, comprising:
  • a dry etching process is used to etch the initial second film layer to form the second film layer with multiple grooves.
  • the groove is located at least at a corner position of the second film layer; or, the groove is located at least at a position adjacent to the corner position.
  • the support layer has a preset viscosity value, and the support layer has no fluidity under the preset viscosity value.
  • an embodiment of the present disclosure provides a chip stack structure, including:
  • a chip stack structure the chip stack structure includes a plurality of stacked chips, and any two adjacent chips are combined through the above-mentioned non-conductive film;
  • the substrate is bonded to the chip stack structure, and the gap between the substrate and the chip stack structure is filled by the non-conductive film.
  • an embodiment of the present disclosure provides a chip stacking method, including:
  • the chip stack structure includes a plurality of stacked chips, and any two adjacent chips are combined through the above-mentioned non-conductive film;
  • the chip stack structure is bonded to the substrate, so as to package the plurality of chips.
  • the forming a chip stack structure includes:
  • a plurality of chips are provided; the first surface of the chip is provided with a non-conductive film, and the second surface of the chip is provided with a metal interconnection layer, wherein the first surface and the second surface are the chips on the two opposite faces in the thickness direction of the chip;
  • At least the first chip and the second chip are stacked to form the chip stack structure.
  • the non-conductive film includes at least: a first film layer and a second film layer;
  • the surface of the first film layer is a grid-shaped groove structure, and the depth of each groove in the groove structure is smaller than the thickness of the first film layer;
  • the second film layer is located in the groove on the surface of the first film layer
  • the fluidity of the first film layer is greater than the fluidity of the second film layer.
  • the first surface of the first film layer is the grid-shaped groove structure, and the surface of the second film layer and part of the first surface of the first film layer are provided a support layer;
  • the second surface of the first film layer is in contact with the first surface of the chip
  • first surface and the second surface are two opposite surfaces of the first film layer along the thickness direction of the first film layer.
  • the method also includes:
  • the supporting layer is removed.
  • the first chip and the second chip are stacked to form the chip stack structure, including:
  • the first chip and the second chip are bonded to obtain the chip stack structure.
  • the providing a plurality of chips includes:
  • non-conductive film and its forming method, chip packaging structure and method provided by the embodiments of the present disclosure, wherein the non-conductive film includes a first film layer and a second film layer, the surface of the first film layer has a grid-shaped groove structure, The second film layer is located in the groove on the surface of the first film layer, and the fluidity of the first film layer is greater than that of the second film layer under the same conditions.
  • the non-conductive film provided by the embodiment of the present disclosure is composed of a first film layer and a second film layer with different fluidity, and the second film layer with low fluidity is grid-shaped, so, when using the embodiment of the present disclosure to provide When the non-conductive film is used for chip bonding, the low-fluidity second film layer has a certain supporting effect, which will not cause too much non-conductive film to be squeezed out of the chip, and will not affect the subsequent chip lamination process.
  • Figures 1a and 1b are structural schematic diagrams of the non-conductive film overflowing during the packaging process in the embodiment of the present disclosure
  • FIGS. 2a-2e are schematic structural views of non-conductive films provided by embodiments of the present disclosure.
  • FIG. 3 is a schematic flow diagram of a method for forming a non-conductive film provided by an embodiment of the present disclosure
  • FIGS. 4a-4e are structural schematic diagrams of the formation process of the non-conductive film provided by the embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a chip packaging structure provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of a chip packaging method provided by an embodiment of the present disclosure.
  • the non-conductive film is used to paste adjacent chips or fill between the chip and the substrate for packaging.
  • the chip packaging process uses heat and pressure to heat and press the chip so that the bonded together, or the chip is bonded to the substrate.
  • the non-conductive film will be extruded out of the chip, and the extruded non-conductive film is too thick, which will affect the progress of the next chip stack.
  • the non-conductive film 102 between the chip 101 and the substrate 103 will be extruded out of the chip to form a thicker NCF barrier layer 104, and the thicker non-conductive film barrier layer 104 will affect the next The lamination is carried out.
  • the embodiments of the present disclosure provide a non-conductive film and its forming method, chip packaging structure and method, wherein the non-conductive film includes a first film layer and a second film layer, and the second film layer
  • the surface of one film layer has a grid-shaped groove structure, the second film layer is located in the grooves on the surface of the first film layer, and the fluidity of the first film layer is greater than that of the second film layer under the same conditions.
  • the non-conductive film provided by the embodiment of the present disclosure is composed of a first film layer and a second film layer with different fluidity, and the second film layer with low fluidity is grid-shaped, so, when using the embodiment of the present disclosure to provide When the non-conductive film is used for chip bonding, the low-fluidity second film layer has a certain supporting effect, which will not cause too much non-conductive film to be squeezed out of the chip, and will not affect the subsequent chip lamination process.
  • FIGS. 2a-2e are schematic structural diagrams of the non-conductive film provided by the embodiment of the present disclosure, wherein, Fig. 2b and 2d are top views, as shown in Fig. film layer 202 .
  • the surface of the first film layer 201 has a grid-like groove structure, and the depth of each groove in the groove structure is smaller than the thickness of the first film layer 201;
  • the size h1 of the direction is smaller than the size h2 of the first film layer 201 in the Z-axis direction.
  • the second film layer 202 is located in the groove on the surface of the first film layer 201 ; and the top surface of the second film layer is flush with the top surface of the first film layer.
  • the fluidity of the first film layer 201 is greater than the fluidity of the second film layer 202 under the same conditions.
  • the first film layer 201 includes a first preset concentration of non-conductive material; the second film layer 202 includes a second preset concentration of the non-conductive material; wherein, the second The preset density is greater than the first preset density.
  • the non-conductive material may be SiO 2 , Al 2 O 3 or a composite material of SiO 2 and Al 2 O 3 .
  • the first film layer 201 has a first melting point; the second film layer 202 has a second melting point; and the second melting point is greater than the first melting point. That is, in the embodiment of the present disclosure, the melting point of the second film layer with low fluidity is higher than the melting point of the first film layer with high fluidity.
  • the concentration of the conductive material in the first film layer is lower than the concentration of the conductive material in the second film layer, and the melting point of the first film layer is lower than the melting point of the second film layer. Therefore, the second film layer is relatively The first film layer has lower fluidity and is less likely to be melted. In this way, in the subsequent process of melting the first film layer and the second film layer for chip stacking through the heat-compression bonding process, the second film layer is more sensitive to the first film layer. It has a certain supporting effect and can prevent excessive overflow of conductive materials.
  • the second film layer 202 is at least located at the top corner of the non-conductive film 20 (as shown in the dashed box in FIG. 2 b ).
  • the second film layer 202 may also be located in a position adjacent to the top corner of the non-conductive film 20 (the dotted frame position in FIG. 2d ). That is to say, the top corner of the non-conductive film 20 may be the first film layer (corresponding to FIGS. 2c and 2d ), or the second film layer (corresponding to FIGS. 2a and 2b ).
  • the non-conductive film 20 further includes a support layer 203; the first surface 201-1 of the first film layer 201 has the grid-shaped groove structure, wherein , the first surface 201-1 is any surface of the first film layer 201 along the thickness direction of the first film layer (ie, the Z-axis direction); the support layer 203 is located on the side of the second film layer 202 surface and part of the first surface 201-1 of the first film layer 201.
  • the material of the support layer 203 can be any suitable material that is easy to remove, and the support layer 203 has a preset viscosity value, and the support layer 203 has a preset viscosity value. No fluidity; the supporting layer 203 supports the first film layer and the second film layer.
  • the non-conductive film provided by the embodiment of the present disclosure is composed of a first film layer and a second film layer with different fluidity, and the second film layer with low fluidity is grid-shaped, so, when using the embodiment of the present disclosure to provide When the non-conductive film is used for chip bonding, the low-fluidity second film layer has a certain supporting effect, which will not cause too much non-conductive film to be squeezed out of the chip, and will not affect the subsequent chip lamination process.
  • FIG. 3 is a schematic flow chart of the method for forming a non-conductive film provided by the embodiment of the present disclosure.
  • FIGS. 4a-4e are the forming process of the non-conductive film provided by the embodiment of the present disclosure.
  • the structure schematic diagram, as shown in Figure 3, the formation method of described non-conductive film comprises the following steps:
  • Step S301 providing a supporting layer.
  • the support layer has a preset viscosity value, and the support layer has no fluidity under the preset viscosity value; the support layer is used to provide support for the subsequently formed structure.
  • Step S302 forming a second film layer having a plurality of grooves on the support layer; wherein, the grooves expose the surface of the support layer.
  • step S302 may include the following steps:
  • Step S3021 forming an initial second film layer on the support layer.
  • an initial second film layer 302 a is formed on the surface of the support layer 301 .
  • the initial second film layer can be formed by any suitable deposition process, for example, a chemical vapor deposition (Chemical Vapor Deposition, CVD) process, a physical vapor deposition (Physical Vapor Deposition, PVD) process, Atomic Layer Deposition (ALD) process, spin coating process or coating process.
  • CVD chemical vapor deposition
  • PVD Physical vapor deposition
  • ALD Atomic Layer Deposition
  • Step S3022 using a dry etching process to etch the initial second film layer to form the second film layer with multiple grooves.
  • the dry etching process includes a plasma etching process, a reactive ion etching process or an ion milling process.
  • the initial second film layer 302a is etched using a dry etching process to form a second film layer 302 with a plurality of grooves A, the grooves A exposing the surface of the support layer 301 .
  • the groove A is at least located at the apex position of the second film layer (as shown in FIG. 4b ); or, the groove A is at least located at a position adjacent to the apex position (as shown in Figure 4c).
  • Step S303 forming a first film layer on the surface of the groove and the second film layer.
  • the first film layer 303 is formed on the surface of the groove A and the second film layer 302, and the bottom surface of the first film layer 303 has a network groove structure.
  • the first film layer may be formed by any suitable deposition process, for example, a coating process.
  • the fluidity of the first film layer 303 is greater than that of the second film layer 302 under the same conditions.
  • the composition materials of the first film layer and the second film layer are the same, but the contents of the materials in the first film layer and the second film layer are different.
  • the first film layer has a first melting point
  • the second film layer has a second melting point
  • the second melting point is greater than the first melting point
  • the fluidity of the first film layer is greater than the fluidity of the second film layer, and the second film layer is less likely to be melted than the first film layer.
  • the second film layer can provide a certain support for the first film layer, so that it can prevent the first film layer from having too much conductive material during the chip stacking process spillover, which in turn affects the subsequent chip stacking process.
  • the non-conductive film formed in the embodiments of the present disclosure is similar to the non-conductive films in the above-mentioned embodiments.
  • the non-conductive film formed by the method for forming a non-conductive film provided in the embodiments of the present disclosure is composed of a first film layer and a second film layer with different fluidities, and the second film layer with low fluidity is in a grid shape, In this way, when the non-conductive film formed by the embodiment of the present disclosure is used for chip bonding, the second film layer with low fluidity has a certain supporting effect, which will not cause too much non-conductive film to be extruded out of the chip, and thus will not It will affect the stacking process of subsequent chips.
  • FIG. 5 is a schematic structural diagram of the chip packaging structure provided by an embodiment of the disclosure.
  • the chip packaging structure 50 includes: a chip stack structure 501 and a substrate 502 .
  • the chip stack structure 501 includes a plurality of stacked chips 5011 , and any two adjacent chips are connected through a non-conductive film 5012 .
  • the substrate 502 is bonded to the chip stack structure 501 , and the gap between the substrate 502 and the chip stack structure 501 is filled with a non-conductive film 5012 .
  • a metal interconnection layer 5013 is formed on the surface of each chip 5011, and the metal interconnection layer is used to lead out electrical signals inside the chip 5011, and the interconnection between each chip 5011 is through
  • a chip 5011 is provided with through-silicon vias (not shown in the figure) and solder balls (not shown) electrically connected to the through-silicon vias.
  • the non-conductive film 5012 includes a first film layer 5012a and a second film layer 5012b, wherein the fluidity of the first film layer 5012a is greater than that of the second film layer 5012b.
  • the surface of the first film layer 5012a has a grid-shaped groove structure, and the second film layer 5012b is located in the grooves on the surface of the first film layer 5012a, thus, the second film layer 5012b in the embodiment of the present disclosure is also Has a grid structure.
  • the non-conductive film in the embodiment of the present disclosure is composed of two layers of film with different fluidity, during the chip packaging process, the grid-like second film layer with low fluidity will provide a higher supporting effect to prevent non-conductive
  • the high-fluidity first film layer in the film is extruded and overflowed outward, so as not to affect the lamination process of subsequent chips.
  • the non-conductive film in the chip stack structure provided by the embodiments of the present disclosure is similar to the non-conductive film in the above-mentioned embodiments.
  • For the technical features not disclosed in detail in the embodiments of the present disclosure please refer to the above-mentioned embodiments for understanding, and details will not be repeated here.
  • FIG. 6 is a schematic flowchart of the chip packaging method provided by the embodiment of the present disclosure. As shown in FIG. 6, the chip packaging method includes the following steps:
  • Step S601 forming a chip stack structure, the chip stack structure includes a plurality of stacked chips, and any two adjacent chips are bonded through a non-conductive film.
  • the chip stack structure can be formed through the following steps:
  • Step S6011 providing a plurality of chips; the first surface of the chip is provided with a non-conductive film, and the second surface of the chip is provided with a metal interconnection layer, wherein the first surface and the second surface are the The two opposite faces of the chip in the chip thickness direction.
  • the process of providing a plurality of chips may include the following steps:
  • Step S1 providing a wafer; wherein, a specific functional circuit structure is formed in the wafer.
  • Step S2 forming the non-conductive film on the surface of the wafer.
  • forming the non-conductive film on the surface of the wafer may be pasting the non-conductive film on the surface of the wafer, or forming the non-conductive film on the surface of the wafer through deposition and etching processes.
  • the non-conductive film at least includes: a first film layer and a second film layer; the surface of the first film layer is a grid-shaped groove structure, and each of the groove structures The depth of the groove is smaller than the thickness of the first film layer; the second film layer is located in the groove on the surface of the first film layer. And under the same conditions, the fluidity of the first film layer is greater than the fluidity of the second film layer.
  • the first surface of the first film layer is the grid-shaped groove structure, and the surface of the second film layer and part of the first surface of the first film layer are provided There is a supporting layer; the second surface of the first film layer is in contact with the first surface of the chip; wherein, the first surface and the second surface are the thickness of the first film layer along the first film layer Two opposite faces in the direction.
  • Step S3 dicing the wafer to form the plurality of chips.
  • Step S6012. Align the first surface of the first chip among the plurality of chips with the second surface of the second chip among the plurality of chips.
  • Step S6013 based on the non-conductive film, at least the first chip and the second chip are stacked to form the chip stack structure.
  • stacking of multiple chips is performed in a face-to-back manner.
  • the method before bonding the first chip and the second chip, the method further includes: removing the supporting layer.
  • only the support layer may be torn off, or the support layer may be removed by wet etching or other processes.
  • step S6013 may include the following steps:
  • the first chip and the second chip are bonded to obtain the chip stack structure.
  • the vacuum lamination process is used for the reticular low fluidity NCF (that is, the second film layer), and the vacuum lamination process does not need to consider the influence of the low flow type on the bubble discharge; NCF (that is, the first film layer) is bonded using a hot-press bonding process without a vacuum environment, and the high-flow NCF can improve the efficiency of bubble removal; further, the reticulated low-flow NCF can block the bonding, and the high-flow Types of NCF that extrude outward or upward.
  • Step S602 bonding the chip stack structure to a substrate, so as to package the plurality of chips.
  • Conductive pillars and multiple conductive structures are formed in the substrate.
  • the chip stack structure and the substrate are bonded to realize the connection of electrical signals between the chip stack structure and the substrate. connected.
  • a non-conductive film is also filled between the substrate and the chip stack structure, and the seal between the chip stack structure and the substrate is realized through the non-conductive film.
  • the non-conductive film used in the embodiments of the present disclosure is similar to the non-conductive films in the above-mentioned embodiments.
  • the grid-shaped second film layer with low fluidity will provide higher support during the chip packaging process. Function to prevent the first film layer with high fluidity in the non-conductive film from being squeezed outward.
  • the chip packaging process in the embodiment of the present disclosure is similar to the chip packaging structure in the above-mentioned embodiments.
  • the technical features not disclosed in detail in the embodiments of the present disclosure please refer to the above-mentioned embodiments for understanding, and details will not be repeated here.
  • the non-conductive film used is composed of a first film layer and a second film layer with different fluidities, and the second film layer with low fluidity is grid-like, thus, When bonding chips, the low-fluidity second film layer has a certain supporting effect, which will not cause too much non-conductive film to be squeezed out of the chip, and will not affect the subsequent chip stacking process.
  • the disclosed devices and methods may be implemented in non-target ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division.
  • the various components shown or discussed are coupled with each other, or directly coupled.
  • the units described above as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place or distributed to multiple network units; Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the non-conductive film provided by the embodiment of the present disclosure is composed of a first film layer and a second film layer with different fluidity, and the second film layer with low fluidity is grid-shaped, so, when using the embodiment of the present disclosure to provide When the non-conductive film is used for chip bonding, the low-fluidity second film layer has a certain supporting effect, which will not cause too much non-conductive film to be squeezed out of the chip, and will not affect the subsequent chip lamination process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)

Abstract

本公开实施例提供一种非导电膜及其形成方法、芯片封装结构及方法,其中,所述非导电膜至少包括:第一膜层和第二膜层;所述第一膜层的表面具有网格状的凹槽结构,且所述凹槽结构中每一凹槽的深度小于所述第一膜层的厚度;所述第二膜层位于所述第一膜层表面的所述凹槽中;其中,在相同条件下所述第一膜层的流动性大于所述第二膜层的流动性。

Description

非导电膜及其形成方法、芯片封装结构及方法
相关的交叉引用
本公开基于申请号为202210003808.X、申请日为2022年01月05日、发明名称为“非导电膜及其形成方法、芯片封装结构及方法”的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本公开作为参考。
技术领域
本公开涉及半导体技术领域,涉及但不限于一种非导电膜及其形成方法、芯片封装结构及方法。
背景技术
三维晶片封装制程技术中,非导电膜(Non Conductive Film,NCF)用于堆叠封装时粘贴上下芯片,非导电膜粘贴整片晶圆,有保护凸块(Bump)的作用。晶圆经过背面通孔露出(Backside Via Reveal,BVR)工艺与切割分片(Dicing)工艺,形成多个芯片,以进行堆叠芯片结构;堆叠芯片时使用热压贴合(Thermal Compression Bond,TCB)工艺使芯片粘合一起。然而,热压工艺的加热挤压导致芯片之间的非导电膜会挤压出芯片外,在芯片边缘形成较厚的非导电膜阻挡层,挤压出芯片外的较厚的阻挡层会影响下一个芯片堆叠的进行。
发明内容
有鉴于此,本公开实施例提供一种非导电膜及其形成方法、芯片封装结构及方法。
第一方面,本公开实施例提供一种非导电膜,至少包括:第一膜层和第二膜层;
所述第一膜层的表面具有网格状的凹槽结构,且所述凹槽结构中每一凹槽的深度小于所述第一膜层的厚度;
所述第二膜层位于所述第一膜层表面的所述凹槽中;
其中,在相同条件下所述第一膜层的流动性大于所述第二膜层的流动性。
在一些实施例中,所述第一膜层包括第一预设浓度的非导电材料;所述第二膜层包括第二预设浓度的所述非导电材料;
其中,所述第二预设浓度大于所述第一预设浓度。
在一些实施例中,所述第一膜层具有第一熔点;所述第二膜层具有第二熔点;
其中,所述第二熔点大于所述第一熔点。
在一些实施例中,所述第二膜层至少位于所述非导电膜的顶角位置,或者,所述第二膜层至少位于与所述顶角位置相邻的位置。
在一些实施例中,所述非导电膜还包括支撑层;
所述第一膜层的第一表面具有所述网格状的凹槽结构,其中,所述第一表面为所述第一膜层沿第一膜层厚度方向上的任意一个面;
所述支撑层位于所述第二膜层的表面和所述第一膜层的部分第一表面上。
第二方面,本公开实施例提供一种非导电膜的形成方法,包括:
提供支撑层;
在所述支撑层上形成具有多个凹槽的第二膜层;其中,所述凹槽暴露出所述支撑层的表面;
在所述凹槽和所述第二膜层的表面,形成第一膜层;其中,在相同条 件下所述第一膜层的流动性大于所述第二膜层的流动性。
在一些实施例中,在所述支撑层上形成具有多个凹槽的第二膜层,包括:
在所述支撑层上形成初始第二膜层;
采用干法刻蚀工艺,刻蚀所述初始第二膜层,形成所述具有多个凹槽的第二膜层。
在一些实施例中,所述凹槽至少位于所述第二膜层的顶角位置;或者,所述凹槽至少位于与所述顶角位置相邻的位置。
在一些实施例中,所述支撑层具有预设粘度值,且在所述预设粘度值下所述支撑层不具有流动性。
第三方面,本公开实施例提供一种芯片堆叠结构,包括:
芯片堆叠结构,所述芯片堆叠结构包括堆叠的多个芯片,且任意相邻两个芯片通过上述的非导电膜结合;
基板,所述基板与所述芯片堆叠结构键合,且所述基板与所述芯片堆叠结构之间通过所述非导电膜填充。
第四方面,本公开实施例提供一种芯片堆叠方法,包括:
形成芯片堆叠结构,所述芯片堆叠结构包括堆叠的多个芯片,且任意相邻两个芯片通过上述的非导电膜结合;
将所述芯片堆叠结构与基板进行键合,以实现对所述多个芯片进行封装。
在一些实施例中,所述形成芯片堆叠结构,包括:
提供多个芯片;所述芯片的第一面设置有非导电膜,所述芯片的第二面设置有金属互连层,其中,所述第一面和所述第二面为所述芯片在芯片厚度方向上相对的两个面;
将所述多个芯片中第一芯片的第一面与所述多个芯片中第二芯片的第 二面进行对准;
基于所述非导电膜,至少将所述第一芯片与所述第二芯片进行堆叠,形成所述芯片堆叠结构。
在一些实施例中,所述非导电膜至少包括:第一膜层和第二膜层;
所述第一膜层的表面为网格状的凹槽结构,且所述凹槽结构中每一凹槽的深度小于所述第一膜层的厚度;
所述第二膜层位于所述第一膜层表面的所述凹槽中;
其中,在相同的条件下所述第一膜层的流动性大于所述第二膜层的流动性。
在一些实施例中,所述第一膜层的第一表面为所述网格状的凹槽结构,且所述第二膜层的表面和所述第一膜层的部分第一表面上设置有一支撑层;
所述第一膜层的第二表面与所述芯片的第一面相接触;
其中,所述第一表面和所述第二表面为所述第一膜层沿第一膜层厚度方向上的相对的两个面。
在一些实施例中,所述方法还包括:
在将所述第一芯片与所述第二芯片进行贴合之前,去除所述支撑层。
在一些实施例中,基于所述非导电膜,至少将所述第一芯片与所述第二芯片进行堆叠,形成所述芯片堆叠结构,包括:
采用真空贴合工艺和热压贴合工艺,基于所述非导电膜,至少将所述第一芯片与所述第二芯片进行贴合,得到所述芯片堆叠结构。
在一些实施例中,所述提供多个芯片,包括:
提供晶圆;其中,所述晶圆中形成有特定功能电路结构;
在所述晶圆的表面形成所述非导电膜;
对所述晶圆进行切割,形成所述多个芯片。
本公开实施例提供的非导电膜及其形成方法、芯片封装结构及方法,其中,非导电膜包括第一膜层和第二膜层,第一膜层的表面具有网格状凹槽结构,第二膜层位于第一膜层表面的凹槽中,且在相同条件下第一膜层的流动性大于第二膜层的流动性。由于本公开实施例提供的非导电膜由具有不同流动性的第一膜层和第二膜层组成,且低流动性的第二膜层为网格状,如此,在采用本公开实施例提供的非导电膜进行芯片贴合时,低流动性的第二膜层具有一定的支撑作用,不会导致太多的非导电膜挤压出芯片外,进而不会影响后续芯片的叠片过程。
附图说明
在附图(其不一定是按比例绘制的)中,相似的附图标记可在不同的视图中描述相似的部件。具有不同字母后缀的相似附图标记可表示相似部件的不同示例。附图以示例而非限制的方式大体示出了本文中所讨论的各个实施例。
图1a和1b为本公开实施例中在封装过程中非导电膜溢出的结构示意图;
图2a~2e为本公开实施例提供的非导电膜的结构示意图;
图3为本公开实施例提供的非导电膜形成方法的流程示意图;
图4a~4e为本公开实施例提供的非导电膜的形成过程的结构示意图;
图5为本公开实施例提供的芯片封装结构的结构示意图;
图6为本公开实施例提供的芯片封装方法的流程示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施方式。虽然附图中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开,而不应被这里阐述的具体实施方式所限制。相反,提供这些实施方 式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
在下文的描述中,给出了大量具体的细节以便提供对本公开更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本公开可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本公开发生混淆,对于本领域公知的一些技术特征未进行描述;即,这里不描述实际实施例的全部特征,不详细描述公知的功能和结构。
在附图中,为了清楚,层、区、元件的尺寸以及其相对尺寸可能被夸大。自始至终相同附图标记表示相同的元件。
应当明白,当元件或层被称为“在……上”、“与……相邻”、“连接到”或“耦合到”其它元件或层时,其可以直接地在其它元件或层上、与之相邻、连接或耦合到其它元件或层,或者可以存在居间的元件或层。相反,当元件被称为“直接在……上”、“与……直接相邻”、“直接连接到”或“直接耦合到”其它元件或层时,则不存在居间的元件或层。应当明白,尽管可使用术语第一、第二、第三等描述各种元件、部件、区、层和/或部分,这些元件、部件、区、层和/或部分不应当被这些术语限制。这些术语仅仅用来区分一个元件、部件、区、层或部分与另一个元件、部件、区、层或部分。因此,在不脱离本公开教导之下,下面讨论的第一元件、部件、区、层或部分可表示为第二元件、部件、区、层或部分。而当讨论第二元件、部件、区、层或部分时,并不表明本公开必然存在第一元件、部件、区、层或部分。
在此使用的术语的目的仅在于描述具体实施例并且不作为本公开的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和 /或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
本公开实施例中,在芯片封装过程中,非导电膜用于粘贴相邻的芯片或者填充于芯片与基板之间进行封装,通常芯片的封装过程中采用热压贴合工艺加热加压使得芯片粘合在一起,或者芯片与基板粘合在一起。然而,在加热过程中,会使得非导电膜挤压出芯片外,并且挤压出的非导电膜过厚会影响下一个芯片堆叠的进行。如图1a和1b所示,在芯片101和基板103之间的非导电膜102会挤压出芯片外,形成较厚的NCF阻挡层104,较厚的非导电膜阻挡层104会影响下一个叠片的进行。
基于本公开实施例上述方案存在的上述问题,本公开实施例提供一种非导电膜及其形成方法、芯片封装结构及方法,其中,非导电膜包括第一膜层和第二膜层,第一膜层的表面具有网格状凹槽结构,第二膜层位于第一膜层表面的凹槽中,且在相同条件下第一膜层的流动性大于第二膜层的流动性。由于本公开实施例提供的非导电膜由具有不同流动性的第一膜层和第二膜层组成,且低流动性的第二膜层为网格状,如此,在采用本公开实施例提供的非导电膜进行芯片贴合时,低流动性的第二膜层具有一定的支撑作用,不会导致太多的非导电膜挤压出芯片外,进而不会影响后续芯片的叠片过程。
图2a~2e为本公开实施例提供的非导电膜的结构示意图,其中,图2b和2d为俯视图,如图2a和2b所示,所述非导电膜20包括第一膜层201和第二膜层202。
所述第一膜层201的表面具有网格状的凹槽结构,且所述凹槽结构中每一凹槽的深度小于所述第一膜层201的厚度;即每一凹槽在Z轴方向的尺寸h1小于第一膜层201在Z轴方向的尺寸h2。
所述第二膜层202位于所述第一膜层201表面的所述凹槽中;且第二膜层的顶表面与第一膜层的顶表面平齐。
本公开实施例中,在相同条件下所述第一膜层201的流动性大于所述第二膜层202的流动性。
在一些实施例中,所述第一膜层201包括第一预设浓度的非导电材料;所述第二膜层202包括第二预设浓度的所述非导电材料;其中,所述第二预设浓度大于所述第一预设浓度。本公开实施例中,所述非导电材料可以是SiO 2、Al 2O 3或者SiO 2和Al 2O 3的复合材料。
在一些实施例中,所述第一膜层201具有第一熔点;所述第二膜层202具有第二熔点;所述第二熔点大于第一熔点。即本公开实施例中,低流动性的第二膜层的熔点大于高流动性的第一膜层的熔点。
本公开实施例中,第一膜层中导电材料的浓度小于第二膜层中导电材料的浓度,且第一膜层的熔点小于第二膜层的熔点,因此,第二膜层相对于第一膜层流动性更低、更不容易被融化,如此,在后续通过热压贴合工艺,融化第一膜层和第二膜层进行芯片堆叠过程中,第二膜层对第一膜层具有一定的支撑作用,可以防止导电材料过多的外溢。
在一些实施例中,请继续参见图2a和2b,所述第二膜层202至少位于非导电膜20的顶角位置(如图2b中的虚线框位置)。
在其它实施例中,如图2c和2d所示,所述第二膜层202还可以位于非导电膜20中与顶角位置(如图2d中的虚线框位置)相邻的位置。也就是说,非导电膜20中的顶角位置处可以是第一膜层(对应图2c和2d),也可以是第二膜层(对应图2a和2b)。
在一些实施例中,如图2e所示,所述非导电膜20还包括支撑层203;所述第一膜层201的第一表面201-1具有所述网格状的凹槽结构,其中,所述第一表面201-1为所述第一膜层201沿第一膜层厚度方向(即Z轴方向) 上的任意一个面;所述支撑层203位于所述第二膜层202的表面和所述第一膜层201的部分第一表面201-1上。
在一些实施例中,所述支撑层203的材料可以是任意一种合适的、易去除的材料,且所述支撑层203具有预设粘度值,在所述预设粘度值下所述支撑层不具有流动性;所述支撑层203对第一膜层和第二膜层起到支撑作用。
由于本公开实施例提供的非导电膜由具有不同流动性的第一膜层和第二膜层组成,且低流动性的第二膜层为网格状,如此,在采用本公开实施例提供的非导电膜进行芯片贴合时,低流动性的第二膜层具有一定的支撑作用,不会导致太多的非导电膜挤压出芯片外,进而不会影响后续芯片的叠片过程。
本公开实施例提供一种非导电膜的形成方法,图3为本公开实施例提供的非导电膜的形成方法的流程示意图,图4a~4e为本公开实施例提供的非导电膜的形成过程的结构示意图,如图3所示,所述非导电膜的形成方法包括以下步骤:
步骤S301、提供支撑层。
本公开实施例中,所述支撑层具有预设粘度值,且在所述预设粘度值下所述支撑层不具有流动性;所述支撑层用于对后续形成的结构提供支撑作用。
步骤S302、在所述支撑层上形成具有多个凹槽的第二膜层;其中,所述凹槽暴露出所述支撑层的表面。
在一些实施例中,步骤S302可以包括以下步骤:
步骤S3021、在所述支撑层上形成初始第二膜层。
如图4a所示,在支撑层301的表面形成有初始第二膜层302a。本公开实施例中,可以通过任意一种合适的沉积工艺形成所述初始第二膜层,例 如,化学气相沉积(Chemical Vapor Deposition,CVD)工艺、物理气相沉积(Physical Vapor Deposition,PVD)工艺、原子层沉积(Atomic Layer Deposition,ALD)工艺、旋涂工艺或者涂敷工艺。
步骤S3022、采用干法刻蚀工艺,刻蚀所述初始第二膜层,形成所述具有多个凹槽的第二膜层。
本公开实施例中,所述干法刻蚀工艺包括等离子体刻蚀工艺,反应离子刻蚀工艺或者离子铣工艺。
如图4b和4c,采用干法刻蚀工艺,刻蚀所述初始第二膜层302a,形成具有多个凹槽A的第二膜层302,所述凹槽A暴露出支撑层301的表面。
本公开实施例中,所述凹槽A至少位于所述第二膜层的顶角位置(如图4b所示);或者,所述凹槽A至少位于与所述顶角位置相邻的位置(如图4c所示)。
步骤S303、在所述凹槽和所述第二膜层的表面,形成第一膜层。
如图4d和4e,在凹槽A和第二膜层302的表面形成了第一膜层303,第一膜层303的底表面为网络状凹槽结构。
本公开实施例中,可以通过任意一种合适的沉积工艺形成所述第一膜层,例如,涂敷工艺。
本公开实施例中,在相同条件下所述第一膜层303的流动性大于所述第二膜层302的流动性。第一膜层和第二膜层的组成材料相同,但第一膜层和第二膜层中材料的含量不同。
在一些实施例中,所述第一膜层具有第一熔点,所述第二膜层具有第二熔点,且第二熔点大于第一熔点。
本公开实施例中,第一膜层的流动性大于所述第二膜层的流动性,且第二膜层相对于第一膜层更不容易被融化,那么,在后续通过热压贴合工艺,融化第一膜层和第二膜层进行芯片堆叠过程中,第二膜层可以对第一 膜层提供一定的支撑作用,如此,可以防止芯片堆叠过程中第一膜层导电材料过多的外溢,进而影响后续的芯片堆叠过程。
本公开实施例中所形成的非导电膜与上述实施例中的非导电膜类似,对于本公开实施例未详尽披露的技术特征,请参考上述实施例进行理解,这里,不再赘述。
本公开实施例提供的非导电膜的形成方法所形成的非导电膜,由具有不同流动性的第一膜层和第二膜层组成,且低流动性的第二膜层为网格状,如此,在采用本公开实施例形成的非导电膜进行芯片贴合时,低流动性的第二膜层具有一定的支撑作用,不会导致太多的非导电膜挤压出芯片外,进而不会影响后续芯片的叠片过程。
本公开实施例提供一种芯片封装结构,图5为本公开实施例提供的芯片封装结构的结构示意图,如图5所示,所述芯片封装结构50包括:芯片堆叠结构501和基板502。
所述芯片堆叠结构501包括堆叠的多个芯片5011,且任意相邻两个芯片通过非导电膜5012结合。所述基板502与所述芯片堆叠结构501键合,且所述基板502与所述芯片堆叠结构501之间通过非导电膜5012填充。
在一些实施例中,每一芯片5011的表面还形成有金属互连层5013,所述金属互联层用于引出芯片5011内部的电信号,此外每一芯片5011之间的互连是通过在每一芯片5011中设置硅通孔(图中未示出)及在与硅通孔电连接的焊球(未示出)来实现。
本公开实施例中,所述非导电膜5012包括第一膜层5012a和第二膜层5012b,其中,第一膜层5012a的流动性大于第二膜层5012b的流动性。所述第一膜层5012a的表面具有网格状的凹槽结构,且第二膜层5012b位于第一膜层5012a表面的凹槽中,如此,本公开实施例中的第二膜层5012b也具有网格状结构。
由于本公开实施例中的非导电膜由具有不同流动性的两层膜组成,在芯片封装过程中,低流动性的网格状的第二膜层会提供较高的支撑作用,防止非导电膜中高流动性的第一膜层向外挤压溢出,进而不会影响后续芯片的叠片过程。
如图5所示的虚线框B所示,由于第二膜层5012b的支撑作用,仅有部分低流动性的第一膜层5012a被挤压出芯片外部,且挤压出来的第一膜层5012a不会影响后续的叠片过程。
本公开实施例提供的芯片堆叠结构中的非导电膜与上述实施例中的非导电膜类似,对于本公开实施例未详尽披露的技术特征,请参照上述实施例进行理解,这里不再赘述。
除此之外,本公开实施例还提供一种芯片的封装方法,图6为本公开实施例提供的芯片封装方法的流程示意图,如图6所示,所述芯片的封装方法包括以下步骤:
步骤S601、形成芯片堆叠结构,所述芯片堆叠结构包括堆叠的多个芯片,且任意相邻两个芯片通过非导电膜结合。
本公开实施例中,芯片堆叠结构可以通过以下步骤形成:
步骤S6011、提供多个芯片;所述芯片的第一面设置有非导电膜,所述芯片的第二面设置有金属互连层,其中,所述第一面和所述第二面为所述芯片在芯片厚度方向上相对的两个面。
在一些实施例中,提供多个芯片的过程可以包括以下步骤:
步骤S1、提供晶圆;其中,所述晶圆中形成有特定功能电路结构。
步骤S2、在所述晶圆的表面形成所述非导电膜。
本公开实施例中,在晶圆的表面形成非导电膜可以是在晶圆的表面粘贴所述非导电膜,也可以是在晶圆的表面经过沉积和刻蚀过程形成所述非导电膜。
本公开实施例中,所述非导电膜至少包括:第一膜层和第二膜层;所述第一膜层的表面为网格状的凹槽结构,且所述凹槽结构中每一凹槽的深度小于所述第一膜层的厚度;所述第二膜层位于所述第一膜层表面的所述凹槽中。且在相同的条件下所述第一膜层的流动性大于所述第二膜层的流动性。
本公开实施例中,所述第一膜层的第一表面为所述网格状的凹槽结构,且所述第二膜层的表面和所述第一膜层的部分第一表面上设置有一支撑层;所述第一膜层的第二表面与所述芯片的第一面相接触;其中,所述第一表面和所述第二表面为所述第一膜层沿第一膜层厚度方向上的相对的两个面。
步骤S3、对所述晶圆进行切割,形成所述多个芯片。
步骤S6012、将所述多个芯片中第一芯片的第一面与所述多个芯片中第二芯片的第二面进行对准。
步骤S6013、基于所述非导电膜,至少将所述第一芯片与所述第二芯片进行堆叠,形成所述芯片堆叠结构。
本公开实施例中,多个芯片之间堆叠采用面对背的方式进行。
在一些实施例中,在将所述第一芯片与第二芯片进行贴合之前,所述方法还包括:去除所述支撑层。
本公开实施例中,可以只撕掉支撑层,也可以通过湿法刻蚀工艺或其它工艺湿法去除所述支撑层。
在一些实施例中,步骤S6013可以包括以下步骤:
采用真空贴合工艺和热压贴合工艺,基于所述非导电膜,至少将所述第一芯片与所述第二芯片进行贴合,得到所述芯片堆叠结构。
本公开实施例中,对网状低流动性NCF(即第二膜层),使用真空贴合工艺进行贴合,真空贴合工艺不需要考虑低流动型对排泡的影响;对高流 动性NCF(即第一膜层),使用热压贴合工艺进行贴合,无真空环境,高流动型NCF可以提高排泡效率;进一步地,网状低流动性NCF可以阻挡贴合时,高流动型的NCF向外或向上挤压。
步骤S602、将所述芯片堆叠结构与基板进行键合,以实现对所述多个芯片进行封装。
所述基板中形成有导电柱和多个导电结构,本公开实施例中,在形成芯片堆叠结构之后,将芯片堆叠结构和基板进行键合,以实现芯片堆叠结构和基板之间的电信号的连通。
本公开实施例中,所述基板与所述芯片堆叠结构之间也填充有非导电膜,通过非导电膜实现芯片堆叠结构与基板之间密封。
本公开实施例中所采用的非导电膜与上述实施例中的非导电膜类似,对于本公开实施例未详尽披露的技术特征,请参考上述实施例进行理解,这里,不再赘述。
需要说明的是,由于本公开实施例中的非导电膜由具有不同流动性的两层膜组成,在芯片封装过程中,低流动性的网格状的第二膜层会提供较高的支撑作用,防止非导电膜中高流动性的第一膜层向外挤压溢出。
本公开实施例中芯片封装过程与上述实施例中的芯片封装结构类似,对于本公开实施例未详尽披露的技术特征,请参考上述实施例进行理解,这里,不再赘述。
本公开实施例提供的芯片封装方法,由于所采用的非导电膜由具有不同流动性的第一膜层和第二膜层组成,且低流动性的第二膜层为网格状,如此,在芯片贴合时,低流动性的第二膜层具有一定的支撑作用,不会导致太多的非导电膜挤压出芯片外,进而不会影响后续芯片的叠片过程。
在本公开所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过非目标的方式实现。以上所描述的设备实施例仅仅是示意性的, 例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
本公开所提供的几个方法或设备实施例中所揭露的特征,在不冲突的情况下可以任意组合,得到新的方法实施例或设备实施例。
以上所述,仅为本公开实施例的一些实施方式,但本公开实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开实施例的保护范围之内。因此,本公开实施例的保护范围应以权利要求的保护范围为准。
工业实用性
由于本公开实施例提供的非导电膜由具有不同流动性的第一膜层和第二膜层组成,且低流动性的第二膜层为网格状,如此,在采用本公开实施例提供的非导电膜进行芯片贴合时,低流动性的第二膜层具有一定的支撑作用,不会导致太多的非导电膜挤压出芯片外,进而不会影响后续芯片的叠片过程。

Claims (17)

  1. 一种非导电膜,至少包括:第一膜层和第二膜层;
    所述第一膜层的表面具有网格状的凹槽结构,且所述凹槽结构中每一凹槽的深度小于所述第一膜层的厚度;
    所述第二膜层位于所述第一膜层表面的所述凹槽中;
    其中,在相同条件下所述第一膜层的流动性大于所述第二膜层的流动性。
  2. 根据权利要求1所述的非导电膜,其中,所述第一膜层包括第一预设浓度的非导电材料;所述第二膜层包括第二预设浓度的所述非导电材料;
    其中,所述第二预设浓度大于所述第一预设浓度。
  3. 根据权利要求2所述的非导电膜,其中,所述第一膜层具有第一熔点;所述第二膜层具有第二熔点;
    其中,所述第二熔点大于所述第一熔点。
  4. 根据权利要求3所述的非导电膜,其中,所述第二膜层至少位于所述非导电膜的顶角位置,或者,所述第二膜层至少位于与所述顶角位置相邻的位置。
  5. 根据权利要求1至4任一项所述的非导电膜,其中,所述非导电膜还包括支撑层;
    所述第一膜层的第一表面具有所述网格状的凹槽结构,其中,所述第一表面为所述第一膜层沿第一膜层厚度方向上的任意一个面;
    所述支撑层位于所述第二膜层的表面和所述第一膜层的部分第一表面上。
  6. 一种非导电膜的形成方法,所述方法包括:
    提供支撑层;
    在所述支撑层上形成具有多个凹槽的第二膜层;其中,所述凹槽暴露出所述支撑层的表面;
    在所述凹槽和所述第二膜层的表面,形成第一膜层;其中,在相同条件下所述第一膜层的流动性大于所述第二膜层的流动性。
  7. 根据权利要求6所述的方法,其中,在所述支撑层上形成具有多个凹槽的第二膜层,包括:
    在所述支撑层上形成初始第二膜层;
    采用干法刻蚀工艺,刻蚀所述初始第二膜层,形成所述具有多个凹槽的第二膜层。
  8. 根据权利要求6或7所述的方法,其中,所述凹槽至少位于所述第二膜层的顶角位置;或者,所述凹槽至少位于与所述顶角位置相邻的位置。
  9. 根据权利要求8所述的方法,其中,所述支撑层具有预设粘度值,且在所述预设粘度值下所述支撑层不具有流动性。
  10. 一种芯片封装结构,包括:
    芯片堆叠结构,所述芯片堆叠结构包括堆叠的多个芯片,且任意相邻两个芯片通过权利要求1至4任一项所述的非导电膜结合;
    基板,所述基板与所述芯片堆叠结构键合,且所述基板与所述芯片堆叠结构之间填充有所述非导电膜。
  11. 一种芯片封装方法,所述方法包括:
    形成芯片堆叠结构,所述芯片堆叠结构包括堆叠的多个芯片,且任意相邻两个芯片通过权利要求1至4任一项所述的非导电膜结合;
    将所述芯片堆叠结构与基板进行键合,以实现对所述多个芯片进行封装。
  12. 根据权利要求11所述的方法,其中,所述形成芯片堆叠结构, 包括:
    提供多个芯片;所述芯片的第一面设置有非导电膜,所述芯片的第二面设置有金属互连层,其中,所述第一面和所述第二面为所述芯片在芯片厚度方向上相对的两个面;
    将所述多个芯片中第一芯片的第一面与所述多个芯片中第二芯片的第二面进行对准;
    基于所述非导电膜,至少将所述第一芯片与所述第二芯片进行堆叠,形成所述芯片堆叠结构。
  13. 根据权利要求12所述的方法,其中,所述非导电膜至少包括:第一膜层和第二膜层;
    所述第一膜层的表面为网格状的凹槽结构,且所述凹槽结构中每一凹槽的深度小于所述第一膜层的厚度;
    所述第二膜层位于所述第一膜层表面的所述凹槽中;
    其中,在相同的条件下所述第一膜层的流动性大于所述第二膜层的流动性。
  14. 根据权利要求13所述的方法,其中,所述第一膜层的第一表面为所述网格状的凹槽结构,且所述第二膜层的表面和所述第一膜层的部分第一表面上设置有一支撑层;
    所述第一膜层的第二表面与所述芯片的第一面相接触;
    其中,所述第一表面和所述第二表面为所述第一膜层沿第一膜层厚度方向上的相对的两个面。
  15. 根据权利要求14所述的方法,其中,所述方法还包括:
    在将所述第一芯片与所述第二芯片进行贴合之前,去除所述支撑层。
  16. 根据权利要求12至15任一项所述的方法,其中,基于所述非导电膜,至少将所述第一芯片与所述第二芯片进行堆叠,形成所述芯片堆 叠结构,包括:
    采用真空贴合工艺和热压贴合工艺,基于所述非导电膜,至少将所述第一芯片与所述第二芯片进行贴合,得到所述芯片堆叠结构。
  17. 根据权利要求16所述的方法,其中,所述提供多个芯片,包括:
    提供晶圆;其中,所述晶圆中形成有特定功能电路结构;
    在所述晶圆的表面形成所述非导电膜;
    对所述晶圆进行切割,形成所述多个芯片。
PCT/CN2022/076142 2022-01-05 2022-02-14 非导电膜及其形成方法、芯片封装结构及方法 WO2023130530A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/662,641 US20230215832A1 (en) 2022-01-05 2022-05-09 Non conductive film, method for forming non conductive film, chip package structure, and method for packaging chip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210003808.XA CN114023704B (zh) 2022-01-05 2022-01-05 非导电膜及其形成方法、芯片封装结构及方法
CN202210003808.X 2022-01-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/662,641 Continuation US20230215832A1 (en) 2022-01-05 2022-05-09 Non conductive film, method for forming non conductive film, chip package structure, and method for packaging chip

Publications (1)

Publication Number Publication Date
WO2023130530A1 true WO2023130530A1 (zh) 2023-07-13

Family

ID=80069957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076142 WO2023130530A1 (zh) 2022-01-05 2022-02-14 非导电膜及其形成方法、芯片封装结构及方法

Country Status (2)

Country Link
CN (1) CN114023704B (zh)
WO (1) WO2023130530A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114023704B (zh) * 2022-01-05 2022-04-01 长鑫存储技术有限公司 非导电膜及其形成方法、芯片封装结构及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107591387A (zh) * 2016-07-06 2018-01-16 三星电子株式会社 半导体封装件和形成该半导体封装件的方法
CN111667941A (zh) * 2019-03-08 2020-09-15 苏州维业达触控科技有限公司 一体化复合结构透明导电膜及其制备方法
CN112802800A (zh) * 2019-11-13 2021-05-14 三星电子株式会社 半导体封装件
US20210159213A1 (en) * 2019-11-27 2021-05-27 Samsung Electronics Co., Ltd. Semiconductor packages
CN114023704A (zh) * 2022-01-05 2022-02-08 长鑫存储技术有限公司 非导电膜及其形成方法、芯片封装结构及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4029255B2 (ja) * 1999-02-18 2008-01-09 セイコーエプソン株式会社 接着部材
KR100684169B1 (ko) * 2005-08-11 2007-02-20 삼성전자주식회사 이원 필러 분포를 가지는 접착 필름 및 그 제조 방법, 이를이용한 칩 적층 패키지 및 그 제조 방법
US9768104B1 (en) * 2016-08-19 2017-09-19 International Business Machines Corporation Method and structure to fabricate a nanoporous membrane
KR102562315B1 (ko) * 2019-10-14 2023-08-01 삼성전자주식회사 반도체 패키지
KR102666541B1 (ko) * 2019-11-12 2024-05-20 삼성전자주식회사 반도체 패키지 및 그 제조방법
KR102692013B1 (ko) * 2019-11-21 2024-08-05 에스케이하이닉스 주식회사 테일 부분을 구비하는 비전도성 필름층을 포함하는 반도체 패키지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107591387A (zh) * 2016-07-06 2018-01-16 三星电子株式会社 半导体封装件和形成该半导体封装件的方法
CN111667941A (zh) * 2019-03-08 2020-09-15 苏州维业达触控科技有限公司 一体化复合结构透明导电膜及其制备方法
CN112802800A (zh) * 2019-11-13 2021-05-14 三星电子株式会社 半导体封装件
US20210159213A1 (en) * 2019-11-27 2021-05-27 Samsung Electronics Co., Ltd. Semiconductor packages
CN114023704A (zh) * 2022-01-05 2022-02-08 长鑫存储技术有限公司 非导电膜及其形成方法、芯片封装结构及方法

Also Published As

Publication number Publication date
CN114023704A (zh) 2022-02-08
CN114023704B (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
US9570429B2 (en) Methods of fabrication and testing of three-dimensional stacked integrated circuit system-in-package
TWI527179B (zh) 藉由通孔垂直互連三維電子模組之方法
TWI523125B (zh) 自晶片兩側之階段導孔之形成
KR100800161B1 (ko) 관통 실리콘 비아 형성방법
TW201338059A (zh) 半導體封裝件及其製法
TWI628757B (zh) 終極薄扇出型晶片封裝構造及其製造方法
TW201230279A (en) Integrated circuit device and method of forming the same
WO2021134940A1 (zh) 一种键合结构及其制造方法
WO2023130530A1 (zh) 非导电膜及其形成方法、芯片封装结构及方法
CN104051354A (zh) 半导体封装件及其制法
CN110379780A (zh) 一种硅基扇出型晶圆级封装方法及结构
US11854941B2 (en) Method for packaging semiconductor, semiconductor package structure, and package
CN111128914A (zh) 一种低翘曲的多芯片封装结构及其制造方法
CN103295926A (zh) 一种基于tsv芯片的互连封装方法
JP2021535608A (ja) ウェハレベルパッケージ方法及びパッケージ構造
KR101960982B1 (ko) 사전 절단되어 웨이퍼상에 도포된 언더필 필름
TW201123318A (en) Method for making a chip package
CN114203690A (zh) 扇出式堆叠芯片的封装方法及封装结构
CN114171401A (zh) 扇出式堆叠芯片的封装方法及封装结构
CN114171402A (zh) 扇出式堆叠芯片的封装方法及封装结构
CN114171405A (zh) 扇出式堆叠芯片的封装方法及封装结构
CN114171404A (zh) 扇出式堆叠芯片的封装方法及封装结构
CN114171411A (zh) 扇出式堆叠芯片的封装方法及封装结构
US20120193809A1 (en) Integrated circuit device and method for preparing the same
CN110517992B (zh) 一种扇出芯片封装结构及封装方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22917997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE