WO2023128182A1 - 구형 금속분말의 제조방법 - Google Patents

구형 금속분말의 제조방법 Download PDF

Info

Publication number
WO2023128182A1
WO2023128182A1 PCT/KR2022/016044 KR2022016044W WO2023128182A1 WO 2023128182 A1 WO2023128182 A1 WO 2023128182A1 KR 2022016044 W KR2022016044 W KR 2022016044W WO 2023128182 A1 WO2023128182 A1 WO 2023128182A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal powder
spherical metal
powder
producing
sintering
Prior art date
Application number
PCT/KR2022/016044
Other languages
English (en)
French (fr)
Inventor
안순태
이수인
손근수
Original Assignee
삼화스틸 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼화스틸 주식회사 filed Critical 삼화스틸 주식회사
Publication of WO2023128182A1 publication Critical patent/WO2023128182A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • B22F3/101Changing atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/086Cooling after atomisation

Definitions

  • the present invention relates to a method for producing a spherical metal powder, and more particularly, to a method for producing a spherical metal powder capable of producing a spherical titanium or titanium alloy spherical powder using a granular powder in a simple and easy way.
  • Conventional methods for manufacturing metal powder include mechanical grinding using compression grinding or milling, chemical manufacturing methods such as gas or thermal decomposition, gas phase or liquid phase precipitation, and spraying methods that spray metal molten metal using refrigerants such as gas or water. This is known
  • granular powder is a technology used in pharmaceuticals and agriculture, and is a technology used for facilitating molding by making granular powder when ceramics or metals are used.
  • Powder metallurgy using such granular powder has many advantages such as easy mass production, reduction of process loss, and sophisticated processing, in addition to improved physical properties and processes.
  • Powder metallurgy is often used to make products composed of pure metals or metal alloys.
  • Titanium is one exemplary metal used in powder metallurgy. Titanium has been used in the aerospace industry, petrochemical industry, automobile industry, etc. as a high melting point material with excellent specific strength and corrosion resistance while being lightweight, and recently its application fields are gradually expanding to the medical industry, leisure industry, etc.
  • titanium since titanium is expensive and requires a lot of cost to produce titanium parts through cutting and casting, there is a limit to its use in all industries.
  • Patent Document 1 Korean Patent Registration No. 10-1649584 (2016.08.12)
  • an object of the present invention is to provide a method for producing a spherical metal powder that can produce a titanium or titanium alloy spherical powder in a simple and easy way using granular powder is to do
  • one aspect of the present invention is a method for producing a spherical metal powder, comprising: (a) forming a slurry by mixing a very fine raw material metal with a binder and a solvent; (b) forming a granular powder by granulating the slurry through spray drying; (c) adding a separating agent to prevent sintering of the granular powder; (d) continuously degreasing and sintering the granular powder to form a spherical metal powder; and (e) performing a deoxidation treatment by adding a deoxidizer for high purity of the sintered spherical metal powder; and (f) removing the separating agent and the oxide from the deoxidized spherical metal powder.
  • the spherical metal powder is characterized in that the spherical metal powder is selected from the group consisting of CP-Ti, Ti-Al-based alloys, Ti-Al-V-based alloys and combinations thereof It may be a manufacturing method of.
  • the particle size range of the spherical metal powder may be a method for producing a spherical metal powder, characterized in that 1 to 300 ⁇ m.
  • the ultrafine raw metal is a group comprising titanium hydride, titanium, aluminum, vanadium, tin, palladium, nickel, molybdenum, chromium, cobalt, zirconium, zirconium hydride, niobium, and combinations thereof It may be a method for producing a spherical metal powder, characterized in that one or more are selected from.
  • it may be a method for producing a spherical metal powder, characterized in that for producing the ultra-fine raw material metal from a raw material selected from the group consisting of titanium sponge, titanium scrap, and combinations thereof.
  • the solvent includes water and ethyl alcohol
  • the binder includes a polyvinylpyrrolidone (PVP) binder, and is physically mixed using a mixing device Characterized in that, it may be a method for producing spherical metal powder.
  • PVP polyvinylpyrrolidone
  • step (a) 100 to 500 ml of ethyl alcohol, 50 to 650 g of ultrafine raw material metal, and 16 to 150 ml of polyvinylpyrrolidone (PVP) are mixed with respect to 1 L of water Characterized in that, it may be a method for producing a spherical metal powder.
  • PVP polyvinylpyrrolidone
  • the spray drying is performed by intermittently applying the slurry at a pneumatic pressure of 2 to 8 kg/cm 2 in a chamber maintained at a vacuum of 10 ⁇ 1 torr or less. It may be a method for producing a spherical metal powder, characterized in that it is sprayed to form a granular powder.
  • it may be a method for producing a spherical metal powder, characterized in that the particle size range of the granular powder is 1 to 350 ⁇ m.
  • the granular powder outside the particle size range may be re-granulated, characterized in that, a method for producing a spherical metal powder.
  • the separating agent in step (c), may be a method for producing a spherical metal powder comprising MgO powder, K 2 O powder, or a mixture thereof.
  • the degreasing initial vacuum degree may be 10 -6 to 10 -2 torr, characterized in that, a method for producing a spherical metal powder.
  • the degreasing temperature is 100 to 500 ° C
  • the heating rate is composed of two stages of 2 to 8 ° C / min and 9 to 20 ° C / min.
  • it may be a method for producing a spherical metal powder.
  • the sintering temperature may be a method for producing a spherical metal powder, characterized in that 600 °C to 1500 °C.
  • the sintering temperature rise rate is composed of two steps of 2 to 8 ° C / min and 9 to 20 ° C / min, and the sintering holding time is 1 min to 50 h Characterized in, it may be a method for producing spherical metal powder.
  • sintering may be a method for producing spherical metal powder, characterized in that it is performed until the porosity inside the granular powder is controlled to 10% or less.
  • sintering in the step (d), may be a method for producing a spherical metal powder, characterized in that it is performed until the porosity inside the granular powder is controlled to 5% or less.
  • the deoxidizing agent in step (e), may be a method for producing a spherical metal powder, characterized in that Ca gas, Mg gas or a combination thereof.
  • the initial deoxidation degree of vacuum may be 10 -6 to 10 -2 torr, characterized in that, a method for producing a spherical metal powder.
  • the deoxidation temperature may be 800 to 1100 ° C., characterized in that, a method for producing a spherical metal powder.
  • the deoxidation temperature increase rate is 5 to 10 ° C / min, and the deoxidation retention time after temperature increase is 1 to 5 h.
  • step (f) the deoxidized spherical metal powder is pickled and washed in dilute hydrochloric acid, dilute sulfuric acid, or a mixture thereof to remove remaining oxides, It may be a method for producing metal powder.
  • the spherical metal powder from which the separator and the oxide are removed may be dried at 50 to 150 ° C.
  • the drying time may be 1 min to 5 h, characterized in that, a method for producing a spherical metal powder.
  • a spherical metal powder of 1 to 300 micrometers can be prepared by a simple process of slurry preparation, granulation, degreasing and sintering, deoxidation, washing and drying, and furthermore, as well as a single spherical metal powder , Spherical alloy powder containing two or more metals can also be easily prepared.
  • the number of times of heat treatment can be reduced to one time, and thus the manufacturing process can be simplified.
  • FIG. 1 is a flowchart of a method for manufacturing a spherical metal powder according to an embodiment of the present invention.
  • Figure 2 shows the granular powder of the ultra-fine raw material metal in the binder according to an embodiment of the present invention.
  • Figure 3 shows the granular powder in the separator before degreasing and sintering according to an embodiment of the present invention.
  • FIG. 5 shows a spherical metal powder from which a separator and an oxide are removed according to an embodiment of the present invention.
  • Figure 6 (a) is a SEM picture of Ti source metal according to an embodiment of the present invention
  • Figure 6 (b) is an enlarged view of Figure 6 (a).
  • Figure 7 (a) is a SEM picture of the granular powder before sintering according to an embodiment of the present invention
  • Figure 7 (b) is an enlarged view of Figure 7 (a).
  • Figure 8 (a) is a SEM picture of the spherical metal powder after sintering according to an embodiment of the present invention
  • Figure 8 (b) is an enlarged view of Figure 8 (a).
  • FIG. 1 is a flowchart of a method for manufacturing spherical metal powder according to an embodiment of the present invention.
  • the manufacturing method of spherical metal powder is a step of forming a slurry by mixing a very fine raw material metal with a binder and a solvent (S110), granulating the slurry through spray drying to form granular powder (S120), adding a separating agent to prevent sintering of the granular powder (S130), continuously degreasing and sintering the granular powder to form a spherical metal powder (S140),
  • a deoxidizing agent is added to perform deoxidation treatment (S150), and a separating agent and oxide are removed from the deoxidized spherical metal powder (S160).
  • the "spherical" metal powder produced by the manufacturing method of the present invention may be a pure "metal" component or an alloy component of two or more metals. Specifically, when one type of metal powder is used as the ultrafine raw material, spherical powder of pure metal components can be produced, and when two or more types of metal powders are used as raw metals, spherical powder of alloy components can be prepared. can
  • the spherical metal powder produced by the manufacturing method of the present invention is a spherical metal powder selected from the group consisting of CP-Ti, Ti-Al-based alloys, Ti-Al-V-based alloys, and combinations thereof.
  • the ultrafine raw material metal when one type of metal powder is used as the ultrafine raw material metal, is at least one selected from the group consisting of titanium hydride (TiH 2 ), titanium (Ti), and combinations thereof. It may contain metal powder. Titanium hydride (TiH 2 ) powder may be formed by reacting hydrogen gas with titanium sponge or titanium scrap metal. The hydrogenated titanium sponge or titanium scrap may be ground into powder by milling or other means.
  • the ultrafine source metal may also contain alloying components.
  • the ultrafine raw material metals are titanium hydride (TiH 2 ), titanium (Ti), aluminum (Al), vanadium (V), tin ( Sn), palladium (Pd), nickel (Ni), molybdenum (Mo), chromium (Cr), cobalt (Co), zirconium (Zr), zirconium hydride (ZrH 2 ), niobium (Nb), and combinations thereof It may include two or more metal powders selected from the group
  • the raw material of the ultra-fine raw metal may be a raw material selected from the group comprising recovered titanium sponge, titanium scrap, titanium alloy scrap, and combinations thereof. These titanium sponges, titanium scraps, and titanium alloy scraps may be generated at industrial sites, and are not limited to specific types of sponges and scraps.
  • the raw material of such ultra-fine raw metal may be crushed into ultra-fine raw metal by milling or other means after being screened, cleaned, and treated.
  • the manufacturing method of the spherical metal powder (S100) includes a step of forming a slurry by mixing the ultra-fine raw material metal with a binder and a solvent (S110).
  • the ultra-fine raw material metal a fine powder is used, and one having an average particle diameter of 0.01 to 50 ⁇ m and a particle size distribution of 0.001 to 100 ⁇ m may be used.
  • the slurry material includes a solvent that allows the ultra-fine raw material metal to be sprayed with fluidity, and a binder that allows the ultra-fine raw material metal to be agglomerated.
  • the solvent and the binder are volatile, and the solvent may be ethanol, methanol, water, hexane, or acetone, and the binder may be polyvinyl pyrrolidone (PVP) or polyvinyl butyral (PVB). , polyvinyl alcohol (PVA), wax (WAX), polyethylene glycol (PEG), or a mixture binder thereof may be used.
  • PVP polyvinyl pyrrolidone
  • PVP polyvinyl pyrrolidone
  • PVP polyvinylpyrrolidone
  • Polyvinylpyrrolidone (PVP) is very soluble in polar solvents such as water or alcohol, and has properties that do not change phase separation or other properties during the reaction.
  • polyvinylpyrrolidone has almost no residual organic matter left in the degreasing and sintering processes, and is completely burned, which is advantageous for manufacturing high-purity spherical metal powder.
  • the slurry may also contain other ingredients, such as plasticizers, deflocculating agents, surfactants, or mixtures thereof.
  • a slurry in the step of forming a slurry (S100), 100 to 500 ml of ethyl alcohol, 50 to 650 g of ultrafine raw metal, and 16 to 150 ml of polyvinylpyrrolidone (PVP) are mixed with respect to 1 L of water.
  • a slurry can be formed. That is, by lowering the content of the binder and mixing the slurry at the above ratio, the degreasing process time can be shortened.
  • the slurry material including the ultrafine raw material metal, the solvent, and the binder may be physically mixed using a mixing device.
  • a stirrer using a propeller may be used as a mixing device. More specifically, a slurry may be formed by adding ultra-fine raw material metal to a solvent, dispersing the ultra-fine raw material metal with an air spray nozzle, adding a binder, and mixing with a stirrer using a propeller.
  • the manufacturing method of the spherical metal powder (S100) includes a step (S120) of forming a granular powder by granulating the slurry through spray drying.
  • Figure 2 shows the granular powder 100 including the ultra-fine raw metal 110 in the binder 120 according to an embodiment of the present invention.
  • Substantially spherical granular powder may be formed by granulating the slurry formed in the above-described step (S110), and each granular powder includes aggregates of ultra-fine raw material metal.
  • the granular powder may be obtained by spray drying the slurry.
  • a spray dryer and an atomizer disk may be used in the granulation process.
  • the slurry When the slurry is sprayed onto the atomizer disk rotating at high speed in the spray dryer chamber, the slurry may be granulated into spheres due to surface tension and a suction force of the binder.
  • the granulated slurry is scattered outside the disk due to the centrifugal force of the rotating disk, and since the spray dryer chamber is heated at 50 to 500 ° C, the solvent contained in the slurry evaporates during the spraying process to form a solid granular powder. do.
  • the chamber is opened to take out the granular powder.
  • spray drying is performed by intermittently spraying the slurry at a pneumatic pressure of 2 to 8 kg/cm 2 in a chamber maintained at a vacuum of 10 -1 torr or less.
  • granular powder can be formed.
  • the granular powder particles thus formed may have an average particle diameter of 1 to 350 ⁇ m.
  • the loss rate in the granulation process is reduced by redispersing and re-granulating through a solvent. can be minimized.
  • the manufacturing method of spherical metal powder (S100) includes adding a separating agent to prevent sintering of granular powders (S130).
  • FIG 3 shows granular powder 100 in a separator 500 according to an embodiment of the present invention.
  • the granular powder may be directly sintered, the granular powder may be bonded to each other and the powder characteristics may disappear. Accordingly, a separating agent may be used on the surface of the granular powder to prevent sintering between the granular powder.
  • the separating agent may be an alkali metal oxide having a high oxidizing power, and may occupy a space between the granular powders so that the granular powders remain separated during the sintering process.
  • the separator may include MgO powder, K 2 O powder, or a mixture thereof.
  • the addition of such a separating agent may be performed before the degreasing and sintering process.
  • a separating agent since the granular powder is degreased and then mixed with the separator for sintering, two times of heat treatment are required in the degreasing and sintering process.
  • Degreasing and sintering can be continuously performed in the same furnace, so that the number of times of heat treatment can be reduced to one time, thereby simplifying the manufacturing process.
  • the manufacturing method of the spherical metal powder (S100) includes a step of forming a spherical metal powder by continuously performing degreasing and sintering of the granular powder (S140).
  • FIG. 4 show degreased granular powder 200 and sintered spherical metal powder including ultrafine raw metal 210 having a reduced binder content according to an embodiment of the present invention, respectively ( 300).
  • the degreasing and sintering processes may be performed continuously.
  • the degreasing process can be performed in a number of ways including thermal degreasing.
  • the initial vacuum degree is 10 -6 to 10 -2 torr
  • the degreasing temperature is 100 to 500 ° C
  • the heating rate is 2 to 8 ° C / min, 9 to 20 ° C / min of 2 It can consist of stages.
  • degreasing can be carried out by holding the granular powder at the degreasing temperature for an amount of time sufficient to remove the desired amount of binder.
  • the degreasing time may also vary depending on the type of binder. Degreasing may also be carried out until a predetermined amount of binder is removed.
  • the defatted granular powder can maintain an approximately spherical shape with empty spaces between the defatted granules.
  • the defatted granular powder may be partially or completely sintered at a sintering temperature so that the particles in each granular powder are fused together to form a sintered spherical metal powder.
  • the sintering temperature during sintering is 600 ° C to 1500 ° C
  • the heating rate may be composed of two steps of 2 to 8 ° C / min and 9 to 20 ° C / min
  • the sintering holding time is 1 to 50 h can be At this time, degreasing and sintering can be performed as one heat treatment in the same furnace, avoiding contact with air that can cause oxidation or contact with oxygen, and simplifying the process.
  • Sintering may proceed until the degreased granular powder is completely sintered while maintaining a state of being separated from each other by a separating agent. Preferably, it may be carried out until the porosity inside the degreased granular powder is controlled to 10% or less. More preferably, it may be carried out until the porosity inside the degreased granular powder is controlled to 5% or less.
  • Degreasing and sintering can be performed in the same furnace to minimize contact with air, which can cause oxidation or contact with oxygen, and to be performed continuously in one heat treatment.
  • the manufacturing method of the spherical metal powder (S100) includes a step of performing deoxidation treatment by adding a deoxidizing agent to high purity the sintered spherical metal powder (S150).
  • a deoxidation process may be performed to reduce the oxygen content to an acceptable level and achieve high purity.
  • the deoxidation process can easily reduce the oxygen content of the spherical metal powder to approximately 0.3%.
  • the deoxidizer may be Ca gas, Mg gas, or a combination thereof.
  • Ca gas, Mg gas or both may be mixed with the spherical metal powder in a specific ratio depending on the amount of oxygen to be removed. That is, the amount of the deoxidizing agent to be mixed may be determined according to the oxygen content of the spherical metal powder.
  • a salt that will act as a flux or medium that promotes the reaction between the deoxidizer and oxygen, such as calcium chloride, magnesium chloride or a combination thereof may be further mixed.
  • the spherical metal powder sintered with the deoxidizer is introduced into a reactor chamber having an initial vacuum of 10 -6 to 10 -2 torr, and the temperature rise rate is 5 to 10 °C/min and the deoxidization temperature is set to 800 to 1100 °C. After heating, the deoxidation process may be performed by maintaining for 1 to 5 h.
  • the deoxidized spherical metal powder may be spherical Ti or spherical Ti alloy powder having an oxygen content of 0.3% by weight or less.
  • the manufacturing method of the spherical metal powder (S100) includes a step of removing a separating agent and an oxide from the deoxidized spherical metal powder (S160).
  • FIG 5 shows the final spherical metal powder 400 from which the separating agent and oxide are removed according to an embodiment of the present invention.
  • the deoxidized spherical metal powder may be pickled and washed with dilute hydrochloric acid, dilute sulfuric acid, or a mixture thereof to remove remaining oxides.
  • the mixture produced after the deoxidation process may include an oxide such as CaO or MgO and a separating agent such as K 2 O, and the CaO, MgO, or K 2 O is an acid such as dilute hydrochloric acid, dilute sulfuric acid, or a mixture thereof. It can be leached in an aqueous solution containing
  • the final spherical metal powder may be prepared by washing with water and ethanol and drying the spherical metal powder from which the separating agent and oxide are removed at 50 to 150° C. for 1 min to 5 h.
  • the final spherical metal powder has a particle size range of 1 to 300 ⁇ m, and as a result of measurement according to the ASTM standard, may exhibit a sphericity of 85% or more and a fluidity of 50 sec / 50 mg or less.
  • Ti powder having a particle size of less than 100 ⁇ m was used as the ultrafine raw material metal, 1L of water, 300ml of ethyl alcohol, 350g of Ti powder, and 50ml of polyvinylpyrrolidone (PVP) binder were mixed and a stirrer using a propeller was used. Thus, a slurry was prepared. 6 shows a SEM picture of Ti powder.
  • Granular powder was prepared by spray drying the prepared slurry to form spherical granular powder.
  • a granular powder was prepared by intermittently spraying the slurry on an atomizer disc at a pneumatic pressure of 4 to 6 kg/cm 2 in a state where the spray dryer chamber was heated to 300 to 400° C. under a vacuum of 10 ⁇ 1 torr or less.
  • 7 shows a SEM picture of the prepared Ti granular powder.
  • the Ti granular powder has a particle size range of about 1 to 350 ⁇ m.
  • the granular powder and the separating agent were mixed to prevent sintering between the granular powders.
  • MgO powder was used as the separating agent.
  • the initial vacuum degree in the furnace was set to 10 -2 torr or less, and the furnace was heated at a heating rate of 5°C/min and 10°C/min in two steps to degrease the granular powder in a temperature range of 300 to 400°C. Thereafter, for sintering continuously, the furnace was heated at a heating rate of 5° C./min and 10° C./min in two steps to increase the temperature to a temperature range of 900 to 1200° C., and maintained for 30 minutes to sinter the degreased granular powder.
  • 8 shows a SEM picture of the sintered spherical Ti metal powder.
  • the sintered spherical Ti metal powder has a particle size range of about 1 to 300 ⁇ m.
  • the sintered spherical Ti metal powder having 3.85% by weight of oxygen was deoxygenated using a deoxidizer.
  • Ca gas and Mg gas were used as deoxidizers.
  • the sintered spherical Ti metal powder, Ca gas, and Mg gas were introduced into the reactor chamber, heated to 800 to 900 ° C at a heating rate of 10 ° C / min, and then maintained for 3 h in an initial vacuum of 10 -2 torr or less.
  • the mixture containing the deoxidized spherical Ti metal powder was taken out of the reactor chamber and leached with dilute hydrochloric acid for 2 hours. Then, the leached product was washed with water and ethanol, and dried at 100° C. for 3 h.
  • the final spherical Ti metal powder has a particle size range of 1 to 300 ⁇ m, an oxygen content of 0.067% by weight, and shows a sphericity of 85% or more and a fluidity of 50 sec/50 mg or less as measured by ASTM standards.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

본 발명의 일 실시예는 구형 금속분말의 제조방법으로서, (a) 극미분 원료 금속을 결합제 및 용매와 혼합하여 슬러리를 형성하는 단계; (b) 분무 건조를 통해 슬러리를 과립화하여 과립분말을 형성하는 단계; (c) 과립분말끼리의 소결을 방지하기 위해 분리제를 첨가하는 단계; (d) 과립분말에 대한 탈지 및 소결을 연속적으로 수행하여 구형 금속분말을 형성하는 단계; 및 (e) 소결된 구형 금속분말의 고순도화를 위해 탈산제를 첨가하여 탈산처리를 수행하는 단계; 및 (f) 탈산 처리된 구형 금속분말에서 분리제 및 산화물을 제거하는 단계를 포함하는, 구형 금속분말의 제조방법을 제공한다.

Description

구형 금속분말의 제조방법
본 발명은 구형 금속분말의 제조방법에 관한 것으로, 보다 상세하게는 과립분말을 이용하여 티타늄 또는 티타늄 합금 구형 분말을 단순하고 용이한 방법으로 제조할 수 있는 구형 금속분말의 제조방법에 관한 것이다.
종래 금속 분말의 제조방법은 크게 압축 분쇄나 밀링 등을 이용한 기계적 분쇄법, 가스나 열 분해, 기상 또는 액상 석출법과 같은 화학적 제조법, 금속 용탕을 가스나 물과 같은 냉매를 이용하여 분사하는 분사법 등이 알려져 있다.
기계적 분쇄법의 경우는 대량의 에너지가 소모될 뿐만 아니라 입자의 형태를 구형으로 제어하기 어려운 문제가 있으며, 화학적 제조의 경우는 극미세 금속 분말의 제조에 유리하나 고가의 원료를 이용하여 고도의 제어된 조건에서 제조되어야 함에 따라 대량생산에는 그 한계가 있으며, 다량의 유독 폐수가 발생하는 문제점 또한 있다. 또한, 분사법의 경우 대량생산에 유리한 가장 상업적인 방법이나 용융물의 주입속도, 냉매 분사압이나 노즐 회전속도 등과 같은 공정변수에 따라 입자의 크기나 형태가 매우 민감하게 변화하여, 공정 조건 확립이 매우 까다로우며, 냉매에 의한 산화나 질화 등의 표면 반응을 완전히 억제하기 어려워 분말의 열화가 발생하기 쉬운 문제점이 있다.
한편, 과립분말은 제약 및 농업에서 사용하는 기술이며, 세라믹이나 금속을 이용하는 경우 과립분말을 만들어 성형을 용이하게 하는 용도로 사용하는 기술이다. 이러한 과립분말을 이용한 분말 야금은 물성과 공정개선 외에도 대량생산이 용이하고, 공정상 로스(loss)를 줄일 수 있을 뿐만 아니라, 정교한 처리를 할 수 있는 많은 장점을 갖고 있다. 분말 야금은 순수한 금속 또는 금속 합금으로 구성된 제품을 만드는 데 종종 사용된다. 티타늄은 분말 야금에 사용되는 한 가지 예시적인 금속이다. 티타늄은 경량이면서 비강도 및 내식성이 우수한 고융점 소재로써 우주항공 산업, 석유화학 산업, 자동차 산업 등에 이용되어 왔으며, 최근에는 의료 산업, 레저 산업 등으로 그 응용분야가 점점 확대되고 있다. 그러나, 티타늄은 고가이고 절삭과 주조 등으로 티타늄 부품을 생산하는데도 많은 비용이 요구되기 때문에 모든 산업에 이용하기에는 한계가 있는 실정이다.
선행기술문헌
(특허문헌 1) 한국 등록특허공보 제10-1649584호 (2016.08.12)
본 발명은 전술한 종래기술의 문제점을 해결하기 위한 것으로, 본 발명의 목적은 과립분말을 이용하여 티타늄 또는 티타늄 합금 구형 분말을 단순하고 용이한 방법으로 제조할 수 있는 구형 금속분말의 제조방법을 제공하는 것이다.
상기와 같은 목적을 달성하기 위해, 본 발명의 일 측면은 구형 금속분말의 제조방법으로서, (a) 극미분 원료 금속을 결합제 및 용매와 혼합하여 슬러리를 형성하는 단계; (b) 분무 건조를 통해 슬러리를 과립화하여 과립분말을 형성하는 단계; (c) 과립분말끼리의 소결을 방지하기 위해 분리제를 첨가하는 단계; (d) 과립분말에 대한 탈지 및 소결을 연속적으로 수행하여 구형 금속분말을 형성하는 단계; 및 (e) 소결된 구형 금속분말의 고순도화를 위해 탈산제를 첨가하여 탈산처리를 수행하는 단계; 및 (f) 탈산 처리된 구형 금속분말에서 분리제 및 산화물을 제거하는 단계를 포함하는, 구형 금속분말의 제조방법을 제공한다.
본 발명의 일 실시예에 있어서, 상기 구형 금속분말은 CP-Ti, Ti-Al계 합금, Ti-Al-V계 합금 및 이들의 조합을 포함하는 군으로부터 선택되는 것을 특징으로 하는, 구형 금속분말의 제조방법일 수 있다.
본 발명의 일 실시예에 있어서, 상기 구형 금속분말의 입도 범위는 1 내지 300㎛인 것을 특징으로 하는, 구형 금속분말의 제조방법일 수 있다.
본 발명의 일 실시예에 있어서, 상기 극미분 원료 금속은 수소화티타늄, 티타늄, 알루미늄, 바나듐, 주석, 팔라듐, 니켈, 몰리브덴, 크롬, 코발트, 지르코늄, 수소화지르코늄, 니오븀 및 이들의 조합을 포함하는 군으로부터 하나 이상 선택되는 것을 특징으로 하는, 구형 금속분말의 제조방법일 수 있다.
본 발명의 일 실시예에 있어서, 티타늄 스폰지, 티타늄 스크랩 및 이들의 조합을 포함하는 군으로부터 선택되는 원재료로부터 상기 극미분 원료 금속을 제조하는 것을 특징으로 하는, 구형 금속분말의 제조방법일 수 있다.
본 발명의 일 실시예에 있어서, 상기 (a) 단계에서, 상기 용매는 물 및 에틸알코올을 포함하고, 상기 결합제는 폴리비닐파이로리돈(PVP) 바인더를 포함하며, 혼합장치를 이용하여 물리적으로 혼합하는 것을 특징으로 하는, 구형 금속분말의 제조방법일 수 있다.
본 발명의 일 실시예에 있어서, 상기 (a) 단계에서, 물 1L에 대하여, 에틸알코올 100 내지 500ml, 극미분 원료금속 50 내지 650g, 폴리비닐파이로리돈(PVP) 16 내지 150ml의 비율로 혼합하는 것을 특징으로 하는, 구형 금속분말의 제조방법일 수 있다.
본 발명의 일 실시예에 있어서, 상기 (b) 단계에서, 상기 분무 건조는, 10-1torr 이하의 진공으로 유지되고 있는 챔버에서, 공압 2 내지 8 kg/cm2의 압력으로 슬러리를 단속적으로 분무하여 과립분말을 형성하는 것을 특징으로 하는, 구형 금속분말의 제조방법일 수 있다.
본 발명의 일 실시예에 있어서, 상기 과립분말의 입도 범위는 1 내지 350㎛인 것을 특징으로 하는, 구형 금속분말의 제조방법일 수 있다.
본 발명의 일 실시예에 있어서, 상기 (b) 단계에서, 과립화 후 상기 입도 범위를 벗어나는 과립분말은 재과립화하는 것을 특징으로 하는, 구형 금속분말의 제조방법일 수 있다.
본 발명의 일 실시예에 있어서, 상기 (c) 단계에서, 상기 분리제는 MgO 분말, K2O 분말 또는 이들의 혼합물을 포함하는 것을 특징으로 하는, 구형 금속분말의 제조방법일 수 있다.
본 발명의 일 실시예에 있어서, 상기 (d) 단계에서, 탈지 초기진공도는 10-6 내지 10-2torr인 것을 특징으로 하는, 구형 금속분말의 제조방법일 수 있다.
본 발명의 일 실시예에 있어서, 상기 (d) 단계에서, 탈지온도는 100 내지 500℃ 이며, 승온속도는 2 내지 8℃/min, 9 내지 20℃/min의 2단계로 구성되어 있는 것을 특징으로 하는, 구형 금속분말의 제조방법일 수 있다.
본 발명의 일 실시예에 있어서, 상기 (d) 단계에서, 소결온도는 600℃ 내지 1500℃ 인 것을 특징으로 하는, 구형 금속분말의 제조방법일 수 있다.
본 발명의 일 실시예에 있어서, 상기 (d) 단계에서, 소결 승온속도는 2 내지 8℃/min, 9 내지 20℃/min의 2단계로 구성되어 있고, 소결 유지시간은 1min 내지 50h인 것을 특징으로 하는, 구형 금속분말의 제조방법일 수 있다.
본 발명의 일 실시예에 있어서, 상기 (d) 단계에서, 소결은 과립분말 내부의 기공이 10% 이하로 제어될 때까지 수행되는 것을 특징으로 하는, 구형 금속분말의 제조방법일 수 있다.
본 발명의 일 실시예에 있어서, 상기 (d) 단계에서, 소결은 과립분말 내부의 기공이 5% 이하로 제어될 때까지 수행되는 것을 특징으로 하는, 구형 금속분말의 제조방법일 수 있다.
본 발명의 일 실시예에 있어서, 상기 (e) 단계에서, 상기 탈산제는 Ca 가스, Mg 가스 또는 이들의 조합인 것을 특징으로 하는, 구형 금속분말의 제조방법일 수 있다.
본 발명의 일 실시예에 있어서, 상기 (e) 단계에서, 탈산 초기진공도는 10-6 내지 10-2torr인 것을 특징으로 하는, 구형 금속분말의 제조방법일 수 있다.
본 발명의 일 실시예에 있어서, 상기 (e) 단계에서, 탈산온도는 800 내지 1100℃인 것을 특징으로 하는, 구형 금속분말의 제조방법일 수 있다.
본 발명의 일 실시예에 있어서, 탈산 승온속도는 5 내지 10℃/min이며, 승온 후 탈산 유지시간은 1 내지 5h인 것을 특징으로 하는, 구형 금속분말의 제조방법일 수 있다.
본 발명의 일 실시예에 있어서, 상기 (f) 단계에서, 탈산 처리된 구형 금속분말을 묽은 염산, 묽은 황산 또는 이들의 혼합물에서 산세 및 수세 처리하여 잔존하는 산화물을 제거하는 것을 특징으로 하는, 구형 금속분말의 제조방법일 수 있다.
본 발명의 일 실시예에 있어서, 상기 (f) 단계에서, 분리제 및 산화물이 제거된 구형 금속분말을 50내지 150℃에서 건조하는 것을 특징으로 하는, 구형 금속분말의 제조방법일 수 있다.
본 발명의 일 실시예에 있어서, 상기 (f) 단계에서, 건조시간은 1min 내지 5h 인 것을 특징으로 하는, 구형 금속분말의 제조방법일 수 있다.
본 발명의 일 측면에 따르면, 슬러리 제조, 과립화, 탈지 및 소결, 탈산, 세척 및 건조라는 단순한 공정으로 1 내지 300 마이크로미터의 구형 금속분말을 제조할 수 있으며, 나아가, 단일 구형 금속분말 뿐만 아니라, 2종 이상의 금속을 포함하는 구형 합금분말 또한 용이하게 제조할 수 있다.
또한, 과립분말의 탈지 및 소결 전 분리제를 먼저 혼합하고, 탈지 및 소결을 연속적으로 수행함으로써 열처리 횟수를 1회로 단축할 수 있고, 이에 따라 제조공정이 단순화될 수 있다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 본 발명의 일 실시에 따른 구형 금속분말의 제조방법의 흐름도이다.
도 2는 본 발명의 일 실시예에 따른 결합제 내 극미분 원료 금속의 과립분말을 나타낸다.
도 3은 본 발명의 일 실시예에 따른 탈지 및 소결 전 분리제 내의 과립분말을 나타낸다.
도 4의 (a) 및 (b)는 각각 본 발명의 일 실시예에 따른 탈지된 과립분말 및 소결된 구형 금속분말을 나타낸다.
도 5는 본 발명의 일 실시예에 따른 분리제 및 산화물이 제거된 구형 금속분말을 나타낸다.
도 6(a)는 본 발명의 일 실시예에 따른 Ti 원료 금속의 SEM 사진이고, 도 6(b)는 도 6(a)의 확대도이다.
도 7(a)는 본 발명의 일 실시예에 따른 소결 전 과립분말의 SEM 사진이고, 도 7(b)는 도 7(a)의 확대도이다.
도 8(a)는 본 발명의 일 실시예에 따른 소결 후 구형 금속분말의 SEM 사진이고, 도 8(b)는 도 8(a)의 확대도이다.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.
이하 첨부된 도면을 참고하여 본 발명의 실시예를 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 구형 금속분말의 제조방법의 흐름도이다.
도 1을 참조하면, 구형 금속분말의 제조방법(S100)은, 극미분 원료 금속을 결합제 및 용매와 혼합하여 슬러리를 형성하는 단계(S110), 분무 건조를 통해 슬러리를 과립화하여 과립분말을 형성하는 단계(S120), 과립분말끼리의 소결을 방지하기 위해 분리제를 첨가하는 단계(S130), 과립분말에 대한 탈지 및 소결을 연속적으로 수행하여 구형 금속분말을 형성하는 단계(S140), 소결된 구형 금속분말의 고순도화를 위해 탈산제를 첨가하여 탈산 처리를 수행하는 단계(S150) 및 탈산 처리된 구형 금속분말에서 분리제 및 산화물을 제거하는 단계(S160)를 포함한다.
종래의 경우 과립분말 탈지 후 분리제와 혼합하여 소결하므로 탈지 및 소결 공정에서 2회 열처리 횟수가 요구되었지만, 본 발명의 구형 금속분말의 제조방법은 과립분말의 탈지 및 소결 전 분리제를 먼저 혼합하고, 탈지 및 소결을 연속적으로 수행함으로써 열처리 횟수를 1회로 단축할 수 있고, 이에 따라 제조공정이 단순화될 수 있다.
본 발명의 제조방법으로 제조되는 구형 금속분말은 순수한 금속 성분 또는 둘 이상 금속의 합금 성분일 수 있다.  구체적으로, 극미분 원료 금속으로 1종의 금속 분말을 사용하는 경우, 순수한 금속 성분의 구형 분말을 제조할 수 있으며, 원료 금속으로 2종 이상의 금속 분말을 사용하는 경우 합금 성분의 구형 분말을 제조할 수 있다.
일 실시예에 따르면, 본 발명의 제조방법으로 제조되는 구형 금속분말은 CP-Ti, Ti-Al계 합금, Ti-Al-V계 합금 및 이들의 조합을 포함하는 군으로부터 선택되는 구형 금속분말일 수 있다.
일 실시예에 따르면, 극미분 원료 금속으로 1종의 금속 분말을 사용하는 경우, 극미분 원료 금속은 수소화티타늄(TiH2), 티타늄(Ti) 및 이들의 조합을 포함하는 군에서 하나 이상 선택되는 금속 분말을 포함할 수 있다. 수소화티타늄(TiH2) 분말은 수소 기체와 티타늄 스폰지 또는 티타늄 스크랩 금속을 반응시켜 형성될 수 있다. 수소화된 티타늄 스폰지 또는 티타늄 스크랩은 밀링 또는 다른 수단에 의해 분말로 파쇄될 수 있다. 극미분 원료 금속은 또한 합금화 성분을 포함할 수 있다. 극미분 원료 금속으로 2종 이상의 금속 분말을 사용하는 경우, 극미분 원료 금속은 티탄계 합금 제조가 가능한 수소화티타늄(TiH2), 티타늄(Ti), 알루미늄(Al), 바나듐(V), 주석(Sn), 팔라듐(Pd), 니켈(Ni), 몰리브덴(Mo), 크롬(Cr), 코발트(Co), 지르코늄(Zr), 수소화지르코늄(ZrH2), 니오븀(Nb) 및 이들의 조합을 포함하는 군으로부터 둘 이상 선택되는 금속 분말을 포함할 수 있다.
일 실시예에 따르면, 극미분 원료 금속의 원재료는 회수된 티타늄 스폰지, 티타늄 스크랩, 티타늄 합금 스크랩 및 이들의 조합을 포함하는 군으로부터 선택되는 원재료일 수 있다. 이러한 티타늄 스폰지, 티타늄 스크랩 및 티타늄 합금 스크랩은 산업 현장에서 발생될 수 있으며, 특정 형태의 스폰지 및 스크랩에 한정되는 것은 아니다. 이러한 극미분 원료 금속의 원재료는 선별, 세정 및 처리된 후 밀링 또는 다른 수단에 의해 극미분 원료 금속으로 파쇄될 수 있다.
이하, 본 발명을 단계별로 보다 상세하게 살펴보면 다음과 같다.
1. 슬러리 형성 단계
구형 금속분말의 제조방법(S100)은 극미분 원료 금속을 결합제 및 용매와 혼합하여 슬러리를 형성하는 단계(S110)를 포함한다.
극미분 원료 금속은 미세분말을 사용하는 것으로, 평균 입경이 0.01 내지 50 ㎛이고, 입도분포는 0.001 내지 100 ㎛인 것을 사용할 수 있다.
슬러리 재료는 극미분 원료 금속이 유동성을 구비하여 분사가 가능하도록 하는 용매 및 극미분 원료 금속이 뭉쳐지도록 하는 결합제를 포함한다.
용매와 결합제는 휘발성을 구비한 것으로서, 용매는 에탄올, 메탄올, 물, 헥산, 또는 아세톤을 사용할 수 있고, 결합제는 폴리비닐파이로리돈 (polyvinyl pyrrolidone, PVP), 폴리비닐부티랄(polyvinyl butyral, PVB), 폴리비닐알콜(polyvinyl alcohol, PVA), 왁스(WAX), 폴리에틸렌글리콜(polyethylene glycol, PEG) 또는 이들의 혼합물 바인더를 사용할 수 있다. 바람직하게는, 용매로는 물 및 에탄올을 사용하고, 결합제로는 폴리비닐파이로리돈(polyvinyl pyrrolidone, PVP) 바인더를 사용할 수 있다. 폴리비닐파이로리돈(PVP)는 물이나 알코올과 같은 극성 용매에 매우 잘 용해되며, 반응 중 상의 분리나 다른 특성을 변환되지 않는 특성을 갖는다. 또한, 폴리비닐파이로리돈(PVP)는 탈지 및 소결 공정에서 잔류 유기물이 거의 남지 않고, 완전 연소되어 순도 높은 구형 금속분말 제조에 유리하다. 슬러리는 또한 다른 성분, 예를 들어 가소제, 해교제(deflocculating agent), 계면활성제, 또는 이들의 혼합물을 포함할 수 있다.
일 실시예에 따르면, 슬러리를 형성하는 단계(S100)에서, 물 1L에 대하여, 에틸알코올 100 내지 500ml, 극미분 원료금속 50 내지 650g, 폴리비닐파이로리돈(PVP) 16 내지 150ml의 비율로 혼합하여 슬러리를 형성할 수 있다. 즉, 바인더의 함량을 낮춰 슬러리를 상기 비율로 혼합함으로써, 탈지 공정 시간을 단축시킬 수 있다.
한편, 슬러리를 형성하는 단계(S100)에서, 극미분 원료 금속, 용매 및 결합제를 포함하는 슬러리 재료를 혼합장치를 이용하여 물리적으로 혼합할 수 있다. 이때, 혼합장치로 프로펠러를 사용한 스터러를 이용할 수 있다. 보다 구체적으로, 용매에 극미분 원료 금속을 투입하여 에어분사 노즐로 극미분 원료 금속을 분산시킨 후, 결합제를 투입하고, 프로펠러를 사용한 스터러로 혼합함으로써 슬러리를 형성할 수 있다.
2. 과립분말 형성 단계
구형 금속분말의 제조방법(S100)은 분무 건조를 통해 슬러리를 과립화하여 과립분말을 형성하는 단계(S120)를 포함한다.
 도 2는 본 발명의 일 실시예에 따른 결합제(120) 내의 극미분 원료 금속(110)을 포함하는 과립분말(100)을 나타낸다.
전술한 단계(S110)에서 형성된 슬러리를 과립화하여 실질적으로 구형인 과립분말을 형성할 수 있는데, 각각의 과립분말은 극미분 원료 금속의 응집체를 포함한다.
일 실시예에 따르면, 과립분말은 슬러리를 분무 건조하여 얻어질 수 있다. 이때, 과립화 공정에는 분무 건조기와 아토마이저 디스크가 사용될 수 있다. 분무 건조기 챔버 내에서 고속으로 회전하는 아토마이저 디스크 위에 슬러리가 분사되면 슬러리는 표면장력과 바인더의 흡인력에 의해 구형으로 과립화될 수 있다. 과립화된 슬러리는 회전하는 디스크의 원심력 때문에 디스크 바깥쪽으로 비산되며, 이때 분무 건조기 챔버는 50 내지 500℃로 가열된 상태이기 때문에, 분사 과정 중 슬러리에 포함된 용매는 증발하여 고체상의 과립분말이 형성된다. 이렇게 해서 과립분말이 제조되면 챔버를 개방하여 과립분말을 인출해 낸다. 
일 실시예에 따르면, 과립분말을 형성하는 단계(S120)에서, 분무 건조는 10-1torr 이하의 진공으로 유지되고 있는 챔버에서, 공압 2 내지 8 kg/cm2의 압력으로 슬러리를 단속적으로 분무하여 과립분말을 형성할 수 있다. 이처럼, 내부가 진공으로 유지되고, 약 300℃로 가열된 챔버 내에 분사 압력차를 높게하여 슬러리를 분무하면 미세하고 순도가 높은 과립분말의 획득이 가능하게 된다. 이렇게 해서 형성된 과립분말 입자의 평균입경은 1 내지 350 ㎛일 수 있다.
한편, 과립분말을 형성하는 단계(S120)에서, 과립화 후 과립분말 입자의 평균입경이 상기 범위를 벗어나 너무 작거나 큰 경우, 용매를 통해 재분산하여 재과립화함으로써 과립화 공정에서의 손실율을 최소화할 수 있다.
3. 분리제 첨가 단계
구형 금속분말의 제조방법(S100)은 과립분말끼리의 소결을 방지하기 위해 분리제를 첨가하는 단계(S130)를 포함한다.
 도 3은 본 발명의 일 실시예에 따른 분리제(500) 내의 과립분말(100)을 나타낸다.
과립분말을 바로 소결하게 되면 과립분말들이 서로 결합되어 분말 특성이 사라지게 되는 문제가 발생할 수 있으며, 이에 따라 과립분말 간 소결을 방지하기 위해 과립분말 표면에 분리제를 사용할 수 있다.
분리제는 산화력이 높은 알칼리 금속 산화물일 수 있으며, 소결 공정 동안 과립분말이 분리된 채로 유지되도록 과립분말들 사이의 공간을 점유할 수 있다. 일 실시예에 따르면, 분리제는 MgO 분말, K2O 분말 또는 이들의 혼합물일 포함할 수 있다.
한편, 이러한 분리제의 첨가는 탈지 및 소결 공정 전에 수행될 수 있다. 종래의 경우 과립분말 탈지 후 분리제와 혼합하여 소결하므로 탈지 및 소결 공정에서 2회 열처리 횟수가 요구되었지만, 본 발명의 구형 금속분말의 제조방법은 과립분말의 탈지 및 소결 전 분리제를 먼저 혼합하고, 탈지 및 소결을 같은 노에서 연속적으로 수행함으로써 열처리 횟수를 1회로 단축할 수 있고, 이에 따라 제조공정이 단순화될 수 있다.
4. 과립분말 탈지 및 소결 단계
구형 금속분말의 제조방법(S100)은 과립분말에 대한 탈지 및 소결을 연속적으로 수행하여 구형 금속분말을 형성하는 단계(S140)를 포함한다.
도 4의 (a) 및 (b)는 각각 본 발명의 일 실시예에 따른 감소된 결합제 함량을 갖는 극미분 원료 금속(210)를 포함하는 탈지된 과립분말(200) 및 소결된 구형 금속분말(300)을 나타낸다. 일 실시예에 따르면, 탈지 및 소결 공정은 연속적으로 수행될 수 있다.
탈지 공정은 열적 탈지를 포함하는 다수의 방식으로 수행될 수 있다. 이때, 열적 탈지 방법이 사용되는 경우, 초기진공도는 10-6 내지 10-2torr이고, 탈지온도는 100 내지 500℃ 이며, 승온속도는 2 내지 8℃/min, 9 내지 20℃/min의 2단계로 구성될 수 있다.
탈지 공정 동안 결합제의 일부 또는 전부가 제거될 수 있다. 그러므로, 탈지는 원하는 양의 결합제를 제거하기에 충분한 양의 시간 동안 과립분말을 탈지온도에서 유지함으로써 수행될 수 있다. 탈지시간은 또한 결합제의 종류에 따라 달라질 수 있다. 탈지는 또한 미리 결정된 양의 결합제가 제거될 때까지 수행될 수 있다. 탈지된 과립분말은 탈지된 과립들 사이에 빈 공간을 두고, 대략 구형인 형상을 유지할 수 있다.
이후 연속적으로, 탈지된 과립분말을 각각의 과립분말 내의 입자가 함께 융합되도록 소결 온도에서 부분적으로 또는 완전히 소결하여 소결된 구형 금속분말을 형성할 수 있다. 
일 실시예에 따르면, 소결 시 소결온도는 600℃ 내지 1500℃이고, 승온속도는 2 내지 8℃/min, 9 내지 20℃/min의 2단계로 구성될 수 있으며, 소결 유지시간은 1 내지 50h일 수 있다. 이때, 탈지 및 소결을 동일한 노에서 1회 열처리로 수행하여, 산화 또는 산소와의 접촉을 유발할 수 있는 공기와의 접촉을 피하고, 공정을 단순화할 수 있다.
소결은 탈지된 과립분말이 분리제에 의해 서로 분리된 상태를 유지하면서 완전히 소결될 때까지 진행될 수 있다. 바람직하게는, 탈지된 과립분말 내부의 기공이 10% 이하로 제어될 때까지 수행될 수 있다. 보다 바람직하게는, 탈지된 과립분말 내부의 기공이 5% 이하로 제어될 때까지 수행될 수 있다.
탈지 및 소결은 산화 또는 산소와의 접촉을 유발할 수 있는 공기와의 접촉을 최소화하고, 1회 열처리로 연속적으로 수행하기 위해 동일한 노(furnace)에서 수행될 수 있다.
5. 탈산 단계
구형 금속분말의 제조방법(S100)은 소결된 구형 금속분말의 고순도화를 위해 탈산제를 첨가하여 탈산처리를 수행하는 단계(S150)를 포함한다.
즉, 소결된 구형 금속분말의 산소 함량에 따라, 산소 함량을 허용가능한 수준으로 감소시켜 고순도화하기 위해 탈산 공정이 수행될 수 있다. 탈산 공정은 구형 금속분말의 산소 함량을 대략 0.3%까지 용이하게 감소시킬 수 있다.
일 실시예에 따르면, 탈산제는 Ca 가스, Mg 가스 또는 이들의 조합일 수 있다. 구체적으로, 제거될 산소의 양에 따라 특정 비율로 Ca 가스, Mg 가스 또는 둘 모두를 구형 금속분말과 혼합할 수 있다. 즉, 혼합되는 탈산제의 양은 구형 금속분말의 산소 함량에 따라 결정될 수 있다. 탈산제와 산소 사이의 반응을 촉진하는 플럭스 또는 매체로서 작용할 염, 예를 들어 염화 칼슘, 염화 마그네슘 또는 이들의 조합이 추가로 혼합될 수 있다.
일 실시예에 따르면, 탈산제와 소결된 구형 금속분말을 초기진공도 10-6 내지 10-2torr분위기의 반응기 챔버에 투입하고, 승온속도는 5 내지 10℃/min으로 탈산온도를 800 내지 1100℃으로 가열한 후, 1 내지 5h 동안 유지시켜 탈산 공정을 수행할 수 있다. 일 실시예에 따르면, 탈산된 구형 금속분말은 산소 함량이 0.3중량% 이하인 구형 Ti 또는 구형 Ti 합금 분말일 수 있다.
6. 세척 및 건조 단계
구형 금속분말의 제조방법(S100)은 탈산 처리된 구형 금속분말에서 분리제 및 산화물을 제거하는 단계(S160)를 포함한다.
도 5는 본 발명의 일 실시예에 따른 분리제 및 산화물이 제거된 최종 구형 금속분말(400)을 나타낸다.
일 실시예에 따르면, 탈산 처리된 구형 금속분말을 묽은 염산, 묽은 황산 또는 이들의 혼합물에서 산세 및 수세 처리하여 잔존하는 산화물을 제거할 수 있다. 즉, 탈산 공정 후 생성되는 혼합물은 CaO, MgO와 같은 산화물 및 K2O과 같은 분리제를 포함할 수 있으며, 이러한 CaO, MgO, K2O는 묽은 염산, 묽은 황산 또는 이들의 혼합물과 같은 산을 함유하는 수용액 중에서 침출될 수 있다.
이후, 물 및 에탄올로 세척하고, 분리제 및 산화물이 제거된 구형 금속분말을 50내지 150℃에서, 1min 내지 5h 동안 건조하여, 최종 구형 금속분말을 제조할 수 있다. 이때, 최종 구형 금속분말은 1 내지 300 ㎛의 입도범위를 갖고, ASTM 규격으로 측정한 결과, 85% 이상의 구형도 및 50sec/50mg 이하의 유동도를 나타낼 수 있다.
실시예
(1) Ti 분말을 이용한 슬러리의 제조
극미분 원료 금속으로 100㎛ 미만의 입자 크기를 갖는 Ti 분말을 사용하였으며, 물 1L, 에틸알코올 300ml, Ti 분말 350g, 폴리비닐파이로리돈(PVP) 바인더 50ml를 혼합하고, 프로펠러를 사용한 스터러를 이용하여 슬러리를 제조하였다. 도 6은 Ti 분말의 SEM 사진을 나타낸다.
(2) Ti 과립분말의 제조
제조된 슬러리를 분무 건조하여 구형 과립분말을 형성함으로써 과립분말을 제조하였다. 분무 건조기 챔버가 10-1torr 이하의 진공 상태, 300 내지 400℃로 가열된 상태에서, 공압 4 내지 6 kg/cm2의 압력으로 아토마이저 디스크 위에 슬러리를 단속적으로 분무하여 과립분말을 제조하였다. 도 7은 제조된 Ti 과립분말의 SEM 사진을 나타낸다. Ti 과립분말은 대략 1 내지 350㎛ 입도 범위를 갖는다.
(3) 탈지 및 소결
탈지 및 소결 전 과립분말 간 소결을 방지하기 위해 과립분말과 분리제를 혼합하였다. 분리제로는 MgO 분말을 사용하였다.
이후, 노(furnace) 내 초기진공도를 10-2torr이하로 하고, 노를 승온속도 5℃/min, 10℃/min 2단계로 가열하여 300 내지 400℃ 온도 범위에서 과립분말을 탈지시켰다. 이후 연속적으로 소결을 위해, 노를 승온속도 5℃/min, 10℃/min 2단계로 가열하여 900 내지 1200℃ 온도 범위까지 증가시키고, 30분 동안 유지하여 탈지된 과립분말을 소결시켰다. 도 8은 소결된 구형 Ti 금속분말의 SEM 사진을 나타낸다. 소결된 구형 Ti 금속분말은 대략 1 내지 300 ㎛ 입도 범위를 갖는다.
(4) 탈산
*3.85 중량%의 산소를 갖는 소결된 구형 Ti 금속분말을 탈산제를 이용하여 탈산소화하였다. 탈산제로는 Ca 가스, Mg 가스를 사용하였다.
소결된 구형 Ti 금속분말과 Ca 가스, Mg 가스를 반응기 챔버에 투입하고, 10℃/min의 승온속도로 800 내지 900℃까지 가열한 후 초기진공도 10-2torr이하 분위기에서 3h 동안 유지하였다.
(5) 세척 및 건조
탈산 처리된 구형 Ti 금속분말을 포함하는 혼합물을 반응기 챔버에서 꺼내고 묽은 염산으로 2시간 동안 침출시켰다. 이어서, 침출된 생성물을 물 및 에탄올로 세척하고, 100℃에서 3h 동안 건조하였다. 최종 구형 Ti 금속분말은 1 내지 300 ㎛의 입도범위, 0.067중량%의 산소 함량를 갖고, ASTM 규격으로 측정한 결과 85% 이상의 구형도 및 50sec/50mg 이하의 유동도를 나타낸다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
부호의 설명
100 과립분말
110 극미분 원료 금속
120 결합제
200 탈지된 과립분말
210 감소된 결합제 함량을 갖는 극미분 원료 금속
300 소결된 구형 금속분말
400 최종 구형 금속분말

Claims (24)

  1. 구형 금속분말의 제조방법으로서,
    (a) 극미분 원료 금속을 결합제 및 용매와 혼합하여 슬러리를 형성하는 단계;
    (b) 분무 건조를 통해 슬러리를 과립화하여 과립분말을 형성하는 단계;
    (c) 과립분말끼리의 소결을 방지하기 위해 분리제를 첨가하는 단계;
    (d) 과립분말에 대한 탈지 및 소결을 연속적으로 수행하여 구형 금속분말을 형성하는 단계; 및
    (e) 소결된 구형 금속분말의 고순도화를 위해 탈산제를 첨가하여 탈산처리를 수행하는 단계; 및
    (f) 탈산 처리된 구형 금속분말에서 분리제 및 산화물을 제거하는 단계를 포함하는, 구형 금속분말의 제조방법.
  2. 제1항에 있어서,
    상기 구형 금속분말은 CP-Ti, Ti-Al계 합금, Ti-Al-V계 합금 및 이들의 조합을 포함하는 군으로부터 선택되는 것을 특징으로 하는, 구형 금속분말의 제조방법.
  3. 제1항에 있어서,
    상기 구형 금속분말의 입도 범위는 1 내지 300㎛인 것을 특징으로 하는, 구형 금속분말의 제조방법.
  4. 제1항에 있어서,
    상기 극미분 원료 금속은 수소화티타늄, 티타늄, 알루미늄, 바나듐, 주석, 팔라듐, 니켈, 몰리브덴, 크롬, 코발트, 지르코늄, 수소화지르코늄, 니오븀 및 이들의 조합을 포함하는 군으로부터 하나 이상 선택되는 것을 특징으로 하는, 구형 금속분말의 제조방법.
  5. 제1항에 있어서,
    티타늄 스폰지, 티타늄 스크랩 및 이들의 조합을 포함하는 군으로부터 선택되는 원재료로부터 상기 극미분 원료 금속을 제조하는 것을 특징으로 하는, 구형 금속분말의 제조방법.
  6. 제1항에 있어서,
    상기 (a) 단계에서, 상기 용매는 물 및 에틸알코올을 포함하고, 상기 결합제는 폴리비닐파이로리돈(PVP) 바인더를 포함하며, 혼합장치를 이용하여 물리적으로 혼합하는 것을 특징으로 하는, 구형 금속분말의 제조방법.
  7. 제6항에 있어서,
    상기 (a) 단계에서, 물 1L에 대하여, 에틸알코올 100 내지 500ml, 극미분 원료금속 50 내지 650g, 폴리비닐파이로리돈(PVP) 16 내지 150ml의 비율로 혼합하는 것을 특징으로 하는, 구형 금속분말의 제조방법.
  8. 제 1항에 있어서,
    상기 (b) 단계에서, 상기 분무 건조는, 10-1torr 이하의 진공으로 유지되고 있는 챔버에서, 공압 2 내지 8 kg/cm2의 압력으로 슬러리를 단속적으로 분무하여 과립분말을 형성하는 것을 특징으로 하는, 구형 금속분말의 제조방법.
  9. 제 1항에 있어서,
    상기 과립분말의 입도 범위는 1 내지 350㎛ 인 것을 특징으로 하는, 구형 금속분말의 제조방법.
  10. 제9항에 있어서,
    상기 (b) 단계에서, 과립화 후 상기 입도 범위를 벗어나는 과립분말은 재과립화하는 것을 특징으로 하는, 구형 금속분말의 제조방법.
  11. 제1항에 있어서,
    상기 (c) 단계에서, 상기 분리제는 MgO 분말, K2O 분말 또는 이들의 혼합물을 포함하는 것을 특징으로 하는, 구형 금속분말의 제조방법.
  12. 제1항에 있어서,
    상기 (d) 단계에서, 탈지 초기진공도는 10-6 내지 10-2torr인 것을 특징으로 하는, 구형 금속분말의 제조방법.
  13. 제1항에 있어서,
    상기 (d) 단계에서, 탈지온도는 100 내지 500℃ 이며, 승온속도는 2 내지 8℃/min, 9 내지 20℃/min의 2단계로 구성되어 있는 것을 특징으로 하는, 구형 금속분말의 제조방법.
  14. 제1항에 있어서,
    상기 (d) 단계에서, 소결온도는 600℃ 내지 1500℃ 인 것을 특징으로 하는, 구형 금속분말의 제조방법.
  15. 제14항에 있어서,
    상기 (d) 단계에서, 소결 승온속도는 2 내지 8℃/min, 9 내지 20℃/min의 2단계로 구성되어 있고, 소결 유지시간은 1min 내지 50h인 것을 특징으로 하는, 구형 금속분말의 제조방법.
  16. 제1항에 있어서,
    상기 (d) 단계에서, 소결은 과립분말 내부의 기공이 10% 이하로 제어될 때까지 수행되는 것을 특징으로 하는, 구형 금속분말의 제조방법.
  17. 제1항에 있어서,
    상기 (d) 단계에서, 소결은 과립분말 내부의 기공이 5% 이하로 제어될 때까지 수행되는 것을 특징으로 하는, 구형 금속분말의 제조방법.
  18. 제1항에 있어서,
    상기 (e) 단계에서, 상기 탈산제는 Ca 가스, Mg 가스 또는 이들의 조합인 것을 특징으로 하는, 구형 금속분말의 제조방법.
  19. 제1항에 있어서,
    상기 (e) 단계에서, 탈산 초기진공도는 10-6 내지 10-2torr인 것을 특징으로 하는, 구형 금속분말의 제조방법.
  20. 제1항에 있어서,
    상기 (e) 단계에서, 탈산온도는 800 내지 1100℃인 것을 특징으로 하는, 구형 금속분말의 제조방법.
  21. 제20항에 있어서,
    탈산 승온속도는 5 내지 10℃/min이며, 승온 후 탈산 유지시간은 1 내지 5h인 것을 특징으로 하는, 구형 금속분말의 제조방법.
  22. 제1항에 있어서,
    상기 (f) 단계에서, 탈산 처리된 구형 금속분말을 묽은 염산, 묽은 황산 또는 이들의 혼합물에서 산세 및 수세 처리하여 잔존하는 산화물을 제거하는 것을 특징으로 하는, 구형 금속분말의 제조방법.
  23. 제1항에 있어서,
    상기 (f) 단계에서, 분리제 및 산화물이 제거된 구형 금속분말을 50 내지 150℃에서 건조하는 것을 특징으로 하는, 구형 금속분말의 제조방법.
  24. 제23항에 있어서,
    상기 (f) 단계에서, 건조시간은 1min 내지 5h 인 것을 특징으로 하는, 구형 금속분말의 제조방법.
PCT/KR2022/016044 2021-12-27 2022-10-20 구형 금속분말의 제조방법 WO2023128182A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0188469 2021-12-27
KR1020210188469A KR20230099261A (ko) 2021-12-27 2021-12-27 구형 금속분말의 제조방법

Publications (1)

Publication Number Publication Date
WO2023128182A1 true WO2023128182A1 (ko) 2023-07-06

Family

ID=86999634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/016044 WO2023128182A1 (ko) 2021-12-27 2022-10-20 구형 금속분말의 제조방법

Country Status (2)

Country Link
KR (1) KR20230099261A (ko)
WO (1) WO2023128182A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100725209B1 (ko) * 2005-12-07 2007-06-04 박영석 티타늄 분말사출 성형체 제조방법 및 티타늄 코팅방법
KR101275054B1 (ko) * 2012-07-12 2013-06-17 한국지질자원연구원 저산소 티타늄 합금 분말의 제조 방법
KR101632381B1 (ko) * 2016-02-12 2016-07-08 주식회사 엔이피 철계금속과립분말을 이용한 철계금속부품 제조방법
KR20170007359A (ko) * 2014-05-13 2017-01-18 더 유니버시티 오브 유타 리서치 파운데이션 실질적으로 구형인 금속 분말의 제조
KR20180102691A (ko) * 2016-02-10 2018-09-17 더 유니버시티 오브 유타 리서치 파운데이션 고용체 상태로 산소가 용해되어 있는 금속을 탈산소화시키는 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101649584B1 (ko) 2015-12-28 2016-08-19 한국피아이엠(주) 금속과립분말을 이용한 내열부품 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100725209B1 (ko) * 2005-12-07 2007-06-04 박영석 티타늄 분말사출 성형체 제조방법 및 티타늄 코팅방법
KR101275054B1 (ko) * 2012-07-12 2013-06-17 한국지질자원연구원 저산소 티타늄 합금 분말의 제조 방법
KR20170007359A (ko) * 2014-05-13 2017-01-18 더 유니버시티 오브 유타 리서치 파운데이션 실질적으로 구형인 금속 분말의 제조
KR20180102691A (ko) * 2016-02-10 2018-09-17 더 유니버시티 오브 유타 리서치 파운데이션 고용체 상태로 산소가 용해되어 있는 금속을 탈산소화시키는 방법
KR101632381B1 (ko) * 2016-02-12 2016-07-08 주식회사 엔이피 철계금속과립분말을 이용한 철계금속부품 제조방법

Also Published As

Publication number Publication date
KR20230099261A (ko) 2023-07-04

Similar Documents

Publication Publication Date Title
CA1174083A (en) Process for the preparation of alloy powders which can be sintered and which are based on titanium
JP2590442B2 (ja) カーボンナノチューブの分離精製方法
US6447571B1 (en) Metal powder
RU1776197C (ru) Способ получени окиси алюмини
CN107309434B (zh) 一种高纯致密球形钼粉的制备方法及应用
JPS63205191A (ja) フア−ニスダストの回収方法
CN101522342A (zh) 制备低氧含量金属粉末的方法、由此制得的粉末及其应用
JPS6362122A (ja) 真空遮断器用電極の製造法
WO2023128182A1 (ko) 구형 금속분말의 제조방법
WO2012150757A1 (ko) 루테늄(Ru)타겟 제조를 위한 루테늄 분말 제조방법
WO2020130532A1 (ko) 티타늄 금속 분말 또는 티타늄 합금 분말의 제조 방법
CN111001801A (zh) 一种银碳化钨-钼复合电触头材料及其骨架粉体和制备方法
WO2011129565A2 (ko) 공정합금을 이용한 탄탈럼(Ta) 분말의 제조방법
CN115446319B (zh) 一种铜辅助制备钛合金和钛铝合金球形微粉的方法
JPH07247122A (ja) 活性化二酸化マンガンおよびその製造方法
JP2665928B2 (ja) タンタル粉末及びその製造法
US2037672A (en) Method of producing metal powders
JPS63150822A (ja) 真空バルブ用接点合金の製造方法
WO2022114377A1 (ko) 티타늄 탈산 방법 및 탈산 장치
US3482963A (en) Method for production of particulate metal
US1508243A (en) Treatment of refined copper from copper oxide
JPH11152505A (ja) 扁平な形状のニッケル粉末およびその製造方法
CN114888293A (zh) 一种钛残料制备的近球形粉末及其制备方法和设备
CN117778724A (zh) 一种回收废钨渣中有价金属的方法
WO2019093736A1 (ko) 리튬 회수 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22916336

Country of ref document: EP

Kind code of ref document: A1