WO2023124977A1 - 一种用于金属件电解抛光的固体颗粒物 - Google Patents

一种用于金属件电解抛光的固体颗粒物 Download PDF

Info

Publication number
WO2023124977A1
WO2023124977A1 PCT/CN2022/138716 CN2022138716W WO2023124977A1 WO 2023124977 A1 WO2023124977 A1 WO 2023124977A1 CN 2022138716 W CN2022138716 W CN 2022138716W WO 2023124977 A1 WO2023124977 A1 WO 2023124977A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
polishing
particles
metal
solid particle
Prior art date
Application number
PCT/CN2022/138716
Other languages
English (en)
French (fr)
Inventor
庞浩
廖兵
洪培萍
余越
Original Assignee
广东省科学院化工研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东省科学院化工研究所 filed Critical 广东省科学院化工研究所
Publication of WO2023124977A1 publication Critical patent/WO2023124977A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/06Other polishing compositions
    • C09G1/14Other polishing compositions based on non-waxy substances
    • C09G1/16Other polishing compositions based on non-waxy substances on natural or synthetic resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the invention relates to the technical field of metal surface treatment, in particular to solid particles used for electrolytic polishing of metal parts.
  • polishing has been diversified.
  • Common polishing methods include physical polishing, chemical polishing and composite polishing.
  • Physical polishing is generally mechanical polishing, which is the process of removing the convex part of the polished surface by cutting, abrasion or plastic deformation to obtain a smooth and bright surface.
  • Chemical polishing is the process of preferentially oxidizing the tiny metal protrusions on the surface to be polished into metal ions by chemical corrosion (electrochemical corrosion) to etch, thereby improving the roughness of the metal surface and obtaining a smooth and bright surface.
  • Chemical polishing solves the technical problems difficult to solve by mechanical polishing to a certain extent, but a large amount of chemical oxidizing agent or electrolyte will cause harm to the body of the operator, and at the same time, a large amount of waste liquid will be generated after polishing. If it is not handled properly, it will cause serious damage. environmental pollution.
  • CN109415839A discloses a method of smoothing and polishing metal by ion transport of free solids and a solid for performing the method, which smoothes and polishes metal parts by ion transport, wherein the disclosed spherical particles are sulfonated styrene-divinyl Benzene resin, but due to the influence of factors such as steric hindrance effect and ion complexation, the smooth polishing effect of the resin on the metal surface cannot be controlled. For example, for some easy-to-polish metals, it will cause excessive polishing and defects on the surface of the precise parts of the metal sample; for some difficult-to-polish metals, it will cause incomplete polishing and poor surface gloss.
  • CN113699579A discloses a metal polishing method, which first uses mild electrolytic conditions to perform aqueous electrolytic polishing on the polished workpiece, so that the surface of the polished workpiece reaches a preliminary brightness, and then uses a spherical solid electrolyte to achieve the preliminary brightness of the surface.
  • the polished workpiece is subjected to compound electrolytic polishing, so that the surface of the polished workpiece reaches the final mirror brightness.
  • the process is relatively complicated.
  • its composite electrolytic polishing is a mechanical action and an electrolytic action at the same point.
  • the present invention aims to solve at least one of the above-mentioned technical problems existing in the prior art. For this reason, one of the purposes of the present invention is to provide a kind of solid particle that is used for electrolytic polishing of metal parts, the second purpose of the present invention is to provide a kind of preparation method of this solid particle, the third purpose of the present invention is to provide a kind of A metal electrolytic polishing method using the solid particles.
  • the first aspect of the present invention provides a solid particle for electrolytic polishing of metal parts; the solid particle has a porous structure; the solid particle contains an amino group; the inside and/or surface of the solid particle contains electrolyte.
  • the amine group is at least one of primary amine, secondary amine, tertiary amine and quaternary amine.
  • the solid particles include at least one of acrylic resin with amino groups, amino-modified silica gel, and amino-modified molecular sieves.
  • the particle size of the solid particles is 0.01 mm to 50 mm; more preferably, the particle size of the solid particles is 0.05 mm to 10 mm; still more preferably, the particle size of the solid particles is 0.1 mm ⁇ 5mm; more preferably, the particle size of the solid particles is 0.27mm ⁇ 4mm.
  • the electrolyte can adjust the conductivity of the solid particles.
  • the volume resistance of the solid particles is 0.05M ⁇ -5M ⁇ ; further preferably, the volume resistance of the solid particles is 0.1M ⁇ -1M ⁇ .
  • the mass content of the electrolyte in the pores and/or the surface of the solid particles is 15% to 80%; further preferably, the mass content of the electrolyte in the pores and/or the surface of the solid particles is 15% to 60% .
  • the electrolyte includes at least one of water and soluble salt solution.
  • the mass concentration of the soluble salt solution is 0.1%-20%; further preferably, the mass concentration of the soluble salt solution is 1%-10%.
  • the salt in the soluble salt solution includes at least one of soluble chloride salt, fluorine salt, sulfate, phosphate, nitrate, and EDTA salt.
  • a second aspect of the present invention provides a method for preparing solid particles for electrolytic polishing of metal parts according to the first aspect of the present invention, comprising the following steps: soaking solid particles having a porous structure and containing amine groups in electrolyte, and then dried to obtain the solid particles used for electrolytic polishing of metal parts.
  • the drying includes the step of volatilizing the electrolyte.
  • a third aspect of the present invention provides a solid electropolishing method for metal parts, comprising the following steps:
  • S1 placing the solid particles used for electrolytic polishing of metal parts according to the first aspect of the present invention and the metal parts to be polished in an electrochemical polishing device;
  • the metal piece to be polished is connected to the positive pole of the power supply of the electrochemical polishing device, and the solid particles are connected to the negative pole of the power supply of the electrochemical polishing device;
  • S2 energize the electrochemical polishing device to perform electrolytic polishing. During electrolytic polishing, the metal piece to be polished and the solid particles undergo relative frictional motion.
  • the solid particles used for electrolytic polishing of metal parts can fully polish the parts of metal parts that are not convenient for grinding, and do not need a large amount of chemical oxidizing agents and electrolytic polishing in the polishing process.
  • the conductivity of particles is regulated by electrolytes in their interior and/or on their surface.
  • particulate matter can be regenerated after a period of use, which greatly improves the service life and reduces costs.
  • the solid particles provided by the present invention are one or more of silica gel, molecular sieve, and porous polyacrylic resin containing hydroxyl.
  • the cations dissociated from metal parts are fully chelated, and due to the smaller steric hindrance, it is easier to adsorb metal ions through ion exchange reactions. After adsorbing metal ions, due to complexation, metal ions are difficult to detach, which effectively improves its polishing efficiency.
  • the solid particles provided by the present invention are at least one of acrylic resin with amino groups, amino-modified silica gel, and amino-modified molecular sieves.
  • the metal parts are powered on, the particles and the cations dissociated from the metal parts are fully chelated, and due to the smaller steric hindrance, it is easier to adsorb metal ions through ion exchange reactions. After adsorbing metal ions, due to complexation, the metal The ions are difficult to detach, which effectively improves the polishing efficiency.
  • Figure 1 is a scanning electron microscope image of amine-containing particles
  • Fig. 2 is the scanning electron micrograph that contains quaternary ammonium salt particle
  • Fig. 3 is the pore size physical adsorption test figure of amine-containing particles
  • Fig. 4 is the pore size physical adsorption test figure containing the quaternary ammonium salt particle
  • Fig. 5 is the schematic diagram of the principle of electropolishing metal of the present invention.
  • Fig. 6 is a scanning electron micrograph of metal parts after solid electrolytic polishing of polyacrylate porous resin particles containing ethylamine groups
  • Fig. 7 is a scanning electron micrograph of metal parts after solid electropolishing of polyacrylate porous resin particles containing quaternary ammonium salts
  • Fig. 8 is the surface topography figure before metal piece polishing
  • Fig. 9 is a surface topography figure of a metal part after solid electrolytic polishing of polyacrylate porous resin particles containing ethylamine groups;
  • Fig. 10 is a surface topography diagram of a metal part after solid electrolytic polishing of polyacrylate porous resin particles containing quaternary ammonium salt.
  • the particulate matter provided by the invention is applied to solid electrolytic polishing of metal parts.
  • electropolishing is to immerse the metal in a special chemical solution composed of various components, relying on high chemical potential energy to oxidize the metal to obtain a smooth and bright surface, while solid electropolishing uses conductive solid particles instead of Electrolyte, through the contact of solid particles with the metal parts to be polished, so as to realize the polishing treatment on the surface of the metal parts.
  • the solid particles provided in the embodiments of the present invention are particles with a porous structure, wherein the interior and/or surface of the particles contain a certain amount of electrolyte.
  • the porous structure can make the particles lose the electrolyte on the surface first, and then lose the electrolyte in the pores during the drying process after being wetted by the electrolyte solution.
  • the porous structure can ensure that the particles still have good conductivity after completely losing the surface electrolyte, and the amine groups contained in the particles can fully chelate and adsorb metal ions with the cations dissociated from the metal parts, so that they can be applied to the solid state of metal parts Electrolytic polishing.
  • the particulate matter in the embodiment of the present invention is at least one of acrylic resin with amino groups, amino-modified silica gel, and amino-modified molecular sieves.
  • the amino group described in the embodiment of the present invention is at least one of primary amine, secondary amine, tertiary amine and quaternary amine.
  • the amine group includes ethylamine (-C 2 H 4 NH 2 ), polyamine (such as -C 2 H 4 NH) 2 H), methylamine (-NH(CH 3 )), dimethylamine ( -N(CH 3 ) 2 ) or quaternary ammonium salt (-N + (CH 3 ) 3 ).
  • the particles used in the embodiment of the present invention are acrylic resins with amino groups, and the acrylic resins are prepared by suspension polymerization including acrylate monomers with amino groups, common monomers and crosslinking monomers.
  • Acrylate monomers with amine groups are used for ion adsorption to adsorb metal ions, and cross-linking monomers are used to improve the hardness, strength, solvent resistance, stability, etc. of the resin, without slag during use, and prolong the service life .
  • the material used in the electrolytic polishing of metal parts in this embodiment adopts polyacrylate porous resin particles with ethylamine groups (-C 2 H 4 NH 2 ), and utilizes a variety of acrylic monomers including ethylamine acrylic acid monomers. Prepared by suspension polymerization. Screening through sieves with different meshes to obtain polyacrylate porous resin particles with ethylamine groups of corresponding particle size.
  • the material used for electrolytic polishing of metal parts adopts polyacrylate porous resin particles with quaternary ammonium salt groups (-N + (CH 3 ) 3 ), which utilizes a variety of quaternary ammonium salt acrylic acid monomers.
  • Acrylic monomers are produced by suspension polymerization.
  • the polyacrylate porous resin particles with quaternary ammonium salt groups are obtained by screening through sieves with different mesh sizes.
  • FIG. 1 is a scanning electron microscope (SEM) image of the amine-containing particles, that is, the polyacrylate porous resin particles with ethylamine groups used in Example 1.
  • Fig. 1 (a) is the scanning electron micrograph that the polyacrylate porous resin particle thing with ethylamine group enlarges 44 times
  • Fig. 1 (b) is the scan that the polyacrylate porous resin particle thing with ethylamine group magnifies 220 times Electron micrograph
  • Fig. 1 (c) is a scanning electron micrograph of polyacrylate porous resin particles with ethylamine group magnified 11000 times
  • FIG. 1 (d) is polyacrylate porous resin particle with ethylamine group magnified 44000 magnified scanning electron microscope image.
  • Figure 1(a) shows polyacrylate porous resin particles containing ethylamine groups with different particle sizes, wherein the particle size of the particles is 0.01mm-50mm.
  • the polyacrylate porous resin particles containing ethylamine groups with corresponding particle sizes can be obtained by screening through sieves with different meshes.
  • Figure 1(b), Figure 1(c) and Figure 1(d) further show the surface structure of the particles. It can be seen that the surface of the particles is formed by the accumulation of many small particles, and a porous structure is formed inside and between the particles, which can adsorb and accommodate more metal ions.
  • Fig. 2 is a scanning electron micrograph of the quaternary ammonium salt-containing particles, that is, the polyacrylate porous resin particles with quaternary ammonium salt groups used in Example 2.
  • Fig. 2 (a) is the scanning electron micrograph that the polyacrylate porous resin particle thing of band quaternary ammonium salt group enlarges 44 times
  • Fig. 2 (b) is the polyacrylate porous resin particle matter of band quaternary ammonium salt group magnification 220 times
  • Fig. 2 (c) is a scanning electron micrograph of polyacrylate porous resin particles with quaternary ammonium salt groups magnified 11000 times
  • Fig. 2 (a) is the scanning electron micrograph that the polyacrylate porous resin particle thing of band quaternary ammonium salt group enlarges 44 times
  • Fig. 2 (b) is the polyacrylate porous resin particle matter of band quaternary ammonium salt group magnification 220 times
  • Fig. 2 (c)
  • the polyacrylate porous resin particles containing ethylamine groups and the polyacrylate porous resin particles containing quaternary ammonium salt groups were tested by ion adsorption experiments. Since the metal parts used in the solid electrolytic polishing test are chromium-cobalt alloys, cobalt salt solutions (nickel salts, copper salts, and iron salts have similar results, and different metal salts can be used for different metal substrates) are used for ion adsorption experiments.
  • the ion concentration is determined by measured by inductively coupled plasma spectroscopy (ICP). Specifically, the polyacrylate porous resin particles containing the ethylamine group and the polyacrylate porous resin particles containing the quaternary ammonium salt group are put in the cobalt salt aqueous solution of equal concentration and volume, and the supernatant after a period of time is tested.
  • ICP inductively coupled plasma spectroscopy
  • the experimental results show that both the polyacrylate porous resin particles containing ethylamine groups and the polyacrylate porous resin particles containing quaternary ammonium salt groups have certain ion exchange properties, and the ICP test results show that cobalt ions in the supernatant after 24 hours
  • concentration of the metal ion solution soaked with polyacrylate porous resin particles containing ethylamine groups was lower than that of the metal ion solution soaked with polyacrylate porous resin particles containing quaternary ammonium groups.
  • the color of the supernatant is lighter, and the ICP test results show that the concentration of cobalt ions in the supernatant after 24h is 38mmol/L, confirming the ion diffusion and exchange/adsorption/complexation of polyacrylate porous resin particles containing ethylamine groups The ability is stronger than that of polyacrylate porous resin particles containing quaternary ammonium salt groups.
  • the polyacrylate porous resin particles containing ethylamine groups and the polyacrylate porous resin particles containing quaternary ammonium salt groups are soaked in the electrolyte solution, and then dried to obtain a solid for electrolytic polishing of metal parts particulates.
  • the electrolyte may be water or a soluble neutral salt solution.
  • the salt in the soluble salt solution is at least one of soluble chloride salts, fluorine salts, sulfates, phosphates, nitrates, and EDTA salts.
  • the mass concentration of the electrolyte in the electrolyte solution is 0.1%-20%.
  • the electrolyte solution used in the embodiment of the present invention is a sodium sulfate neutral salt solution with a mass concentration of 5%. What needs to be explained here is that since the present invention takes the steps of soaking, absorbing and then volatilizing, and the volatilization rate of the electrolyte solute is generally slower than that of the solvent, the final actual electrolyte solution concentration inside the pores of the solid particles will be slightly higher than that of the solvent. The concentration of the electrolyte solution that was soaked initially.
  • the resistance value measurement results of the polyacrylate porous resin particles containing ethylamine groups and the polyacrylate porous resin particles containing quaternary ammonium salt groups are obtained by measuring the volume resistance values with a multimeter. The specific results are shown in Table 2 below.
  • the polyacrylate porous resin particles containing quaternary ammonium salt groups have higher water content and lower volatility, which may be due to its richer pore structure. Since different electrolyte contents will lead to changes in the resistance value of the particles, the conductivity of the particles can be adjusted by controlling the electrolyte content inside and on the surface of the particles, and the particles with suitable conductivity can be selected for electrolytic polishing of metal parts. In the embodiment of the present invention, the mass content of the electrolyte inside the pores and/or on the surface of the particles is 15%-60%.
  • the method for applying the prepared polyacrylate porous resin particles containing ethylamine groups and the polyacrylate porous resin particles containing quaternary ammonium salt groups to solid electrolytic polishing of metal parts comprises the following steps:
  • Step 1 placing the particulate matter and the metal piece to be polished in an electrochemical polishing device; wherein, the metal piece to be polished is connected to the positive electrode of the power supply, and the particulate matter is electrochemically connected to the negative electrode of the power supply;
  • Step 2 Turn on the power, and at the same time of electrolysis, the metal part to be polished and the particles undergo relative frictional motion.
  • the electrochemical polishing device contains a metal mesh cage; after the metal sample is connected to the positive electrode of the electrochemical polishing device, it is inserted into the metal mesh cage; the metal mesh cage is connected with the particles and the electrochemical polishing device respectively. connected to the negative terminal of the device.
  • the insertion method includes stirring or vibrating. As a result, the solid particles in contact with the positive electrode and the negative electrode can be continuously changed, thereby being fully utilized.
  • the schematic diagram of the specific principle and process of electropolishing metal with solid particles according to the present invention can be seen in FIG. 5 .
  • the polishing rate and effect are controlled by these three steps: 1.
  • the oxidation process of the metal the intuitive characterization is the magnitude of the current (experimentally confirmed that 0.01-100A is more suitable), and the magnitude of the current is controlled by the applied voltage It is determined by the resistance of solid particles (the resistance of metal samples and other electrochemical systems is much smaller than that of solid particles, so it is ignored), if the applied voltage is lower than the oxidation potential and polarization potential of the metal, then the metal ions cannot be absorbed smoothly.
  • the resistance of solid particles is too large (mainly determined by the resistance and content of the electrolyte solution), the oxidation rate of metal ions will be very slow, and the polishing effect cannot be achieved; 2.
  • the diffusion process of metal ions because it is solid Polishing, so the ion diffusion process is also one of the speed-controlling steps. If the content of the conductive solution is too low and the pore size of the solid particles is too small (less than the actual ion size), then the polishing effect cannot be achieved; 3.
  • the present invention places the particles prepared in the embodiment in an electrolytic polishing device, wherein the metal piece to be polished is connected to the positive pole of the power supply, The particles are electrochemically connected to the negative electrode of the power supply, and the polishing performance test of the metal parts is carried out (applied voltage 60V, polished for 20 minutes), and the surface morphology of the metal parts is characterized by visual observation, scanning electron microscope, and its roughness is tested by an optical profiler.
  • Table 3 Visual observation results of solid electrolytic polishing of polyacrylate porous resin particles containing ethylamine groups and quaternary ammonium salt groups
  • Fig. 6 is a scanning electron micrograph of a metal part after solid electrolytic polishing of polyacrylate porous resin particles containing ethylamine groups
  • Fig. 7 is a scanning electron microscope image of a metal part after solid electropolishing of polyacrylate porous resin particles containing quaternary ammonium salts Electron micrograph. It can be seen from Figure 6-7 that before the metal parts are polished, the surface contains certain particles, and the surface is gray. The improvement of the polyacrylate porous resin particles containing ethylamine groups, and the surface of the electrical metal parts after sieve polishing is smoother and brighter, which further shows that the solid electropolishing effect of polyacrylate porous resin particles containing ethylamine groups is better.
  • Fig. 8 is the surface topography figure of metal piece before polishing
  • Fig. 9 is the surface topography figure of metal piece through the solid electrolytic polishing of polyacrylate porous resin particle containing ethylamine group
  • Fig. 10 is the metal piece through quaternary ammonium-containing Salt polyacrylate porous resin particle solid surface topography after electropolishing.
  • the test results show that the surface roughness of the metal piece before polishing is 4.082 ⁇ m, and the surface roughness of the metal piece after solid electrolytic polishing of polyacrylate porous resin particles containing ethylamine groups is 0.630 ⁇ m.
  • the surface roughness of the polyacrylate porous resin particles after solid electrolytic polishing is 2.326 ⁇ m, and the results further illustrate that the polyacrylate porous resin particles containing ethylamine groups and the polyacrylate containing quaternary ammonium salt groups
  • Porous resin particles have a certain effect in solid electropolishing of metal parts, and the surface polishing effect of metal parts after solid electropolishing of polyacrylate porous resin particles containing ethylamine groups is better. What needs to be explained here is that since the surface of the metal part itself is concave-convex, the Ra value is larger than that of the flat sample.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明公开了一种用于金属件电解抛光的固体颗粒物,所述固体颗粒物具有多孔结构;所述固体颗粒物含有胺基基团;所述固体颗粒物的孔道内部和/或表面含有电解质。本发明还公开了一种应用该固体颗粒物进行金属件固体电解抛光的方法。本发明提供的用于金属件电解抛光的固体颗粒物,相对于物理抛光和化学抛光,其能够对金属件不便于研磨的部位进行充分的抛光,且在抛光过程中无需大量的化学氧化药剂和电解液,环境友好且安全性高。颗粒物可以在使用一段时间后进行再生,大大提高使用寿命,降低成本。

Description

一种用于金属件电解抛光的固体颗粒物 技术领域
本发明涉及金属表面处理技术领域,特别涉及一种用于金属件电解抛光的固体颗粒物。
背景技术
随着制造业的转型升级,金属抛光打磨得到了多样化的发展,常见的抛光打磨方式有物理抛光、化学抛光和复合抛光。
物理抛光一般为机械研磨抛光,是将被研磨面的凸部用切削、磨耗或者塑性变形等方式除去,获得平滑光亮表面的过程。化学抛光是通过化学腐蚀(电化学腐蚀)的方式将被研磨面上的微小金属凸部优先氧化为金属离子进行刻蚀,从而改善金属表面粗糙度,获得平滑光亮表面的过程。
机械研磨抛光耗时长、效率低下,对角落、缝隙等部位难以达到较高的光亮效果。化学抛光在一定程度上解决了机械抛光难以解决的技术问题,但是大量的化学氧化药剂或电解液对操作工人的身体造成危害,同时抛光结束后产生大量的废弃液如果处理不当,会造成严重的环境污染。
CN109415839A公开了一种通过自由固体的离子传输平滑和抛光金属的方法及执行该方法的固体,其通过离子迁移对金属部件进行平滑和抛光,其中公开的球形颗粒为磺化苯乙烯-二乙烯基苯树脂,但是由于空间位阻效应、离子络合作用等因素的影响,导致该树脂对金属表面的平滑抛光效果不能调控。例如,对于某些易于抛光的金属,会造成抛光过度,金属样件精密部位表面出现缺陷等影响;对于某些难抛光的金属,会造成抛光不彻底,表面光泽度不佳的影响。
CN113699579A公开了一种金属抛光方法,其首先采用温和的电解条件对被抛光工件进行水溶液电解抛光,使被抛光工件的表面达到初步光亮度,然后采用圆球状固体的电解质对表面达到初步光亮度的被抛光工件进行复合电解抛光,使被抛光工件的表面达到最终的镜面光亮度。尽管其能够实现镜面光亮度的表面,但是工艺相对复杂,同时其复合电解抛光是机械作用和电解作用在同一点同时起作用,由于颗粒和金属样件之间硬度上的巨大差异,当机械作用过于剧烈时必然导致圆球状固体被破坏,使得圆球状固体无法循环利用,复合电解抛光的成本增加。
发明内容
本发明旨在至少解决现有技术中存在的上述技术问题之一。为此,本发明的目的之一在于提供一种用于金属件电解抛光的固体颗粒物,本发明的目的之二在于提供一种该固体颗粒物的制备方法,本发明的目的之三在于提供一种应用该固体颗粒物的金属电解抛光方法。
为了实现上述目的,本发明所采取的技术方案是:
本发明的第一方面提供了一种用于金属件电解抛光的固体颗粒物;所述固体颗粒物具有多孔结构;所述固体颗粒物含有胺基基团;所述固体颗粒物的孔道内部和/或表面含有电解质。
优选的,所述胺基基团为伯胺、仲胺、叔胺、季胺中的至少一种。
优选的,所述固体颗粒物包括带胺基基团的丙烯酸树脂、胺基改性的硅胶、胺基改性的分子筛中的至少一种。
优选的,所述固体颗粒物的粒径为0.01毫米~50毫米;进一步优选的,所述固体颗粒物的粒径为0.05毫米~10毫米;再进一步优选的,所述固体颗粒物的粒径为0.1毫米~5毫米;更进一步优选的,所述固体颗粒物的粒径为0.27毫米~4毫米。
优选的,所述电解质可以调节所述固体颗粒物的电导率。
优选的,所述固体颗粒物的体积电阻为0.05MΩ~5MΩ;进一步优选的,所述固体颗粒物的体积电阻为0.1MΩ~1MΩ。
优选的,所述固体颗粒物的孔道内部和/或表面电解质的质量含量为15%~80%;进一步优选的,所述固体颗粒物的孔道内部和/或表面电解质的质量含量为15%~60%。
优选的,所述电解质包括水、可溶性盐溶液中的至少一种。
优选的,所述可溶性盐溶液的质量浓度为0.1%~20%;进一步优选的,所述可溶性盐溶液的质量浓度为1%~10%。
优选的,所述可溶性盐溶液中的盐包括可溶性氯盐、氟盐、硫酸盐、磷酸盐、硝酸盐、EDTA盐中的至少一种。
本发明的第二方面提供了一种根据本发明第一方面所述用于金属件电解抛光的固体颗粒物的制备方法,包括以下步骤:将具有多孔结构、含有胺基基团的固体颗粒浸泡在电解质中,然后干燥,得到所述用于金属件电解抛光的固体颗粒物。
优选的,所述制备方法中,所述干燥包括挥发电解质的步骤。
本发明的第三方面提供了一种金属件的固体电解抛光方法,包括以下步骤:
S1:将根据本发明第一方面所述用于金属件电解抛光的固体颗粒物和待抛光的金属件置于电化学抛光装置中;
其中,所述待抛光的金属件与所述电化学抛光装置的电源正极连接,所述固体颗粒物与所述电化学抛光装置的电源负极连接;
S2:将电化学抛光装置通电进行电解抛光,电解抛光时所述待抛光的金属件与所述固体颗粒物发生相对摩擦运动。
本发明的有益效果是:
本发明提供的用于金属件电解抛光的固体颗粒物,相对于物理抛光和化学抛光,其能够对金属件不便于研磨的部位进行充分的抛光,且在抛光过程中无需大量的化学氧化药剂和电解液,环境友好且安全性高。颗粒物的电导率通过其内部和/表面的电解质进行调节。此外,颗粒物可以在使用一段时间后进行再生,大大提高使用寿命,降低成本。
本发明所提供的固体颗粒物为硅胶、分子筛、含羟基的多孔聚丙烯酸树脂中的一种或多种,当金属件接通电源后,硅胶、分子筛、含羟基的多孔聚丙烯酸树脂中的羟基与金属件解离的阳离子充分螯合,且由于空间位阻更小,通过离子交换反应使得吸附金属离子更容易,吸附金属离子后,由于络合作用,金属离子难以脱离,有效提高其抛光效率。
本发明所提供的固体颗粒物为带胺基基团的丙烯酸树脂、胺基改性的硅胶、胺基改性的分子筛中的至少一种。当金属件接通电源后,颗粒物与金属件解离的阳离子充分螯合,且由于空间位阻更小,通过离子交换反应使得吸附金属离子更容易,吸附金属离子后,由于络合作用,金属离子难以脱离,有效提高其抛光效率。
附图说明
图1是含胺基颗粒物的扫描电镜图;
图2是含季铵盐颗粒物的扫描电镜图;
图3是含胺基颗粒物的孔径物理吸附测试图;
图4是含季铵盐颗粒物的孔径物理吸附测试图;
图5是本发明电解抛光金属的原理示意图;
图6是金属件经含乙胺基团的聚丙烯酸酯多孔树脂颗粒物固体电解抛光后的扫描电镜图;
图7是金属件经含季铵盐的聚丙烯酸酯多孔树脂颗粒物固体电解抛光后的扫描电镜图;
图8是金属件抛光前的表面形貌图;
图9是金属件经含乙胺基团的聚丙烯酸酯多孔树脂颗粒物固体电解抛光后的表面形貌图;
图10是金属件经含季铵盐的聚丙烯酸酯多孔树脂颗粒物固体电解抛光后的表面形貌图。
具体实施方式
以下通过具体的实施例对本发明的内容作进一步详细的说明。实施例中所用的原料、试 剂或装置如无特殊说明,均可从常规商业途径得到,或者可以通过现有技术方法得到。除非特别说明,试验或测试方法均为本领域的常规方法。
本发明提供的颗粒物,应用于金属件的固体电解抛光。需要说明的是,电解抛光是将金属浸渍在各种成分组成的特殊化学溶液中,依靠高的化学势能氧化金属,获得平滑光亮的表面,而固体电解抛光则是采用具有导电性的固体颗粒物取代电解液,通过固体颗粒物与待抛光的金属件相接触,从而实现对金属件表面的抛光处理。
本发明实施例提供的固体颗粒为具有多孔结构的颗粒物,其中颗粒物的内部和/或表面含有一定量的电解质。
多孔结构可以使得颗粒物在经电解质溶液润湿后的干燥过程中,先失去表面的电解质,后失去孔内的电解质。多孔结构可以确保颗粒物在完全失去表面电解质后,仍具有较好的导电性,颗粒物中含有的胺基基团与金属件解离的阳离子充分螯合吸附金属离子,从而能够应用于金属件的固体电解抛光。
本发明实施例的颗粒物为带胺基基团的丙烯酸树脂、胺基改性的硅胶、胺基改性的分子筛中的至少一种。
本发明实施例所述的胺基基团为伯胺、仲胺、叔胺、季胺中的至少一种。具体的,胺基包括乙胺(-C 2H 4NH 2)、多胺(如-C 2H 4NH) 2H)、甲基胺(-NH(CH 3))、二甲基胺(-N(CH 3) 2)或季铵盐(-N +(CH 3) 3)。
本发明实施例所用的颗粒物为胺基基团的丙烯酸类树脂,所述丙烯酸类树脂是由包括带胺基基团的丙烯酸酯单体、普通单体和交联单体通过悬浮聚合法制成。带胺基基团的丙烯酸酯单体用于离子吸附来吸附金属离子,交联单体用于提高树脂的硬度、强度、耐溶剂性、稳定性等,使用过程中不掉渣,延长使用寿命。
实施例1
本实施例用于金属件电解抛光的材料采用带乙胺基团(-C 2H 4NH 2)的聚丙烯酸酯多孔树脂颗粒物,是利用包括乙胺丙烯酸单体在内的多种丙烯酸单体通过悬浮聚合制得。通过不同目数筛子筛选,得到相应粒径的带乙胺基团的聚丙烯酸酯多孔树脂颗粒物。
本实施例用于金属件电解抛光的固体颗粒物的制备方法如下:
将16目~50目(即0.27mm~1mm)的含乙胺基团的聚丙烯酸酯多孔树脂颗粒物浸泡在质量浓度为5%的硫酸钠溶液中3h,晾干至不粘手(时间为24小时,此时可以看作是饱和吸附量),得到含有电解质溶液50wt%的含乙胺基团的聚丙烯酸酯多孔树脂颗粒物,即本实施例用于金属件电解抛光的固体颗粒物。
实施例2
本实施例用于金属件电解抛光的材料采用带季铵盐基团(-N +(CH 3) 3)的聚丙烯酸酯多孔树脂颗粒物,是利用包括季铵盐丙烯酸单体在内的多种丙烯酸单体通过悬浮聚合制得。通过不同目数筛子筛选,得到相应粒径的带季铵盐基团的聚丙烯酸酯多孔树脂颗粒物。
本实施例用于金属件电解抛光的固体颗粒物的制备方法如下:
将16目~50目(即0.27mm~1mm)的带季铵盐基团的聚丙烯酸酯多孔树脂颗粒物浸泡在质量浓度为5%的硫酸钠溶液中3h,晾干至不粘手(时间为40小时,此时可以看作是饱和吸附量),得到含有电解质溶液55wt%的带季铵盐基团的聚丙烯酸酯多孔树脂颗粒物,即本实施例用于金属件电解抛光的固体颗粒物。
结果表征及性能测试
下面将结合附图对含胺基的聚丙烯酸酯多孔树脂颗粒及固体颗粒物应用于金属件固体电解抛光的抛光效果进行说明。
图1是含胺基颗粒物,即实施例1所用带乙胺基团的聚丙烯酸酯多孔树脂颗粒物的扫描电镜(SEM)图。其中图1(a)是带乙胺基团的聚丙烯酸酯多孔树脂颗粒物放大44倍的扫描电镜图;图1(b)是带乙胺基团的聚丙烯酸酯多孔树脂颗粒物放大220倍的扫描电镜图;、图1(c)是带乙胺基团的聚丙烯酸酯多孔树脂颗粒物放大11000倍的扫描电镜图;图1(d)是带乙胺基团的聚丙烯酸酯多孔树脂颗粒物放大44000倍的扫描电镜图。图1(a)展示了不同粒径的含乙胺基团的聚丙烯酸酯多孔树脂颗粒物,其中颗粒物的粒径为0.01毫米-50毫米。为了消除粒径的不同对颗粒性能的影响,可以通过不同目数筛子筛选,得到相应粒径的含乙胺基团的聚丙烯酸酯多孔树脂颗粒物。图1(b)、图1(c)和图1(d)进一步展示了颗粒的表面结构,可以看出颗粒的表面由很多小颗粒堆积而成,颗粒内与颗粒间形成多孔结构,可以吸附和容纳更多的金属离子。
图2是含季铵盐颗粒物,即实施例2所用带季铵盐基团的聚丙烯酸酯多孔树脂颗粒物的扫描电镜图。其中图2(a)是带季铵盐基团的聚丙烯酸酯多孔树脂颗粒物放大44倍的扫描电镜图;图2(b)是带季铵盐基团的聚丙烯酸酯多孔树脂颗粒物放大220倍的扫描电镜图;、图2(c)是带季铵盐基团的聚丙烯酸酯多孔树脂颗粒物放大11000倍的扫描电镜图;图2(d)是带季铵盐基团的聚丙烯酸酯多孔树脂颗粒物放大44000倍的扫描电镜图。从图2可见,相比于含胺基颗粒物,含季铵盐颗粒物表面更加粗糙,表面堆积的小颗粒更加聚集。
进一步的,分别对含乙胺基团的聚丙烯酸酯多孔树脂颗粒物和含季铵盐基团的聚丙烯酸酯多孔树脂颗粒物进行了孔径物理吸附测试,测试结果如图3和图4所示。从图3含胺基颗 粒物的孔径物理吸附测试图可以看出,含乙胺基团的聚丙烯酸酯多孔树脂颗粒物其孔径为25nm和90nm附近的两类。从图4含季铵盐颗粒物的孔径物理吸附测试图可以看出,含季铵盐基团的聚丙烯酸酯多孔树脂颗粒物的比表面积更大,除了25nm和90nm附近的两类,其还有许多10nm以下的孔,与扫描电镜的测试结果对应。
为了进一步验证含乙胺基团的聚丙烯酸酯多孔树脂颗粒物和含季铵盐基团的聚丙烯酸酯多孔树脂颗粒物的离子吸附性能,分别对含乙胺基团的聚丙烯酸酯多孔树脂颗粒物和含季铵盐基团的聚丙烯酸酯多孔树脂颗粒物进行了离子吸附实验测试。由于固体电解抛光测试用的金属件是铬钴合金,因此选用钴盐溶液(镍盐、铜盐、铁盐结果类似,针对不同金属基材可选用不同金属盐)进行离子吸附实验,离子浓度由电感耦合等离子光谱(ICP)测得。具体的是将同质量的含乙胺基团的聚丙烯酸酯多孔树脂颗粒物和含季铵盐基团的聚丙烯酸酯多孔树脂颗粒物在等浓度等体积的钴盐水溶液中,测试一段时间后上清液中钴离子的浓度,具体对比结果如下表1所示。
表1含乙胺基团和含季铵盐基团的聚丙烯酸酯多孔树脂颗粒物的离子吸附实验测试结果
Figure PCTCN2022138716-appb-000001
实验结果表明,含乙胺基团的聚丙烯酸酯多孔树脂颗粒物和含季铵盐基团的聚丙烯酸酯多孔树脂颗粒物均具有一定的离子交换性能,ICP测试结果表明24h后上清液中钴离子的浓度均降低,其中浸泡有含乙胺基团的聚丙烯酸酯多孔树脂颗粒物的金属离子溶液中上清液的颜色比浸泡有含季铵盐基团的聚丙烯酸酯多孔树脂颗粒物的金属离子溶液中上清液的颜色更浅,ICP测试结果表明24h后上清液中钴离子浓度为38mmol/L,证实含乙胺基团的聚丙烯酸酯多孔树脂颗粒物的离子扩散与交换/吸附/络合能力比含季铵盐基团的聚丙烯酸酯多孔树脂颗粒物更强。
本发明实施例是将含乙胺基团的聚丙烯酸酯多孔树脂颗粒物和含季铵盐基团的聚丙烯酸酯多孔树脂颗粒物浸泡在电解质溶液中,然后干燥,得到用于金属件电解抛光的固体颗粒物。在本发明中,所述电解质可以为水,也可以为可溶性的中性盐溶液。所述可溶性盐溶液中的盐为可溶性氯盐、氟盐、硫酸盐、磷酸盐、硝酸盐、EDTA盐中的至少一种。其中,电解质溶液中电解质的质量浓度为0.1%~20%。为了不因为电解质溶液的pH影响胺基的状态,本发明实施例采用的电解质溶液为质量浓度为5%的硫酸钠中性盐溶液。这里需要说明的是,由于本发明采取的是先浸泡吸附再挥发的步骤,而电解质溶质的挥发速度一般要慢于溶剂的挥发 速度,因此最终固体颗粒物孔道内部的实际电解质溶液浓度会略高于最开始浸泡的电解质溶液的浓度。
为了进一步确定含乙胺基团的聚丙烯酸酯多孔树脂颗粒物和含季铵盐基团的聚丙烯酸酯多孔树脂颗粒物的电导率,进行了如下实验测试。将等质量的含乙胺基团的聚丙烯酸酯多孔树脂颗粒物和含季铵盐基团的聚丙烯酸酯多孔树脂颗粒物分别浸泡于等体积的硫酸溶液中,其中硫酸溶液的质量浓度为3%,然后进行过滤和晾干处理,并测量不同晾干时间的含乙胺基团的聚丙烯酸酯多孔树脂颗粒物和含季铵盐基团的聚丙烯酸酯多孔树脂颗粒物中电解质的含量及电阻值。含乙胺基团的聚丙烯酸酯多孔树脂颗粒物和含季铵盐基团的聚丙烯酸酯多孔树脂颗粒物的电阻值测量结果是通过万用表测量体积电阻值得到,具体的结果如下表2所示。
表2含乙胺基团和含季铵盐基团的聚丙烯酸酯多孔树脂颗粒物的体积电阻测试结果
Figure PCTCN2022138716-appb-000002
其中电解质溶液质量含量的测试方法是,将经电解质溶液浸泡并过滤后的含乙胺基团的聚丙烯酸酯多孔树脂颗粒物和含季铵盐基团的聚丙烯酸酯多孔树脂颗粒物放置于150℃的鼓风干燥箱内,然后按如下公式计算:电解质溶液质量含量=(失重质量÷测试前颗粒质量)×100%。
可以看出,含季铵盐基团的聚丙烯酸酯多孔树脂颗粒物具有更高的含水量和更低的挥发性,这可能是因为它具有更丰富的孔结构。由于不同的电解质含量会导致颗粒的电阻值发生变化,因此,可以通过控制颗粒物内部和表面的电解质含量来调节所述颗粒物的电导率,选择电导率适宜的颗粒物用于金属件电解抛光。本发明实施例中,所述颗粒物的孔道内部和/或表面电解质的质量含量为15%-60%。
将制备得到的含乙胺基团的聚丙烯酸酯多孔树脂颗粒物和含季铵盐基团的聚丙烯酸酯多孔树脂颗粒物应用于金属件固体电解抛光的方法,包括如下步骤:
步骤一、将颗粒物和待抛光的金属件放置于电化学抛光装置中;其中,待抛光的金属件与电源的正极连接,颗粒物与电源的负极电化学连接;
步骤二、接通电源,电解的同时所述待抛光的金属件与所述颗粒物发生相对摩擦运动。
所述电化学抛光装置含有金属网笼;将金属样件与电化学抛光装置的正极连接后,插入到所述金属网笼中;所述金属网笼分别与所述颗粒物和所述电化学抛光装置的负极相连。
所述插入的方式包括搅拌或振动。由此,可以使得接触正极和负极的固体颗粒物在不断变换,从而得到充分利用。
本发明固体颗粒物电解抛光金属的具体原理过程示意图可见图5。参见图5的原理示意图,抛光速率与效果由这三个步骤控制:1、金属的氧化过程,直观的表征即电流大小(实验证实0.01-100A之间较为合适),而电流大小由施加的电压与固体颗粒物的电阻(金属样件和整个其他电化学系统的电阻都远小于固体颗粒物的电阻,故忽略)决定,如果施加电压低于金属的氧化电势与极化电势,那么金属离子无法被顺利氧化脱离金属,如果固体颗粒物的电阻过大(主要由电解质溶液的电阻和含量决定),那么金属离子的氧化速率也会很慢,无法实现抛光效果;2、金属离子的扩散过程,由于是固体抛光,因此离子扩散过程也是速控步之一,如果导电溶液含量过低,固体颗粒物孔径过小(小于实际离子大小),那么也无法实现抛光效果;3、金属离子的交换/吸附/络合过程,这一过程是主要由孔容、基团数量与种类决定,在本发明中,金属离子进入颗粒物内部并与颗粒物孔道上的羟基功能基团发生螯合/络合反应,从而将金属离子吸附在颗粒物内,达到迁移、固定金属离子的作用,从而降低金属样件表面的金属离子浓度,降低极化,加快离子迁移,加快抛光速率,从而实现光亮效果。本发明也证实了在电压和颗粒物电导率差异不大时,抛光效果主要由离子扩散与交换/吸附/络合能力决定。
为了验证内部和/或表面含有一定量的电解质溶液的颗粒物的金属件抛光性能,本发明将实施例制得的颗粒物放置于电解抛光装置中,其中,待抛光的金属件与电源的正极连接,颗粒物与电源的负极电化学连接,进行金属件抛光性能测试(施加电压60V,抛光20min),并通过肉眼观察、扫描电镜对金属件表面的形态进行表征、光学轮廓仪对其粗糙度进行测试。表3含乙胺基团和含季铵盐基团的聚丙烯酸酯多孔树脂颗粒物固体电解抛光的肉眼观察结果
颗粒物类型 抛光亮度
抛光前 灰暗
-C 2H 4NH 2 光亮
-N +(CH 3) 3 哑光
从表3可以看出,不同的颗粒物应用于金属件固体电解抛光时,其效果不同,金属件在固体电解抛光前,其表面为灰暗,采用孔道内部和/或表面含有一定量的电解质溶液的颗粒物进行金属件抛光,金属件表面亮度会有明显变化,其中,应用含乙胺基团的聚丙烯酸酯多孔树脂颗粒物抛光后金属件表面光亮,相比较含季铵盐基团的聚丙烯酸酯多孔树脂颗粒物,含乙胺基团的聚丙烯酸酯多孔树脂颗粒物的固体电解抛光效果更好。这里进一步证实了离子交换/吸附/络合过程的速率对金属抛光效果有重要作用。
图6为金属件经含乙胺基团的聚丙烯酸酯多孔树脂颗粒物固体电解抛光后的扫描电镜图, 图7为金属件经含季铵盐的聚丙烯酸酯多孔树脂颗粒物固体电解抛光后的扫描电镜图。从图6-7中可以看出,金属件抛光前,其表面含有一定的颗粒,表面灰暗,经含季铵盐基团的聚丙烯酸酯多孔树脂颗粒物固体电解抛光后,其表面形态有了一定的改善,而含乙胺基团的聚丙烯酸酯多孔树脂颗粒物筛抛光后的电金属件表面更加平滑光亮,进一步表明含乙胺基团的聚丙烯酸酯多孔树脂颗粒物的固体电解抛光效果更好。这说明虽然含季铵盐基团的聚丙烯酸酯多孔树脂颗粒物具有更高的表面积、孔体积、电导率,但是由于金属离子的交换/吸附/络合速率较低,抛光效果依旧不好。即证实了金属离子的交换/吸附/络合速率(图5的第三步)是固体电解抛光过程中的核心步骤。
为了进一步确定金属件表面的抛光效果,分别对抛光前的金属件和抛光后的金属件进行了拍照测试。图8为金属件抛光前的表面形貌图,图9为金属件经含乙胺基团的聚丙烯酸酯多孔树脂颗粒物固体电解抛光后的表面形貌图,图10为金属件经含季铵盐的聚丙烯酸酯多孔树脂颗粒物固体电解抛光后的表面形貌图。这里需要说明的是,由于采用的是医用3D打印铬钴金属样件,因此样件形状具有一定差异,但是材质是完全一样的。从图8-10可以看出,采用含乙胺基团的聚丙烯酸酯多孔树脂颗粒物进行固体电解抛光后的金属件表面光亮平滑,进一步表明含乙胺基团的聚丙烯酸酯多孔树脂颗粒物具有较好的固体电解抛光效果。
进一步的,采用光学轮廓仪对固体电解抛光后的金属件的表面进行了粗糙度的测试,测试结果如下表4所示。
表4不同类型的颗粒物固体电解抛光的粗糙度测试结果
颗粒物类型 金属件粗糙度Ra(μm)
-C 2H 4NH 2 0.630
-N +(CH 3) 3 2.326
测试结果表明,金属件抛光前其表面粗糙度为4.082μm,经含乙胺基团的聚丙烯酸酯多孔树脂颗粒物固体电解抛光后的金属件的表面粗糙度为0.630μm,经含季铵盐基团的聚丙烯酸酯多孔树脂颗粒物固体电解抛光后的金属件的表面粗糙度为2.326μm,结果进一步说明说明含乙胺基团的聚丙烯酸酯多孔树脂颗粒物和含季铵盐基团的聚丙烯酸酯多孔树脂颗粒物应用于金属件固体电解抛光方面具有一定效果,且含乙胺基团的聚丙烯酸酯多孔树脂颗粒物固体电解抛光后的金属件的表面抛光效果更好。此处需要说明的是,由于金属件表面本身是凹凸的,所以Ra值相对平面的样件来说大一些。
通过以上试验可知,采用本发明实施例提供的固体颗粒物作为抛光材料,能实现在非液体条件下对金属表面进行高效的电化学抛光处理,可以避免产生大量有毒有害的废液,能够 降低环境污染。这种固体颗粒物可以通过离子吸附等方式进行净化与重复利用,能够大幅减低成本。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种用于金属件电解抛光的固体颗粒物,其特征在于,所述固体颗粒物具有多孔结构;所述固体颗粒物含有胺基基团;所述固体颗粒物的孔道内部和/或表面含有电解质。
  2. 根据权利要求1所述的固体颗粒物,其特征在于,所述胺基基团为伯胺、仲胺、叔胺、季胺中的至少一种。
  3. 根据权利要求1所述的固体颗粒物,其特征在于,所述固体颗粒物包括带胺基基团的丙烯酸树脂、胺基改性的硅胶、胺基改性的分子筛中的至少一种。
  4. 根据权利要求1所述的固体颗粒物,其特征在于,所述电解质可以调节所述固体颗粒物的电导率。
  5. 根据权利要求1或4所述的固体颗粒物,其特征在于,所述固体颗粒物的孔道内部和/或表面电解质的质量含量为15%~80%。
  6. 根据权利要求1或4所述的固体颗粒物,其特征在于,所述电解质包括水、可溶性盐溶液中的至少一种。
  7. 根据权利要求6所述的固体颗粒物,其特征在于,所述可溶性盐溶液的质量浓度为0.1%~20%。
  8. 根据权利要求7所述的固体颗粒物,其特征在于,所述可溶性盐溶液中的盐包括可溶性氯盐、氟盐、硫酸盐、磷酸盐、硝酸盐、EDTA盐中的至少一种。
  9. 权利要求1至8任一项所述的固体颗粒物的制备方法,其特征在于,包括以下步骤:
    将具有多孔结构、含有胺基基团的固体颗粒浸泡在电解质中,然后干燥,得到所述的固体颗粒物。
  10. 一种金属件的固体电解抛光方法,其特征在于,包括以下步骤:
    S1:将权利要求1至8任一项所述的固体颗粒物和待抛光的金属件置于电化学抛光装置中;
    其中,所述待抛光的金属件与所述电化学抛光装置的电源正极连接,所述固体颗粒物与所述电化学抛光装置的电源负极连接;
    S2:将电化学抛光装置通电进行电解抛光,电解抛光时所述待抛光的金属件与所述固体颗粒物发生相对摩擦运动。
PCT/CN2022/138716 2021-12-28 2022-12-13 一种用于金属件电解抛光的固体颗粒物 WO2023124977A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111626740.2 2021-12-28
CN202111626740.2A CN114481286A (zh) 2021-12-28 2021-12-28 一种用于电解抛光的固体颗粒物
CN202210552061.3 2022-05-20
CN202210552061.3A CN114908410B (zh) 2021-12-28 2022-05-20 一种用于金属件电解抛光的固体颗粒物

Publications (1)

Publication Number Publication Date
WO2023124977A1 true WO2023124977A1 (zh) 2023-07-06

Family

ID=81497063

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2022/138716 WO2023124977A1 (zh) 2021-12-28 2022-12-13 一种用于金属件电解抛光的固体颗粒物
PCT/CN2022/138712 WO2023124975A1 (zh) 2021-12-28 2022-12-13 应用于金属件固体电解抛光的离子交换树脂及其应用方法
PCT/CN2022/138721 WO2023124980A1 (zh) 2021-12-28 2022-12-13 一种应用于金属件固体电解抛光的颗粒物及应用方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/138712 WO2023124975A1 (zh) 2021-12-28 2022-12-13 应用于金属件固体电解抛光的离子交换树脂及其应用方法
PCT/CN2022/138721 WO2023124980A1 (zh) 2021-12-28 2022-12-13 一种应用于金属件固体电解抛光的颗粒物及应用方法

Country Status (2)

Country Link
CN (4) CN114481286A (zh)
WO (3) WO2023124977A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114164482B (zh) * 2021-12-27 2023-09-15 鹤壁市海格化工科技有限公司 离子交换树脂在不规则金属件抛光中的应用及应用方法
CN114481286A (zh) * 2021-12-28 2022-05-13 广东省科学院化工研究所 一种用于电解抛光的固体颗粒物
CN117186475B (zh) * 2023-11-07 2024-02-09 华中科技大学 一种用于碱性液流电池的有机羧酸醚改性阳离子交换膜的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1646649A (zh) * 2002-02-26 2005-07-27 应用材料股份有限公司 研磨基材的方法及组合物
US20060169674A1 (en) * 2005-01-28 2006-08-03 Daxin Mao Method and composition for polishing a substrate
CN107207910A (zh) * 2015-02-03 2017-09-26 嘉柏微电子材料股份公司 用于移除硅氮化物的化学机械抛光组合物
RU2700226C1 (ru) * 2018-10-02 2019-09-13 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" Способ электрополирования металлической детали
CN111032929A (zh) * 2018-01-26 2020-04-17 德里莱特公司 H2so4在用于通过游离固体进行离子迁移对金属进行平滑和抛光的方法中作为电解质的用途
CN112534088A (zh) * 2018-11-12 2021-03-19 德里莱特公司 磺酸在干电解质中通过离子传输抛光金属表面的用途
WO2021156531A1 (es) * 2020-02-04 2021-08-12 Drylyte, S.L. Electrolito solido para el electropulido en seco de metales con moderador de actividad
CN114481286A (zh) * 2021-12-28 2022-05-13 广东省科学院化工研究所 一种用于电解抛光的固体颗粒物

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6638143B2 (en) * 1999-12-22 2003-10-28 Applied Materials, Inc. Ion exchange materials for chemical mechanical polishing
JP2001267273A (ja) * 2000-01-11 2001-09-28 Sumitomo Chem Co Ltd 金属用研磨材、研磨組成物及び研磨方法
JP2004172606A (ja) * 2002-11-08 2004-06-17 Sumitomo Chem Co Ltd 金属研磨材組成物及び研磨方法
US7044836B2 (en) * 2003-04-21 2006-05-16 Cabot Microelectronics Corporation Coated metal oxide particles for CMP
US7427361B2 (en) * 2003-10-10 2008-09-23 Dupont Air Products Nanomaterials Llc Particulate or particle-bound chelating agents
CN1900206B (zh) * 2005-07-21 2011-01-05 安集微电子(上海)有限公司 化学机械抛光液及其用途
US20080067077A1 (en) * 2006-09-04 2008-03-20 Akira Kodera Electrolytic liquid for electrolytic polishing and electrolytic polishing method
CN101168847A (zh) * 2006-09-04 2008-04-30 株式会社荏原制作所 用于电解抛光的电解液以及电解抛光方法
US7691287B2 (en) * 2007-01-31 2010-04-06 Dupont Air Products Nanomaterials Llc Method for immobilizing ligands and organometallic compounds on silica surface, and their application in chemical mechanical planarization
JP2009241211A (ja) * 2008-03-31 2009-10-22 Toyo Tire & Rubber Co Ltd 電解研磨パッドの製造方法
US9633865B2 (en) * 2008-02-22 2017-04-25 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Low-stain polishing composition
ES2604830B1 (es) * 2016-04-28 2017-12-18 Drylyte, S.L. Proceso para alisado y pulido de metales por transporte iónico mediante cuerpos sólidos libres, y cuerpos sólidos para llevar a cabo dicho proceso.
JP6945233B2 (ja) * 2017-11-15 2021-10-06 日本表面化学株式会社 電解研磨液及び加工金属の製造方法
EP3690993B1 (en) * 2019-02-01 2023-10-04 Samsung SDI Co., Ltd. Compositions for forming a porous insulating layer, electrode for non-aqueous electrolyte rechargeable battery, rechargeable battery including the electrode and method of manufacturing the electrode
EP3998375A4 (en) * 2019-08-01 2023-08-16 Drylyte, S.L. METHOD AND DEVICE FOR THE DRY TREATMENT OF METALLIC SURFACES BY MEANS OF ELECTRICALLY ACTIVE SOLID PARTICLES
CN111841623B (zh) * 2020-08-19 2021-09-24 河南大学 分子筛催化剂及其制备方法及用途
CN113699579A (zh) * 2021-09-03 2021-11-26 深圳市汉伟港泰首饰机械设备有限公司 一种金属抛光方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1646649A (zh) * 2002-02-26 2005-07-27 应用材料股份有限公司 研磨基材的方法及组合物
US20060169674A1 (en) * 2005-01-28 2006-08-03 Daxin Mao Method and composition for polishing a substrate
CN107207910A (zh) * 2015-02-03 2017-09-26 嘉柏微电子材料股份公司 用于移除硅氮化物的化学机械抛光组合物
CN111032929A (zh) * 2018-01-26 2020-04-17 德里莱特公司 H2so4在用于通过游离固体进行离子迁移对金属进行平滑和抛光的方法中作为电解质的用途
RU2700226C1 (ru) * 2018-10-02 2019-09-13 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" Способ электрополирования металлической детали
CN112534088A (zh) * 2018-11-12 2021-03-19 德里莱特公司 磺酸在干电解质中通过离子传输抛光金属表面的用途
WO2021156531A1 (es) * 2020-02-04 2021-08-12 Drylyte, S.L. Electrolito solido para el electropulido en seco de metales con moderador de actividad
CN114481286A (zh) * 2021-12-28 2022-05-13 广东省科学院化工研究所 一种用于电解抛光的固体颗粒物
CN114908409A (zh) * 2021-12-28 2022-08-16 广东省科学院化工研究所 应用于金属件固体电解抛光的离子交换树脂及其应用方法
CN114908410A (zh) * 2021-12-28 2022-08-16 广东省科学院化工研究所 一种用于金属件电解抛光的固体颗粒物

Also Published As

Publication number Publication date
CN114908409B (zh) 2023-03-24
CN114481286A (zh) 2022-05-13
WO2023124980A1 (zh) 2023-07-06
CN114908410B (zh) 2023-03-14
CN115029768B (zh) 2023-06-06
CN114908410A (zh) 2022-08-16
WO2023124975A1 (zh) 2023-07-06
CN114908409A (zh) 2022-08-16
CN115029768A (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
WO2023124977A1 (zh) 一种用于金属件电解抛光的固体颗粒物
CN107658221B (zh) 一种金刚线切割多晶硅片的制绒方法
CN110773001A (zh) 一种纳滤复合膜、制备方法及应用
CN112062229A (zh) 一种Bi/MOF衍生多孔碳球复合材料及其制备方法、应用
CN111032929A (zh) H2so4在用于通过游离固体进行离子迁移对金属进行平滑和抛光的方法中作为电解质的用途
CN110685003B (zh) 一种在45钢表面制备超疏水Ni-P-Al2O3纳米复合镀层的电化学方法
CN110152667B (zh) 一种铁屑表面改性形成γ-FeOOH的方法
CN104959625A (zh) 片状银粉的制备方法
Huang et al. Removal of copper ions from an aqueous solution containing a chelating agent by electrosorption on mesoporous carbon electrodes
Jin et al. Electrochemically mediated atom transfer radical polymerization of iminodiacetic acid-functionalized poly (glycidyl methacrylate) grafted at carbon fibers for nano-nickel recovery from spent electroless nickel plating baths
CN114411157A (zh) 一种铝箔残留氯离子的清洗方法及其应用
CN111048317B (zh) 一种低压软态腐蚀铝箔的方法
KR20190047868A (ko) 수처리용 전극의 제조방법
CN111924987B (zh) 一种硬水中选择性吸附钙离子的方法以及CuHCF的应用
CN109137009B (zh) 一种脉冲电沉积制备多孔氢氧化镁的方法
CN110357221B (zh) 一种C@Bi/rGO电吸附复合活性材料及其制备和应用
CN114632498A (zh) 一种超支化巯基海绵吸附剂及其制备方法和应用
CN111036168A (zh) 一种利用改性羟基磷灰石高效去除印染废水中锑离子的方法
CN115090256B (zh) 一种酸钠改性海泡石及其改性方法和应用
CN111762853B (zh) 一种液态阳极及其富集分离水体中阴离子的方法
CN114808035B (zh) 一种基于MoS2基材料的光电特性高效回收水体中痕量银的方法
CN113415857B (zh) 一种使用碳糊电极吸附电还原无害化处理六价Cr废水的方法
CN118028961A (zh) 应用于含铬或钴金属的固体电解抛光材料及方法
CN114130371A (zh) 一种铜吸附材料及其制备方法和应用
CN114247419A (zh) 一种吸附材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914232

Country of ref document: EP

Kind code of ref document: A1