WO2023124975A1 - 应用于金属件固体电解抛光的离子交换树脂及其应用方法 - Google Patents

应用于金属件固体电解抛光的离子交换树脂及其应用方法 Download PDF

Info

Publication number
WO2023124975A1
WO2023124975A1 PCT/CN2022/138712 CN2022138712W WO2023124975A1 WO 2023124975 A1 WO2023124975 A1 WO 2023124975A1 CN 2022138712 W CN2022138712 W CN 2022138712W WO 2023124975 A1 WO2023124975 A1 WO 2023124975A1
Authority
WO
WIPO (PCT)
Prior art keywords
exchange resin
ion exchange
electrolyte
metal
polishing
Prior art date
Application number
PCT/CN2022/138712
Other languages
English (en)
French (fr)
Inventor
庞浩
廖兵
洪培萍
余越
Original Assignee
广东省科学院化工研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东省科学院化工研究所 filed Critical 广东省科学院化工研究所
Priority to MX2024008080A priority Critical patent/MX2024008080A/es
Priority to KR1020247024132A priority patent/KR20240124370A/ko
Priority to EP22914230.2A priority patent/EP4446478A1/en
Publication of WO2023124975A1 publication Critical patent/WO2023124975A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/06Other polishing compositions
    • C09G1/14Other polishing compositions based on non-waxy substances
    • C09G1/16Other polishing compositions based on non-waxy substances on natural or synthetic resins
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F7/00Constructional parts, or assemblies thereof, of cells for electrolytic removal of material from objects; Servicing or operating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the invention relates to the technical field of metal surface treatment, in particular to an ion exchange resin used in solid electrolytic polishing of metal parts and an application method thereof.
  • polishing has been diversified.
  • Common polishing methods include physical polishing, chemical polishing and composite polishing.
  • Physical polishing is generally mechanical polishing, which is the process of removing the convex part of the polished surface by cutting, abrasion or plastic deformation to obtain a smooth and bright surface.
  • Chemical polishing is the process of preferentially oxidizing the tiny metal protrusions on the surface to be polished into metal ions by chemical corrosion (electrochemical corrosion) to etch, thereby improving the roughness of the metal surface and obtaining a smooth and bright surface.
  • Chemical polishing solves the technical problems difficult to solve by mechanical polishing to a certain extent, but a large amount of chemical oxidizing agent or electrolyte will cause harm to the body of the operator, and at the same time, a large amount of waste liquid will be generated after polishing. If it is not handled properly, it will cause serious damage. environmental pollution.
  • CN109415839A discloses a method of smoothing and polishing metal by ion transport of free solids and a solid for performing the method, which smoothes and polishes metal parts by ion transport, wherein the disclosed spherical particles are sulfonated styrene-divinyl Benzene resin, but due to the influence of factors such as steric hindrance effect and ion complexation, the smooth polishing effect of the resin on the metal surface cannot be controlled. For example, for some easy-to-polish metals, it will cause excessive polishing and defects on the surface of the precise parts of the metal sample; for some difficult-to-polish metals, it will cause incomplete polishing and poor surface gloss.
  • CN113699579A discloses a metal polishing method, which first uses mild electrolytic conditions to perform aqueous electrolytic polishing on the polished workpiece, so that the surface of the polished workpiece reaches a preliminary brightness, and then uses a spherical solid electrolyte to achieve the preliminary brightness of the surface.
  • the polished workpiece is subjected to compound electrolytic polishing, so that the surface of the polished workpiece reaches the final mirror brightness.
  • the process is relatively complicated.
  • its composite electrolytic polishing is a mechanical action and an electrolytic action at the same point.
  • the present invention aims to solve at least one of the above-mentioned technical problems existing in the prior art. For this reason, one of the purposes of the present invention is to provide a kind of ion exchange resin that is applied to the solid electropolishing of metal parts, and the second purpose of the present invention is to provide a kind of preparation method of this ion exchange resin, and the third purpose of the present invention is to Provided is a solid electrolytic polishing method for metal pieces using the ion exchange resin.
  • the first aspect of the present invention provides an ion exchange resin applied to solid electrolytic polishing of metal parts
  • the ion exchange resin is an organic weak acid type cation exchange resin with a porous structure; the inside of the pores of the ion exchange resin and/or The surface contains electrolytes.
  • the organic weak acid cation exchange resin includes at least one of acrylic acid cation exchange resin, oxalic acid cation exchange resin, citric acid cation exchange resin, salicylic acid cation exchange resin, and EDTA cation exchange resin.
  • the acrylic acid type cation exchange resin is a carboxylic acid type ion exchange resin containing COOH/COO - group;
  • the ratio of the COOH group and the COO- group is adjusted by the type of raw material for the preparation of the ion exchange resin and/or the pH value of the electrolyte.
  • the particle size of the ion exchange resin is 0.01 mm to 10 mm; further preferably, the particle size of the ion exchange resin is 0.27 mm to 4 mm.
  • the electrolyte can adjust the conductivity of the ion exchange resin.
  • the volume resistance of the ion exchange resin is 0.01M ⁇ ⁇ 5M ⁇ ; more preferably, the volume resistance of the ion exchange resin is 0.05M ⁇ ⁇ 4M ⁇ .
  • the mass content of the electrolyte in the pores and/or the surface of the ion exchange resin is 15% to 80%; further preferably, the mass content of the electrolyte in the pores and/or surface of the ion exchange resin is 30% to 65% .
  • the electrolyte includes at least one of water, acid solution, alkali solution, and salt solution.
  • the acid of the acid solution includes at least one of H 2 SO 4 , HCl, H 3 PO 4 , HNO 3 , and HF.
  • the alkali of the alkali solution includes at least one of NaOH and KOH.
  • the salt of the saline solution includes at least one of soluble chloride salts, fluorine salts, sulfates, phosphates, nitrates, and EDTA salts.
  • a second aspect of the present invention provides a method for preparing an ion exchange resin applied to solid electrolytic polishing of metal parts according to the first aspect of the present invention, comprising the following steps: soaking an organic weak acid type cation exchange resin with a porous structure in In the electrolyte, adjust the pH value of the electrolyte, then filter and volatilize to obtain the ion exchange resin applied to solid electrolytic polishing of metal parts.
  • the pH value of the electrolyte in the organic weak acid cation exchange resin is greater than 4.
  • a third aspect of the present invention provides a method for carrying out solid electropolishing of metal parts using the ion exchange resin according to the first aspect of the present invention, comprising the following steps:
  • the metal piece to be polished is connected to the positive pole of the power supply of the electrochemical polishing device, and the ion exchange resin is connected to the negative pole of the power supply of the electrochemical polishing device;
  • S2 energize the electrochemical polishing device to perform electrolytic polishing.
  • the metal part to be polished and the ion exchange resin undergo relative frictional motion.
  • the ion exchange resin of the present invention is an organic weak acid cation exchange resin.
  • the organic weak acid cation exchange resin can also dissociate cations from the metal parts. Sufficient chelation occurs, and the adsorption of metal ions is easier due to less steric hindrance. After organic weak acid cation exchange resin adsorbs metal ions, due to complexation, metal ions are difficult to detach, which effectively improves its polishing efficiency.
  • the organic weak acid cation exchange resin can adjust the ratio of COOH and COO - groups through the pH of the electrolyte solution.
  • the ion exchange resin provided by the invention is applied to solid electrolytic polishing of metal parts. Compared with mechanical polishing and electrolytic polishing, it can fully polish the parts of metal parts that are not convenient for grinding, and does not require a large amount of chemical oxidizing agents and Electrolyte, environment friendly and high safety. In addition, the modified ion exchange resin can be regenerated after being used for a period of time, which greatly improves the service life and reduces the cost.
  • Fig. 1 is the scanning electron micrograph of ion exchange resin
  • Fig. 2 is the pore size physical adsorption test figure of ion exchange resin
  • Fig. 3 is the X-ray photoelectron energy spectrogram of ion exchange resin
  • Fig. 4 is the schematic diagram of the principle of electropolishing metal of the present invention.
  • Figure 5 is a scanning electron microscope image of the metal piece before polishing
  • Fig. 6 is a scanning electron micrograph of a metal part polished with COOH type resin
  • Fig. 7 is the scanning electron micrograph of the metal part that adopts 10g COOH type resin to add 0.5g NaOH sample polishing;
  • Figure 8 is a scanning electron microscope image of a metal piece polished with COONa resin
  • Fig. 9 is the surface topography figure before metal piece polishing
  • Fig. 10 is the metal part surface topography figure after adopting 10g COOH type resin to add 0.5g NaOH sample polishing;
  • Fig. 11 is a surface topography diagram of a metal part polished with COONa resin.
  • the ion exchange resin provided by the invention is applied to solid electrolytic polishing of metal parts.
  • electropolishing is to immerse the metal in a special chemical solution composed of various components, relying on high chemical potential energy to oxidize the metal to obtain a smooth and bright surface
  • solid electropolishing uses conductive solid particles instead of Electrolyte, through the contact of solid particles with the metal parts to be polished, so as to realize the polishing treatment on the surface of the metal parts.
  • What needs to be pointed out here is that although the solid particles are in contact with the metal piece to be polished, the relative movement rate of this contact is low, and the hardness of the solid particles is lower than that of the metal piece, so there is no physical mechanical polishing process.
  • the solid particles provided in the embodiments of the present invention are organic weak acid cation exchange resins with a porous structure, wherein the pores and/or surfaces of the organic weak acid cation exchange resins contain a certain amount of electrolyte.
  • the porous structure can make the organic weak acid cation exchange resin lose the electrolyte on the surface firstly, and then lose the electrolyte in the pores during the drying process after being wetted by the electrolyte solution.
  • the porous structure can ensure that the organic weak acid cation exchange resin still has good conductivity after completely losing the surface electrolyte.
  • the organic weak acid type cation exchange resin in the embodiment of the present invention includes oxalic acid type cation exchange resin, acrylic acid type cation exchange resin, citric acid type cation exchange resin, salicylic acid type cation exchange resin or EDTA type cation exchange resin.
  • the ion exchange resin is modified with carboxylic acid groups, i.e. COOH groups, wherein the ratio of COOH groups and COO groups on the ion exchange resins can be passed
  • carboxylic acid groups i.e. COOH groups
  • the type of raw material for the preparation of the ion exchange resin and/or the pH value of the electrolyte are regulated.
  • ion exchange resins containing COOH groups are briefly referred to as COOH-type ion exchange resins
  • ion exchange resins containing COO - groups are briefly referred to as COO - type ion exchange resins.
  • the acrylic cation exchange resin is made by polymerizing active acrylate monomers, common monomers and cross-linking monomers.
  • the active acrylate monomer includes a carboxyl group, such as selected from acrylic acid, methacrylic acid, etc., and the mass parts of the active acrylate monomer can be 50-90 parts.
  • the common monomers include at least one of acrylic monomers and ethylenic double bond monomers, such as methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, n-butyl acrylate, At least one of octyl, isooctyl acrylate, isobornyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, isobornyl methacrylate, ethylene, propylene, styrene, and acrylonitrile A sort of.
  • the mass parts of the common monomers may be 10-50 parts.
  • the crosslinking monomer includes at least one of multifunctional acrylate monomers and polyene double bond monomers, such as selected from ethylene glycol diacrylate, diethylene glycol diacrylate, propylene glycol diacrylate , Dipropylene Glycol Diacrylate, Tripropylene Glycol Diacrylate, Hexylene Glycol Diacrylate, Bisphenol A Glycerol Dimethacrylate, Glycerin 1,3-Diglyceryl Alkylate Diacrylate, Trimethylol At least one of propane trimethacrylate, triallyl isocyanurate and divinylbenzene.
  • the mass parts of the crosslinking monomer can be 1-20 parts.
  • the active acrylate monomer is used to chelate metal ions, and the cross-linking monomer is used to improve the hardness, strength, solvent resistance, stability, etc. of the resin. It does not drop slag during use and prolongs its service life.
  • the embodiment of the present invention is used for the solid electrolytic polishing material of metal piece to adopt the polyacrylate porous resin microsphere with carboxyl group, is made of acrylic acid (55 parts by mass), methyl methacrylate (35 parts by mass), bis Phenol A glycerol dimethacrylate (10 parts by mass), with azobisisobutyronitrile (2 parts by mass) as initiator, toluene as oil phase, and aqueous sodium chloride solution as water phase , gelatin and polyvinyl alcohol are dispersants, and the porogen is paraffin, which is made by suspension polymerization.
  • the polyacrylate porous resin microspheres with carboxyl groups are obtained by screening through sieves with different meshes.
  • FIG. 1 The scanning electron microscope (SEM) picture of the prepared carboxylic acid ion exchange resin with a porous structure is shown in FIG. 1 .
  • Fig. 1 (a) is the scanning electron micrograph that has the carboxylic acid type ion exchange resin of porous structure magnification 44 times
  • Fig. 1 (b) is the scanning electron micrograph that has the carboxylic acid type ion exchange resin of porous structure magnification 220 times
  • Fig. 1(c) is a 11,000-fold scanning electron micrograph of a carboxylic acid-type ion-exchange resin with a porous structure
  • the particle size of the ion exchange resin is 0.01mm-10mm, preferably 0.27mm-4mm.
  • Figure 1 further shows the surface structure of the ion exchange resin. It can be seen that the resin is composed of small particles of about 50 to 100 nm in size. A porous structure is formed inside and between the particles, which can absorb and accommodate more metal ions.
  • Figure 2 is a physical adsorption test diagram of the pore size of the ion-exchange resin. As shown in Figure 2, the pore size of the ion-exchange resin porous structure mainly falls into two categories: 25nm and 90nm.
  • Figure 3 is the X-ray photoelectron spectrum of the ion exchange resin, wherein Figure 3(a) is the full spectrum and Figure 3(b) is the fine spectrum of C1s. It can be seen from Figure 3 that the peak shapes at the positions of 280eV, 530eV, 980eV and 1221eV are respectively the 1s peak of carbon element, the 1s peak of oxygen element, the Auger peak of carbon element, and the Auger peak of oxygen element.
  • the ion exchange resin mainly contains two elements of carbon and oxygen. Further C1s fine spectrum can be seen, the peak at 288eV confirms that the resin is modified with carboxylic acid groups.
  • the carboxylic acid type ion exchange resin with porous structure is soaked in the electrolytic solution, and then dried to obtain the organic weak acid type ion exchange resin applied to solid electrolytic polishing of metal parts.
  • the ratio of COOH groups and COO- groups in the carboxylic acid type ion exchange resin can be adjusted by adjusting the pH of the electrolyte solution.
  • the electrolyte in the electrolyte solution is at least one of acid, alkali and salt.
  • the acid in the electrolyte solution is at least one of H 2 SO 4 , HCl, H 3 PO 4 , HNO 3 , and HF
  • the base is at least one of NaOH and KOH
  • the salt is soluble chloride salt, fluorine salt, At least one of sulfate, phosphate, nitrate, and EDTA salt.
  • the embodiment of the present invention adopts the steps of first soaking and absorbing and then volatilizing, if the electrolyte solution used is a salt solution, the volatilization rate of the electrolyte solute is generally slower than that of the solvent, so the final ion exchange
  • the actual concentration of the electrolyte solution inside the resin pores will be slightly higher than the concentration of the initially soaked electrolyte solution.
  • the electrolyte solution is an alkaline solution and the ion exchange resin is a COOH type ion exchange resin
  • the actual concentration of the electrolyte solution inside the pores of the final ion exchange resin will be much lower than the initial concentration due to the reaction between the alkali and the carboxylic acid.
  • the concentration of the soaked electrolyte solution is even 0. The same applies to acid solutions and COO - type ion exchange resins.
  • the selected electrolyte is NaOH solution, and washed with a large amount of water after the reaction, so that the pH of the final solution fully reflects the ratio of COOH and COO - groups in the ion exchange resin, the greater the pH, the higher the proportion of COO - groups.
  • an ion exchange test was carried out. Since the metal parts used in the solid electrolytic polishing test are chromium-cobalt alloys, cobalt salt solutions (nickel salts, copper salts, and iron salts have similar results, and different metal salts can be used for different metal substrates) are used for ion exchange experiments.
  • the ion concentration is determined by measured by inductively coupled plasma spectroscopy (ICP). Specifically, the same mass of ion exchange resin is soaked in an equal concentration and equal volume cobalt salt aqueous solution. At the same time, a strong acid type cation exchange resin (sulfonic acid ion exchange resin, specific grade 001*7) was selected as a comparison, and the specific comparison results are shown in Table 1 below.
  • the experimental results show that with the continuous increase of the introduction of NaOH, the COOH group in the ion exchange resin gradually changes into a COO - group, the concentration of cobalt ions in the supernatant decreases, and the color of the supernatant changes from red to no.
  • the color shows that the ion exchange capacity of the COONa ion exchange resin is stronger than that of the COOH type ion exchange resin, and the COO - group mainly plays a role in the adsorption capacity of metal ions.
  • the embodiment of the present invention also provides a method for applying an ion exchange resin to the electrolytic polishing of a metal piece, the method comprising:
  • Step 1 placing the prepared solid organic weak acid cation exchange resin in an electrochemical polishing device; wherein, the metal piece to be polished is connected to the positive electrode of the power supply, and the solid organic weak acid cation exchange resin is electrochemically connected to the negative electrode of the power supply;
  • Step 2 Turn on the power supply, and at the same time of electrolysis, the metal piece to be polished and the solid organic weak acid type cation exchange resin undergo relative frictional motion.
  • the electrochemical polishing device contains a metal mesh cage; after the metal sample is connected to the positive electrode of the electrochemical polishing device, it is inserted into the metal mesh cage; the metal mesh cage is respectively connected with the solid organic weak acid type cation exchange resin It is connected with the negative electrode of the electrochemical polishing device.
  • the insertion method includes stirring or vibrating. Thereby, the solid organic weak acid type cation exchange resin contacting the positive electrode and the negative electrode can be constantly changed, thereby being fully utilized.
  • the schematic diagram of the specific principle and process of electropolishing metal with the solid organic weak acid type cation exchange resin of the present invention can be seen in FIG. 4 .
  • the polishing rate and effect are controlled by these three steps: 1.
  • the oxidation process of the metal, the intuitive characterization is the magnitude of the current (experimentally confirmed that 0.01-100A is more suitable), and the magnitude of the current is determined by the applied voltage It is determined by the resistance of the solid particles (organic weak acid cation exchange resin) (the resistance of the metal sample and other parts of the entire electrochemical system is much smaller than the resistance of the solid particles, so it is ignored), if the applied voltage is lower than the oxidation potential of the metal and the electrode If the chemical potential is low, the metal ions cannot be oxidized and separated from the metal smoothly.
  • the oxidation rate of the metal ions will be very slow, and the polishing effect cannot be achieved; 2.
  • the diffusion process of metal ions because it is solid polishing, so the ion diffusion process is also one of the speed-controlling steps, if the content of the conductive solution is too low and the pore size of the solid particles is too small (less than the actual ion hydration particle size or complex particle size), then Also can't realize polishing effect; 3, the exchange/adsorption/complexation process of metal ion, this process is mainly determined by pore volume, group quantity and kind, in the present invention, the metal ion used enters particle interior and with particle The hydroxyl functional groups on the pores undergo chelation/complexation/adsorption reactions, thereby adsorbing metal ions in the particles, achieving the effect of migrating and fixing metal ions, thereby reducing the concentration of metal ions on the surface of the metal
  • the exchange resin is an ion exchange resin that is treated with excess NaOH solution and washed with water, and is named as COONa ion exchange resin. Soak the COONa ion exchange resin with porous structure, filter it, and then volatilize and dry it in stages. Among them, different drying times will lead to different electrolyte contents in the COONa ion exchange resin, and use a multimeter to determine its resistance. The values were tested and the results are shown in Table 2.
  • the conductivity of the ion-exchange resin can be adjusted by controlling the electrolyte content inside and on the surface of the ion-exchange resin, and the ion-exchange resin with suitable conductivity can be selected. Used for solid electrolytic polishing of metal parts.
  • the present invention places the solid organic weak acid type cation exchange resin in an electrochemical polishing device, wherein the polished
  • the metal parts are connected to the positive pole of the power supply, the solid organic weak acid cation exchange resin is electrochemically connected to the negative pole of the power supply, and the polishing performance test of the metal parts is carried out (applied voltage 60V, polishing 20min), and the surface of the metal parts is observed by naked eyes and scanning electron microscope.
  • the morphology was characterized, and the roughness was tested by an optical profiler. The results are shown in Table 3.
  • the quality of the resin used in all tests, the concentration of the soaking electrolyte, and the electrical conductivity are consistent.
  • the ion exchange resin (the electrolyte content is 50.1% and the volume resistance is 0.7M ⁇ ) made in Table 2 with a drying time of 72h is selected for electrolytic polishing. test.
  • Figure 5 is a scanning electron microscope image of a metal piece before polishing
  • Figure 6 is a scanning electron microscope image of a metal piece polished with a COOH type resin
  • Figure 7 is a scanning electron microscope image of a metal piece polished with a 10g COOH type resin plus 0.5g NaOH sample
  • Figure 8 is the scanning electron micrograph of metal parts polished with COONa resin. It can be seen from Figures 5-8 that as the proportion of COONa resin increases, the surface polishing effect of metal parts becomes better and better. It is further confirmed that the more COO - groups, the stronger the adsorption capacity for metal ions, and the better the polishing effect, so as to adjust the polishing rate and polishing intensity, so as to control the polishing effect of metal parts.
  • Fig. 9 is the surface topography diagram of metal parts before polishing
  • Fig. 10 is the metal part surface topography diagram after adopting 10g COOH type resin to add 0.5g NaOH sample polishing
  • Fig. 11 is the metal part after adopting COONa type resin polishing Surface topography of the piece.
  • the medical 3D printed chromium-cobalt metal sample is used, the shape of the sample is different, but the material is exactly the same. It can be seen from Figures 9-11 that the surface of metal parts after solid electropolishing with COONa resin is bright and smooth, which further indicates that the solid electropolishing effect of COONa resin is better.
  • the present invention also uses an optical profiler to test the roughness of the surface of the solid electropolished metal piece, and the test results are shown in Table 4 below.
  • the organic weak acid type cation exchange resin provided by the embodiment of the present invention has a good polishing effect when it is applied to the solid electrolytic polishing of metal parts. Polished effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Silicon Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

应用于金属件固体电解抛光的离子交换树脂及其应用方法。这种离子交换树脂为具有多孔结构的有机弱酸型阳离子交换树脂;该离子交换树脂的孔道内部和/或表面含有电解质。离子交换树脂应用于金属件固体电解抛光,相对于机械抛光和电解抛光,其能够对金属件不便于研磨的部位进行充分的抛光,且在抛光过程中无需大量的化学氧化药剂和电解液,环境友好且安全性高。此外,改性离子交换树脂可以在使用一段时间后进行再生,大大提高使用寿命,降低成本。

Description

应用于金属件固体电解抛光的离子交换树脂及其应用方法 技术领域
本发明涉及金属表面处理技术领域,特别涉及应用于金属件固体电解抛光的离子交换树脂及其应用方法。
背景技术
随着制造业的转型升级,金属抛光打磨得到了多样化的发展,常见的抛光打磨方式有物理抛光、化学抛光和复合抛光。
物理抛光一般为机械研磨抛光,是将被研磨面的凸部用切削、磨耗或者塑性变形等方式除去,获得平滑光亮表面的过程。化学抛光是通过化学腐蚀(电化学腐蚀)的方式将被研磨面上的微小金属凸部优先氧化为金属离子进行刻蚀,从而改善金属表面粗糙度,获得平滑光亮表面的过程。
机械研磨抛光耗时长、效率低下,对角落、缝隙等部位难以达到较高的光亮效果。化学抛光在一定程度上解决了机械抛光难以解决的技术问题,但是大量的化学氧化药剂或电解液对操作工人的身体造成危害,同时抛光结束后产生大量的废弃液如果处理不当,会造成严重的环境污染。
CN109415839A公开了一种通过自由固体的离子传输平滑和抛光金属的方法及执行该方法的固体,其通过离子迁移对金属部件进行平滑和抛光,其中公开的球形颗粒为磺化苯乙烯-二乙烯基苯树脂,但是由于空间位阻效应、离子络合作用等因素的影响,导致该树脂对金属表面的平滑抛光效果不能调控。例如,对于某些易于抛光的金属,会造成抛光过度,金属样件精密部位表面出现缺陷等影响;对于某些难抛光的金属,会造成抛光不彻底,表面光泽度不佳的影响。
CN113699579A公开了一种金属抛光方法,其首先采用温和的电解条件对被抛光工件进行水溶液电解抛光,使被抛光工件的表面达到初步光亮度,然后采用圆球状固体的电解质对表面达到初步光亮度的被抛光工件进行复合电解抛光,使被抛光工件的表面达到最终的镜面光亮度。尽管其能够实现镜面光亮度的表面,但是工艺相对复杂,同时其复合电解抛光是机械作用和电解作用在同一点同时起作用,由于颗粒和金属样件之间硬度上的巨大差异,当机械作用过于剧烈时必然导致圆球状固体被破坏,使得圆球状固体无法循环利用,复合电解抛 光的成本增加。
发明内容
本发明旨在至少解决现有技术中存在的上述技术问题之一。为此,本发明的目的之一在于提供一种应用于金属件固体电解抛光的离子交换树脂,本发明的目的之二在于提供一种该离子交换树脂的制备方法,本发明的目的之三在于提供一种应用该离子交换树脂的金属件固体电解抛光方法。
为了实现上述目的,本发明所采取的技术方案是:
本发明的第一方面提供了一种应用于金属件固体电解抛光的离子交换树脂,所述离子交换树脂为具有多孔结构的有机弱酸型阳离子交换树脂;所述离子交换树脂的孔道内部和/或表面含有电解质。
优选的,所述有机弱酸型阳离子交换树脂包括丙烯酸型阳离子交换树脂、草酸型阳离子交换树脂、柠檬酸型阳离子交换树脂、水杨酸型阳离子交换树脂、EDTA型阳离子交换树脂中的至少一种。
优选的,所述丙烯酸型阳离子交换树脂为含有COOH/COO -基团的羧酸型离子交换树脂;
所述COOH基团和COO -基团的比例通过离子交换树脂的制备原料种类和/或电解质的pH值来调节。
优选的,所述离子交换树脂的粒径为0.01毫米~10毫米;进一步优选的,所述离子交换树脂的粒径为0.27毫米~4毫米。
优选的,所述电解质可以调节所述离子交换树脂的电导率。
优选的,所述离子交换树脂的体积电阻为0.01MΩ~5MΩ;进一步优选的,所述离子交换树脂的体积电阻为0.05MΩ~4MΩ。
优选的,所述离子交换树脂的孔道内部和/或表面电解质质量含量为15%~80%;进一步优选的,所述离子交换树脂的孔道内部和/或表面电解质质量含量为30%~65%。
优选的,所述电解质包括水、酸溶液、碱溶液、盐溶液中的至少一种。
优选的,所述电解质中,所述酸溶液的酸包括H 2SO 4、HCl、H 3PO 4、HNO 3、HF中的至少一种。
优选的,所述电解质中,所述碱溶液的碱包括NaOH、KOH中的至少一种。
优选的,所述电解质中,所述盐溶液的盐包括可溶性氯盐、氟盐、硫酸盐、磷酸盐、硝酸盐、EDTA盐中的至少一种。
本发明的第二方面提供了一种根据本发明第一方面所述应用于金属件固体电解抛光的离 子交换树脂的制备方法,包括以下步骤:将具有多孔结构的有机弱酸型阳离子交换树脂浸泡在电解质中,调节电解质的pH值,然后过滤,挥发,得到所述应用于金属件固体电解抛光的离子交换树脂。
优选的,所述的制备方法中,在调节电解质的pH值后,所述有机弱酸型阳离子交换树脂中的电解质pH值大于4。
本发明的第三方面提供了应用根据本发明第一方面所述离子交换树脂对金属件进行固体电解抛光的方法,包括以下步骤:
S1:将应用于金属件固体电解抛光的离子交换树脂和待抛光的金属件置于电化学抛光装置中;
其中,所述待抛光的金属件与所述电化学抛光装置的电源正极连接,所述离子交换树脂与所述电化学抛光装置的电源负极连接;
S2:将电化学抛光装置通电进行电解抛光,电解抛光时所述待抛光的金属件与所述离子交换树脂发生相对摩擦运动。
本发明的有益效果是:
本发明的离子交换树脂为有机弱酸型阳离子交换树脂,当金属件接通电源后,除了正负电荷之间的静电吸附作用之外,有机弱酸型阳离子交换树脂还能够与金属件解离的阳离子发生充分的螯合作用,由于空间位阻更小,吸附金属离子更容易。有机弱酸型阳离子交换树脂吸附金属离子后,由于络合作用,金属离子难以脱离,有效提高其抛光效率。
同时,有机弱酸型阳离子交换树脂可以通过电解质溶液的pH调节其中COOH和COO -基团的比例,COO -基团越多,对金属离子的吸附能力越强,抛光效果越好,以此来调节抛光速率与抛光强度,从而能够调控金属件的抛光效果。
本发明提供的离子交换树脂应用于金属件固体电解抛光,相对于机械抛光和电解抛光,其能够对金属件不便于研磨的部位进行充分的抛光,且在抛光过程中无需大量的化学氧化药剂和电解液,环境友好且安全性高。此外,改性离子交换树脂可以在使用一段时间后进行再生,大大提高使用寿命,降低成本。
附图说明
图1为离子交换树脂的扫描电镜图;
图2为离子交换树脂的孔径物理吸附测试图;
图3为离子交换树脂的X射线光电子能谱图;
图4为本发明电解抛光金属的原理示意图;
图5为金属件抛光前的扫描电镜图;
图6为采用COOH型树脂抛光的金属件扫描电镜图;
图7为采用10g COOH型树脂加0.5g NaOH试样抛光的金属件扫描电镜图;
图8为采用COONa型树脂抛光的金属件扫描电镜图;
图9为金属件抛光前的表面形貌图;
图10为采用10g COOH型树脂加0.5g NaOH试样抛光后的金属件表面形貌图;
图11为采用COONa型树脂抛光后的金属件表面形貌图。
具体实施方式
以下通过具体的实施例对本发明的内容作进一步详细的说明。实施例中所用的原料、试剂或装置如无特殊说明,均可从常规商业途径得到,或者可以通过现有技术方法得到。除非特别说明,试验或测试方法均为本领域的常规方法。
本发明提供的离子交换树脂,应用于金属件的固体电解抛光。需要说明的是,电解抛光是将金属浸渍在各种成分组成的特殊化学溶液中,依靠高的化学势能氧化金属,获得平滑光亮的表面,而固体电解抛光则是采用具有导电性的固体颗粒物取代电解液,通过固体颗粒物与待抛光的金属件相接触,从而实现对金属件表面的抛光处理。这里需要提出的是,虽然固体颗粒物与待抛光的金属件有接触,但是这种接触的相对运动速率较低,且固体颗粒物的硬度比金属件低,故而没有发生物理的机械抛光过程。
本发明实施例提供的固体颗粒为具有多孔结构的有机弱酸型阳离子交换树脂,其中有机弱酸型阳离子交换树脂的孔道内部和/或表面含有一定量的电解质。
多孔结构可以使得有机弱酸型阳离子交换树脂在经电解质溶液润湿后的干燥过程中,先失去表面的电解质,后失去孔内的电解质。多孔结构可以确保有机弱酸型阳离子交换树脂在完全失去表面电解质后,仍具有较好的导电性。
本发明实施例的有机弱酸型阳离子交换树脂包括草酸型阳离子交换树脂、丙烯酸型阳离子交换树脂、柠檬酸型阳离子交换树脂、水杨酸型阳离子交换树脂或EDTA型阳离子交换树脂。
具体的,以羧酸型离子交换树脂为例进行说明,在离子交换树脂上修饰有羧酸基团,即COOH基团,其中离子交换树脂上的COOH基团和COO -基团的比例可以通过离子交换树脂的制备原料种类和/或电解质的pH值进行调控。在下述描述中,含有COOH基团的离子交换树脂简述为COOH型离子交换树脂,含有COO -基团的离子交换树脂简述为COO -型离子交换树脂。
在本发明的实施例中,所述丙烯酸型阳离子交换树脂是由包括活性丙烯酸酯单体、普通单体和交联单体聚合制成。
其中,所述活性丙烯酸酯单体包括含羧基,如选自丙烯酸、甲基丙烯酸等,所述活性丙烯酸酯单体的质量份可为50-90份。
所述普通单体包括丙烯酸类单体、烯类双键单体中的至少一种,如选自丙烯酸甲酯、丙烯酸乙酯、丙烯酸正丁酯、丙烯酸-2-乙基己酯、丙烯酸正辛酯、丙烯酸异辛酯、丙烯酸异冰片酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸丁酯、甲基丙烯酸异冰片酯、乙烯、丙烯、苯乙烯、丙烯腈中的至少一种。所述普通单体的质量份可为10-50份。
所述交联单体包括多官能团丙烯酸酯类单体、多烯类双键单体中的至少一种,如选自乙二醇二丙烯酸酯、二乙二醇二丙烯酸酯、丙二醇二丙烯酸酯、二丙二醇二丙烯酸酯、二缩三丙二醇二丙烯酸酯、己二醇二丙烯酸酯、双酚A丙三醇双甲基丙烯酸酯、甘油1,3-二甘油醇酸二丙烯酸酯、三羟甲基丙烷三甲基丙烯酸酯、三烯丙基异氰脲酸酯、二乙烯苯中的至少一种。所述交联单体的质量份可为1-20份。
活性丙烯酸酯单体用于螯合金属离子,交联单体用于提高树脂的硬度、强度、耐溶剂性、稳定性等,使用过程中不掉渣,延长使用寿命。
本发明实施例用于金属件固体电解抛光的材料采用带羧基的聚丙烯酸酯多孔树脂微球,是由丙烯酸(质量份为55份)、甲基丙烯酸甲酯(质量份为35份)、双酚A丙三醇双甲基丙烯酸酯(质量份为10份),以偶氮二异丁腈(质量份为2份)为引发剂,以甲苯为油相,以氯化钠水溶液为水相,明胶和聚乙烯醇为分散剂,致孔剂为石蜡,通过悬浮聚合法制成。通过不同目数筛子筛选,得到相应粒径的带羧基的聚丙烯酸酯多孔树脂微球。
所制成的具有多孔结构的羧酸型离子交换树脂的扫描电镜(SEM)图见图1。其中图1(a)是具有多孔结构的羧酸型离子交换树脂放大44倍的扫描电镜图;图1(b)是具有多孔结构的羧酸型离子交换树脂放大220倍的扫描电镜图;图1(c)是具有多孔结构的羧酸型离子交换树脂放大11000倍的扫描电镜图;图1(d)是具有多孔结构的羧酸型离子交换树脂放大44000倍的扫描电镜图。离子交换树脂的粒径为0.01毫米-10毫米,优选为0.27毫米-4毫米。图1进一步展示了离子交换树脂的表面结构,可以看出树脂是由50~100nm左右的小颗粒堆积而成,颗粒内与颗粒间形成多孔结构,可以吸附和容纳更多的金属离子。图2为离子交换树脂的孔径物理吸附测试图,如图2所示,离子交换树脂多孔结构的孔径主要为25nm和90nm两类。
为了进一步确定多孔结构的离子交换树脂上修饰有羧酸基团,对多孔结构的离子交换树 脂进行了XPS能谱测试。图3为离子交换树脂的X射线光电子能谱图,其中图3(a)为全谱图,图3(b)为C1s精细谱图。从图3中可以看出其中在280eV、530eV、980eV和1221eV位置处的峰形,分别为碳元素的1s峰、氧元素的1s峰、碳元素的Auger峰、氧元素的Auger峰,确定了离子交换树脂主要含有碳、氧两种元素,进一步的C1s精细谱可以看出,288eV处的峰证实树脂修饰有羧酸基团。
将具有多孔结构的羧酸型离子交换树脂浸泡在电解质溶液中,然后干燥,得到应用于金属件固体电解抛光的有机弱酸型离子交换树脂。可以通过调节电解质溶液的pH来调控羧酸型离子交换树脂中COOH基团和COO -基团的比例。所述电解质溶液中的电解质为酸、碱、盐中的至少一种。其中,电解质溶液中的酸为H 2SO 4、HCl、H 3PO 4、HNO 3、HF中的至少一种,碱为NaOH、KOH中的至少一种,盐为可溶性氯盐、氟盐、硫酸盐、磷酸盐、硝酸盐、EDTA盐中的至少一种。这里需要说明的是,由于本发明实施例采取的是先浸泡吸附再挥发的步骤,如果使用的电解质溶液是盐溶液,而电解质溶质的挥发速度一般要慢于溶剂的挥发速度,因此最终离子交换树脂孔道内部的实际电解质溶液浓度会略高于最开始浸泡的电解质溶液的浓度。如果使用的是电解质溶液是碱溶液,离子交换树脂使用的是COOH型离子交换树脂,那么由于碱和羧酸的反应会造成最终离子交换树脂孔道内部的实际电解质溶液浓度会远远低于最开始浸泡的电解质溶液的浓度,甚至为0。同样的情况适用于酸溶液和COO -型离子交换树脂。
考虑到酸溶液和COO -型离子交换树脂、碱溶液和COOH型离子交换树脂之间的中和反应,本发明的实施例为了调节所述COOH和COO -基团的比例,所选用的电解质为NaOH溶液,并在反应完毕后用大量清水洗涤,使得最终溶液的pH完全反映离子交换树脂中的COOH和COO -基团的比例,pH越大,COO -基团的比例越高。
为了进一步验证COOH基团和COO -基团对离子交换树脂的离子交换性能的影响,进行了离子交换实验测试。由于固体电解抛光测试用的金属件是铬钴合金,因此选用钴盐溶液(镍盐、铜盐、铁盐结果类似,针对不同金属基材可选用不同金属盐)进行离子交换实验,离子浓度由电感耦合等离子光谱(ICP)测得。具体的是将同质量的离子交换树脂浸泡在等浓度等体积的钴盐水溶液中。同时,选用强酸型阳离子交换树脂(磺酸离子交换树脂,具体牌号为001*7)作为对比,具体对比结果如下表1所示。
表1 不同类型的离子交换树脂的离子交换实验测试结果
Figure PCTCN2022138712-appb-000001
Figure PCTCN2022138712-appb-000002
表1中,以10g COOH型树脂加0.1g NaOH的树脂试样为例,说明树脂试样具体的制备方法如下:将10g COOH型树脂加入到30g水中,加入0.1g氢氧化钠,充分搅拌,过滤,充分水洗,晾干,得到改性树脂颗粒。其余树脂试样参照该方法制得,比如说10g COOH型树脂加0.2g NaOH的树脂试样采用的氢氧化钠用量改为0.2g。
实验结果表明,随着NaOH的引入量不断增加,离子交换树脂中的COOH基团逐渐转变为COO -基团,上清液中钴离子的浓度降低,上清液的颜色也由红色变为无色,表明COONa型离子交换树脂的离子交换能力相对于COOH型离子交换树脂更强,主要起金属离子吸附能力的为COO -基团。
进一步的,通过对等量的COONa型离子交换树脂和磺酸型离子交换树脂进行对比,测试其上清液中钴离子的浓度,可以看出COONa型离子交换树脂的离子扩散与交换/吸附/络合能力强于磺酸型离子交换树脂的离子交换能力。
本发明实施例还提供了离子交换树脂应用于金属件电解抛光的方法,所述方法包括:
步骤一、将制得的固体有机弱酸型阳离子交换树脂放置于电化学抛光装置中;其中,待抛光的金属件与电源的正极连接,固体有机弱酸型阳离子交换树脂与电源的负极电化学连接;
步骤二、接通电源,电解的同时所述待抛光的金属件与所述固体有机弱酸型阳离子交换树脂发生相对摩擦运动。
所述电化学抛光装置含有金属网笼;将金属样件与电化学抛光装置的正极连接后,插入到所述金属网笼中;所述金属网笼分别与所述固体有机弱酸型阳离子交换树脂和所述电化学抛光装置的负极相连。
所述插入的方式包括搅拌或振动。由此,可以使得接触正极和负极的固体有机弱酸型阳离子交换树脂在不断变换,从而得到充分利用。
本发明固体有机弱酸型阳离子交换树脂电解抛光金属的具体原理过程示意图可见图4。参见图4的原理示意图,抛光速率与效果由这三个步骤控制:1、金属的氧化过程,直观的表征即电流大小(实验证实0.01-100A之间较为合适),而电流大小由施加的电压与固体颗粒物(有机弱酸型阳离子交换树脂)的电阻(金属样件和整个电化学系统其他部分的电阻都远小于固体颗粒物的电阻,故忽略)决定,如果施加电压低于金属的氧化电势与极化电势,那么金属离子无法被顺利氧化脱离金属,如果固体颗粒物的电阻过大(主要由电解质溶液的电阻和含量决定),那么金属离子的氧化速率也会很慢,无法实现抛光效果;2、金属离子的扩散过程,由于是固体抛光,因此离子扩散过程也是速控步之一,如果导电溶液含量过低,固体颗粒物孔径过小(小于实际离子水合粒径或络合物粒径),那么也无法实现抛光效果;3、金属离子的交换/吸附/络合过程,这一过程是主要由孔容、基团数量与种类决定,在本发明中,使用的金属离子进入颗粒物内部并与颗粒物孔道上的羟基功能基团发生螯合/络合/吸附反应,从而将金属离子吸附在颗粒物内,达到迁移、固定金属离子的作用,从而降低金属样件表面的金属离子浓度,降低极化,加快离子迁移,加快抛光速率,从而实现光亮效果。本发明也证实了在电压和颗粒物电导率差异不大时,抛光效果主要由离子扩散与交换/吸附/络合能力决定。
为了进一步确定分阶段挥发得到用于金属件电解抛光的固体有机弱酸型阳离子交换树脂的电阻值,进行了如下实验,以COONa型离子交换树脂为例,需要说明的是,含有COOH基团的离子交换树脂,加入过量NaOH溶液处理后并充分水洗的离子交换树脂,命名为COONa型离子交换树脂。将具有多孔结构的COONa型离子交换树脂浸泡后进行过滤处理,再进行分阶段挥发晾干,其中,不同的晾干时间会导致COONa型离子交换树脂含有的电解 质含量不同,并使用万用表对其电阻值进行测试,结果见表2。
所述COONa型离子交换树脂中电解质溶液质量含量的测试方法是,将COONa型离子交换树脂放置于150℃的鼓风干燥箱内,然后按如下公式计算:电解质溶液质量含量=(失重质量÷测试前COONa型离子交换树脂质量)×100%。
表2 不同电解质含量的离子交换树脂的电阻测试结果
晾干时间(h) 电解质含量(%) 体积电阻(MΩ)
4 61.5 0.05
24 58.4 0.1
48 54.3 0.3
72 50.1 0.7
96 47.5 1.1
168 36.5 3.5
由于不同的电解质含量会导致离子交换树脂颗粒的电阻值发生变化,因此,可以通过控制离子交换树脂内部和表面的电解质含量来调节所述离子交换树脂的电导率,选择电导率适宜的离子交换树脂用于金属件固体电解抛光。
为了验证孔道内部和/或表面含有一定量的电解质溶液的有机弱酸型阳离子交换树脂的金属件抛光性能,本发明将固体有机弱酸型阳离子交换树脂放置于电化学抛光装置中,其中,待抛光的金属件与电源的正极连接,固体有机弱酸型阳离子交换树脂与电源的负极电化学连接,进行金属件抛光性能测试(施加电压60V,抛光20min),并通过肉眼观察、扫描电镜对金属件表面的形态进行表征、光学轮廓仪对其粗糙度进行测试,结果见表3。所有测试所用树脂质量、浸泡电解质浓度、电导率是一致的,具体选用表2晾干时间为72h条件制成的离子交换树脂(电解质含量均为50.1%,体积电阻均为0.7MΩ)进行电解抛光试验。
表3 不同类型的离子交换树脂固体电解抛光的肉眼观察结果
树脂类型 金属件抛光亮度
抛光前 灰暗
COOH型 灰暗
10g COOH型树脂加0.1g NaOH 灰暗
10g COOH型树脂加0.2g NaOH 灰暗
10g COOH型树脂加0.3g NaOH 灰暗
10g COOH型树脂加0.4g NaOH 哑光
10g COOH型树脂加0.5g NaOH 哑光
10g COOH型树脂加0.6g NaOH 哑光
10g COOH型树脂加0.7g NaOH
10g COOH型树脂加0.8g NaOH
COONa型
磺酸型 哑光
从表3可以看出,将不同比例的COOH/COO -基团的离子交换树脂应用于固体电解抛光时,其效果不同,金属件在固体电解抛光前,其表面为灰暗,采用不同比例的COOH/COO -基团的离子交换树脂,其表面亮度会有明显变化,其中,COONa型的离子交换树脂的固体电解抛光效果最佳。这些不同比例的COOH/COO -基团的离子交换树脂的孔结构、电导率相同,而抛光效果差异巨大,进一步证实了离子交换/吸附/络合过程(图4第3步)对金属抛光效果的重要作用。
图5为金属件抛光前的扫描电镜图,图6为采用COOH型树脂抛光的金属件扫描电镜图,图7为采用10g COOH型树脂加0.5g NaOH试样抛光的金属件扫描电镜图,图8为采用COONa型树脂抛光的金属件扫描电镜图。从图5-8可以看出,随着COONa树脂的比例的增加,金属件的表面抛光效果越来越好。进一步证实了COO -基团越多,对金属离子的吸附能力越强,抛光效果越好,以此来调节抛光速率与抛光强度,从而调控金属件的抛光效果。
为了进一步确定不同比例的COOH/COO -基团的离子交换树脂的抛光效果,分别对抛光前的金属件和抛光后的金属件进行了拍照测试,测试结果如图9-11所示。其中,图9为金属件抛光前的表面形貌图,图10为采用10g COOH型树脂加0.5g NaOH试样抛光后的金属件表面形貌图,图11为采用COONa型树脂抛光后的金属件表面形貌图。这里需要说明的是,由于采用的是医用3D打印铬钴金属样件,因此样件形状具有一定差异,但是材质是完全一样的。从图9-11中可以看出,采用COONa树脂进行固体电解抛光后的金属件表面光亮平滑,进一步表明COONa树脂的固体电解抛光效果更好。
进一步的,本发明还采用光学轮廓仪对固体电解抛光后的金属件的表面进行了粗糙度的测试,测试结果如下表4所示。
表4 不同类型的离子交换树脂固体电解抛光的粗糙度测试结果
树脂类型 金属件粗糙度Ra(μm)
抛光前样件(灰暗) 4.082
COOH型抛光(灰暗) 4.026
10g COOH型树脂加0.5g NaOH(哑光) 1.656
COONa型抛光(光亮) 0.419
磺酸型 1.328
测试结果表明,随着COONa树脂的比例的增加,金属件的表面粗糙度越来越小,表明其表面抛光效果越好。此处需要说明的是,由于金属件表面本身是凹凸的,所以Ra值相对平面的样件来说大一些。
本发明实施例提供的有机弱酸型阳离子交换树脂应用于金属件的固体电解抛光时,具有良好的抛光效果,同时,通过调控有机弱酸型阳离子交换树脂中的弱酸基团,能够进一步调控金属件的抛光效果。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种应用于金属件固体电解抛光的离子交换树脂,其特征在于,所述离子交换树脂为具有多孔结构的有机弱酸型阳离子交换树脂;所述离子交换树脂的孔道内部和/或表面含有电解质。
  2. 根据权利要求1所述的离子交换树脂,其特征在于,所述有机弱酸型阳离子交换树脂包括丙烯酸型阳离子交换树脂、草酸型阳离子交换树脂、柠檬酸型阳离子交换树脂、水杨酸型阳离子交换树脂、EDTA型阳离子交换树脂中的至少一种。
  3. 根据权利要求2所述的离子交换树脂,其特征在于,所述丙烯酸型阳离子交换树脂为含有COOH/COO -基团的羧酸型离子交换树脂;
    所述COOH基团和COO -基团的比例通过离子交换树脂的制备原料种类和/或电解质的pH值来调节。
  4. 根据权利要求1或2所述的离子交换树脂,其特征在于,所述离子交换树脂的粒径为0.01毫米~10毫米。
  5. 根据权利要求1所述的离子交换树脂,其特征在于,所述电解质可以调节所述离子交换树脂的电导率。
  6. 根据权利要求1或5所述的离子交换树脂,其特征在于,所述离子交换树脂的孔道内部和/或表面电解质质量含量为15%~80%。
  7. 根据权利要求1或5所述的离子交换树脂,其特征在于,所述电解质包括水、酸溶液、碱溶液、盐溶液中的至少一种。
  8. 根据权利要求7所述的离子交换树脂,其特征在于,所述电解质中,所述酸溶液的酸包括H 2SO 4、HCl、H 3PO 4、HNO 3、HF中的至少一种;所述碱溶液的碱包括NaOH、KOH中的至少一种;所述盐溶液的盐包括可溶性氯盐、氟盐、硫酸盐、磷酸盐、硝酸盐、EDTA盐中的至少一种。
  9. 权利要求1至8任一项所述的离子交换树脂的制备方法,其特征在于,包括以下步骤:
    将具有多孔结构的有机弱酸型阳离子交换树脂浸泡在电解质中,调节电解质的pH值,然后过滤,挥发,得到所述离子交换树脂。
  10. 应用权利要求1至8任一项所述的离子交换树脂对金属件进行固体电解抛光的方法,其特征在于,包括以下步骤:
    S1:将所述离子交换树脂和待抛光的金属件置于电化学抛光装置中;
    其中,所述待抛光的金属件与所述电化学抛光装置的电源正极连接,所述离子交换树脂与所述电化学抛光装置的电源负极连接;
    S2:将电化学抛光装置通电进行电解抛光,电解抛光时所述待抛光的金属件与所述离子交换树脂发生相对摩擦运动。
PCT/CN2022/138712 2021-12-28 2022-12-13 应用于金属件固体电解抛光的离子交换树脂及其应用方法 WO2023124975A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MX2024008080A MX2024008080A (es) 2021-12-28 2022-12-13 Resina de intercambio ionico utilizada en el pulido electrolitico solido de piezas de trabajo metalicas y metodo de uso de la misma.
KR1020247024132A KR20240124370A (ko) 2021-12-28 2022-12-13 금속 공작물의 고체 전해 연마에 적용되는 이온교환수지 및 그 응용 방법
EP22914230.2A EP4446478A1 (en) 2021-12-28 2022-12-13 Ion exchange resin applied to dry electropolishing of metal workpieces and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111626740.2 2021-12-28
CN202111626740.2A CN114481286A (zh) 2021-12-28 2021-12-28 一种用于电解抛光的固体颗粒物
CN202210552048.8A CN114908409B (zh) 2021-12-28 2022-05-20 应用于金属件固体电解抛光的离子交换树脂及其应用方法
CN202210552048.8 2022-05-20

Publications (1)

Publication Number Publication Date
WO2023124975A1 true WO2023124975A1 (zh) 2023-07-06

Family

ID=81497063

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2022/138712 WO2023124975A1 (zh) 2021-12-28 2022-12-13 应用于金属件固体电解抛光的离子交换树脂及其应用方法
PCT/CN2022/138721 WO2023124980A1 (zh) 2021-12-28 2022-12-13 一种应用于金属件固体电解抛光的颗粒物及应用方法
PCT/CN2022/138716 WO2023124977A1 (zh) 2021-12-28 2022-12-13 一种用于金属件电解抛光的固体颗粒物

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/138721 WO2023124980A1 (zh) 2021-12-28 2022-12-13 一种应用于金属件固体电解抛光的颗粒物及应用方法
PCT/CN2022/138716 WO2023124977A1 (zh) 2021-12-28 2022-12-13 一种用于金属件电解抛光的固体颗粒物

Country Status (5)

Country Link
EP (1) EP4446478A1 (zh)
KR (1) KR20240124370A (zh)
CN (4) CN114481286A (zh)
MX (1) MX2024008080A (zh)
WO (3) WO2023124975A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118186557A (zh) * 2024-03-01 2024-06-14 广东倍亮科技有限公司 一种金属固体电解抛光的电解质及其应用

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114164482B (zh) * 2021-12-27 2023-09-15 鹤壁市海格化工科技有限公司 离子交换树脂在不规则金属件抛光中的应用及应用方法
CN114481286A (zh) * 2021-12-28 2022-05-13 广东省科学院化工研究所 一种用于电解抛光的固体颗粒物
CN117186475B (zh) * 2023-11-07 2024-02-09 华中科技大学 一种用于碱性液流电池的有机羧酸醚改性阳离子交换膜的制备方法
CN118028961A (zh) * 2024-02-23 2024-05-14 广东倍亮科技有限公司 应用于含铬或钴金属的固体电解抛光材料及方法
CN118241295A (zh) * 2024-02-23 2024-06-25 广东倍亮科技有限公司 金属电解抛光介质及其制备方法和应用
CN118028963A (zh) * 2024-02-23 2024-05-14 广东倍亮科技有限公司 高价可溶性金属盐在金属固体电解抛光中的应用
CN118028962A (zh) * 2024-02-23 2024-05-14 广东倍亮科技有限公司 离子液体在金属固体电解抛光中的应用
CN118166356A (zh) * 2024-02-28 2024-06-11 广东倍亮科技有限公司 钛或钛合金固体电解抛光的电解液、抛光介质和抛光方法
CN118186555A (zh) * 2024-02-28 2024-06-14 广东倍亮科技有限公司 镁、铝或其合金固体电解抛光的固体颗粒物及其应用
CN118186562A (zh) * 2024-03-01 2024-06-14 广东倍亮科技有限公司 一种金属固体电解抛光用的固体颗粒物

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010020348A1 (en) * 2000-01-11 2001-09-13 Kazumasa Ueda Abrasive for metal
US20020077035A1 (en) * 1999-12-22 2002-06-20 Applied Materials, Inc. Ion exchange materials for chemical mechanical polishing
CN1900206A (zh) * 2005-07-21 2007-01-24 安集微电子(上海)有限公司 化学机械抛光液及其用途
ES2604830A1 (es) * 2016-04-28 2017-03-09 Drylyte, S.L. Proceso para alisado y pulido de metales por transporte iónico mediante cuerpos sólidos libres, y cuerpos sólidos para llevar a cabo dicho proceso.
CN109778295A (zh) * 2017-11-15 2019-05-21 日本表面化学株式会社 电解抛光液以及加工金属的制造方法
ES2721170A1 (es) * 2018-01-26 2019-07-29 Drylyte Sl Uso de so4h2 como electrolito para procesos de alisado y pulido de metales por transporte ionico mediante cuerpos solidos libres.
WO2021019121A1 (es) * 2019-08-01 2021-02-04 Drylyte, S.L. Método y dispositivo para tratar en seco superficies metálicas mediante partículas sólidas eléctricamente activas
CN112534088A (zh) * 2018-11-12 2021-03-19 德里莱特公司 磺酸在干电解质中通过离子传输抛光金属表面的用途
WO2021156531A1 (es) * 2020-02-04 2021-08-12 Drylyte, S.L. Electrolito solido para el electropulido en seco de metales con moderador de actividad
CN113699579A (zh) 2021-09-03 2021-11-26 深圳市汉伟港泰首饰机械设备有限公司 一种金属抛光方法
CN114481286A (zh) * 2021-12-28 2022-05-13 广东省科学院化工研究所 一种用于电解抛光的固体颗粒物

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1478708A1 (en) * 2002-02-26 2004-11-24 Applied Materials, Inc. Method and composition for polishing a substrate
JP2004172606A (ja) * 2002-11-08 2004-06-17 Sumitomo Chem Co Ltd 金属研磨材組成物及び研磨方法
US7044836B2 (en) * 2003-04-21 2006-05-16 Cabot Microelectronics Corporation Coated metal oxide particles for CMP
US7427361B2 (en) * 2003-10-10 2008-09-23 Dupont Air Products Nanomaterials Llc Particulate or particle-bound chelating agents
US20060169674A1 (en) * 2005-01-28 2006-08-03 Daxin Mao Method and composition for polishing a substrate
CN101168847A (zh) * 2006-09-04 2008-04-30 株式会社荏原制作所 用于电解抛光的电解液以及电解抛光方法
US20080067077A1 (en) * 2006-09-04 2008-03-20 Akira Kodera Electrolytic liquid for electrolytic polishing and electrolytic polishing method
US7691287B2 (en) * 2007-01-31 2010-04-06 Dupont Air Products Nanomaterials Llc Method for immobilizing ligands and organometallic compounds on silica surface, and their application in chemical mechanical planarization
JP2009241211A (ja) * 2008-03-31 2009-10-22 Toyo Tire & Rubber Co Ltd 電解研磨パッドの製造方法
US9633865B2 (en) * 2008-02-22 2017-04-25 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Low-stain polishing composition
US9803109B2 (en) * 2015-02-03 2017-10-31 Cabot Microelectronics Corporation CMP composition for silicon nitride removal
RU2700226C1 (ru) * 2018-10-02 2019-09-13 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" Способ электрополирования металлической детали
EP3690993B1 (en) * 2019-02-01 2023-10-04 Samsung SDI Co., Ltd. Compositions for forming a porous insulating layer, electrode for non-aqueous electrolyte rechargeable battery, rechargeable battery including the electrode and method of manufacturing the electrode
CN111841623B (zh) * 2020-08-19 2021-09-24 河南大学 分子筛催化剂及其制备方法及用途

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020077035A1 (en) * 1999-12-22 2002-06-20 Applied Materials, Inc. Ion exchange materials for chemical mechanical polishing
US20010020348A1 (en) * 2000-01-11 2001-09-13 Kazumasa Ueda Abrasive for metal
CN1900206A (zh) * 2005-07-21 2007-01-24 安集微电子(上海)有限公司 化学机械抛光液及其用途
ES2604830A1 (es) * 2016-04-28 2017-03-09 Drylyte, S.L. Proceso para alisado y pulido de metales por transporte iónico mediante cuerpos sólidos libres, y cuerpos sólidos para llevar a cabo dicho proceso.
CN109415839A (zh) 2016-04-28 2019-03-01 德里莱特公司 通过自由固体的离子传输平滑和抛光金属的方法及执行该方法的固体
CN109778295A (zh) * 2017-11-15 2019-05-21 日本表面化学株式会社 电解抛光液以及加工金属的制造方法
ES2721170A1 (es) * 2018-01-26 2019-07-29 Drylyte Sl Uso de so4h2 como electrolito para procesos de alisado y pulido de metales por transporte ionico mediante cuerpos solidos libres.
CN112534088A (zh) * 2018-11-12 2021-03-19 德里莱特公司 磺酸在干电解质中通过离子传输抛光金属表面的用途
WO2021019121A1 (es) * 2019-08-01 2021-02-04 Drylyte, S.L. Método y dispositivo para tratar en seco superficies metálicas mediante partículas sólidas eléctricamente activas
WO2021156531A1 (es) * 2020-02-04 2021-08-12 Drylyte, S.L. Electrolito solido para el electropulido en seco de metales con moderador de actividad
CN113699579A (zh) 2021-09-03 2021-11-26 深圳市汉伟港泰首饰机械设备有限公司 一种金属抛光方法
CN114481286A (zh) * 2021-12-28 2022-05-13 广东省科学院化工研究所 一种用于电解抛光的固体颗粒物
CN114908409A (zh) * 2021-12-28 2022-08-16 广东省科学院化工研究所 应用于金属件固体电解抛光的离子交换树脂及其应用方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118186557A (zh) * 2024-03-01 2024-06-14 广东倍亮科技有限公司 一种金属固体电解抛光的电解质及其应用

Also Published As

Publication number Publication date
CN115029768A (zh) 2022-09-09
CN114908410B (zh) 2023-03-14
CN114481286A (zh) 2022-05-13
KR20240124370A (ko) 2024-08-16
MX2024008080A (es) 2024-07-10
CN114908409A (zh) 2022-08-16
WO2023124977A1 (zh) 2023-07-06
WO2023124980A1 (zh) 2023-07-06
CN115029768B (zh) 2023-06-06
CN114908409B (zh) 2023-03-24
CN114908410A (zh) 2022-08-16
EP4446478A1 (en) 2024-10-16

Similar Documents

Publication Publication Date Title
WO2023124975A1 (zh) 应用于金属件固体电解抛光的离子交换树脂及其应用方法
CN107658221B (zh) 一种金刚线切割多晶硅片的制绒方法
CN106549083B (zh) 一种晶体硅太阳能电池绒面结构的制备方法
CN102641722B (zh) 电化学强化碳纤维负载纳米铁锰吸附除砷材料及方法
CN104959625A (zh) 片状银粉的制备方法
CN111032929A (zh) H2so4在用于通过游离固体进行离子迁移对金属进行平滑和抛光的方法中作为电解质的用途
CN113195799A (zh) 使用干式电解质中的hcl通过离子传输来抛光钛以其他金属和合金表面
CN105344325A (zh) 一种处理重金属污染水体的纳米铁/介孔硅复合材料的制备方法
CN109023378A (zh) 一种阴极辊化学抛光液及抛光方法
Huang et al. Removal of copper ions from an aqueous solution containing a chelating agent by electrosorption on mesoporous carbon electrodes
CN118028962A (zh) 离子液体在金属固体电解抛光中的应用
CN106630019B (zh) 一种电控还原单质硫去除废水中重金属离子的方法
CN115155544B (zh) 一种基于3d打印制备含聚丙烯偕胺肟多层骨架球体铀吸附材料的方法
JPWO2010095222A1 (ja) ジルコニウム担持粒子状吸着材及びその製造方法
CN106654156A (zh) 一种锂离子电池负极极片的制备方法
CN109137009B (zh) 一种脉冲电沉积制备多孔氢氧化镁的方法
CN106957095A (zh) 用于去除水中铜离子的复合改性活性炭电极及其制备方法
CN112007612A (zh) 一种磁性复合物MnO2@Fe3O4@rGO铀吸附性能研究
TWI261629B (en) Surface treatment process for enhancing the release of metal ions from sacrificial electrode and sacrificial electrode prepared by said process
JP2021155818A (ja) 電極とこの電極を用いた過酸化水素の製造方法
CN111128566B (zh) 去除电极材料中金属离子的方法及超级电容器
Phetphaisit et al. Selective adsorption of indium ions on polyacrylamido-2-methylpropane sulfonic acid-grafted-natural rubber.
CN115232658B (zh) 超纯无烟煤及其制备方法
CN118186562A (zh) 一种金属固体电解抛光用的固体颗粒物
CN114682865B (zh) 成孔方法、铝合金-不锈钢工件及金属制品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914230

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2024/008080

Country of ref document: MX

Ref document number: 2401004284

Country of ref document: TH

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024013214

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2024119129

Country of ref document: RU

Ref document number: 2022914230

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022914230

Country of ref document: EP

Effective date: 20240709

ENP Entry into the national phase

Ref document number: 20247024132

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112024013214

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20240627