WO2023124975A1 - 应用于金属件固体电解抛光的离子交换树脂及其应用方法 - Google Patents
应用于金属件固体电解抛光的离子交换树脂及其应用方法 Download PDFInfo
- Publication number
- WO2023124975A1 WO2023124975A1 PCT/CN2022/138712 CN2022138712W WO2023124975A1 WO 2023124975 A1 WO2023124975 A1 WO 2023124975A1 CN 2022138712 W CN2022138712 W CN 2022138712W WO 2023124975 A1 WO2023124975 A1 WO 2023124975A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- exchange resin
- ion exchange
- electrolyte
- metal
- polishing
- Prior art date
Links
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 title claims abstract description 149
- 239000003456 ion exchange resin Substances 0.000 title claims abstract description 116
- 229920003303 ion-exchange polymer Polymers 0.000 title claims abstract description 116
- 239000002184 metal Substances 0.000 title claims abstract description 96
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 96
- 238000005498 polishing Methods 0.000 claims abstract description 100
- 239000003729 cation exchange resin Substances 0.000 claims abstract description 48
- 239000003792 electrolyte Substances 0.000 claims abstract description 41
- 239000011148 porous material Substances 0.000 claims abstract description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 69
- 239000007787 solid Substances 0.000 claims description 49
- 125000000896 monocarboxylic acid group Chemical group 0.000 claims description 41
- 239000002253 acid Substances 0.000 claims description 40
- 239000002245 particle Substances 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 23
- 239000000243 solution Substances 0.000 claims description 17
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 9
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 9
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 9
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 9
- 239000003513 alkali Substances 0.000 claims description 8
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 7
- 238000002360 preparation method Methods 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 claims description 6
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical class OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 5
- 239000012266 salt solution Substances 0.000 claims description 5
- 150000003839 salts Chemical class 0.000 claims description 5
- 239000002994 raw material Substances 0.000 claims description 4
- 229910019142 PO4 Inorganic materials 0.000 claims description 3
- 229940023913 cation exchange resins Drugs 0.000 claims description 3
- 150000003841 chloride salts Chemical class 0.000 claims description 3
- 235000006408 oxalic acid Nutrition 0.000 claims description 3
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 claims description 3
- 229960004889 salicylic acid Drugs 0.000 claims description 3
- 229910002651 NO3 Inorganic materials 0.000 claims description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 2
- 239000002585 base Substances 0.000 claims description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 2
- 239000010452 phosphate Substances 0.000 claims description 2
- 150000004673 fluoride salts Chemical class 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract description 10
- 238000000227 grinding Methods 0.000 abstract description 3
- 239000007800 oxidant agent Substances 0.000 abstract description 3
- 230000001590 oxidative effect Effects 0.000 abstract description 2
- 230000002378 acidificating effect Effects 0.000 abstract 1
- 239000011347 resin Substances 0.000 description 43
- 229920005989 resin Polymers 0.000 description 43
- 230000000694 effects Effects 0.000 description 23
- 229910021645 metal ion Inorganic materials 0.000 description 17
- 239000008151 electrolyte solution Substances 0.000 description 16
- 238000012360 testing method Methods 0.000 description 16
- 239000000178 monomer Substances 0.000 description 15
- 238000001179 sorption measurement Methods 0.000 description 12
- 238000005342 ion exchange Methods 0.000 description 8
- 150000002500 ions Chemical class 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000001878 scanning electron micrograph Methods 0.000 description 7
- 238000010668 complexation reaction Methods 0.000 description 6
- 238000012876 topography Methods 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 238000001000 micrograph Methods 0.000 description 5
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 125000002843 carboxylic acid group Chemical group 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 238000002791 soaking Methods 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- LEJBBGNFPAFPKQ-UHFFFAOYSA-N 2-(2-prop-2-enoyloxyethoxy)ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOC(=O)C=C LEJBBGNFPAFPKQ-UHFFFAOYSA-N 0.000 description 2
- KUDUQBURMYMBIJ-UHFFFAOYSA-N 2-prop-2-enoyloxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC(=O)C=C KUDUQBURMYMBIJ-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- AMFGWXWBFGVCKG-UHFFFAOYSA-N Panavia opaque Chemical compound C1=CC(OCC(O)COC(=O)C(=C)C)=CC=C1C(C)(C)C1=CC=C(OCC(O)COC(=O)C(C)=C)C=C1 AMFGWXWBFGVCKG-UHFFFAOYSA-N 0.000 description 2
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000009920 chelation Effects 0.000 description 2
- 150000001868 cobalt Chemical class 0.000 description 2
- 229910001429 cobalt ion Inorganic materials 0.000 description 2
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 2
- -1 due to complexation Inorganic materials 0.000 description 2
- 125000001153 fluoro group Chemical class F* 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 230000037427 ion transport Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- PSGCQDPCAWOCSH-UHFFFAOYSA-N (4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl) prop-2-enoate Chemical compound C1CC2(C)C(OC(=O)C=C)CC1C2(C)C PSGCQDPCAWOCSH-UHFFFAOYSA-N 0.000 description 1
- HGDULKQRXBSKHL-UHFFFAOYSA-N 1,1-bis(2-methylprop-2-enoyloxy)propyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(CC)(OC(=O)C(C)=C)OC(=O)C(C)=C HGDULKQRXBSKHL-UHFFFAOYSA-N 0.000 description 1
- CHRJZRDFSQHIFI-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;styrene Chemical class C=CC1=CC=CC=C1.C=CC1=CC=CC=C1C=C CHRJZRDFSQHIFI-UHFFFAOYSA-N 0.000 description 1
- KOMNUTZXSVSERR-UHFFFAOYSA-N 1,3,5-tris(prop-2-enyl)-1,3,5-triazinane-2,4,6-trione Chemical compound C=CCN1C(=O)N(CC=C)C(=O)N(CC=C)C1=O KOMNUTZXSVSERR-UHFFFAOYSA-N 0.000 description 1
- ZDQNWDNMNKSMHI-UHFFFAOYSA-N 1-[2-(2-prop-2-enoyloxypropoxy)propoxy]propan-2-yl prop-2-enoate Chemical compound C=CC(=O)OC(C)COC(C)COCC(C)OC(=O)C=C ZDQNWDNMNKSMHI-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- VFZKVQVQOMDJEG-UHFFFAOYSA-N 2-prop-2-enoyloxypropyl prop-2-enoate Chemical compound C=CC(=O)OC(C)COC(=O)C=C VFZKVQVQOMDJEG-UHFFFAOYSA-N 0.000 description 1
- DXPPIEDUBFUSEZ-UHFFFAOYSA-N 6-methylheptyl prop-2-enoate Chemical compound CC(C)CCCCCOC(=O)C=C DXPPIEDUBFUSEZ-UHFFFAOYSA-N 0.000 description 1
- FIHBHSQYSYVZQE-UHFFFAOYSA-N 6-prop-2-enoyloxyhexyl prop-2-enoate Chemical compound C=CC(=O)OCCCCCCOC(=O)C=C FIHBHSQYSYVZQE-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 1
- IAXXETNIOYFMLW-COPLHBTASA-N [(1s,3s,4s)-4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl] 2-methylprop-2-enoate Chemical compound C1C[C@]2(C)[C@@H](OC(=O)C(=C)C)C[C@H]1C2(C)C IAXXETNIOYFMLW-COPLHBTASA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000000788 chromium alloy Substances 0.000 description 1
- AXTNPHLCOKUMDY-UHFFFAOYSA-N chromium cobalt Chemical compound [Co][Cr][Co] AXTNPHLCOKUMDY-UHFFFAOYSA-N 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 125000004386 diacrylate group Chemical group 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000012966 insertion method Methods 0.000 description 1
- 159000000014 iron salts Chemical class 0.000 description 1
- 229940119545 isobornyl methacrylate Drugs 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 150000002815 nickel Chemical class 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- FSDNTQSJGHSJBG-UHFFFAOYSA-N piperidine-4-carbonitrile Chemical compound N#CC1CCNCC1 FSDNTQSJGHSJBG-UHFFFAOYSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000003361 porogen Substances 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25F—PROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
- C25F3/00—Electrolytic etching or polishing
- C25F3/16—Polishing
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09G—POLISHING COMPOSITIONS; SKI WAXES
- C09G1/00—Polishing compositions
- C09G1/06—Other polishing compositions
- C09G1/14—Other polishing compositions based on non-waxy substances
- C09G1/16—Other polishing compositions based on non-waxy substances on natural or synthetic resins
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25F—PROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
- C25F7/00—Constructional parts, or assemblies thereof, of cells for electrolytic removal of material from objects; Servicing or operating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/10—Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
Definitions
- the invention relates to the technical field of metal surface treatment, in particular to an ion exchange resin used in solid electrolytic polishing of metal parts and an application method thereof.
- polishing has been diversified.
- Common polishing methods include physical polishing, chemical polishing and composite polishing.
- Physical polishing is generally mechanical polishing, which is the process of removing the convex part of the polished surface by cutting, abrasion or plastic deformation to obtain a smooth and bright surface.
- Chemical polishing is the process of preferentially oxidizing the tiny metal protrusions on the surface to be polished into metal ions by chemical corrosion (electrochemical corrosion) to etch, thereby improving the roughness of the metal surface and obtaining a smooth and bright surface.
- Chemical polishing solves the technical problems difficult to solve by mechanical polishing to a certain extent, but a large amount of chemical oxidizing agent or electrolyte will cause harm to the body of the operator, and at the same time, a large amount of waste liquid will be generated after polishing. If it is not handled properly, it will cause serious damage. environmental pollution.
- CN109415839A discloses a method of smoothing and polishing metal by ion transport of free solids and a solid for performing the method, which smoothes and polishes metal parts by ion transport, wherein the disclosed spherical particles are sulfonated styrene-divinyl Benzene resin, but due to the influence of factors such as steric hindrance effect and ion complexation, the smooth polishing effect of the resin on the metal surface cannot be controlled. For example, for some easy-to-polish metals, it will cause excessive polishing and defects on the surface of the precise parts of the metal sample; for some difficult-to-polish metals, it will cause incomplete polishing and poor surface gloss.
- CN113699579A discloses a metal polishing method, which first uses mild electrolytic conditions to perform aqueous electrolytic polishing on the polished workpiece, so that the surface of the polished workpiece reaches a preliminary brightness, and then uses a spherical solid electrolyte to achieve the preliminary brightness of the surface.
- the polished workpiece is subjected to compound electrolytic polishing, so that the surface of the polished workpiece reaches the final mirror brightness.
- the process is relatively complicated.
- its composite electrolytic polishing is a mechanical action and an electrolytic action at the same point.
- the present invention aims to solve at least one of the above-mentioned technical problems existing in the prior art. For this reason, one of the purposes of the present invention is to provide a kind of ion exchange resin that is applied to the solid electropolishing of metal parts, and the second purpose of the present invention is to provide a kind of preparation method of this ion exchange resin, and the third purpose of the present invention is to Provided is a solid electrolytic polishing method for metal pieces using the ion exchange resin.
- the first aspect of the present invention provides an ion exchange resin applied to solid electrolytic polishing of metal parts
- the ion exchange resin is an organic weak acid type cation exchange resin with a porous structure; the inside of the pores of the ion exchange resin and/or The surface contains electrolytes.
- the organic weak acid cation exchange resin includes at least one of acrylic acid cation exchange resin, oxalic acid cation exchange resin, citric acid cation exchange resin, salicylic acid cation exchange resin, and EDTA cation exchange resin.
- the acrylic acid type cation exchange resin is a carboxylic acid type ion exchange resin containing COOH/COO - group;
- the ratio of the COOH group and the COO- group is adjusted by the type of raw material for the preparation of the ion exchange resin and/or the pH value of the electrolyte.
- the particle size of the ion exchange resin is 0.01 mm to 10 mm; further preferably, the particle size of the ion exchange resin is 0.27 mm to 4 mm.
- the electrolyte can adjust the conductivity of the ion exchange resin.
- the volume resistance of the ion exchange resin is 0.01M ⁇ ⁇ 5M ⁇ ; more preferably, the volume resistance of the ion exchange resin is 0.05M ⁇ ⁇ 4M ⁇ .
- the mass content of the electrolyte in the pores and/or the surface of the ion exchange resin is 15% to 80%; further preferably, the mass content of the electrolyte in the pores and/or surface of the ion exchange resin is 30% to 65% .
- the electrolyte includes at least one of water, acid solution, alkali solution, and salt solution.
- the acid of the acid solution includes at least one of H 2 SO 4 , HCl, H 3 PO 4 , HNO 3 , and HF.
- the alkali of the alkali solution includes at least one of NaOH and KOH.
- the salt of the saline solution includes at least one of soluble chloride salts, fluorine salts, sulfates, phosphates, nitrates, and EDTA salts.
- a second aspect of the present invention provides a method for preparing an ion exchange resin applied to solid electrolytic polishing of metal parts according to the first aspect of the present invention, comprising the following steps: soaking an organic weak acid type cation exchange resin with a porous structure in In the electrolyte, adjust the pH value of the electrolyte, then filter and volatilize to obtain the ion exchange resin applied to solid electrolytic polishing of metal parts.
- the pH value of the electrolyte in the organic weak acid cation exchange resin is greater than 4.
- a third aspect of the present invention provides a method for carrying out solid electropolishing of metal parts using the ion exchange resin according to the first aspect of the present invention, comprising the following steps:
- the metal piece to be polished is connected to the positive pole of the power supply of the electrochemical polishing device, and the ion exchange resin is connected to the negative pole of the power supply of the electrochemical polishing device;
- S2 energize the electrochemical polishing device to perform electrolytic polishing.
- the metal part to be polished and the ion exchange resin undergo relative frictional motion.
- the ion exchange resin of the present invention is an organic weak acid cation exchange resin.
- the organic weak acid cation exchange resin can also dissociate cations from the metal parts. Sufficient chelation occurs, and the adsorption of metal ions is easier due to less steric hindrance. After organic weak acid cation exchange resin adsorbs metal ions, due to complexation, metal ions are difficult to detach, which effectively improves its polishing efficiency.
- the organic weak acid cation exchange resin can adjust the ratio of COOH and COO - groups through the pH of the electrolyte solution.
- the ion exchange resin provided by the invention is applied to solid electrolytic polishing of metal parts. Compared with mechanical polishing and electrolytic polishing, it can fully polish the parts of metal parts that are not convenient for grinding, and does not require a large amount of chemical oxidizing agents and Electrolyte, environment friendly and high safety. In addition, the modified ion exchange resin can be regenerated after being used for a period of time, which greatly improves the service life and reduces the cost.
- Fig. 1 is the scanning electron micrograph of ion exchange resin
- Fig. 2 is the pore size physical adsorption test figure of ion exchange resin
- Fig. 3 is the X-ray photoelectron energy spectrogram of ion exchange resin
- Fig. 4 is the schematic diagram of the principle of electropolishing metal of the present invention.
- Figure 5 is a scanning electron microscope image of the metal piece before polishing
- Fig. 6 is a scanning electron micrograph of a metal part polished with COOH type resin
- Fig. 7 is the scanning electron micrograph of the metal part that adopts 10g COOH type resin to add 0.5g NaOH sample polishing;
- Figure 8 is a scanning electron microscope image of a metal piece polished with COONa resin
- Fig. 9 is the surface topography figure before metal piece polishing
- Fig. 10 is the metal part surface topography figure after adopting 10g COOH type resin to add 0.5g NaOH sample polishing;
- Fig. 11 is a surface topography diagram of a metal part polished with COONa resin.
- the ion exchange resin provided by the invention is applied to solid electrolytic polishing of metal parts.
- electropolishing is to immerse the metal in a special chemical solution composed of various components, relying on high chemical potential energy to oxidize the metal to obtain a smooth and bright surface
- solid electropolishing uses conductive solid particles instead of Electrolyte, through the contact of solid particles with the metal parts to be polished, so as to realize the polishing treatment on the surface of the metal parts.
- What needs to be pointed out here is that although the solid particles are in contact with the metal piece to be polished, the relative movement rate of this contact is low, and the hardness of the solid particles is lower than that of the metal piece, so there is no physical mechanical polishing process.
- the solid particles provided in the embodiments of the present invention are organic weak acid cation exchange resins with a porous structure, wherein the pores and/or surfaces of the organic weak acid cation exchange resins contain a certain amount of electrolyte.
- the porous structure can make the organic weak acid cation exchange resin lose the electrolyte on the surface firstly, and then lose the electrolyte in the pores during the drying process after being wetted by the electrolyte solution.
- the porous structure can ensure that the organic weak acid cation exchange resin still has good conductivity after completely losing the surface electrolyte.
- the organic weak acid type cation exchange resin in the embodiment of the present invention includes oxalic acid type cation exchange resin, acrylic acid type cation exchange resin, citric acid type cation exchange resin, salicylic acid type cation exchange resin or EDTA type cation exchange resin.
- the ion exchange resin is modified with carboxylic acid groups, i.e. COOH groups, wherein the ratio of COOH groups and COO groups on the ion exchange resins can be passed
- carboxylic acid groups i.e. COOH groups
- the type of raw material for the preparation of the ion exchange resin and/or the pH value of the electrolyte are regulated.
- ion exchange resins containing COOH groups are briefly referred to as COOH-type ion exchange resins
- ion exchange resins containing COO - groups are briefly referred to as COO - type ion exchange resins.
- the acrylic cation exchange resin is made by polymerizing active acrylate monomers, common monomers and cross-linking monomers.
- the active acrylate monomer includes a carboxyl group, such as selected from acrylic acid, methacrylic acid, etc., and the mass parts of the active acrylate monomer can be 50-90 parts.
- the common monomers include at least one of acrylic monomers and ethylenic double bond monomers, such as methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, n-butyl acrylate, At least one of octyl, isooctyl acrylate, isobornyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, isobornyl methacrylate, ethylene, propylene, styrene, and acrylonitrile A sort of.
- the mass parts of the common monomers may be 10-50 parts.
- the crosslinking monomer includes at least one of multifunctional acrylate monomers and polyene double bond monomers, such as selected from ethylene glycol diacrylate, diethylene glycol diacrylate, propylene glycol diacrylate , Dipropylene Glycol Diacrylate, Tripropylene Glycol Diacrylate, Hexylene Glycol Diacrylate, Bisphenol A Glycerol Dimethacrylate, Glycerin 1,3-Diglyceryl Alkylate Diacrylate, Trimethylol At least one of propane trimethacrylate, triallyl isocyanurate and divinylbenzene.
- the mass parts of the crosslinking monomer can be 1-20 parts.
- the active acrylate monomer is used to chelate metal ions, and the cross-linking monomer is used to improve the hardness, strength, solvent resistance, stability, etc. of the resin. It does not drop slag during use and prolongs its service life.
- the embodiment of the present invention is used for the solid electrolytic polishing material of metal piece to adopt the polyacrylate porous resin microsphere with carboxyl group, is made of acrylic acid (55 parts by mass), methyl methacrylate (35 parts by mass), bis Phenol A glycerol dimethacrylate (10 parts by mass), with azobisisobutyronitrile (2 parts by mass) as initiator, toluene as oil phase, and aqueous sodium chloride solution as water phase , gelatin and polyvinyl alcohol are dispersants, and the porogen is paraffin, which is made by suspension polymerization.
- the polyacrylate porous resin microspheres with carboxyl groups are obtained by screening through sieves with different meshes.
- FIG. 1 The scanning electron microscope (SEM) picture of the prepared carboxylic acid ion exchange resin with a porous structure is shown in FIG. 1 .
- Fig. 1 (a) is the scanning electron micrograph that has the carboxylic acid type ion exchange resin of porous structure magnification 44 times
- Fig. 1 (b) is the scanning electron micrograph that has the carboxylic acid type ion exchange resin of porous structure magnification 220 times
- Fig. 1(c) is a 11,000-fold scanning electron micrograph of a carboxylic acid-type ion-exchange resin with a porous structure
- the particle size of the ion exchange resin is 0.01mm-10mm, preferably 0.27mm-4mm.
- Figure 1 further shows the surface structure of the ion exchange resin. It can be seen that the resin is composed of small particles of about 50 to 100 nm in size. A porous structure is formed inside and between the particles, which can absorb and accommodate more metal ions.
- Figure 2 is a physical adsorption test diagram of the pore size of the ion-exchange resin. As shown in Figure 2, the pore size of the ion-exchange resin porous structure mainly falls into two categories: 25nm and 90nm.
- Figure 3 is the X-ray photoelectron spectrum of the ion exchange resin, wherein Figure 3(a) is the full spectrum and Figure 3(b) is the fine spectrum of C1s. It can be seen from Figure 3 that the peak shapes at the positions of 280eV, 530eV, 980eV and 1221eV are respectively the 1s peak of carbon element, the 1s peak of oxygen element, the Auger peak of carbon element, and the Auger peak of oxygen element.
- the ion exchange resin mainly contains two elements of carbon and oxygen. Further C1s fine spectrum can be seen, the peak at 288eV confirms that the resin is modified with carboxylic acid groups.
- the carboxylic acid type ion exchange resin with porous structure is soaked in the electrolytic solution, and then dried to obtain the organic weak acid type ion exchange resin applied to solid electrolytic polishing of metal parts.
- the ratio of COOH groups and COO- groups in the carboxylic acid type ion exchange resin can be adjusted by adjusting the pH of the electrolyte solution.
- the electrolyte in the electrolyte solution is at least one of acid, alkali and salt.
- the acid in the electrolyte solution is at least one of H 2 SO 4 , HCl, H 3 PO 4 , HNO 3 , and HF
- the base is at least one of NaOH and KOH
- the salt is soluble chloride salt, fluorine salt, At least one of sulfate, phosphate, nitrate, and EDTA salt.
- the embodiment of the present invention adopts the steps of first soaking and absorbing and then volatilizing, if the electrolyte solution used is a salt solution, the volatilization rate of the electrolyte solute is generally slower than that of the solvent, so the final ion exchange
- the actual concentration of the electrolyte solution inside the resin pores will be slightly higher than the concentration of the initially soaked electrolyte solution.
- the electrolyte solution is an alkaline solution and the ion exchange resin is a COOH type ion exchange resin
- the actual concentration of the electrolyte solution inside the pores of the final ion exchange resin will be much lower than the initial concentration due to the reaction between the alkali and the carboxylic acid.
- the concentration of the soaked electrolyte solution is even 0. The same applies to acid solutions and COO - type ion exchange resins.
- the selected electrolyte is NaOH solution, and washed with a large amount of water after the reaction, so that the pH of the final solution fully reflects the ratio of COOH and COO - groups in the ion exchange resin, the greater the pH, the higher the proportion of COO - groups.
- an ion exchange test was carried out. Since the metal parts used in the solid electrolytic polishing test are chromium-cobalt alloys, cobalt salt solutions (nickel salts, copper salts, and iron salts have similar results, and different metal salts can be used for different metal substrates) are used for ion exchange experiments.
- the ion concentration is determined by measured by inductively coupled plasma spectroscopy (ICP). Specifically, the same mass of ion exchange resin is soaked in an equal concentration and equal volume cobalt salt aqueous solution. At the same time, a strong acid type cation exchange resin (sulfonic acid ion exchange resin, specific grade 001*7) was selected as a comparison, and the specific comparison results are shown in Table 1 below.
- the experimental results show that with the continuous increase of the introduction of NaOH, the COOH group in the ion exchange resin gradually changes into a COO - group, the concentration of cobalt ions in the supernatant decreases, and the color of the supernatant changes from red to no.
- the color shows that the ion exchange capacity of the COONa ion exchange resin is stronger than that of the COOH type ion exchange resin, and the COO - group mainly plays a role in the adsorption capacity of metal ions.
- the embodiment of the present invention also provides a method for applying an ion exchange resin to the electrolytic polishing of a metal piece, the method comprising:
- Step 1 placing the prepared solid organic weak acid cation exchange resin in an electrochemical polishing device; wherein, the metal piece to be polished is connected to the positive electrode of the power supply, and the solid organic weak acid cation exchange resin is electrochemically connected to the negative electrode of the power supply;
- Step 2 Turn on the power supply, and at the same time of electrolysis, the metal piece to be polished and the solid organic weak acid type cation exchange resin undergo relative frictional motion.
- the electrochemical polishing device contains a metal mesh cage; after the metal sample is connected to the positive electrode of the electrochemical polishing device, it is inserted into the metal mesh cage; the metal mesh cage is respectively connected with the solid organic weak acid type cation exchange resin It is connected with the negative electrode of the electrochemical polishing device.
- the insertion method includes stirring or vibrating. Thereby, the solid organic weak acid type cation exchange resin contacting the positive electrode and the negative electrode can be constantly changed, thereby being fully utilized.
- the schematic diagram of the specific principle and process of electropolishing metal with the solid organic weak acid type cation exchange resin of the present invention can be seen in FIG. 4 .
- the polishing rate and effect are controlled by these three steps: 1.
- the oxidation process of the metal, the intuitive characterization is the magnitude of the current (experimentally confirmed that 0.01-100A is more suitable), and the magnitude of the current is determined by the applied voltage It is determined by the resistance of the solid particles (organic weak acid cation exchange resin) (the resistance of the metal sample and other parts of the entire electrochemical system is much smaller than the resistance of the solid particles, so it is ignored), if the applied voltage is lower than the oxidation potential of the metal and the electrode If the chemical potential is low, the metal ions cannot be oxidized and separated from the metal smoothly.
- the oxidation rate of the metal ions will be very slow, and the polishing effect cannot be achieved; 2.
- the diffusion process of metal ions because it is solid polishing, so the ion diffusion process is also one of the speed-controlling steps, if the content of the conductive solution is too low and the pore size of the solid particles is too small (less than the actual ion hydration particle size or complex particle size), then Also can't realize polishing effect; 3, the exchange/adsorption/complexation process of metal ion, this process is mainly determined by pore volume, group quantity and kind, in the present invention, the metal ion used enters particle interior and with particle The hydroxyl functional groups on the pores undergo chelation/complexation/adsorption reactions, thereby adsorbing metal ions in the particles, achieving the effect of migrating and fixing metal ions, thereby reducing the concentration of metal ions on the surface of the metal
- the exchange resin is an ion exchange resin that is treated with excess NaOH solution and washed with water, and is named as COONa ion exchange resin. Soak the COONa ion exchange resin with porous structure, filter it, and then volatilize and dry it in stages. Among them, different drying times will lead to different electrolyte contents in the COONa ion exchange resin, and use a multimeter to determine its resistance. The values were tested and the results are shown in Table 2.
- the conductivity of the ion-exchange resin can be adjusted by controlling the electrolyte content inside and on the surface of the ion-exchange resin, and the ion-exchange resin with suitable conductivity can be selected. Used for solid electrolytic polishing of metal parts.
- the present invention places the solid organic weak acid type cation exchange resin in an electrochemical polishing device, wherein the polished
- the metal parts are connected to the positive pole of the power supply, the solid organic weak acid cation exchange resin is electrochemically connected to the negative pole of the power supply, and the polishing performance test of the metal parts is carried out (applied voltage 60V, polishing 20min), and the surface of the metal parts is observed by naked eyes and scanning electron microscope.
- the morphology was characterized, and the roughness was tested by an optical profiler. The results are shown in Table 3.
- the quality of the resin used in all tests, the concentration of the soaking electrolyte, and the electrical conductivity are consistent.
- the ion exchange resin (the electrolyte content is 50.1% and the volume resistance is 0.7M ⁇ ) made in Table 2 with a drying time of 72h is selected for electrolytic polishing. test.
- Figure 5 is a scanning electron microscope image of a metal piece before polishing
- Figure 6 is a scanning electron microscope image of a metal piece polished with a COOH type resin
- Figure 7 is a scanning electron microscope image of a metal piece polished with a 10g COOH type resin plus 0.5g NaOH sample
- Figure 8 is the scanning electron micrograph of metal parts polished with COONa resin. It can be seen from Figures 5-8 that as the proportion of COONa resin increases, the surface polishing effect of metal parts becomes better and better. It is further confirmed that the more COO - groups, the stronger the adsorption capacity for metal ions, and the better the polishing effect, so as to adjust the polishing rate and polishing intensity, so as to control the polishing effect of metal parts.
- Fig. 9 is the surface topography diagram of metal parts before polishing
- Fig. 10 is the metal part surface topography diagram after adopting 10g COOH type resin to add 0.5g NaOH sample polishing
- Fig. 11 is the metal part after adopting COONa type resin polishing Surface topography of the piece.
- the medical 3D printed chromium-cobalt metal sample is used, the shape of the sample is different, but the material is exactly the same. It can be seen from Figures 9-11 that the surface of metal parts after solid electropolishing with COONa resin is bright and smooth, which further indicates that the solid electropolishing effect of COONa resin is better.
- the present invention also uses an optical profiler to test the roughness of the surface of the solid electropolished metal piece, and the test results are shown in Table 4 below.
- the organic weak acid type cation exchange resin provided by the embodiment of the present invention has a good polishing effect when it is applied to the solid electrolytic polishing of metal parts. Polished effect.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Polishing Bodies And Polishing Tools (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Silicon Compounds (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Abstract
Description
晾干时间(h) | 电解质含量(%) | 体积电阻(MΩ) |
4 | 61.5 | 0.05 |
24 | 58.4 | 0.1 |
48 | 54.3 | 0.3 |
72 | 50.1 | 0.7 |
96 | 47.5 | 1.1 |
168 | 36.5 | 3.5 |
树脂类型 | 金属件抛光亮度 |
抛光前 | 灰暗 |
COOH型 | 灰暗 |
10g COOH型树脂加0.1g NaOH | 灰暗 |
10g COOH型树脂加0.2g NaOH | 灰暗 |
10g COOH型树脂加0.3g NaOH | 灰暗 |
10g COOH型树脂加0.4g NaOH | 哑光 |
10g COOH型树脂加0.5g NaOH | 哑光 |
10g COOH型树脂加0.6g NaOH | 哑光 |
10g COOH型树脂加0.7g NaOH | 亮 |
10g COOH型树脂加0.8g NaOH | 亮 |
COONa型 | 亮 |
磺酸型 | 哑光 |
树脂类型 | 金属件粗糙度Ra(μm) |
抛光前样件(灰暗) | 4.082 |
COOH型抛光(灰暗) | 4.026 |
10g COOH型树脂加0.5g NaOH(哑光) | 1.656 |
COONa型抛光(光亮) | 0.419 |
磺酸型 | 1.328 |
Claims (10)
- 一种应用于金属件固体电解抛光的离子交换树脂,其特征在于,所述离子交换树脂为具有多孔结构的有机弱酸型阳离子交换树脂;所述离子交换树脂的孔道内部和/或表面含有电解质。
- 根据权利要求1所述的离子交换树脂,其特征在于,所述有机弱酸型阳离子交换树脂包括丙烯酸型阳离子交换树脂、草酸型阳离子交换树脂、柠檬酸型阳离子交换树脂、水杨酸型阳离子交换树脂、EDTA型阳离子交换树脂中的至少一种。
- 根据权利要求2所述的离子交换树脂,其特征在于,所述丙烯酸型阳离子交换树脂为含有COOH/COO -基团的羧酸型离子交换树脂;所述COOH基团和COO -基团的比例通过离子交换树脂的制备原料种类和/或电解质的pH值来调节。
- 根据权利要求1或2所述的离子交换树脂,其特征在于,所述离子交换树脂的粒径为0.01毫米~10毫米。
- 根据权利要求1所述的离子交换树脂,其特征在于,所述电解质可以调节所述离子交换树脂的电导率。
- 根据权利要求1或5所述的离子交换树脂,其特征在于,所述离子交换树脂的孔道内部和/或表面电解质质量含量为15%~80%。
- 根据权利要求1或5所述的离子交换树脂,其特征在于,所述电解质包括水、酸溶液、碱溶液、盐溶液中的至少一种。
- 根据权利要求7所述的离子交换树脂,其特征在于,所述电解质中,所述酸溶液的酸包括H 2SO 4、HCl、H 3PO 4、HNO 3、HF中的至少一种;所述碱溶液的碱包括NaOH、KOH中的至少一种;所述盐溶液的盐包括可溶性氯盐、氟盐、硫酸盐、磷酸盐、硝酸盐、EDTA盐中的至少一种。
- 权利要求1至8任一项所述的离子交换树脂的制备方法,其特征在于,包括以下步骤:将具有多孔结构的有机弱酸型阳离子交换树脂浸泡在电解质中,调节电解质的pH值,然后过滤,挥发,得到所述离子交换树脂。
- 应用权利要求1至8任一项所述的离子交换树脂对金属件进行固体电解抛光的方法,其特征在于,包括以下步骤:S1:将所述离子交换树脂和待抛光的金属件置于电化学抛光装置中;其中,所述待抛光的金属件与所述电化学抛光装置的电源正极连接,所述离子交换树脂与所述电化学抛光装置的电源负极连接;S2:将电化学抛光装置通电进行电解抛光,电解抛光时所述待抛光的金属件与所述离子交换树脂发生相对摩擦运动。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2024008080A MX2024008080A (es) | 2021-12-28 | 2022-12-13 | Resina de intercambio ionico utilizada en el pulido electrolitico solido de piezas de trabajo metalicas y metodo de uso de la misma. |
KR1020247024132A KR20240124370A (ko) | 2021-12-28 | 2022-12-13 | 금속 공작물의 고체 전해 연마에 적용되는 이온교환수지 및 그 응용 방법 |
EP22914230.2A EP4446478A1 (en) | 2021-12-28 | 2022-12-13 | Ion exchange resin applied to dry electropolishing of metal workpieces and use thereof |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111626740.2 | 2021-12-28 | ||
CN202111626740.2A CN114481286A (zh) | 2021-12-28 | 2021-12-28 | 一种用于电解抛光的固体颗粒物 |
CN202210552048.8A CN114908409B (zh) | 2021-12-28 | 2022-05-20 | 应用于金属件固体电解抛光的离子交换树脂及其应用方法 |
CN202210552048.8 | 2022-05-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023124975A1 true WO2023124975A1 (zh) | 2023-07-06 |
Family
ID=81497063
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/138712 WO2023124975A1 (zh) | 2021-12-28 | 2022-12-13 | 应用于金属件固体电解抛光的离子交换树脂及其应用方法 |
PCT/CN2022/138721 WO2023124980A1 (zh) | 2021-12-28 | 2022-12-13 | 一种应用于金属件固体电解抛光的颗粒物及应用方法 |
PCT/CN2022/138716 WO2023124977A1 (zh) | 2021-12-28 | 2022-12-13 | 一种用于金属件电解抛光的固体颗粒物 |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/138721 WO2023124980A1 (zh) | 2021-12-28 | 2022-12-13 | 一种应用于金属件固体电解抛光的颗粒物及应用方法 |
PCT/CN2022/138716 WO2023124977A1 (zh) | 2021-12-28 | 2022-12-13 | 一种用于金属件电解抛光的固体颗粒物 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP4446478A1 (zh) |
KR (1) | KR20240124370A (zh) |
CN (4) | CN114481286A (zh) |
MX (1) | MX2024008080A (zh) |
WO (3) | WO2023124975A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118186557A (zh) * | 2024-03-01 | 2024-06-14 | 广东倍亮科技有限公司 | 一种金属固体电解抛光的电解质及其应用 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114164482B (zh) * | 2021-12-27 | 2023-09-15 | 鹤壁市海格化工科技有限公司 | 离子交换树脂在不规则金属件抛光中的应用及应用方法 |
CN114481286A (zh) * | 2021-12-28 | 2022-05-13 | 广东省科学院化工研究所 | 一种用于电解抛光的固体颗粒物 |
CN117186475B (zh) * | 2023-11-07 | 2024-02-09 | 华中科技大学 | 一种用于碱性液流电池的有机羧酸醚改性阳离子交换膜的制备方法 |
CN118028961A (zh) * | 2024-02-23 | 2024-05-14 | 广东倍亮科技有限公司 | 应用于含铬或钴金属的固体电解抛光材料及方法 |
CN118241295A (zh) * | 2024-02-23 | 2024-06-25 | 广东倍亮科技有限公司 | 金属电解抛光介质及其制备方法和应用 |
CN118028963A (zh) * | 2024-02-23 | 2024-05-14 | 广东倍亮科技有限公司 | 高价可溶性金属盐在金属固体电解抛光中的应用 |
CN118028962A (zh) * | 2024-02-23 | 2024-05-14 | 广东倍亮科技有限公司 | 离子液体在金属固体电解抛光中的应用 |
CN118166356A (zh) * | 2024-02-28 | 2024-06-11 | 广东倍亮科技有限公司 | 钛或钛合金固体电解抛光的电解液、抛光介质和抛光方法 |
CN118186555A (zh) * | 2024-02-28 | 2024-06-14 | 广东倍亮科技有限公司 | 镁、铝或其合金固体电解抛光的固体颗粒物及其应用 |
CN118186562A (zh) * | 2024-03-01 | 2024-06-14 | 广东倍亮科技有限公司 | 一种金属固体电解抛光用的固体颗粒物 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010020348A1 (en) * | 2000-01-11 | 2001-09-13 | Kazumasa Ueda | Abrasive for metal |
US20020077035A1 (en) * | 1999-12-22 | 2002-06-20 | Applied Materials, Inc. | Ion exchange materials for chemical mechanical polishing |
CN1900206A (zh) * | 2005-07-21 | 2007-01-24 | 安集微电子(上海)有限公司 | 化学机械抛光液及其用途 |
ES2604830A1 (es) * | 2016-04-28 | 2017-03-09 | Drylyte, S.L. | Proceso para alisado y pulido de metales por transporte iónico mediante cuerpos sólidos libres, y cuerpos sólidos para llevar a cabo dicho proceso. |
CN109778295A (zh) * | 2017-11-15 | 2019-05-21 | 日本表面化学株式会社 | 电解抛光液以及加工金属的制造方法 |
ES2721170A1 (es) * | 2018-01-26 | 2019-07-29 | Drylyte Sl | Uso de so4h2 como electrolito para procesos de alisado y pulido de metales por transporte ionico mediante cuerpos solidos libres. |
WO2021019121A1 (es) * | 2019-08-01 | 2021-02-04 | Drylyte, S.L. | Método y dispositivo para tratar en seco superficies metálicas mediante partículas sólidas eléctricamente activas |
CN112534088A (zh) * | 2018-11-12 | 2021-03-19 | 德里莱特公司 | 磺酸在干电解质中通过离子传输抛光金属表面的用途 |
WO2021156531A1 (es) * | 2020-02-04 | 2021-08-12 | Drylyte, S.L. | Electrolito solido para el electropulido en seco de metales con moderador de actividad |
CN113699579A (zh) | 2021-09-03 | 2021-11-26 | 深圳市汉伟港泰首饰机械设备有限公司 | 一种金属抛光方法 |
CN114481286A (zh) * | 2021-12-28 | 2022-05-13 | 广东省科学院化工研究所 | 一种用于电解抛光的固体颗粒物 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1478708A1 (en) * | 2002-02-26 | 2004-11-24 | Applied Materials, Inc. | Method and composition for polishing a substrate |
JP2004172606A (ja) * | 2002-11-08 | 2004-06-17 | Sumitomo Chem Co Ltd | 金属研磨材組成物及び研磨方法 |
US7044836B2 (en) * | 2003-04-21 | 2006-05-16 | Cabot Microelectronics Corporation | Coated metal oxide particles for CMP |
US7427361B2 (en) * | 2003-10-10 | 2008-09-23 | Dupont Air Products Nanomaterials Llc | Particulate or particle-bound chelating agents |
US20060169674A1 (en) * | 2005-01-28 | 2006-08-03 | Daxin Mao | Method and composition for polishing a substrate |
CN101168847A (zh) * | 2006-09-04 | 2008-04-30 | 株式会社荏原制作所 | 用于电解抛光的电解液以及电解抛光方法 |
US20080067077A1 (en) * | 2006-09-04 | 2008-03-20 | Akira Kodera | Electrolytic liquid for electrolytic polishing and electrolytic polishing method |
US7691287B2 (en) * | 2007-01-31 | 2010-04-06 | Dupont Air Products Nanomaterials Llc | Method for immobilizing ligands and organometallic compounds on silica surface, and their application in chemical mechanical planarization |
JP2009241211A (ja) * | 2008-03-31 | 2009-10-22 | Toyo Tire & Rubber Co Ltd | 電解研磨パッドの製造方法 |
US9633865B2 (en) * | 2008-02-22 | 2017-04-25 | Rohm And Haas Electronic Materials Cmp Holdings, Inc. | Low-stain polishing composition |
US9803109B2 (en) * | 2015-02-03 | 2017-10-31 | Cabot Microelectronics Corporation | CMP composition for silicon nitride removal |
RU2700226C1 (ru) * | 2018-10-02 | 2019-09-13 | федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" | Способ электрополирования металлической детали |
EP3690993B1 (en) * | 2019-02-01 | 2023-10-04 | Samsung SDI Co., Ltd. | Compositions for forming a porous insulating layer, electrode for non-aqueous electrolyte rechargeable battery, rechargeable battery including the electrode and method of manufacturing the electrode |
CN111841623B (zh) * | 2020-08-19 | 2021-09-24 | 河南大学 | 分子筛催化剂及其制备方法及用途 |
-
2021
- 2021-12-28 CN CN202111626740.2A patent/CN114481286A/zh active Pending
-
2022
- 2022-05-20 CN CN202210552048.8A patent/CN114908409B/zh active Active
- 2022-05-20 CN CN202210552061.3A patent/CN114908410B/zh active Active
- 2022-05-20 CN CN202210550249.4A patent/CN115029768B/zh active Active
- 2022-12-13 WO PCT/CN2022/138712 patent/WO2023124975A1/zh active Application Filing
- 2022-12-13 EP EP22914230.2A patent/EP4446478A1/en active Pending
- 2022-12-13 KR KR1020247024132A patent/KR20240124370A/ko unknown
- 2022-12-13 WO PCT/CN2022/138721 patent/WO2023124980A1/zh unknown
- 2022-12-13 MX MX2024008080A patent/MX2024008080A/es unknown
- 2022-12-13 WO PCT/CN2022/138716 patent/WO2023124977A1/zh unknown
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020077035A1 (en) * | 1999-12-22 | 2002-06-20 | Applied Materials, Inc. | Ion exchange materials for chemical mechanical polishing |
US20010020348A1 (en) * | 2000-01-11 | 2001-09-13 | Kazumasa Ueda | Abrasive for metal |
CN1900206A (zh) * | 2005-07-21 | 2007-01-24 | 安集微电子(上海)有限公司 | 化学机械抛光液及其用途 |
ES2604830A1 (es) * | 2016-04-28 | 2017-03-09 | Drylyte, S.L. | Proceso para alisado y pulido de metales por transporte iónico mediante cuerpos sólidos libres, y cuerpos sólidos para llevar a cabo dicho proceso. |
CN109415839A (zh) | 2016-04-28 | 2019-03-01 | 德里莱特公司 | 通过自由固体的离子传输平滑和抛光金属的方法及执行该方法的固体 |
CN109778295A (zh) * | 2017-11-15 | 2019-05-21 | 日本表面化学株式会社 | 电解抛光液以及加工金属的制造方法 |
ES2721170A1 (es) * | 2018-01-26 | 2019-07-29 | Drylyte Sl | Uso de so4h2 como electrolito para procesos de alisado y pulido de metales por transporte ionico mediante cuerpos solidos libres. |
CN112534088A (zh) * | 2018-11-12 | 2021-03-19 | 德里莱特公司 | 磺酸在干电解质中通过离子传输抛光金属表面的用途 |
WO2021019121A1 (es) * | 2019-08-01 | 2021-02-04 | Drylyte, S.L. | Método y dispositivo para tratar en seco superficies metálicas mediante partículas sólidas eléctricamente activas |
WO2021156531A1 (es) * | 2020-02-04 | 2021-08-12 | Drylyte, S.L. | Electrolito solido para el electropulido en seco de metales con moderador de actividad |
CN113699579A (zh) | 2021-09-03 | 2021-11-26 | 深圳市汉伟港泰首饰机械设备有限公司 | 一种金属抛光方法 |
CN114481286A (zh) * | 2021-12-28 | 2022-05-13 | 广东省科学院化工研究所 | 一种用于电解抛光的固体颗粒物 |
CN114908409A (zh) * | 2021-12-28 | 2022-08-16 | 广东省科学院化工研究所 | 应用于金属件固体电解抛光的离子交换树脂及其应用方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118186557A (zh) * | 2024-03-01 | 2024-06-14 | 广东倍亮科技有限公司 | 一种金属固体电解抛光的电解质及其应用 |
Also Published As
Publication number | Publication date |
---|---|
CN115029768A (zh) | 2022-09-09 |
CN114908410B (zh) | 2023-03-14 |
CN114481286A (zh) | 2022-05-13 |
KR20240124370A (ko) | 2024-08-16 |
MX2024008080A (es) | 2024-07-10 |
CN114908409A (zh) | 2022-08-16 |
WO2023124977A1 (zh) | 2023-07-06 |
WO2023124980A1 (zh) | 2023-07-06 |
CN115029768B (zh) | 2023-06-06 |
CN114908409B (zh) | 2023-03-24 |
CN114908410A (zh) | 2022-08-16 |
EP4446478A1 (en) | 2024-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023124975A1 (zh) | 应用于金属件固体电解抛光的离子交换树脂及其应用方法 | |
CN107658221B (zh) | 一种金刚线切割多晶硅片的制绒方法 | |
CN106549083B (zh) | 一种晶体硅太阳能电池绒面结构的制备方法 | |
CN102641722B (zh) | 电化学强化碳纤维负载纳米铁锰吸附除砷材料及方法 | |
CN104959625A (zh) | 片状银粉的制备方法 | |
CN111032929A (zh) | H2so4在用于通过游离固体进行离子迁移对金属进行平滑和抛光的方法中作为电解质的用途 | |
CN113195799A (zh) | 使用干式电解质中的hcl通过离子传输来抛光钛以其他金属和合金表面 | |
CN105344325A (zh) | 一种处理重金属污染水体的纳米铁/介孔硅复合材料的制备方法 | |
CN109023378A (zh) | 一种阴极辊化学抛光液及抛光方法 | |
Huang et al. | Removal of copper ions from an aqueous solution containing a chelating agent by electrosorption on mesoporous carbon electrodes | |
CN118028962A (zh) | 离子液体在金属固体电解抛光中的应用 | |
CN106630019B (zh) | 一种电控还原单质硫去除废水中重金属离子的方法 | |
CN115155544B (zh) | 一种基于3d打印制备含聚丙烯偕胺肟多层骨架球体铀吸附材料的方法 | |
JPWO2010095222A1 (ja) | ジルコニウム担持粒子状吸着材及びその製造方法 | |
CN106654156A (zh) | 一种锂离子电池负极极片的制备方法 | |
CN109137009B (zh) | 一种脉冲电沉积制备多孔氢氧化镁的方法 | |
CN106957095A (zh) | 用于去除水中铜离子的复合改性活性炭电极及其制备方法 | |
CN112007612A (zh) | 一种磁性复合物MnO2@Fe3O4@rGO铀吸附性能研究 | |
TWI261629B (en) | Surface treatment process for enhancing the release of metal ions from sacrificial electrode and sacrificial electrode prepared by said process | |
JP2021155818A (ja) | 電極とこの電極を用いた過酸化水素の製造方法 | |
CN111128566B (zh) | 去除电极材料中金属离子的方法及超级电容器 | |
Phetphaisit et al. | Selective adsorption of indium ions on polyacrylamido-2-methylpropane sulfonic acid-grafted-natural rubber. | |
CN115232658B (zh) | 超纯无烟煤及其制备方法 | |
CN118186562A (zh) | 一种金属固体电解抛光用的固体颗粒物 | |
CN114682865B (zh) | 成孔方法、铝合金-不锈钢工件及金属制品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22914230 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2024/008080 Country of ref document: MX Ref document number: 2401004284 Country of ref document: TH |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112024013214 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2024119129 Country of ref document: RU Ref document number: 2022914230 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022914230 Country of ref document: EP Effective date: 20240709 |
|
ENP | Entry into the national phase |
Ref document number: 20247024132 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 112024013214 Country of ref document: BR Kind code of ref document: A2 Effective date: 20240627 |