WO2023124672A1 - 薄片晶圆传输方法 - Google Patents

薄片晶圆传输方法 Download PDF

Info

Publication number
WO2023124672A1
WO2023124672A1 PCT/CN2022/134120 CN2022134120W WO2023124672A1 WO 2023124672 A1 WO2023124672 A1 WO 2023124672A1 CN 2022134120 W CN2022134120 W CN 2022134120W WO 2023124672 A1 WO2023124672 A1 WO 2023124672A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
gas
bernoulli
manipulator
gas flow
Prior art date
Application number
PCT/CN2022/134120
Other languages
English (en)
French (fr)
Inventor
仲召明
何西登
闵少敏
刘鑫
陆圣平
张炜
王晖
Original Assignee
盛美半导体设(上海)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 盛美半导体设(上海)股份有限公司 filed Critical 盛美半导体设(上海)股份有限公司
Publication of WO2023124672A1 publication Critical patent/WO2023124672A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the technical field of semiconductor manufacturing, and more specifically, to a thin wafer transfer method.
  • the Bernoulli manipulator is usually used to transport thin wafers, and the corresponding gas flow is provided to the Bernoulli manipulator according to the thickness of the thin wafer, so that the Bernoulli manipulator can stably absorb the wafer.
  • Wafers are often chipped or cracked during removal from the cassette.
  • the object of the present invention is to provide a method for transferring thin wafers, which reduces the risk of fragmentation of thin wafers during the transfer process, especially during the process of moving out of the wafer cassette.
  • the thin wafer transfer method provided by the present invention is applied to the Bernoulli manipulator to transfer wafers between the wafer cassette and the processing chamber.
  • the Bernoulli manipulator is equipped with an air path, and the air path is used for
  • the Nuli manipulator provides gas, including the following steps:
  • Each gas flow parameter includes two gas flows, which are respectively recorded as the first gas flow and the second gas flow.
  • the first gas flow is less than the second gas flow, and the first gas flow is the gas flow.
  • the second gas flow is the gas flow provided to the Bernoulli manipulator when the wafer is unloaded from the wafer box. the gas flow provided;
  • the gas path provides the Bernoulli manipulator with gas having a first gas flow rate matching the thickness of the transported wafer, and the Bernoulli manipulator moves the wafer out of the wafer cassette with the first gas flow rate;
  • the gas path provides the Bernoulli manipulator with a second gas flow rate matching the thickness of the transported wafer, and the Bernoulli manipulator transports the wafer to the processing chamber with the second gas flow rate.
  • the Bernoulli manipulator adopts different gas flow rates at different transmission stages to solve the problem of fragmentation of the wafers during the transmission process. Specifically, during the process of unloading the wafer from the wafer cassette, the Bernoulli manipulator uses a small gas flow rate to reduce the adsorption force on the wafer and weaken the warping deformation of the wafer, thereby reducing the amount of time the wafer is unloaded. The risk of cracks or fragments in the process of the wafer box; after the wafer is removed from the wafer box and transferred to the processing room, the Bernoulli manipulator uses a larger gas flow rate to increase the adsorption force on the wafer. To ensure that the wafer can be stably adsorbed on the Bernoulli manipulator during the transfer process, avoiding slippage.
  • Figure 1(a) and Figure 1(b) illustrate the reasons for the debris generated during the process of removing the wafer from the wafer box by the Bernoulli manipulator
  • Fig. 2 shows the flowchart of the wafer transmission method of an embodiment of the present invention
  • Table 1 lists the air flow parameters corresponding to some wafer thicknesses
  • Fig. 3 shows the gas circuit of the Bernoulli manipulator configuration of an embodiment of the present invention
  • Fig. 4 shows the gas circuit of the Bernoulli manipulator configuration of another embodiment of the present invention.
  • Fig. 5 shows the air circuit of the Bernoulli manipulator configuration in another embodiment of the present invention.
  • Thin wafers usually have a thickness of 50 ⁇ m to 400 ⁇ m, which is less rigid and prone to bending. According to the experiments, it is found that the chipping problem often occurs when using Bernoulli manipulator to transfer thin wafers, especially during the process of unloading wafers from wafer cassettes. After research, it is found that the Bernoulli manipulator adopts a constant gas flow Q 0 during the whole process of transferring wafers from the wafer cassette to the processing chamber.
  • the wafer is stably adsorbed on the Bernoulli manipulator, preferably, the wafer is stably adsorbed on the Bernoulli manipulator in a non-contact manner.
  • the Bernoulli manipulator 30 applies a large downward suction force F1 to the wafer 10, and at the same time, the support portion 21 of the wafer cassette 20 applies an upward support force F2 to the wafer 10, in two opposite directions.
  • force absorption force and support force
  • large warping deformation will occur, which will cause fragments or cracks.
  • the Bernoulli manipulator uses different gas flow rates for different transport stages of the thin wafers, specifically, the Bernoulli manipulator uses a smaller gas flow rate when the wafer is unloaded from the wafer cassette.
  • the gas flow rate can reduce the adsorption force on the wafer and weaken the warping deformation of the wafer, thereby reducing the risk of cracks or fragments in the process of moving the wafer out of the wafer box; after the wafer is moved out of the wafer box, the Bernoulli manipulator adopts a larger gas flow rate to increase the adsorption force on the wafer, so as to ensure that the wafer can be stably adsorbed on the Bernoulli manipulator during the transfer process and avoid slippage. piece.
  • FIG. 2 shows a flowchart of a wafer transfer method according to an embodiment of the present invention.
  • the wafer transfer method is mainly used in Bernoulli manipulators to transfer wafers between the wafer cassette and the processing chamber.
  • the Bernoulli manipulator is equipped with a gas path, which is used to supply gas to the Bernoulli manipulator, specifically, the gas path adjusts the gas supplied to the Bernoulli manipulator according to the thickness of the transported wafer and the transport stage of the wafer flow.
  • the gas path configured by the Bernoulli manipulator will be introduced in detail later.
  • an identification code is provided on the wafer cassette, and the identification code has wafer thickness information.
  • the identification code may be a barcode, and the barcode has wafer thickness information, and the information in the barcode is read by a scanner or an identification sensor to identify the wafer thickness in the wafer cassette.
  • the identification code is a label pasted on the wafer cassette, the label is filled with the thickness of the wafer stored in the wafer cassette, and the operator identifies the wafer thickness in the wafer cassette according to the content in the label .
  • Each gas flow parameter includes two gas flow rates, which are respectively recorded as the first gas flow rate and the second gas flow rate.
  • the first gas flow rate is smaller than the second gas flow rate.
  • the gas flow rate provided to the Bernoulli manipulator, the second gas flow rate is the gas flow rate provided by the gas circuit to the Bernoulli manipulator during the process of transporting the wafer from the wafer box to the processing chamber.
  • Table 1 lists the gas flow parameter values corresponding to some wafer thicknesses.
  • the corresponding gas flow parameters are: the first gas flow rate is 30 L/min, the second gas flow rate is 73 L/min; the wafer thickness is 200 ⁇ m, The corresponding gas flow parameters are: the first gas flow rate is 30 L/min, and the second gas flow rate is 90 L/min.
  • a table of airflow parameters can be obtained experimentally.
  • the gas path provides the Bernoulli manipulator with gas having a first gas flow rate matching the thickness of the transported wafer, and the Bernoulli manipulator moves the wafer out of the wafer cassette with the first gas flow rate;
  • the gas path provides the Bernoulli manipulator with a second gas flow rate matching the thickness of the transported wafer, and the Bernoulli manipulator transports the wafer to the processing chamber with the second gas flow rate.
  • the air flow parameters are pre-stored in the controller of the wafer processing equipment. After the controller receives the identified wafer thickness, it automatically acquires the air flow parameters that match the identified wafer thickness, and then, according to the acquired The gas flow parameters send instructions to the gas circuit of the Bernoulli manipulator, so that the gas circuit provides the corresponding gas flow to the Bernoulli manipulator at different transfer stages of the wafer.
  • the processing chamber is a backside cleaning chamber.
  • the Bernoulli manipulator flips the wafer so that the front side faces down and the back side faces up.
  • the gas flow provided by the gas path to the Bernoulli manipulator is increased from the first gas flow rate matching the thickness of the transported wafer to the second gas flow rate.
  • the Bernoulli manipulator absorbs the wafer at the second gas flow rate, the adsorption force Larger, this can prevent the wafer from breaking away from the Bernoulli manipulator during and after the flipping process of the Bernoulli manipulator, causing debris.
  • the gas circuit 100 includes a main gas circuit 101, one end of the main gas circuit 101 is connected to the gas source 40, the other end of the main gas circuit 101 is connected to the Bernoulli manipulator 30, and the main gas circuit 101 is sequentially arranged with main flow regulating valves along the air flow direction 1011 , the main switch valve 1012 and the main mass flow controller 1013 (MFC), the main mass flow controller 1013 is used to adjust the gas flow in the main gas circuit 101 .
  • the main mass flow controller 1013 adjusts the gas flow in the main gas path 101 according to the thickness of the transferred wafer and the wafer transfer stage, so that the Bernoulli manipulator 30 can obtain a corresponding gas flow.
  • the gas flow parameters matching the wafer thickness are obtained.
  • the wafer thickness stored in the wafer cassette is 180 ⁇ m.
  • the gas flow parameters corresponding to the wafer thickness can be obtained: the first gas flow rate is 30 L/ min, the second gas flow rate is 82L/min.
  • the main mass flow controller 1013 adjusts the gas flow in the main gas path 101 so that the main gas path 101 provides the Bernoulli manipulator 30 with The gas with a gas flow rate of 30 L/min, after the wafer is unloaded from the wafer cassette, is transported to the processing chamber, the main mass flow controller 1013 adjusts the gas flow rate in the main gas path 101 so that the main gas path 101 flows to the processing chamber.
  • the Bernoulli manipulator 30 provides gas with a gas flow rate of 82L/min, which can not only avoid the wafer fragments or cracks caused by the excessive adsorption force of the Bernoulli manipulator during the process of moving the wafer out of the wafer cassette, but also ensure that the During the transfer of the wafer to the processing chamber, the Bernoulli manipulator has sufficient adsorption force to realize the stable transfer of the wafer.
  • the gas path 200 includes not only the main gas path 101 but also branch gas paths 201 .
  • One end of the branch gas path 201 is connected to the downstream side of the main on-off valve 1012, and the other end is connected to the upstream side of the main mass flow controller 1013.
  • the branch gas path 201 is provided with a branch flow regulating valve 2011.
  • the branch flow regulating valve 2011 is used for Adjust the gas flow in the branch gas path 201 .
  • the main switching valve 1012 is a three-way valve, and the gas flow path provided by the gas source 40 is switched between the main gas circuit 101 and the branch gas circuit 201 through the main switching valve 1012 .
  • the branch gas path 201 provides the Bernoulli manipulator 30 with gas having a first gas flow rate that matches the thickness of the transported wafer.
  • the gas flow rate is regulated by the branch flow regulating valve 2011; after the wafer is transported from the wafer cassette to the process chamber, the main gas circuit 101 provides the Bernoulli manipulator with gas that matches the thickness of the transported wafer.
  • the gas flow rate in the main gas circuit 101 is regulated by the main mass flow controller 1013 .
  • the matching first gas flow rate can be set to the same gas flow rate, as shown in Table 1, then the gas flow rate in the branch gas path 201 does not need to be determined according to the The thickness of the transported wafer is adjusted to change. For this reason, the branch flow regulating valve 2011 provided in the branch gas path 201 can use a manual flow regulating valve, thereby saving costs.
  • the gas path 300 includes a first gas path 301 and a second gas path 302. One end of the first gas path 301 is connected to the gas source 41, and the other end is connected to the Bernoulli manipulator 30.
  • the first gas path 301 is sequentially arranged with The first flow regulating valve 3011, the first switch valve 3012 and the first mass flow controller 3013, the first mass flow controller 3013 is used to adjust the gas flow in the first gas circuit 301; one end of the second gas circuit 302 is connected to the gas source 42, the other end of which is connected to the Bernoulli manipulator 30, and the second air path 302 is sequentially equipped with a second flow regulating valve 3021, a second on-off valve 3022 and a second mass flow controller 3023 along the airflow direction, and the second mass flow control The device 3023 is used to adjust the gas flow in the second gas circuit 302 .
  • the gas source 41 and the gas source 42 may be the same gas source, or two relatively independent gas sources.
  • the Bernoulli manipulator 30 is supplied with gas having a first gas flow rate that matches the thickness of the transported wafer from the first gas path 301; After the wafer cassette is carried out, during the transfer process to the processing chamber, the Bernoulli manipulator 30 is supplied with gas having a second gas flow rate that matches the thickness of the transferred wafer through the second gas path 302 .
  • the mass flow controller is set at the most downstream of various valves (on-off valves, flow regulating valves) in the gas circuit. That is, it is set close to the Bernoulli manipulator, which can avoid pressure or flow peaks at the moment when the gas path is connected, so that the adsorption force of the Bernoulli manipulator exceeds the threshold, resulting in wafer breakage or cracks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Manipulator (AREA)

Abstract

本发明提出的薄片晶圆传输方法,针对不同厚度的薄片晶圆,在不同传输阶段,伯努利机械手采用不同的气体流量,解决晶圆在传输过程中碎片问题。具体地,在晶圆从晶圆盒搬出的过程中,伯努利机械手采用较小的气体流量,减小对晶圆的吸附力,削弱晶圆的翘曲形变,从而降低晶圆在搬出晶圆盒过程中产生隐裂或碎片的风险;在晶圆从晶圆盒搬出之后,传输至处理室的过程中,伯努利机械手采用较大的气体流量,增大对晶圆的吸附力,以确保晶圆在传输过程中能够稳定的吸附在伯努利机械手上,避免出现滑片。

Description

薄片晶圆传输方法 技术领域
本发明涉及半导体制造技术领域,更具体地,涉及一种薄片晶圆传输方法。
背景技术
随着芯片的结构越来越复杂,集成度越来越高,散热已经成为影响芯片性能和寿命的关键因素。薄片晶圆更利于散热,然而,薄片晶圆的翘曲较大,容易被夹碎或存在隐裂。
目前,通常采用伯努利机械手传输薄片晶圆,根据薄片晶圆的厚度向伯努利机械手提供相应的气体流量,以使伯努利机械手能够稳定地吸附晶圆,但是,在实际操作中,晶圆经常在搬出晶圆盒的过程中出现碎片或隐裂。
发明内容
本发明的目的是提供一种薄片晶圆传输方法,降低薄片晶圆在传输过程中,尤其在搬出晶圆盒过程中的碎片风险。
为实现上述目的,本发明提供的薄片晶圆传输方法,应用于伯努利机械手在晶圆盒和处理室之间传输晶圆,伯努利机械手配置有气路,该气路用于为伯努利机械手提供气体,包括以下步骤:
识别晶圆盒中的晶圆厚度;
获取与晶圆厚度相匹配的气流参数,每个气流参数包括两个气体流量,分别记为第一气体流量和第二气体流量,第一气体流量小于第二气体流量,第一气体流量为气路在晶圆从晶圆盒搬出过程中向伯努利机械手提供的气体流量,第二气体流量为气路在晶圆从晶圆盒搬出之后,传输至处理室的过程中向伯努利机械手提供的气体流量;
气路向伯努利机械手提供具有与传输的晶圆厚度相匹配的第一气体流量的气体,伯努利机械手以第一气体流量将晶圆从晶圆盒搬出;
之后,气路向伯努利机械手提供具有与传输的晶圆厚度相匹配的第二气体流量的气体,伯努利机械手以第二气体流量将晶圆传输至处理室。
本发明针对不同厚度的薄片晶圆,在不同传输阶段,伯努利机械手采用不同的气体流量,解决晶圆在传输过程中碎片问题。具体地,在晶圆从晶圆盒搬出的过程中,伯努利机械手采用较小的气体流量,减小对晶圆的吸附力,削弱晶圆的翘曲形变,从而降低晶圆在搬出晶圆盒过程中产生隐裂或碎片的风险;在晶圆从晶圆盒搬出之后,传输至处理室的过程中,伯努利机械手采用较大的气体流量,增大对晶圆的吸附力,以确保晶圆在传输过程中能够稳定的吸附在伯努利机械手上,避免出现滑片。
附图概述
图1(a)和图1(b)示意了伯努利机械手将晶圆从晶圆盒搬出过程中产生碎片的原因;
图2示出了本发明一实施例的晶圆传输方法的流程图;
表1列出了部分晶圆厚度对应的气流参数;
图3示出了本发明一实施例的伯努利机械手配置的气路;
图4示出了本发明另一实施例的伯努利机械手配置的气路;以及
图5示出了本发明又一实施例的伯努利机械手配置的气路。
本发明的较佳实施方式
为详细说明本发明的技术内容、构造特征、所达成目的及效果,下面将结合实施例并配合图式予以详细说明。
薄片晶圆的厚度通常在50μm~400μm,刚性小,容易发生挠曲。根据实验发现,使用伯努利机械手传输薄片晶圆时,尤其是从晶圆盒搬出晶圆的过程中经常会发生碎片问题。经过研究发现,伯努利机械手由晶圆盒向处理室传送晶圆的整个过程中采用恒定的气体流量Q 0,该气体流量Q 0能够确保伯努利机械手向晶圆提供足够吸附力,以使晶圆稳定地吸附在伯努利机械手上,较佳地,使晶圆稳定地以非接触的方式吸附在伯努利机械手上。然而,由于晶圆10的边缘水平支撑在晶圆盒20的支撑部21,如图1(a)所示,当伯努利机械手30以气体流量Q 0从晶圆10的下方吸附晶圆10时,伯努利机械手30施加给晶圆10较大地向下的吸附力F1,与此同时,晶圆盒20的支撑部21施加给晶圆10 向上的支撑力F2,在两个方向相反的力(吸附力和支撑力)作用下,对于刚性小的薄片晶圆而言,如图1(b)所示,将会产生较大的翘曲变形,进而引起碎片或隐裂。
基于上述发现,在本发明中,针对薄片晶圆的不同传输阶段,伯努利机械手采用不同的气体流量,具体地,在晶圆从晶圆盒搬出的过程中,伯努利机械手采用较小的气体流量,减小对晶圆的吸附力,削弱晶圆的翘曲形变,从而降低晶圆在搬出晶圆盒过程中产生隐裂或碎片的风险;在晶圆从晶圆盒搬出之后,传输至处理室的过程中,伯努利机械手采用较大的气体流量,增大对晶圆的吸附力,以确保晶圆在传输过程中能够稳定的吸附在伯努利机械手上,避免出现滑片。
图2示出了根据本发明一实施例的晶圆传输方法的流程图。晶圆传输方法主要应用于伯努利机械手在晶圆盒和处理室之间传输晶圆。伯努利机械手配置有气路,该气路用于为伯努利机械手提供气体,具体地,该气路根据传输的晶圆厚度以及晶圆的传输阶段,调节向伯努利机械手提供的气体流量。伯努利机械手配置的气路在后文将会详细介绍。
下面将结合图2详细介绍晶圆传输方法的具体步骤。
首先,识别晶圆盒中的晶圆厚度。晶圆盒上设置有识别码,识别码具有晶圆厚度信息,通过读取晶圆盒上的识别码,识别晶圆盒中的晶圆厚度。在一实施例中,识别码可以为条码,条码具有晶圆厚度信息,由扫码器或识别传感器读取条码中的信息,识别晶圆盒中的晶圆厚度。在另一实施例中,识别码为贴覆在晶圆盒上的标签,标签上填写有晶圆盒内存放的晶圆厚度,操作人员根据标签中的内容识别晶圆盒中的晶圆厚度。
然后,获取与晶圆厚度相匹配的气流参数。每个气流参数包括两个气体流量,分别记为第一气体流量和第二气体流量,第一气体流量小于第二气体流量,第一气体流量为气路在晶圆从晶圆盒搬出过程中向伯努利机械手提供的气体流量,第二气体流量为气路在晶圆从晶圆盒搬出之后,传输至处理室的过程中向伯努利机械手提供的气体流量。表1列出了部分晶圆厚度对应的气流参数值,例如晶圆厚度为105μm,对应的气流参数为:第一气体流量30L/min,第二气体流量73L/min;晶圆厚度为200μm,对应的气流参数为:第一气体流量30L/min, 第二气体流量90L/min。气流参数的表单可以根据实验获得。
接下来,气路向伯努利机械手提供具有与传输的晶圆厚度相匹配的第一气体流量的气体,伯努利机械手以第一气体流量将晶圆从晶圆盒搬出;
之后,气路向伯努利机械手提供具有与传输的晶圆厚度相匹配的第二气体流量的气体,伯努利机械手以第二气体流量将晶圆传输至处理室。
在一实施例中,气流参数预先存储在晶圆处理设备的控制器中,控制器接收到识别的晶圆厚度之后,自动获取与识别的晶圆厚度相匹配的气流参数,然后,根据获取的气流参数向伯努利机械手的气路发送指令,以使气路在晶圆的不同传输阶段向伯努利机械手提供相应的气体流量。
在一实施例中,处理室为背面清洗腔,伯努利机械手将晶圆传输至背面清洗腔之前,伯努利机械手翻转,将晶圆的正面朝下,背面朝上,在伯努利机械手翻转之前,气路向伯努利机械手提供的气体流量由与传输的晶圆厚度相匹配的第一气体流量提升至第二气体流量,伯努利机械手以第二气体流量吸附晶圆时,吸附力较大,这样能够避免伯努利机械手翻转过程中以及翻转后,晶圆脱离伯努利机械手,引起碎片。
参见图3,揭示了根据本发明一实施例的伯努利机械手配置的气路100。该气路100包括主气路101,主气路101的一端连接气源40,主气路101的另一端连接伯努利机械手30,主气路101上沿气流方向依次配置有主流量调节阀1011、主开关阀1012和主质量流量控制器1013(MFC),主质量流量控制器1013用于调节主气路101中的气体流量。在本实施例中,根据传输的晶圆厚度以及晶圆传输阶段,主质量流量控制器1013调节主气路101中的气体流量,以使伯努利机械手30获取相应的气体流量。
实际操作中,获取与晶圆厚度相匹配的气流参数,例如,晶圆盒中存储的晶圆厚度为180μm,由表1可以获知对应该晶圆厚度的气流参数:第一气体流量为30L/min,第二气体流量为82L/min。接下来,根据获取的气流参数,在晶圆从晶圆盒搬出的过程中,主质量流量控制器1013调节主气路101中的气体流量,以使主气路101向伯努利机械手30提供气体流量为30L/min的气体,在晶圆从晶圆盒搬出之后,传输至处理室的过程中,主质量流量控制器1013调节主气路101中的气体流量,以使主气路101向伯努利机械手30提供气体流 量为82L/min的气体,这样既能避免将晶圆搬出晶圆盒过程中伯努利机械手因吸附力过大导致晶圆出现碎片或隐裂,又能确保在晶圆向处理室传输过程中伯努利机械手具有足够的吸附力实现晶圆的稳定传输。
参见图4,揭示了根据本发明又一实施例的伯努利机械手配置的气路200。该气路200不仅包括主气路101,还包括分支气路201。分支气路201的一端连接在主开关阀1012的下游侧,另一端连接在主质量流量控制器1013的上游侧,分支气路201上设置有分支流量调节阀2011,分支流量调节阀2011用于调节分支气路201中的气体流量。主开关阀1012为三通阀,气源40提供的气体流动路径通过主开关阀1012在主气路101和分支气路201之间切换。
实际操作中,在晶圆从晶圆盒搬出的过程中,由分支气路201向伯努利机械手30提供具有与传输的晶圆厚度相匹配的第一气体流量的气体,分支气路201中的气体流量由分支流量调节阀2011调控;在晶圆从晶圆盒搬出之后,传输至处理室的过程中,由主气路101向伯努利机械手提供具有与传输的晶圆厚度相匹配的第二气体流量的气体,主气路101中的气体流量由主质量流量控制器1013调控。
经过试验测算发现,对于不同厚度的薄片晶圆,与之相匹配的第一气体流量可以设定为相同的气体流量,如表1所示,则分支气路201中的气体流量不需要根据被传输晶圆的厚度改变而进行调节,为此,分支气路201中设置的分支流量调节阀2011可以使用手动流量调节阀,从而节约成本。
参见图5,揭示了根据本发明另一实施例的伯努利机械手配置的气路300。该气路300包括第一气路301和第二气路302,第一气路301的一端连接气源41,另一端连接伯努利机械手30,第一气路301上沿气流方向依次配置有第一流量调节阀3011、第一开关阀3012和第一质量流量控制器3013,第一质量流量控制器3013用于调节第一气路301中的气体流量;第二气路302的一端连接气源42,另一端连接伯努利机械手30,第二气路302上沿气流方向依次配置有第二流量调节阀3021、第二开关阀3022和第二质量流量控制器3023,第二质量流量控制器3023用于调节第二气路302中的气体流量。在一实施例中,气源41和气源42可以为同一气源,也可以为两个相对独立的气源。
实际操作中,在晶圆从晶圆盒搬出的过程中,由第一气路301向伯努利机 械手30提供具有与传输的晶圆厚度相匹配的第一气体流量的气体;在晶圆从晶圆盒搬出之后,传输至处理室的过程中,由第二气路302向伯努利机械手30提供具有与传输的晶圆厚度相匹配的第二气体流量的气体。
这里需要说明的是,上文介绍的三种伯努利机械手配置的气路100,200,300中,质量流量控制器设置在气路各种阀门(开关阀、流量调节阀)的最下游,即紧邻伯努利机械手设置,能够避免在气路接通的瞬间出现压力或流量峰值,使得伯努利机械手吸附力超过阈值,导致晶圆破碎或隐裂。
综上所述,本发明通过上述实施方式及相关图式说明,己具体、详实的揭露了相关技术,使本领域的技术人员可以据以实施。而以上所述实施例只是用来说明本发明,而不是用来限制本发明的,本发明的权利范围,应由本发明的权利要求来界定。至于本文中所述元件数目的改变或等效元件的代替等仍都应属于本发明的权利范围。

Claims (10)

  1. 一种薄片晶圆传输方法,应用于伯努利机械手在晶圆盒和处理室之间传输晶圆,伯努利机械手配置有气路,该气路用于为伯努利机械手提供气体,其特征在于,包括以下步骤:
    识别晶圆盒中的晶圆厚度;
    获取与晶圆厚度相匹配的气流参数,每个气流参数包括两个气体流量,分别记为第一气体流量和第二气体流量,第一气体流量小于第二气体流量;
    气路向伯努利机械手提供具有与传输的晶圆厚度相匹配的第一气体流量的气体,伯努利机械手以第一气体流量将晶圆从晶圆盒搬出;
    之后,气路向伯努利机械手提供具有与传输的晶圆厚度相匹配的第二气体流量的气体,伯努利机械手以第二气体流量将晶圆传输至处理室。
  2. 根据权利要求1所述的薄片晶圆传输方法,其特征在于,所述薄片晶圆的厚度为50μm~400μm。
  3. 根据权利要求1所述的薄片晶圆传输方法,其特征在于,所述伯努利机械手配置的气路包括主气路,主气路的一端连接气源,主气路的另一端连接伯努利机械手,主气路上沿气流方向依次配置有主流量调节阀、主开关阀和主质量流量控制器,所述方法包括通过主质量流量控制器用于调节主气路中的气体流量。
  4. 根据权利要求3所述的薄片晶圆传输方法,其特征在于,
    在晶圆从晶圆盒搬出的过程中,主质量流量控制器调节主气路中的气体流量,以使主气路向伯努利机械手提供具有与传输的晶圆厚度相匹配的第一气体流量的气体;
    在晶圆从晶圆盒搬出之后,传输至处理室的过程中,主质量流量控制器调节主气路中的气体流量,以使主气路向伯努利机械手提供具有与传输的晶圆厚度相匹配的第二气体流量的气体。
  5. 根据权利要求3所述的薄片晶圆传输方法,其特征在于,所述伯努利机械手配置的气路还包括分支气路,分支气路的一端连接在主开关阀的下游侧,另一端连接在主质量流量控制器的上游侧,分支气路上设置有分支流量调节阀, 分支流量调节阀用于调节分支气路中的气体流量。
  6. 根据权利要求5所述的薄片晶圆传输方法,其特征在于,
    分支气路用于在晶圆从晶圆盒搬出过程中向伯努利机械手提供具有与传输的晶圆厚度相匹配的第一气体流量的气体;
    主气路用于在晶圆从晶圆盒搬出之后,传输至处理室的过程中,向伯努利机械手提供具有与传输的晶圆厚度相匹配的第二气体流量的气体。
  7. 根据权利要求1所述的薄片晶圆传输方法,其特征在于,所述伯努利机械手配置的气路包括第一气路和第二气路,
    第一气路的一端连接气源,另一端连接伯努利机械手,第一气路上沿气流方向依次配置有第一流量调节阀、第一开关阀和第一质量流量控制器,第一质量流量控制器用于调节第一气路中的气体流量;
    第二气路的一端连接气源,另一端连接伯努利机械手,第二气路上沿气流方向依次配置有第二流量调节阀、第二开关阀和第二质量流量控制器,第二质量流量控制器用于调节第二气路中的气体流量。
  8. 根据权利要求7所述的薄片晶圆传输方法,其特征在于,
    第一气路用于在晶圆从晶圆盒搬出过程中,向伯努利机械手提供具有与传输的晶圆厚度相匹配的第一气体流量的气体;
    第二气路用于在晶圆从晶圆盒搬出之后,传输至处理室的过程中,向伯努利机械手提供具有与传输的晶圆厚度相匹配的第二气体流量的气体。
  9. 根据权利要求1所述的薄片晶圆传输方法,其特征在于,所述晶圆盒上设置有识别码,识别码具有晶圆厚度信息,所述方法通过读取晶圆盒上的识别码,识别晶圆盒中的晶圆厚度。
  10. 根据权利要求1所述的薄片晶圆传输方法,其特征在于,所述处理室为背面清洗腔,伯努利机械手将晶圆传输至背面清洗腔之前,伯努利机械手翻转,将晶圆的正面朝下,背面朝上,在伯努利机械手翻转之前,气路向伯努利机械手提供的气体流量由与传输的晶圆厚度相匹配的第一气体流量提升至第二气体流量。
PCT/CN2022/134120 2021-12-30 2022-11-24 薄片晶圆传输方法 WO2023124672A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111651982.7 2021-12-30
CN202111651982.7A CN116417384A (zh) 2021-12-30 2021-12-30 薄片晶圆传输方法

Publications (1)

Publication Number Publication Date
WO2023124672A1 true WO2023124672A1 (zh) 2023-07-06

Family

ID=86997529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/134120 WO2023124672A1 (zh) 2021-12-30 2022-11-24 薄片晶圆传输方法

Country Status (3)

Country Link
CN (1) CN116417384A (zh)
TW (1) TW202345273A (zh)
WO (1) WO2023124672A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117140591A (zh) * 2023-11-01 2023-12-01 泓浒(苏州)半导体科技有限公司 超洁净环境下圆晶转运机械臂的吸附力检测系统及方法
CN117162104A (zh) * 2023-11-02 2023-12-05 泓浒(苏州)半导体科技有限公司 超洁净环境下的转运机械臂装机控制预警系统及方法
CN117712012A (zh) * 2024-02-06 2024-03-15 泓浒(苏州)半导体科技有限公司 基于伯努利原理的晶圆转运机械臂控制系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067054A (ja) * 2005-08-30 2007-03-15 Fluoro Mechanic Kk ベルヌーイチャック
CN102903658A (zh) * 2011-07-29 2013-01-30 大日本网屏制造株式会社 基板处理装置、基板保持装置及基板保持方法
CN113580150A (zh) * 2020-04-30 2021-11-02 上海微电子装备(集团)股份有限公司 硅片拾取装置
CN113666089A (zh) * 2020-05-13 2021-11-19 株式会社迪思科 保持机构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067054A (ja) * 2005-08-30 2007-03-15 Fluoro Mechanic Kk ベルヌーイチャック
CN102903658A (zh) * 2011-07-29 2013-01-30 大日本网屏制造株式会社 基板处理装置、基板保持装置及基板保持方法
CN113580150A (zh) * 2020-04-30 2021-11-02 上海微电子装备(集团)股份有限公司 硅片拾取装置
CN113666089A (zh) * 2020-05-13 2021-11-19 株式会社迪思科 保持机构

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117140591A (zh) * 2023-11-01 2023-12-01 泓浒(苏州)半导体科技有限公司 超洁净环境下圆晶转运机械臂的吸附力检测系统及方法
CN117162104A (zh) * 2023-11-02 2023-12-05 泓浒(苏州)半导体科技有限公司 超洁净环境下的转运机械臂装机控制预警系统及方法
CN117162104B (zh) * 2023-11-02 2024-01-30 泓浒(苏州)半导体科技有限公司 超洁净环境下的转运机械臂装机控制预警系统及方法
CN117712012A (zh) * 2024-02-06 2024-03-15 泓浒(苏州)半导体科技有限公司 基于伯努利原理的晶圆转运机械臂控制系统及方法
CN117712012B (zh) * 2024-02-06 2024-04-12 泓浒(苏州)半导体科技有限公司 基于伯努利原理的晶圆转运机械臂控制系统及方法

Also Published As

Publication number Publication date
CN116417384A (zh) 2023-07-11
TW202345273A (zh) 2023-11-16

Similar Documents

Publication Publication Date Title
WO2023124672A1 (zh) 薄片晶圆传输方法
JP4553574B2 (ja) 基板移送モジュールの汚染を制御することができる基板処理方法
TWI500101B (zh) 液體處理裝置、液體處理方法及記錄有用來實行此液體處理方法之程式的記錄媒體
JP4584821B2 (ja) 真空処理装置及び帯状気流形成装置
JP4983745B2 (ja) 圧力調整装置、これを用いた処理システム及び圧力調整方法
US11104992B2 (en) Substrate processing apparatus, non-transitory computer-readable recording medium thereof and semiconductor manufacturing method by employing thereof
JP4634918B2 (ja) 真空処理装置
JP7345334B2 (ja) エッチング方法及び基板処理システム
JP2010098053A (ja) クリーニング方法及び記録媒体
JP2017195218A (ja) チャックテーブル機構及び搬送方法
US8794896B2 (en) Vacuum processing apparatus and zonal airflow generating unit
JP4451076B2 (ja) 真空処理装置
JP5496837B2 (ja) 被処理体の冷却方法、冷却装置及びコンピュータ読み取り可能な記憶媒体
WO2020066571A1 (ja) 基板処理装置、半導体装置の製造方法および記録媒体
CN211541265U (zh) 基片转移装置
JP4688764B2 (ja) 基板処理装置の載置台除電方法
JP6244131B2 (ja) 基板処理装置及びその制御方法、並びにプログラム
JP2010161157A (ja) 基板収納方法及び記憶媒体
JP6496919B2 (ja) ベルヌーイハンド及び半導体製造装置
JP2000150620A (ja) 搬送装置
WO2022239538A1 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
WO2021220807A1 (ja) 基板処理装置及び基板搬送方法
JP2011228397A (ja) 真空処理装置
KR20180078886A (ko) 기판처리장치의 기판 언로딩 방법
JP2009125900A (ja) 研削装置における被加工物の保持機構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913930

Country of ref document: EP

Kind code of ref document: A1