WO2023124534A1 - 加热不燃烧气溶胶形成装置及其加热件 - Google Patents

加热不燃烧气溶胶形成装置及其加热件 Download PDF

Info

Publication number
WO2023124534A1
WO2023124534A1 PCT/CN2022/129843 CN2022129843W WO2023124534A1 WO 2023124534 A1 WO2023124534 A1 WO 2023124534A1 CN 2022129843 W CN2022129843 W CN 2022129843W WO 2023124534 A1 WO2023124534 A1 WO 2023124534A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
film layer
infrared radiation
area
substrate
Prior art date
Application number
PCT/CN2022/129843
Other languages
English (en)
French (fr)
Inventor
郭玉
刘小力
梁峰
Original Assignee
深圳麦时科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦时科技有限公司 filed Critical 深圳麦时科技有限公司
Publication of WO2023124534A1 publication Critical patent/WO2023124534A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means

Definitions

  • the present application relates to the technical field of atomization, and more specifically, relates to a heat-not-burn aerosol forming device and a heating element thereof.
  • the current aerosol forming device usually uses a heating element to heat the aerosol generating substrate, and the aerosol generating substrate includes a substrate material capable of generating aerosol after being heated.
  • Heating-not-burning is a heating method of the aerosol-forming device, and the aerosol-generating substrate is made to generate aerosol by heating-but-not-burning baking method.
  • the heat-not-burn aerosol forming device in the prior art has the defect of slow aerosol formation speed, which leads to poor user experience.
  • the formation device suffers from the problem of slow heating.
  • the present application discloses a heat-not-burn aerosol forming device and a heating element thereof.
  • a heating element comprising:
  • An electric heating film layer is arranged on the substrate and includes at least two heating areas;
  • the base body also has a first end and a second end as its opposite ends, and the at least two heating regions are sequentially arranged from the first end to the second end, and each of the heating regions is located at The heating power per unit area of the heating area at the first end is greater than the heating power per unit area of the other heating areas.
  • the heating power per unit area of each of the heating regions from the second end to the first end gradually increases.
  • the at least two heating regions are connected in series; the resistance value per unit area of each heating region gradually increases from the second end to the first end.
  • the at least two heating regions are connected in parallel; the resistance value per unit area of each heating region gradually decreases from the second end to the first end.
  • the heating element further includes an infrared radiation film layer, the infrared radiation film layer is disposed on the substrate, and includes at least two radiations heated by the at least two heating regions one by one. area.
  • the base body is cylindrical with a hollow cavity, and the hollow cavity is used as the accommodating position; the infrared radiation film layer is arranged on the inner wall of the base body, and the electric heating film A layer is arranged on the outer wall of the substrate, and each of the heating regions and the corresponding radiation regions conduct heat conduction through the substrate between them.
  • an insulating layer is provided between the outer wall of the base body and the electric heating film layer.
  • the base body is in the shape of a cylinder with a hollow cavity, and the hollow cavity is used as the receiving position;
  • the infrared radiation film layer is arranged on the outer wall of the base body, and passes through the The substrate heats the aerosol-generating substrate in the accommodating position with infrared radiation;
  • the electric heating film layer is arranged on the surface of the infrared radiation film layer facing away from the substrate, and each heating area covers The corresponding radiation area.
  • the outer circumferential side of the base forms the receiving position
  • the electric heating film layer is arranged on the wall surface outside the outer circumferential direction of the base body
  • the infrared radiation film layer is arranged on the outer wall surface of the base body. The side of the electric heating film layer away from the base body, and each heating area covers the corresponding radiation area.
  • an insulating layer is arranged between the electric heating film layer and the substrate.
  • the base body has a first side and a second side away from the first side, and the first side and the second side of the base body form the receiving position;
  • the electric heating film layer and the infrared radiation film layer are sequentially stacked on the surface of one of the first side and the second side from the inside to the outside, and the first side and the second side
  • the other side is provided with the infrared radiation film layer; or the electric heating film layer and the infrared radiation film layer are sequentially stacked on the surfaces of the first side and the second side from inside to outside.
  • a device for forming a heat-not-burn aerosol comprising the heating element as described in any one of the above embodiments.
  • Fig. 1 is a schematic diagram of a transverse cross-sectional structure of a heating element in an embodiment of the present invention
  • Fig. 2 is a schematic structural view of the base body and the electric heating film layer of the heating element shown in Fig. 1;
  • Fig. 3 is an expanded view of the electric heating film layer shown in Fig. 2;
  • Fig. 4 is a schematic diagram of a transverse cross-sectional structure of a heating element in another embodiment
  • Fig. 5 is a schematic diagram of a transverse cross-sectional structure of a heating element in another embodiment
  • Fig. 6 is a schematic diagram of a longitudinal cross-sectional structure of a heating element in another embodiment
  • FIG. 7 is a schematic diagram of a transverse cross-sectional structure of the heating element shown in FIG. 6;
  • Fig. 8 is a schematic diagram of a longitudinal cross-sectional structure of a heating element in another embodiment
  • Fig. 9 is a schematic diagram of a transverse cross-sectional structure of the heating element shown in Fig. 8;
  • Fig. 10 is a schematic structural view of a heating body and an electric heating film layer in another embodiment
  • Fig. 11 is a schematic diagram of a longitudinal cross-sectional structure of a heating element in another embodiment
  • Fig. 12 is a schematic longitudinal cross-sectional structure diagram of a heating element in another embodiment.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • a first feature being "on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are indirect through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • an embodiment of the present invention provides a heat-not-burn aerosol forming device
  • the heat-not-burn aerosol forming device includes a heating element 100
  • the heating element 100 is used to control the gas
  • the aerosol-generating substrate (not shown in the figure) is heated, so that the aerosol-generating substrate is heated and baked to volatilize corresponding components to form an aerosol.
  • a suction airflow is generated, and the generated aerosol follows the suction airflow and enters the user's mouth, that is, is sucked by the user.
  • the heating element 100 includes a substrate 10 , an electric heating film layer 20 and an infrared radiation film layer 30 .
  • the base body 10 has an accommodating position A for accommodating the aerosol-generating substrate and for the inhaled airflow to pass through.
  • the electric heating film layer 20 is disposed on the substrate 10 and includes at least two heating regions 21 .
  • the infrared radiation film layer 30 is disposed on the substrate 10 and includes at least two radiation regions heated by at least two heating regions 21 in one-to-one correspondence.
  • the number of heating regions 21 is equal to the number of radiation regions and corresponds one to one, and each heating region 21 heats a corresponding radiation region, so that the radiation region is heated and carries out infrared radiation into the accommodation position A , so that part of the aerosol-generating substrate corresponding to the radiation area in the accommodation position A is radiated and heated.
  • the base body 10 also has a first end a1 and a second end a2 as its opposite ends.
  • the above-mentioned at least two heating regions 21 are sequentially arranged from the first end a1 to the second end a2, and the heating power per unit area of the heating region located at the first end a1 in each heating region 21 is greater than that of the other heating regions 21 per unit area.
  • Heating power so that when the electric heating film layer 20 is energized, the temperature of the radiation area located at the first end a1 is the highest, so that the infrared radiation power located at the first end a1 is maximum, thereby making the temperature of the part of the aerosol-generating substrate located at the first end a1 The highest, it is beneficial to increase the speed of aerosol generation while ensuring sufficient baking and no burnt smell, increase the speed of aerosol formation, improve the taste in the early stage of heating (such as the first two puffs), and then improve the user experience. It can be understood that, of course, if the areas of the heating regions 21 are equal, the heating power of the heating region 21 located at the first end a1 of the heating regions 21 is greater than that of the remaining heating regions 21 .
  • the substrate 10 when the aerosol-forming substrate is combined with the heating element (the aerosol-forming substrate is combined with the accommodating position A of the substrate 10), the substrate 10 The end first in contact with the aerosol-forming substrate is the first end a1, and the end opposite to the first end a1 is the second end a2. It can be understood that, relative to the flow direction B of the suction airflow generated when the user takes a suction, the suction airflow flows from the second end a2 to the first end a1 . That is to say, the flow direction B of the suction airflow is from the second end a2 to the first end a1.
  • the above-mentioned heat-not-burn aerosol forming device and its heating element 100 when in use, the user pumps, and at the same time the electric heating film layer 20 is energized, so that each heating area 21 heats the corresponding radiation area, and then excites each radiation area
  • the aerosol generating substrate at the accommodation position A is heated by infrared radiation, so that the aerosol generating substrate is heated and baked to generate aerosol.
  • the generated aerosol flows from the second end a2 to the first end a1 along with the suction airflow, and is finally inhaled by the user.
  • the heating power per unit area of the heating area 21 located at the first end a1 is the largest, so that the temperature of the radiation area located at the first end a1 is the largest, so that the infrared radiation power is also the largest, thereby causing the generation of aerosols.
  • the part of the substrate located at the first end a1 has the highest temperature (that is, the position with the highest temperature is located at the part of the aerosol-generating substrate located at the first end a1, that is, the position with the highest temperature is closer to the user), which is conducive to ensuring sufficient baking and no burnt smell At the same time, it can increase the speed of aerosol generation, improve the taste in the early stage of heating (such as the first two puffs), and then improve the user experience.
  • each radiation area of the infrared radiation film layer 30 is determined by each heating area 21, that is, the area roughly covered by the orthographic projection of each heating area 21 on the infrared radiation film layer 30 is the area corresponding to the heating area.
  • the orthographic projection of the heating area 21 on the infrared radiation film layer 30 and the corresponding radiation area are not limited to complete coverage, and the areas of the two can be larger or smaller, as long as the heat of the heating area 21 can be transferred to the corresponding radiation area to generate Infrared radiation is sufficient, and is not limited here.
  • the radiation area directly covers the corresponding heating area 21, and the heat generated by the heating area 21 is directly conducted to the corresponding radiation area.
  • the radiation area does not directly cover the corresponding heating area 21, and the two are separated by the substrate 10, and the heat generated after the heating area 21 is energized is indirectly conducted to the corresponding radiation area through the base 10. .
  • each heating area 21 is arranged sequentially from the second end a2 to the first end a1 (that is, arranged sequentially along the flow direction B of the suction airflow)
  • each radiation area is also arranged sequentially from the second end a2 to the first end a1 (That is, they are arranged sequentially along the flow direction B of the suction airflow).
  • the heating power per unit area of the heating area 21 located at the first end a1 is the largest, after the electric heating film layer 20 is energized, the temperature of the radiation area located at the first end a1 is the highest, so that the radiation power is the largest, thereby making the aerosol
  • the part of the generating matrix located at the first end a1 has the highest temperature.
  • the infrared radiation film layer 30 is not necessary, and in other embodiments, the infrared radiation film layer 30 is not provided on the substrate 10. At this time, the heat generated by the electric heating film layer 20 is directly applied to the The aerosol-generating substrate in containment location A is heated.
  • the heating power per unit area of the heating region 21 located at the first end a1 is the largest, so that the part of the aerosol generating substrate located at the first end a1 has the highest temperature (that is, the position of the highest temperature is located at the aerosol The end closer to the user where the matrix is produced) is conducive to increasing the speed of aerosol generation while ensuring sufficient baking and no burnt smell, improving the taste in the early stage of heating, and thereby improving the user experience.
  • the material of the substrate 10 may be high temperature resistant materials such as quartz glass, mica, steel or ceramics.
  • the material of the infrared radiation film layer 30 may be at least one of high infrared emissivity materials such as perovskite system, spinel system, carbide, silicide, nitride, oxide and rare earth materials.
  • the heating power per unit area of each heating area 21 from the second end a2 to the first end a1 increases gradually.
  • the temperature of the heating area 21 located at the first end a1 is the highest, so that the temperature of the radiation area located at the first end a1 is the highest, so that the infrared radiation power is also the largest, and then the aerosol is generated.
  • the part located at the first end a1 has the highest temperature, which is beneficial to increase the speed of aerosol generation and improve the taste in the early stage of heating.
  • the at least two heating regions 21 are connected in series, and the resistance value per unit area of each heating region 21 gradually increases from the second end a2 to the first end a1 .
  • the heating power per unit area of each heating area 21 is proportional to the resistance value, so the resistance value per unit area of each heating area 21 from the second end a2 to the first end a1 gradually increases. increase, so as to ensure that the heating power per unit area of each heating area 21 from the second end a2 to the first end a1 gradually increases. It can be understood that, of course, if the areas of the heating regions 21 are equal, the resistance values of the heating regions 21 from the second end a2 to the first end a1 gradually increase.
  • the above-mentioned at least two heating regions 21 may also be connected in parallel, and the resistance value per unit area of each heating region 21 gradually decreases from the second end a2 to the first end a1.
  • the heating power per unit area of each heating area 21 is inversely proportional to the resistance value, so the resistance value per unit area of each heating area 21 from the second end a2 to the first end a1 gradually increases. decrease, so as to ensure that the heating power per unit area of each heating area 21 from the second end a2 to the first end a1 gradually increases. It can be understood that, of course, if the areas of the heating regions 21 are equal, the resistance values of the heating regions 21 from the second end a2 to the first end a1 gradually decrease.
  • the purpose of controlling the resistance value per unit area of each heating area 21 can be achieved by controlling the film thickness, material type or material composition ratio of different heating areas 21, so that the connection from the second end a2 to the first The resistance value per unit area of each heating region 21 at the end a1 gradually increases or decreases.
  • the material of the heating film layer can be coating materials such as silver-palladium alloy, silver and glass mixture, or nano-resistance heating film materials, as long as it can generate heat after being energized, it is not limited here.
  • the heating element 100 further includes an electrode layer 50 , which can be disposed on the substrate 10 and electrically connected to the electric heating film layer 20 to realize the serial or parallel connection of each heating area 21 .
  • the electrode layer 50 may also be directly disposed on the electric heating film layer 20 , as long as the series or parallel connection of each heating area 21 can be realized, which is not limited here.
  • the material of the electrode layer 50 may be a metal material with high electrical conductivity such as silver, gold, copper, and an alloy containing gold, silver, and copper.
  • the electric heating film layer 20 includes two heating regions 21.
  • the heating region 21 located above is named as the first heating region
  • the heating region 21 located below is named as the first heating region.
  • the suction airflow flows from bottom to top, that is, the first heating area is located at the first end a1, and the second heating area is located at the second end a2.
  • the first heating area and the second heating area are connected in series, and the resistance value per unit area of the first heating area is greater than the resistance value per unit area of the second heating area, so that after electrification, the first heating area will The heating temperature is better, so that the radiation heating temperature of the aerosol-generating substrate in the radiation region corresponding to the first heating region is higher.
  • the electrode layer 50 is arranged at the end of the first heating area away from the second heating area (ie, the first end a1 of the base 10) and the end of the second heating area away from the first heating area (ie, the second end a2 of the base 10 ), and the first heating zone and the second heating zone are in electrical contact with each other so as to realize the series connection of the first heating zone and the second heating zone.
  • the base body 10 is in the shape of a cylinder with a hollow cavity, and the hollow cavity is used as the accommodating position A mentioned above.
  • the infrared radiation film layer 30 is arranged on the inner wall of the base body 10
  • the electric heating film layer 20 is arranged on the outer wall of the base body 10
  • each heating area 21 and the corresponding radiation area conduct heat conduction through the base body 10 between them, The corresponding radiation area is heated, so that the corresponding radiation area is excited to perform infrared radiation heating on the aerosol generating substrate.
  • the aerosol-generating substrate when in use, the aerosol-generating substrate is inserted into the hollow cavity of the substrate 10 (that is, the accommodation position A), and then the user performs suction, and at the same time, the electric heating film layer 20 is energized, so that each heating area 21 transmits heat through the substrate 10
  • the radiation is transmitted to the corresponding radiation area, so as to excite each radiation area to heat the aerosol generating substrate with infrared radiation, so that the aerosol generating substrate is heated and baked to generate an aerosol.
  • the generated aerosol flows from the second end a2 of the base body 10 to the first end a1 of the base body 10 following the suction airflow, and is finally inhaled by the user.
  • an insulating layer 40 is provided between the outer wall of the base body 10 and the electric heating film layer 20 , and the insulating layer 40 insulates the electric heating film layer 20 from the base body 10 .
  • a high temperature resistant insulating material is coated on the outer wall of the base body 10 , and the insulating layer 40 is formed after curing.
  • the electric heating film material is coated on the insulating layer 40 and cured to form the electric heating film layer 20 .
  • a conductive material is coated on the electric heating film layer 20 or the insulating layer 40 , and the electrode layer 50 is formed after curing.
  • the infrared radiation film material is coated on the inner wall of the base body 10, and the infrared radiation film layer 30 is formed after curing.
  • the base body 10 may be a hollow cylinder, and the formed hollow cavity is also cylindrical.
  • the base body 10 may also be a hollow prism, and the formed hollow cavity is also a prism.
  • the base body 10 can also be hollow in other shapes, which is not limited here.
  • the substrate 10 since the infrared radiation film layer 30 is disposed on the inner wall of the substrate 10 , that is, the substrate 10 does not block the infrared radiation film layer 30 from the aerosol-generating substrate in the hollow cavity. It is enough for the substrate 10 to transfer the heat generated by the electric heating film layer 20 to the infrared radiation film layer 30 , so the substrate 10 needs to be made of a material with high temperature resistance and good thermal conductivity, such as steel or ceramics, which is not limited here.
  • each infrared radiation film layer 30 on the electric heating film layer 20 and the electric heating film layer 20 are not limited to complete coverage, and the area of the two can be larger or smaller, as long as the electric heating film layer 20 produces It is sufficient that the heat can be transferred to the infrared radiation film layer 30 to generate infrared radiation, which is not limited herein.
  • the base body 10 is cylindrical with a hollow cavity, and the hollow cavity is used as the accommodating position A mentioned above.
  • the infrared radiation film layer 30 is arranged on the outer wall of the base body 10 and passes through the base body 10 to heat the aerosol-generating substrate in the accommodating position A with infrared radiation.
  • the electric heating film layer 20 is disposed on a surface of the infrared radiation film layer 30 facing away from the substrate 10 , and each heating area 21 covers a corresponding radiation area.
  • the aerosol-generating substrate when in use, the aerosol-generating substrate is inserted into the hollow cavity of the base body 10 (that is, the accommodation position A), and then the user performs suction, and at the same time, the electric heating film layer 20 is energized, so that each heating area 21 directly transfers heat to the corresponding radiation area, so that each radiation area is excited to pass through the substrate 10 to heat the aerosol generating substrate with infrared radiation, so that the aerosol generating substrate is heated and baked to generate aerosol.
  • the generated aerosol flows from the second end a2 of the base body 10 to the first end a1 of the base body 10 following the suction airflow, and is finally inhaled by the user.
  • the electric heating film layer 20 is directly covered on the infrared radiation film layer 30, so that the heat generated after the electric heating film layer 20 is energized is directly transferred to the infrared radiation film layer 30, realizing the protection against infrared radiation.
  • the film layer 30 is heated. Since the infrared radiating film layer 30 and the aerosol generating substrate in the hollow cavity are blocked by the substrate 10, the infrared rays radiated by the infrared radiating film layer 30 need to pass through the substrate 10 to radiatively heat the aerosol generating substrate.
  • the material of the substrate 10 can be made of transparent materials such as quartz glass or mica, so that the infrared rays radiated by the infrared radiation film layer 30 can pass through the transparent substrate 10, thereby realizing the aerosol-generating substrate in the hollow cavity. Radiant heating.
  • an insulating layer 40 is also provided between the infrared radiation film layer 30 and the electric heating film layer 20, and the insulating layer 40 is used to make the infrared radiation film layer Layer 30 is insulated from electrically heated film layer 20 .
  • an infrared radiation film material is coated on the outer wall of the substrate 10 , and the infrared radiation film layer 30 is formed after being fixed.
  • a high temperature resistant insulating material is coated on the infrared radiation film layer 30 , and the insulating layer 40 is formed after curing.
  • the electric heating film material is coated on the insulating layer 40 and cured to form the electric heating film layer 20 .
  • a conductive material is coated on the electric heating film layer 20 or the insulating layer 40 , and the electrode layer 50 is formed after curing.
  • the insulating layer 40 is not necessary. When the infrared radiation film layer 30 itself is insulated, the insulating layer 40 is not needed, and the electric heating film layer 20 is directly formed on the infrared radiation film layer 30 . Only when the infrared radiation film layer 30 itself is not insulated, it is necessary to arrange an insulating layer 40 between the infrared radiation film layer 30 and the electric heating film layer 20 for insulation.
  • the outer circumferential side of the heat generating element forms an accommodating position A, that is to say, the accommodating position A is arranged around the base 10 along the circumference of the base 10 ( That is, the matrix 10 is in the shape of a pin and is inserted into the aerosol generating matrix).
  • the electric heating film layer 20 is arranged on the circumferential outer wall of the substrate 10
  • the infrared radiation film layer 30 is arranged on the side of the electric heating film layer 20 facing away from the substrate 10
  • each heating area 21 covers the corresponding radiation area.
  • the base body 10 when in use, the base body 10 is inserted into the interior of the aerosol generating base so that the aerosol generating base is located on the peripheral side of the base body 10 . Then, the user pumps, and at the same time, the electric heating film layer 20 is energized, so that each heating area 21 directly transfers heat to the corresponding radiation area, thereby exciting each radiation area of the infrared radiation film layer 30 to perform infrared radiation heating on the aerosol-generating substrate , so that the aerosol-generating substrate is heated and baked to generate aerosol.
  • the generated aerosol flows from the second end a2 of the base body 10 to the first end a1 of the base body 10 following the suction airflow, and is finally inhaled by the user.
  • an insulating layer 40 is provided between the electric heating film layer 20 and the substrate 10 , and the insulating layer 40 is used to insulate the electric heating film layer 20 from the substrate 10 .
  • the outer wall of the base body 10 is coated with a high temperature resistant insulating material, and the insulating layer 40 is formed after curing.
  • the electric heating film material is coated on the insulating layer 40 and fixed to form the electric heating film layer 20 .
  • the infrared radiation film material is coated on the electric heating film layer 20 , and the infrared radiation film layer 30 is formed after curing.
  • the insulating layer 40 is not necessary. When the substrate 10 itself is insulated, the insulating layer 40 is not needed, and the electric heating film layer 20 can be directly formed on the substrate 10 . Only when the base body 10 itself is not insulated, it is necessary to arrange an insulating layer 40 between the base body 10 and the electric heating film layer 20 for insulation.
  • a protective layer 60 may be formed on the infrared radiation film layer 30 to protect the infrared radiation film layer 30 .
  • the protective layer 60 may be, for example, a glaze layer, as long as it can not only play a protective role, but also be able to withstand high temperature and allow the infrared rays radiated by the infrared radiation film layer 30 to pass through, and it is not limited here.
  • the electric heating film layer 20 may be in a U-shaped structure, the open end 22 of the U-shaped structure is located at the second end a2 of the base body 10, and the closed end 23 of the U-shaped structure is located at the base body 10 The first end of a1.
  • the electric heating film layer 20 includes a first heating area located at the closed end 23 of the U-shaped structure and a second heating area located at the open end 22 of the U-shaped structure.
  • the electrode layer 50 is electrically connected to the two ends of the open end 22 of the U-shaped structure, so as to realize the series connection of the first heating area and the second heating area.
  • the electric heating film layer 20 may also adopt other shapes, such as covering the entire peripheral surface of the base body 10 , etc., which is not limited here.
  • the base body 10 has a first side 11 and a second side 12 away from the first side 11 . More specifically, the base 10 is in the form of a sheet, and the first side 11 and the second side 12 are two sides of the base 10 in the form of a sheet. The first side 11 and the second side 12 of the base body 10 form the accommodating position A mentioned above. On the surface of one of the first side 11 and the second side 12, an electric heating film layer 20 and an infrared radiation film layer 30 are sequentially stacked from the inside to the outside, and the other of the first side 11 and the second side 12 is provided with Infrared radiation film layer 30.
  • the electric heating film layer 20 is disposed on the surface of the first side 11 of the substrate 10, and the infrared radiation film layer 30 includes a first sub-infrared radiation film layer 30a disposed on the electric heating film layer 20 and a sub-infrared radiation film layer 30a disposed on the substrate 10.
  • the second sub-infrared radiation film layer 30b on the surface of the second side 12.
  • Each radiation area includes a first sub-radiation area located in the first sub-infrared radiation film layer 30a and a second sub-radiation area located in the second sub-infrared radiation film layer 30b.
  • the first sub-radiation area covers the corresponding heating area 21
  • the second sub-radiation area and the corresponding heating area 21 conduct heat conduction through the substrate 10 between them.
  • the substrate 10 is inserted into the interior of the aerosol-generating substrate such that the aerosol-generating substrate is located on the first side 11 and the second side 12 of the substrate 10 .
  • the user pumps while the electric heating film layer 20 is energized, and the heat generated by the electric heating film layer 20 is directly transferred to the first sub-infrared radiation film layer 30a, thereby exciting the first sub-infrared radiation film layer 30a on the substrate 10.
  • the aerosol-generating substrate on the first side 11 is heated by infrared radiation; at the same time, the heat generated by the electric heating film layer 20 is transferred from the first side 11 of the substrate 10 to the second side 12 of the substrate 10, and then the second side formed on the substrate 10 is formed.
  • the second sub-infrared radiation film layer 30b on the surface of the side 12 is heated, thereby exciting the second sub-infrared radiation film layer 30b to perform infrared radiation heating on the aerosol-generating substrate located on the second side 12 of the substrate 10 .
  • an insulating layer 40 can be disposed on the surfaces of the first side 11 and the second side 12 of the substrate 10 , and the insulating layer 40 is used to insulate the substrate 10 from other layers.
  • the insulating layer 40 is not necessary, and the insulating layer 40 may not be provided when the base body 10 itself is insulated.
  • the electric heating film layer 20 is not limited to only being provided on the surface of the first side 11 of the base body 10, and in other embodiments, both the surfaces of the first side 11 and the second side 12 of the base body 10 may be provided.
  • the electric heating film layer 20 and the infrared radiation film layer 30 are stacked sequentially from inside to outside.
  • the electric heating film layer 20 includes a first sub electric heating film layer disposed on the surface of the first side 11 and a second sub electric heating film layer disposed on the surface of the second side 12 .
  • the infrared radiation film layer 30 includes a first sub-infrared radiation film layer 30 a disposed on the first sub-electric heating film layer 20 and a second sub-infrared radiation film layer 30 b disposed on the second electric heating film layer 20 .
  • Each heating region 21 includes a first sub-heating region positioned at the first sub-electric heating film layer and a second sub-heating region positioned at the second sub-electric heating film layer, and the first sub-heating region and the second sub-heating region of each heating region
  • the orthographic projections of the sub-heating regions on the plane where the substrate 10 is located roughly overlap, the first sub-infrared radiation region of each infrared radiation region covers the first sub-heating region of the corresponding heating region 21, and the second sub-heating region of each infrared radiation region
  • the sub-infrared radiation area roughly covers the second sub-heating area of the heating area 21 corresponding thereto.
  • the first sub-electric heating film layer when the electric heating film layer 20 is energized, the first sub-electric heating film layer is used to heat the first sub-infrared radiation film layer 30a, so that the first sub-infrared radiation film layer 30a is located on the first side of the base 10 11, the aerosol-generating substrate performs infrared radiation; at the same time, the second sub-electric heating film layer heats the second sub-infrared radiation film layer 30b, so that the second sub-infrared radiation film layer 30b is located on the second side 12 of the base body 10.
  • the aerosol-generating substrate is subjected to infrared radiation, so that the aerosol-generating substrate on the first side 11 and the second side 12 of the substrate 10 can be evenly heated and baked.

Landscapes

  • Surface Heating Bodies (AREA)
  • Baking, Grill, Roasting (AREA)
  • Resistance Heating (AREA)

Abstract

一种加热件(100)及加热不燃烧气溶胶形成装置,加热件(100)包括:基体(10),具有用于容置气溶胶产生基质的容置位(A);电加热膜层(20),设置于基体(10)上,且包括至少两个加热区域(21);其中,基体(10)还具有作为其相对两端的第一端(a1)和第二端(a2),至少两个加热区域(21)由第一端(a1)向第二端(a2)依次布设,位于第一端(a1)的加热区域(21)的单位面积的发热功率最大,使得位于第一端(a1)的辐射区域的温度最大,从而红外辐射功率也最大,进而使得气溶胶产生基质位于第一端(a1)的温度最高,有利于提高气溶胶产生速度,改善加热前期阶段的口感。

Description

加热不燃烧气溶胶形成装置及其加热件 技术领域
本申请涉及雾化技术领域,更具体的说,涉及一种加热不燃烧气溶胶形成装置及其加热件。
背景技术
目前的气溶胶形成装置通常利用加热件对气溶胶产生基质进行加热,气溶胶产生基质包括受热后能产生气溶胶的基质材料。加热不燃烧是气溶胶形成装置的一种加热方式,通过加热但不燃烧的烘烤方式使气溶胶产生基质产生气溶胶。
然而,现有技术中的加热不燃烧气溶胶形成装置存在气溶胶形成速度慢的缺陷,导致用户体验较差,例如在整个加热过程的前期阶段,用户希望快速产生气溶胶,但现在的气溶胶形成装置存在加热慢的问题。
发明内容
有鉴于此,本申请公开一种加热不燃烧气溶胶形成装置及其加热件。
一种加热件,包括:
基体,具有用于容置气溶胶产生基质的容置位;及
电加热膜层,设置于所述基体上,且包括至少两个加热区域;
其中,所述基体还具有作为其相对两端的第一端和第二端,所述至少两个加热区域由所述第一端向所述第二端依次布设,且各个所述加热区域中位于所述第一端的所述加热区域的单位面积的发热功率大于其余所述加热区域的单位面积的发热功率。
在其中一个实施例中,由所述第二端至所述第一端的各个所述加热区域的单位面积的发热功率逐渐增大。
在其中一个实施例中,所述至少两个加热区域彼此串联;由所述第二端至所述第一端的各个所述加热区域的单位面积的电阻值逐渐增大。
在其中一个实施例中,所述至少两个加热区域彼此并联;由所述第二端至所述第一端的各个所述加热区域的单位面积的电阻值逐渐减小。
在其中一个实施例中,所述加热件还包括红外辐射膜层,所述红外辐射膜层设置于所述基体上,且包括被所述至少两个加热区域一一对应加热的至少两个辐射区域。
在其中一个实施例中,所述基体呈具有中空腔的筒状,所述中空腔用作所述容置位;所述红外辐射膜层设置在所述基体的内壁上,所述电加热膜层设置在所述基体的外壁上,且每 一所述加热区域和与之对应的所述辐射区域通过二者之间的所述基体进行热传导。
在其中一个实施例中,所述基体的外壁与所述电加热膜层之间设置有绝缘层。
在其中一个实施例中,所述基体呈具有中空腔的筒状,所述中空腔用作所述容置位;所述红外辐射膜层设置在所述基体的外壁上,并透过所述基体对所述容置位内的气溶胶产生基质进行红外辐射加热;所述电加热膜层设置在所述红外辐射膜层背离所述基体的一侧表面上,且每一所述加热区域覆盖与之对应的所述辐射区域。
在其中一个实施例中,所述基体的周向外侧形成所述容置位,所述电加热膜层设置在所述基体的周向外侧的壁面上,所述红外辐射膜层设置在所述电加热膜层背离所述基体的一侧,且每一所述加热区域覆盖与之对应的所述辐射区域。
在其中一个实施例中,所述电加热膜层与所述基体之间设置有绝缘层。
在其中一个实施例中,所述基体具有第一侧和与所述第一侧相背离的第二侧,所述基体的所述第一侧和所述第二侧形成所述容置位;所述第一侧和所述第二侧中的一者表面上由内向外依次层叠有所述电加热膜层和所述红外辐射膜层,所述第一侧和所述第二侧中的另一者上设置有所述红外辐射膜层;或者所述第一侧和所述第二侧的表面上均由内向外依次层叠有所述电加热膜层和所述红外辐射膜层。
一种加热不燃烧气溶胶形成装置,包括如上任一实施例中所述的加热件。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1为本发明一实施例中加热件的横向截面结构示意图;
图2为图1所示的加热件的基体和电加热膜层的结构示意图;
图3为图2所示的电加热膜层的展开图;
图4为另一实施例中加热件的横向截面结构示意图;
图5为另一实施例中加热件的横向截面结构示意图;
图6为另一实施例中加热件的纵向截面结构示意图;
图7为图6所示的加热件的横向截面结构示意图;
图8为另一实施例中加热件的纵向截面结构示意图;
图9为图8所示的加热件的横向截面结构示意图;
图10为另一实施例中的加热体与电加热膜层的结构示意图;
图11为另一实施例中加热件的纵向截面结构示意图;
图12为另一实施例中加热件的纵向截面结构示意图。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
请参阅图1、图2及图3所示,本发明一实施例提供了一种加热不燃烧气溶胶形成装置,该加热不燃烧气溶胶形成装置包括加热件100,利用该加热件100对气溶胶产生基质(图未 示)进行加热,使得该气溶胶产生基质受热烘烤而挥发相应的成分从而形成的气溶胶。用户对加热不燃烧气溶胶形成装置或气溶胶产生基质进行抽吸时产生抽吸气流,产生的气溶胶跟随该抽吸气流进入用户口腔,即被用户吸食。
加热件100包括基体10、电加热膜层20及红外辐射膜层30。基体10具有用于容置气溶胶产生基质且供抽吸气流经过的容置位A。电加热膜层20设置于基体10上,且包括至少两个加热区域21。红外辐射膜层30设置于基体10上,且包括被至少两个加热区域21一一对应加热的至少两个辐射区域。也就是说,加热区域21的数量与辐射区域的数量相等且一一对应,每一个加热区域21对对应的一个辐射区域进行加热,使得该辐射区域被加热后向容置位A内进行红外辐射,从而对容置位A内的与该辐射区域对应的部分气溶胶产生基质进行辐射加热。
其中,基体10还具有作为其相对两端的第一端a1和第二端a2。上述至少两个加热区域21由第一端a1向第二端a2依次布设,且各个加热区域21中位于该第一端a1的加热区域的单位面积的发热功率大于其余加热区域21的单位面积的发热功率,使得当电加热膜层20通电时位于第一端a1的辐射区域的温度最高,从而位于第一端a1的红外辐射功率最大,进而使得气溶胶产生基质位于第一端a1的部分温度最高,有利于在保障烘烤充分且无焦味的同时提高气溶胶产生速度,提升气溶胶的形成速度,改善加热前期阶段(例如前两口抽吸时)的口感,进而提高用户体验。可以理解的是,当然,若各个加热区域21的面积相等,则各个加热区域21中位于第一端a1的加热区域21的发热功率大于其余加热区域21的发热功率。
需要说明的是,关于本文中的第一端a1和第二端a2作以下说明:在气溶胶形成基质与发热件结合(将气溶胶形成基质结合至基体10的容置位A)时,基体10先与气溶胶形成基质接触的一端即为第一端a1,与该第一端a1相背的则为第二端a2。可以理解的是,相对于用户抽吸时产生的抽吸气流的流动方向B而言,抽吸气流从第二端a2流向第一端a1。也就是说,抽吸气流的流动方向B为由第二端a2指向第一端a1。
上述加热不燃烧气溶胶形成装置及其加热件100,在使用时,用户进行抽吸,同时电加热膜层20通电,使得各个加热区域21分别对对应的辐射区域进行加热,进而激发各个辐射区域对容置位A的气溶胶产生基质进行红外辐射加热,使得气溶胶产生基质受热烘烤而产生气溶胶。产生的气溶胶随抽吸气流由第二端a2向第一端a1流动,并最终被用户吸食。由于在各个加热区域21中,位于第一端a1的加热区域21的单位面积的发热功率最大,使得位于第一端a1的辐射区域的温度最大,从而红外辐射功率也最大,进而使得气溶胶产生基质位于第一端a1的部分温度最高(即最高温度的位置位于气溶胶产生基质的位于第一端a1的部分,即最高温度位置更加靠近用户),有利于在保障烘烤充分且无焦味的同时提高气溶胶产生速度,改善加热前期阶段(例如前两口抽吸时)的口感,进而提高用户体验。
需要说明的是,红外辐射膜层30的各个辐射区域的划分是由各个加热区域21确定的, 即每一加热区域21在红外辐射膜层30上的正投影大致覆盖的区域即为与该加热区域21对应的一个辐射区域。当然,加热区域21在红外辐射膜层30上的正投影与对应的辐射区域并不仅限于完成覆盖,二者的面积可以大于或小于,只要加热区域21的热量能够传递至对应的辐射区域而产生红外辐射即可,在此不作限定。
为了确保每一加热区域21对对应的辐射区域进行加热,在一个实施例中,辐射区域直接覆盖在对应的加热区域21上,加热区域21通电后产生的热量直接传导至对应的辐射区域。当然,在另一实施例中,辐射区域不直接覆盖在对应的加热区域21上,二者之间通过基体10间隔,加热区域21通电后产生的热量通过基体10间接地传导至对应的辐射区域。因此,由于各个加热区域21由第二端a2向第一端a1依次布设(即沿抽吸气流的流动方向B依次布设),则各个辐射区域也由第二端a2向第一端a1依次布设(即沿抽吸气流的流动方向B依次布设)。并且,由于位于第一端a1的加热区域21的单位面积的发热功率最大,则电加热膜层20通电后,位于第一端a1的辐射区域的温度最高,从而辐射功率最大,进而使得气溶胶产生基质位于第一端a1的部分温度最高。
还需要说明的是,红外辐射膜层30并不是必需的,在另一些实施例中,基体10上并不设置红外辐射膜层30,此时,利用电加热膜层20通电产生的热量直接对容置位A内的气溶胶产生基质进行加热。如此,由于在各个加热区域21中,位于第一端a1的加热区域21的单位面积的发热功率最大,使得气溶胶产生基质位于第一端a1的部分温度最高(即最高温度的位置位于气溶胶产生基质的更加靠近用户的一端),有利于在保障烘烤充分且无焦味的同时提高气溶胶产生速度,改善加热前期阶段的口感,进而提高用户体验。
可选地,基体10的材质可以是石英玻璃、云母、钢或陶瓷等耐高温材料。
可选地,红外辐射膜层30的材质可以是钙钛矿体系、尖晶石体系、碳化物、硅化物、氮化物、氧化物以及稀土系材料等高红外发射率材料中的至少一种。
具体到实施例中,由第二端a2至第一端a1的各个加热区域21的单位面积的发热功率逐渐增大。如此,使得电加热膜层20通电时,位于第一端a1的加热区域21的温度最高,使得位于第一端a1的辐射区域的温度最高,从而红外辐射功率也最大,进而使得气溶胶产生基质位于第一端a1的部分温度最高,有利于提高气溶胶产生的速度,改善加热前期阶段的口感。
进一步地,上述至少两个加热区域21彼此串联,且由第二端a2至第一端a1的各个加热区域21的单位面积的电阻值逐渐增大。如此,由于各个加热区域21彼此串联,使得各个加热区域21的单位面积的发热功率与电阻值呈正比,因此由第二端a2至第一端a1的各个加热区域21的单位面积的电阻值逐渐增大,从而确保由第二端a2至第一端a1的各个加热区域21的单位面积的发热功率逐渐增大。可以理解的是,当然,若各个加热区域21的面积相等,则由第二端a2至第一端a1的各个加热区域21的电阻值逐渐增大。
在另一实施例中,上述至少两个加热区域21也可以彼此并联,且由第二端a2至第一端 a1的各个加热区域21的单位面积的电阻值逐渐减小。如此,由于各个加热区域21彼此并联,使得各个加热区域21的单位面积的发热功率与电阻值呈反比,因此由第二端a2至第一端a1的各个加热区域21的单位面积的电阻值逐渐减小,从而确保由第二端a2至第一端a1的各个加热区域21的单位面积的发热功率逐渐增大。可以理解的是,当然,若各个加热区域21的面积相等,则由第二端a2至第一端a1的各个加热区域21的电阻值逐渐减小。
可选地,可通过控制不同加热区域21的膜层厚度、材料种类或材料组份配比,以达到控制各个加热区域21的单位面积的电阻值的目的,使得由第二端a2至第一端a1的各个加热区域21的单位面积的电阻值逐渐增大或减小。可选地,加热膜层的材质可以是银钯合金、银和玻璃混合物等涂层材料或纳米电阻加热膜材料等,只要能够实现通电后能够产生热量即可,在此不作限定。
具体到实施例中,加热件100还包括电极层50,该电极层50可以设置在基体10上,并与电加热膜层20电连接,以实现各个加热区域21的串联或并联。当然,在其它实施例中,电极层50也可直接设置在电加热膜层20上,只要能够实现各个加热区域21的串联或并联即可,在此不作限定。可选地,电极层50的材质可以是银、金、铜以及含有金、银、和铜的合金等高导电率的金属材料。
具体到图2及图3所示的实施例中,电加热膜层20包括两个加热区域21,为便于描述将位于上方的加热区域21命名为第一加热区域,将位于下方的加热区域21命名为第二加热区域,抽吸气流由下向上流动,即第一加热区域位于第一端a1,第二加热区域位于第二端a2。其中,第一加热区域和第二加热区域彼此串联,且第一加热区域的单位面积的电阻值大于第二加热区域的单位面积的电阻值,使得通电后,第一加热区域对对应的辐射区域的加热温度更好,进而使得与第一加热区域对应的辐射区域对气溶胶产生基质的辐射加热的温度更高。进一步地,电极层50设置在第一加热区域背离第二加热区域的一端(即基体10的第一端a1)和第二加热区域背离第一加热区域的一端(即基体10的第二端a2),且第一加热区域和第二加热区域彼此电接触从而实现第一加热区域和第二加热区域的串联。
请参见图1所示,本发明的一实施例中,基体10呈具有中空腔的筒状,该中空腔用作上述容置位A。红外辐射膜层30设置在基体10的内壁上,电加热膜层20设置在基体10的外壁上,且每一加热区域21和与之对应的辐射区域通过二者之间的基体10进行热传导,以对对应的辐射区域进行加热,从而激发对应的辐射区域对气溶胶产生基质进行红外辐射加热。如此,在使用时,将气溶胶产生基质插入基体10的中空腔(即容置位A)内,然后用户进行抽吸,同时电加热膜层20通电,使得各个加热区域21通过基体10将热量传递至对应的辐射区域,从而激发各个辐射区域对气溶胶产生基质进行红外辐射加热,使得气溶胶产生基质受热烘烤后产生气溶胶。产生的气溶胶跟随抽吸气流由基体10的第二端a2向基体10的第一端a1流动,并最终被用户吸食。
进一步地,基体10的外壁与电加热膜层20之间设置绝缘层40,该绝缘层40使得电加热膜层20与基体10绝缘。可选地,在基体10的外壁上涂覆耐高温的绝缘材料,固化后形成绝缘层40。在绝缘层40上涂覆电加热膜材料,固化后形成电加热膜层20。在电加热膜层20或绝缘层40上涂覆导电材料,固化后形成电极层50。在基体10的内壁涂覆红外辐射膜材料,固化后形成红外辐射膜层30。
可选地,基体10可以是中空的圆柱体,形成的中空腔体也为圆柱形。在其他实施例中,基体10也可以是中空的棱柱体,形成的中空腔体也为棱柱体。当然,基体10也可以是中空的其它形状,在此不作限定。
需要说明的是,在本实施例中,由于红外辐射膜层30设置在基体10的内壁上,即红外辐射膜层30与中空腔内的气溶胶产生基质之间没有被基体10阻隔。基体10能够将电加热膜层20产生的热量传递至红外辐射膜层30即可,因此基体10需要采用耐高温且导热效果较好的材料,例如钢或陶瓷等,在此不作限定。还需要说明的是,各个红外辐射膜层30在电加热膜层20上的正投影与电加热膜层20并不仅限于完全覆盖,二者的面积可以大于或小于,只要电加热膜层20产生的热量能够传递至红外辐射膜层30而产生红外辐射即可,在此不作限定。
请参见图4所示,本发明的另一实施例中,基体10呈具有中空腔的筒状,该中空腔用作上述容置位A。红外辐射膜层30设置在基体10的外壁上,并透过基体10对容置位A内的气溶胶产生基质进行红外辐射加热。电加热膜层20设置在红外辐射膜层30背离基体10的一侧表面,且每一加热区域21覆盖与之对应的辐射区域。如此,在使用时,将气溶胶产生基质插入至基体10的中空腔(即容置位A)内,然后用户进行抽吸,同时电加热膜层20通电,使得各个加热区域21将热量直接传递至对应的辐射区域,从而激发各个辐射区域透过基体10对气溶胶产生基质进行红外辐射加热,使得气溶胶产生基质受热烘烤后产生气溶胶。产生的气溶胶跟随抽吸气流由基体10的第二端a2向基体10的第一端a1流动,并最终被用户吸食。
需要说明的是,本实施例中,电加热膜层20直接覆盖在红外辐射膜层30上,从而电加热膜层20通电后产生的热量直接传递至红外辐射膜层30上,实现对红外辐射膜层30加热。由于红外辐射膜层30与中空腔内的气溶胶产生基质之间被基体10阻隔,因此红外辐射膜层30辐射出的红外线需要透过基体10才能对气溶胶产生基质进行辐射加热。可选地,基体10的材质可以采用例如石英玻璃或云母等透明材料,以便于红外辐射膜层30辐射出的红外线能够透过透明的基体10,进而实现对中空腔内的气溶胶产生基质进行辐射加热。
请参见图5所示,进一步地,如果红外辐射膜层30为导电材料时,红外辐射膜层30与电加热膜层20之间还设置绝缘层40,该绝缘层40用于使得红外辐射膜层30和电加热膜层20绝缘。可选地,在基体10的外壁涂覆红外膜辐射膜材料,固定后形成红外辐射膜层30。 在红外辐射膜层30上涂覆耐高温绝缘材料,固化后形成绝缘层40。在绝缘层40上涂覆电加热膜材料,固化后形成电加热膜层20。在电加热膜层20或绝缘层40上涂覆导电材料,固化后形成电极层50。
需要说明的是,该绝缘层40并不是必需的,当红外辐射膜层30本身绝缘时,则不需要该绝缘层40,将电加热膜层20直接成型在红外辐射膜层30上。只有当红外辐射膜层30本身不绝缘时,才需要在红外辐射膜层30与电加热膜层20之间设置绝缘层40进行绝缘。
请参见图6及图7所示,本发明的另一实施例中,发热件的周向外侧形成容置位A,也就是说,容置位A沿基体10的周向环绕基体10设置(即基体10呈销钉状,插入气溶胶产生基质内)。电加热膜层20设置在基体10的周向外侧的壁面上,红外辐射膜层30设置在电加热膜层20背离基体10的一侧,且每一加热区域21覆盖与之对应的辐射区域。如此,在使用时,将基体10插入至气溶胶产生基质内部,使得气溶胶产生基质位于基体10的周侧。然后,用户进行抽吸,同时电加热膜层20通电,使得各个加热区域21将热量直接传递至对应的辐射区域,从而激发红外辐射膜层30的各个辐射区域对气溶胶产生基质进行红外辐射加热,使得气溶胶产生基质受热烘烤后产生气溶胶。产生的气溶胶跟随抽吸气流由基体10的第二端a2向基体10的第一端a1流动,并最终被用户吸食。
请参见图8及图9所示,进一步地,电加热膜层20与基体10之间还设置绝缘层40,该绝缘层40用于使得电加热膜层20与基体10绝缘。可选地,在基体10的外壁涂覆耐高温绝缘材料,固化后形成绝缘层40。在绝缘层40上涂覆电加热膜材料,固定后形成电加热膜层20。在电加热膜层20上涂覆红外辐射膜材料,固化后形成红外辐射膜层30。
需要说明的是,该绝缘层40并不是必需的,当基体10本身绝缘,则不需要该绝缘层40,将电加热膜层20直接成型在基体10上即可。只有当基体10本身不绝缘时,才需要在基体10与电加热膜层20之间设置绝缘层40进行绝缘。
可选地,红外辐射膜层30上可成型保护层60,以对红外辐射膜层30进行保护。该保护层60可以是例如釉层等,只要能够起到保护作用的同时,还能够耐高温且使得红外辐射膜层30辐射出的红外线透过即可,在此不作限定。
请参见图10所示,可选地,电加热膜层20可以呈U型结构,该U型结构的开口端22位于基体10的第二端a2,该U型结构的封闭端23位于基体10的第一端a1。电加热膜层20包括位于U型结构的封闭端23的第一加热区域和位于U型结构的开口端22的第二加热区域。电极层50与U型结构的开口端22的两个端头电连接,从而实现第一加热区域和第二加热区域的串联。当然,在其他实施例中,电加热膜层20也可采用其他形状,例如覆盖基体10的整个周侧表面等,在此不作限定。
请参见图11所示,本发明的另一实施例中,基体10具有第一侧11和与该第一侧11相背离的第二侧12。更加具体地,基体10呈片状,第一侧11与第二侧12为呈片状的基体10 的两个侧面。基体10的第一侧11和第二侧12形成上述容置位A。第一侧11和第二侧12中的一者表面上由内向外依次层叠有电加热膜层20和红外辐射膜层30,第一侧11和第二侧12中的另一者上设置有红外辐射膜层30。
更加具体的,电加热膜层20设置在基体10的第一侧11的表面上,红外辐射膜层30包括设置在电加热膜层20上的第一子红外辐射膜层30a和设置在基体10的第二侧12的表面上的第二子红外辐射膜层30b。每一辐射区域包括位于第一子红外辐射膜层30a的第一子辐射区域和位于第二子红外辐射膜层30b的第二子辐射区域。第一子辐射区域覆盖在与之对应的加热区域21上,第二子辐射区域和与之对应的加热区域21通过二者之间的基体10进行热传导。
如此,在使用时,将基体10插入至气溶胶产生基质内部,使得气溶胶产生基质位于基体10第一侧11和第二侧12。然后,用户进行抽吸,同时电加热膜层20通电,电加热膜层20产生的热量直接传递至第一子红外辐射膜层30a,从而激发第一子红外辐射膜层30a对位于基体10的第一侧11的气溶胶产生基质进行红外辐射加热;同时,电加热膜层20产生的热量由基体10的第一侧11传递至基体10的第二侧12,进而对成型在基体10第二侧12表面上的第二子红外辐射膜层30b进行加热,从而激发第二子红外辐射膜层30b对位于基体10的第二侧12的气溶胶产生基质进行红外辐射加热。
请参见图12所示,进一步地,在基体10的第一侧11和第二侧12的表面均可设置绝缘层40,利用该绝缘层40将基体10与其它层绝缘。当然,该绝缘层40并不是必需的,当基体10本身绝缘时,可不设置该绝缘层40。
需要说明的是,不仅限于仅在基体10的第一侧11表面上设置电加热膜层20,在其他实施例中,也可在基体10的第一侧11和第二侧12的表面上均由内向外依次层叠有所述电加热膜层20和所述红外辐射膜层30。
更加具体地,电加热膜层20包括设置在第一侧11的表面上的第一子电加热膜层和设置在第二侧12的表面上的第二子电加热膜层。红外辐射膜层30包括设置在第一子电加热膜层20上的第一子红外辐射膜层30a和设置在第二子电加热膜层20上的第二子红外辐射膜层30b。每一加热区域21包括位于第一子电加热膜层的第一子加热区域和位于第二子电加热膜层的第二子加热区域,且每一加热区域的第一子加热区域和第二子加热区域在基体10所在平面上的正投影大致重合,每一红外辐射区域的第一子红外辐射区域覆盖与之对应的加热区域21的第一子加热区域,每一红外辐射区域的第二子红外辐射区域大致覆盖与之对应的加热区域21的第二子加热区域。也就是说,当电加热膜层20通电后,利用第一子电加热膜层对第一子红外辐射膜层30a进行加热,使得第一子红外辐射膜层30a对位于基体10的第一侧11的气溶胶产生基质进行红外辐射;同时,第二子电加热膜层对第二子红外辐射膜层30b进行加热,使得第二子红外辐射膜层30b对位于基体10的第二侧12的气溶胶产生基质进行红外 辐射,使得基体10的第一侧11和第二侧12的气溶胶产生基质能够均匀的受热烘烤。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (12)

  1. 一种加热件,其特征在于,包括:
    基体(10),具有用于容置气溶胶产生基质的容置位(A);及
    电加热膜层(20),设置于所述基体(10)上,且包括至少两个加热区域(21);
    其中,所述基体(10)还具有作为其相对两端的第一端(a1)和第二端(a2),所述至少两个加热区域(21)由所述第一端(a1)向所述第二端(a2)依次布设,且各个所述加热区域(21)中位于所述第一端(a1)的所述加热区域(21)的单位面积的发热功率大于其余所述加热区域(21)的单位面积的发热功率。
  2. 根据权利要求1所述的加热件,其特征在于,由所述第二端(a2)至所述第一端(a1)的各个所述加热区域(21)的单位面积的发热功率逐渐增大。
  3. 根据权利要求2所述的加热件,其特征在于,所述至少两个加热区域(21)彼此串联;
    由所述第二端(a2)至所述第一端(a1)的各个所述加热区域(21)的单位面积的电阻值逐渐增大。
  4. 根据权利要求2所述的加热件,其特征在于,所述至少两个加热区域(21)彼此并联;
    由所述第二端(a2)至所述第一端(a1)的各个所述加热区域(21)的单位面积的电阻值逐渐减小。
  5. 根据权利要求1至4任一项所述的加热件,其特征在于,所述加热件还包括红外辐射膜层(30),所述红外辐射膜层(30)设置于所述基体(10)上,且包括被所述至少两个加热区域(21)一一对应加热的至少两个辐射区域。
  6. 根据权利要求5所述的加热件,其特征在于,所述基体(10)呈具有中空腔的筒状,所述中空腔用作所述容置位(A);
    所述红外辐射膜层(30)设置在所述基体(10)的内壁上,所述电加热膜层(20)设置在所述基体(10)的外壁上,且每一所述加热区域(21)和与之对应的所述辐射区域通过二者之间的所述基体(10)进行热传导。
  7. 根据权利要求6所述的加热件,其特征在于,所述基体(10)的外壁与所述电加热膜层(20)之间设置有绝缘层(40)。
  8. 根据权利要求5所述的加热件,其特征在于,所述基体(10)呈具有中空腔的筒状,所述中空腔用作所述容置位(A);
    所述红外辐射膜层(30)设置在所述基体(10)的外壁上,并透过所述基体(10)对所述容置位(A)内的气溶胶产生基质进行红外辐射加热;所述电加热膜层(20)设置在所述红外辐射膜层(30)背离所述基体(10)的一侧表面上,且每一所述加热区域(21)覆盖与 之对应的所述辐射区域。
  9. 根据权利要求5所述的加热件,其特征在于,所述基体(10)的周向外侧形成所述容置位(A),所述电加热膜层(20)设置在所述基体(10)的周向外侧的壁面上,所述红外辐射膜层(30)设置在所述电加热膜层(20)背离所述基体(10)的一侧,且每一所述加热区域(21)覆盖与之对应的所述辐射区域。
  10. 根据权利要求9所述的加热件,其特征在于,所述电加热膜层(20)与所述基体(10)之间设置有绝缘层(40)。
  11. 根据权利要求5所述的加热件,其特征在于,所述基体(10)具有第一侧(11)和与所述第一侧(11)相背离的第二侧(12),所述基体(10)的所述第一侧(11)和所述第二侧(12)形成所述容置位(A);
    所述第一侧(11)和所述第二侧(12)中的一者表面上由内向外依次层叠有所述电加热膜层(20)和所述红外辐射膜层(30),所述第一侧(11)和所述第二侧(12)中的另一者上设置有所述红外辐射膜层(30);或者
    所述第一侧(11)和所述第二侧(12)的表面上均由内向外依次层叠有所述电加热膜层(20)和所述红外辐射膜层(30)。
  12. 一种加热不燃烧气溶胶形成装置,其特征在于,包括如权利要求1至11任一项所述的加热件(100)。
PCT/CN2022/129843 2021-12-31 2022-11-04 加热不燃烧气溶胶形成装置及其加热件 WO2023124534A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111676456.6 2021-12-31
CN202111676456.6A CN114304749A (zh) 2021-12-31 2021-12-31 加热不燃烧气溶胶形成装置及其加热件

Publications (1)

Publication Number Publication Date
WO2023124534A1 true WO2023124534A1 (zh) 2023-07-06

Family

ID=81023794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129843 WO2023124534A1 (zh) 2021-12-31 2022-11-04 加热不燃烧气溶胶形成装置及其加热件

Country Status (2)

Country Link
CN (1) CN114304749A (zh)
WO (1) WO2023124534A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114304750A (zh) * 2021-12-31 2022-04-12 深圳麦时科技有限公司 加热元件及电子雾化装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114304749A (zh) * 2021-12-31 2022-04-12 深圳麦时科技有限公司 加热不燃烧气溶胶形成装置及其加热件
CN117461886A (zh) * 2022-07-21 2024-01-30 深圳市合元科技有限公司 加热器以及包括该加热器的气溶胶生成装置
CN115278953A (zh) * 2022-08-26 2022-11-01 海南摩尔兄弟科技有限公司 加热器件及其制备方法
CN115486573A (zh) * 2022-09-16 2022-12-20 深圳麦时科技有限公司 加热组件、气溶胶生成装置及气溶胶生成系统
CN115606865A (zh) * 2022-09-16 2023-01-17 深圳麦时科技有限公司 加热组件及气溶胶生成装置
CN115606866A (zh) * 2022-09-16 2023-01-17 深圳麦时科技有限公司 加热组件及气溶胶生成装置
CN218978033U (zh) * 2022-09-19 2023-05-09 深圳市基克纳科技有限公司 一种气溶胶产生装置及其加热结构
CN219373827U (zh) * 2022-11-17 2023-07-21 思摩尔国际控股有限公司 气溶胶产生装置及其发热结构

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212279891U (zh) * 2019-12-23 2021-01-05 深圳市合元科技有限公司 加热器以及包括该加热器的烟具
CN213604396U (zh) * 2020-05-06 2021-07-06 深圳市合元科技有限公司 发热体以及包含该发热体的气溶胶生成装置
CN113080521A (zh) * 2019-12-23 2021-07-09 深圳市合元科技有限公司 加热器以及包含该加热器的烟具
CN113080520A (zh) * 2019-12-23 2021-07-09 深圳市合元科技有限公司 加热器以及包括该加热器的烟具
CN113080519A (zh) * 2019-12-23 2021-07-09 深圳市合元科技有限公司 加热器以及包含该加热器的烟具
WO2021143874A1 (zh) * 2020-01-17 2021-07-22 深圳市合元科技有限公司 一种加热装置
CN214431820U (zh) * 2020-09-09 2021-10-22 深圳市合元科技有限公司 气溶胶生成装置以及红外加热器
CN113647692A (zh) * 2021-07-23 2021-11-16 深圳麦时科技有限公司 加热组件和气溶胶产生装置
WO2022048569A1 (zh) * 2020-09-01 2022-03-10 深圳市合元科技有限公司 气溶胶生成装置以及红外加热器
CN114304749A (zh) * 2021-12-31 2022-04-12 深圳麦时科技有限公司 加热不燃烧气溶胶形成装置及其加热件
CN218043789U (zh) * 2021-12-31 2022-12-16 深圳麦时科技有限公司 加热不燃烧气溶胶形成装置及其加热件

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212279891U (zh) * 2019-12-23 2021-01-05 深圳市合元科技有限公司 加热器以及包括该加热器的烟具
CN113080521A (zh) * 2019-12-23 2021-07-09 深圳市合元科技有限公司 加热器以及包含该加热器的烟具
CN113080520A (zh) * 2019-12-23 2021-07-09 深圳市合元科技有限公司 加热器以及包括该加热器的烟具
CN113080519A (zh) * 2019-12-23 2021-07-09 深圳市合元科技有限公司 加热器以及包含该加热器的烟具
WO2021143874A1 (zh) * 2020-01-17 2021-07-22 深圳市合元科技有限公司 一种加热装置
CN213604396U (zh) * 2020-05-06 2021-07-06 深圳市合元科技有限公司 发热体以及包含该发热体的气溶胶生成装置
WO2022048569A1 (zh) * 2020-09-01 2022-03-10 深圳市合元科技有限公司 气溶胶生成装置以及红外加热器
CN214431820U (zh) * 2020-09-09 2021-10-22 深圳市合元科技有限公司 气溶胶生成装置以及红外加热器
CN113647692A (zh) * 2021-07-23 2021-11-16 深圳麦时科技有限公司 加热组件和气溶胶产生装置
CN114304749A (zh) * 2021-12-31 2022-04-12 深圳麦时科技有限公司 加热不燃烧气溶胶形成装置及其加热件
CN218043789U (zh) * 2021-12-31 2022-12-16 深圳麦时科技有限公司 加热不燃烧气溶胶形成装置及其加热件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114304750A (zh) * 2021-12-31 2022-04-12 深圳麦时科技有限公司 加热元件及电子雾化装置

Also Published As

Publication number Publication date
CN114304749A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
WO2023124534A1 (zh) 加热不燃烧气溶胶形成装置及其加热件
EP3932227A1 (en) Low-temperature baking smoking set
KR20210116638A (ko) 담배 가열 어셈블리 및 전기 가열 흡연 장치
WO2023124519A1 (zh) 加热元件及电子雾化装置
WO2024055731A1 (zh) 加热组件及气溶胶生成装置
WO2023093535A1 (zh) 加热组件及气溶胶生成装置
CN113133556A (zh) 一种加热装置
WO2023151328A1 (zh) 雾化器及电子雾化装置
WO2023093484A1 (zh) 气溶胶形成装置
WO2023024812A1 (zh) 加热器件及电子雾化装置
WO2021238632A1 (zh) 一种加热组件及具有该加热组件的气溶胶产生装置
WO2022142928A1 (zh) 发热管及其制造方法和气溶胶产生装置
CN218043789U (zh) 加热不燃烧气溶胶形成装置及其加热件
JPH07190362A (ja) セラミックスグロープラグ
WO2024055720A1 (zh) 加热组件及气溶胶生成装置
WO2024055732A1 (zh) 加热组件、气溶胶生成装置及气溶胶生成系统
WO2024027386A1 (zh) 加热组件、雾化器及气溶胶生成装置
WO2023029980A1 (zh) 加热体及加热雾化装置
WO2023160128A1 (zh) 发热件及电子雾化装置
JP3935017B2 (ja) セラミックヒータ
CN115736369A (zh) 气溶胶产生装置及其发热结构
JP2023021007A (ja) 霧化本体及びエアロゾル生成装置
TWI259535B (en) Molding heater for heating semiconductor wafer and fabrication method thereof
CN212305683U (zh) 金属加热体及金属加热装置
CN114052300A (zh) 加热器以及含有该加热器的烟具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913797

Country of ref document: EP

Kind code of ref document: A1