WO2024055720A1 - 加热组件及气溶胶生成装置 - Google Patents

加热组件及气溶胶生成装置 Download PDF

Info

Publication number
WO2024055720A1
WO2024055720A1 PCT/CN2023/105222 CN2023105222W WO2024055720A1 WO 2024055720 A1 WO2024055720 A1 WO 2024055720A1 CN 2023105222 W CN2023105222 W CN 2023105222W WO 2024055720 A1 WO2024055720 A1 WO 2024055720A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
electrode
heating wire
aerosol
electrical connection
Prior art date
Application number
PCT/CN2023/105222
Other languages
English (en)
French (fr)
Inventor
梁峰
郭玉
杜贤武
刘小力
冼小毅
李欢喜
邓原冰
Original Assignee
深圳麦时科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦时科技有限公司 filed Critical 深圳麦时科技有限公司
Publication of WO2024055720A1 publication Critical patent/WO2024055720A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts

Definitions

  • the present invention relates to the technical field of electronic atomization, and in particular to a heating component and an aerosol generating device.
  • HNB aerosol generation devices have attracted more and more attention and favor due to their advantages of safety, convenience, health, and environmental protection.
  • Existing heat-not-burn aerosol generating devices generally include a heating component and a power supply component; wherein, the heating component is used to heat and atomize the aerosol-generating product when power is applied to form an aerosol; the power supply component is connected to the heating component, Used to supply power to the heating element.
  • existing heating components have low heating efficiency, large temperature differences between the inside and outside of aerosol-generating products, and poor heating uniformity.
  • the existing heating components are heated, the high-temperature area is located in the central area of the heating element, the speed of generating aerosol is slow, and the temperature field cannot be designed as expected, making it inconvenient to design other asymmetric high-temperature area locations.
  • the heating assembly and aerosol generation device provided by this application are intended to solve the problem of low heating efficiency of existing heating assemblies, large temperature difference between the inside and outside of aerosol-generating products, and poor heating uniformity.
  • the heating component includes: a receiving structure, at least one heating film and a power supply component; wherein the receiving structure has a proximal opening for receiving the aerosol-generating product through the proximal opening, and radiates infrared rays to heat the aerosol-generating product when heated.
  • At least one heating film is linearly arranged on the containment structure for heating the containment structure when energized; wherein at least part of each heating film is along the length direction of the containment structure Extension;
  • the power supply component includes a first electrode and a second electrode; both ends of each heating film are electrically connected to the first electrode and the second electrode respectively to provide power to the at least one heating film.
  • the heating film includes a plurality of heating wires, at least two of the plurality of heating wires are connected in parallel; and at least part of each heating wire extends along the length direction of the containing structure.
  • At least some of the heating lines among the plurality of heating lines are curves.
  • the curve is a U-shaped curve or an S-shaped curve.
  • a plurality of the heating wires respectively extend along the length direction of the receiving structure, and the first ends of some of the heating wires are electrically connected to the first electrode, and the second ends of the heating wires are electrically connected to the third electrodes of the remaining heating wires. Electrical connection at both ends; add as described in the remaining sections The first end of the hot wire is electrically connected to the second electrode.
  • the heating film further includes: a first electrical connection part extending along the circumferential direction of the accommodation structure; the second end of each heating wire is electrically connected to the first electrical connection part respectively.
  • the heating film also includes:
  • the first ends of some of the heating wires among the plurality of heating wires are electrically connected to the second electrical connection part respectively, so as to communicate with the first electrode through the second electrical connection part electrical connection;
  • a third electrical connection part the first ends of the remaining heating wires in the plurality of heating wires are electrically connected to the third electrical connection part respectively, so as to communicate with the second electrical connection part through the third electrical connection part.
  • the electrodes are electrically connected.
  • the heating film includes a first heating wire, a second heating wire, a third heating wire and a fourth heating wire; the first heating wire and the second heating wire are connected in parallel between the first electrode and the between the first electrical connection part; the third heating wire and the fourth heating wire are connected in parallel between the second electrode and the first electrical connection part.
  • each heating line is a U-shaped curve.
  • a plurality of the heating lines are symmetrically distributed along the central axis in the width direction of the heating film; two adjacent heating lines are symmetrically distributed along the central axis where they are located.
  • each heating wire is electrically connected to the first electrode and the second electrode respectively.
  • each heating wire includes a first part, a second part and a third part connected in sequence; the first part and the third part respectively extend in the length direction of the receiving structure and are respectively connected with the first part.
  • the electrode is electrically connected to the second electrode; the second portion extends along the circumferential direction of the receiving structure.
  • the heating film includes a first heating wire and a second heating wire connected in parallel;
  • the first part of the first heating wire is in the shape of a curve; the second part and the third part of the first heating wire are in the shape of a straight line;
  • the first part, the second part and the third part of the second heating wire are all straight lines.
  • the length of the second heating wire is greater than the length of the first heating wire, and the second heating wire surrounds the periphery of the first heating wire.
  • first electrode and the second electrode are located at the same end of the receiving structure.
  • the at least one heating film is configured such that the power density on both sides of the midpoint in the length direction of the accommodation structure is different.
  • a plane perpendicular to the length direction of the receiving structure and passing through the midpoint divides the surface of the receiving structure into a first area and a second area; the second area is located away from the first area.
  • the power density of the at least one heating film in the first area is greater than the power density of the at least one heating film in the second area.
  • the aerosol generating device includes: a heating component and a power supply component; wherein the heating component is the above-mentioned heating component; the power supply component is electrically connected to the heating component and is used to supply power to the heating component.
  • the beneficial effects of the embodiments of the present application are different from those of the prior art: the heating assembly and aerosol generation device provided by the present application,
  • the heating component is configured by arranging a receiving structure and at least one heating film, so that at least one heating film is disposed on the receiving structure, and at least part of each heating film extends along the length direction of the receiving structure, so that the at least one heating film is energized.
  • the containment structure is heated, so that the containment structure is heated and radiates infrared rays, so as to use the infrared rays to heat and atomize the aerosol-generating product contained in the containment structure.
  • the power supply component is provided to include a first electrode and a second electrode, and both ends of each heating film are electrically connected to the first electrode and the second electrode respectively, so that power is supplied to each heating film through the power supply component. , forming a single-stage heating component.
  • Figure 1 is a schematic structural diagram of an aerosol generation system provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of an aerosol generating device provided by an embodiment of the present application.
  • Figure 3 is a transverse cross-sectional view of the heating assembly provided by the first embodiment of the present application.
  • Figure 4 is a perspective view of a heating assembly provided by an embodiment of the present application.
  • Figure 5 is a disassembly diagram of Figure 4.
  • Figure 6 is a transverse cross-sectional view of a heating assembly provided by a specific embodiment of the present application.
  • Figure 7 is a schematic structural diagram of an aerosol-generating product contained in a containment structure according to an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of an aerosol-generating product contained in a containment structure according to another embodiment of the present application.
  • Figure 9 is a schematic view of the heating film and power supply assembly shown in Figure 4 deployed along the circumferential direction of the containment structure;
  • Figure 10 is a schematic diagram of the heating film and power supply assembly deployed along the circumferential direction of the containment structure according to another embodiment of the present application;
  • Figure 11 is a perspective view of a heating assembly provided by another embodiment of the present application.
  • Figure 12 is a disassembly diagram of Figure 11;
  • Figure 13 is a schematic view of the heating film and power supply assembly shown in Figure 11 deployed along the circumferential direction of the containment structure;
  • Figure 14 is a transverse cross-sectional view of the heating assembly provided by the second embodiment of the present application.
  • Figure 15 is a transverse cross-sectional view of a heating assembly provided by another specific embodiment of the present application.
  • Figure 16 is a transverse cross-sectional view of the heating assembly provided by the third embodiment of the present application.
  • Aerosol generating device 1 Aerosol generating product 2; heating component 10; power supply component 20; containment structure 11; base body 111; receiving cavity 110; first end a; second end b; radiation layer 112; first insulating layer 113; second insulating layer 114; heating film 12; first heating wire 121a; second heating wire 121b; heating wire 121; first electrical connection part 122; second electrical connection part 123; third electrical connection part 124; first part 125; second part 126; third part 127; power supply component 13; first electrode 131; second electrode 132 ;Midline plane M;First area A;Second area B.
  • first”, “second” and “third” in this application are only used for descriptive purposes and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, features defined as “first”, “second”, and “third” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise clearly and specifically limited. All directional indications (such as up, down, left, right, front, back%) in the embodiments of this application are only used to explain the relative positional relationship between components in a specific posture (as shown in the drawings). , sports conditions, etc., if the specific posture changes, the directional indication will also change accordingly.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • Figure 1 is a schematic diagram of an aerosol generation system provided by an embodiment of the present application.
  • an aerosol generating system in this embodiment, includes an aerosol generating device 1 and an aerosol generating product 2 accommodated in the aerosol generating device 1 .
  • the aerosol generating device 1 is used to heat and atomize the aerosol generating product 2 to form an aerosol for the user to inhale.
  • the aerosol generating device 1 can be specifically used in medical, beauty, health care, electronic atomization and other technical fields; its specific structure and function can be found in the description of the aerosol generating device 1 provided in the following embodiments.
  • the aerosol-generating product 2 can use a solid matrix, and can include one or more powders, granules, fragments, thin strips, strips or flakes of one or more plant leaves such as tobacco, vanilla leaves, tea leaves, mint leaves, etc. ;
  • the solid matrix may contain additional volatile fragrance compounds that are released when the matrix is heated.
  • aerosol-generating products can also be liquid bases or paste bases, such as oils and medicinal liquids with added aroma components.
  • Figure 2 is a schematic diagram of an aerosol generating device provided by an embodiment of the present application.
  • an aerosol generating device 1 is provided.
  • the aerosol generating device 1 includes a heating component 10 and a power supply component 20 .
  • the heating component 10 is used to accommodate and atomize the aerosol-generating product 2 when power is applied to generate aerosol; the specific structure and function of the heating component 10 may be referred to the heating component 10 involved in any of the following embodiments.
  • Power supply assembly 20 plus The heating component 10 is electrically connected for supplying power to the heating component 10 .
  • the power component 20 may be a lithium-ion battery.
  • Figure 3 is a transverse cross-sectional view of a heating assembly provided by a first embodiment of the present application
  • Figure 4 is a perspective view of a heating assembly provided by an embodiment of the present application; in the first embodiment, a A heating component 10.
  • the heating component 10 includes a receiving structure 11 , at least one heating film 12 and a power supply component 13 .
  • the power supply component 13 includes a first electrode 131 and a second electrode 132 ; two ends of at least one heating film 12 are electrically connected to the first electrode 131 and the second electrode 132 respectively, so as to pass through the first electrode 131 Power is supplied to the at least one heating film 12 at the same time as the second electrode 132 to perform single-end heating, that is, the at least one heating film 12 shares the first electrode 131 and the second electrode 132 for power supply, and the power supply of the at least one heating film 12 is the same.
  • the first electrode 131 and the second electrode 132 of the power supply component 13 may be located at the same end of the receiving structure 11 and extend along the circumferential direction of the receiving structure 11 respectively.
  • the first electrode 131 and the second electrode 132 can be located at an end of the receiving structure 11 away from the proximal opening; and the first electrode 131 and the second electrode 132 can be made of silver, gold, copper, and Metal materials containing high electrical conductivity such as alloys of gold, silver, and copper.
  • the containment structure 11 includes a base 111 and a radiation layer 112 .
  • the base body 111 is hollow tubular, and has a receiving cavity 110 and a proximal opening and a distal opening communicating with the receiving cavity 110 .
  • the proximal opening and the distal opening are arranged oppositely along the length direction C of the base body 111 .
  • the receiving cavity 110 is used to receive the aerosol-generating product 2; the aerosol-generating product 2 is specifically received in or removed from the receiving cavity 110 along the length direction C of the receiving cavity 110 through the proximal opening.
  • the proximal opening is the end of the heating component 10 close to the suction nozzle.
  • the base 111 can be a hollow tubular structure, and the hollow tubular structure surrounds the receiving cavity 110 .
  • the outer diameter of the base body 111 is uniform along its length direction C; the base body 111 may be hollow cylindrical.
  • the base 111 can be made of an insulating material.
  • the base 111 can be a quartz tube, a ceramic tube, a mica tube, or the like.
  • the base 111 can be a transparent quartz tube to facilitate the passage of infrared rays.
  • the base 111 can also be made of non-insulating materials, such as stainless steel, aluminum and other metals.
  • the radiation layer 112 is disposed on the inner surface of the side wall of the base 111 for radiating infrared rays when heated, so as to use the infrared rays to heat and atomize the aerosol-generating product 2 contained in the containing cavity 110 .
  • the above-mentioned method of using infrared rays to heat the aerosol-generating product 2 has a certain penetration, does not require a medium, and has high heating efficiency. It can effectively improve the preheating efficiency of the aerosol-generating product 2 and reduce the temperature inside and outside the aerosol-generating product 2 Therefore, the aerosol-generating product 2 can be baked more uniformly, and the problem of the aerosol-generating product 2 being burned due to local high temperature can be avoided.
  • the infrared rays radiated by the radiation layer 112 can be directly radiated to the aerosol generating product 2 without passing through the base 111, and the utilization rate of infrared rays is high.
  • the radiation layer 112 may be formed on the entire inner surface of the side wall of the base body 111 by silk screen printing, sputtering, coating, printing, or other methods.
  • the radiation layer 112 may specifically be an infrared layer.
  • the material of the infrared layer includes at least one of high infrared emissivity materials such as perovskite system, spinel system, carbide, silicide, nitride, oxide, and rare earth materials. .
  • FIG. 5 is a disassembled schematic diagram of FIG. 4 ; the heating film 12 covers the containment structure 11 in a linear shape.
  • at least one heating film 12 is disposed on a side of the base 111 away from the radiation layer 112 and along the receiving structure 11 are arranged at intervals in the circumferential direction on the surface of the containing structure 11, and are used to generate heat when electricity is applied to heat the radiation layer 112, so that the radiation layer 112 is heated to radiate infrared rays.
  • the heating film 12 uses a resistive material that releases Joule heat when energized, such as a thick film printed resistor layer, a thin film printed resistor layer, or a nanometer resistor layer.
  • the heating film 12 is specifically disposed on a side surface of the base 111 away from the radiation layer 112 , and the heat generated by the heating film 12 is thermally conducted to the radiation layer 112 through the base 111 for heating.
  • the base body 111 is a non-insulating base body 111, preferably, the base body 111 is made of a metal material, such as stainless steel, as shown in Figure 6.
  • Figure 6 is a transverse cross-sectional view of a heating assembly provided by a specific embodiment of the present application. ; A high-temperature resistant first insulating layer 113 is also formed on the surface of the base 111 facing away from the radiation layer 112. The heating film 12 is specifically disposed on the side surface of the first insulating layer 113 facing away from the base 111 to prevent the heating film 12 from contacting the base 111. There is a short circuit between them; at this time, the heat generated by the heating film 12 is thermally conducted to the radiation layer 112 through the first insulating layer 113 and the base 111 to heat the radiation layer 112.
  • the heating film 12 is disposed on the containing structure 11 through the first insulating layer 113 , that is, the heating film 12 is in indirect contact with the surface of the containing structure 11 .
  • the first insulating layer 113 may be a glaze layer.
  • Figure 7 shows an aerosol-generating product provided in an embodiment of the present application stored in a containment structure.
  • the aerosol-generating product 2 is in direct contact with the inner surface of the side wall of the containing structure 11 (such as the surface of the radiation layer 112).
  • the heat of the heating film 12 can be conducted to the aerosol-generating product 2 through the containing structure 11 (such as the radiation layer 112 ). , to use the heat to further heat the aerosol-generating product 2, thereby improving the heat utilization rate, atomizing efficiency and aerosol generation speed.
  • FIG. 8 is a schematic structural diagram of an aerosol-generating product contained in a containment structure according to another embodiment of the present application; when the aerosol-generating product 2 is contained in the containment cavity 110 When inside, the aerosol-generating product 2 can also be spaced apart from the inner surface of the side wall of the containing structure 11 (eg, the radiation layer 112 ) to prevent the aerosol-generating product 2 from scratching or damaging the radiation layer 112 .
  • the aerosol-generating article 2 is heated primarily by infrared radiation.
  • the surface of the heating film 12 or/and the radiation layer 112 may be further coated with a protective layer, and the protective layer may specifically be a glaze layer.
  • the thickness of the radiation layer 112 may be 10-100 microns. Preferably, the thickness of the radiation layer 112 is 20-40 microns. In this embodiment, the radiation layer 112 can be produced by thick film printing.
  • the material of the radiation layer 112 may include one or more of black silicon, cordierite, transition metal oxide series spinel, rare earth oxide, ion co-doped perovskite, silicon carbide, zircon, and boron nitride. kind.
  • the thickness of the radiation layer 112 can also be 1-10 microns; preferably, the thickness of the radiation layer 112 is 1-5 microns.
  • the radiation layer 112 is specifically a thin film coating.
  • the material of the radiation layer 112 may be CrC, TiCN, or diamond-like carbon film (DLC).
  • Figure 9 is a schematic diagram of the heating film and power supply assembly shown in Figure 4 deployed along the circumferential direction of the containment structure; in a specific embodiment, the number of heating films 12 is one, and one heating film 12 includes multiple heating films connected in parallel.
  • each heating line 121 among the plurality of heating lines 121 are curves.
  • the curve may be an S-shaped curve.
  • FIG. 10 is a schematic diagram of the heating film 12 and the power supply assembly 13 deployed along the circumferential direction of the containing structure 11 according to another embodiment of the present application; the curve may also be a U-shaped curve.
  • each heating line 121 can also be any other irregularly curved line, such as a combination of S-shaped and U-shaped curves; this application is not limited to this.
  • a plurality of heating wires 121 respectively extend along the length direction C of the containing structure 11 , and the first ends of some of the heating wires 121 (hereinafter referred to as the first group of heating wires) are connected to the first end of the heating wires 121 .
  • the first electrode 131 is electrically connected, and the second end of each heating wire 121 in the first group of heating wires is electrically connected to the second end of the remaining heating wires 121 (hereinafter referred to as the second group of heating wires); the second group The first end of each heating wire 121 in the heating wires is electrically connected to the second electrode 132; so that the plurality of heating wires 121 in the first group of heating wires are connected in parallel, and the plurality of heating wires in the second group of heating wires are connected in parallel. 121 are connected in parallel, and then the first set of heating wires and the second set of heating wires are connected in series.
  • each heating line 121 is an S-shaped curve extending along the length direction C of the containing structure 11; of course, it may also be a U-shaped curve.
  • the plurality of heating lines 121 may be symmetrically distributed along the central axis L of the heating film 12; and two adjacent heating lines 121 may be symmetrically distributed along the central axes of the two heating lines 121.
  • the central axis L is the central axis of the heating film 12 after it is expanded along the width direction D.
  • the heating component 10 also includes a first electrical connection part 122 , a second electrical connection part 123 and a third electrical connection part 124 .
  • the first electrical connection part 122 is specifically located at one end of the receiving structure 11 close to the proximal opening.
  • the second ends of the plurality of heating wires 121 are electrically connected to the first electrical connection part 122 respectively, so as to realize multiple heating wires 122 through the first electrical connection part 122 .
  • the second end of the heating wire 121 is electrically connected, thereby connecting the first group of heating wires and the second group of heating wires together in series.
  • the first ends of the plurality of heating wires 121 in the first group of heating wires are respectively electrically connected to the second electrical connection portions 123 to be electrically connected to the first electrode 131 through the second electrical connection portions 123 .
  • the first ends of the plurality of heating wires 121 in the second group of heating wires are electrically connected to the third electrical connection part 124 respectively, so as to be electrically connected to the second electrode 132 through the third electrical connection part 124; thereby through the first electrode 131 and
  • the second electrode 132 supplies power to the heating film 12 .
  • the heating film 12 includes four heating lines 121: a first heating line, a second heating line, a third heating line and a fourth heating line.
  • the first heating wire and the second heating wire are connected in parallel between the first electrode 131 and the first electrical connection part 122; the third heating wire and the fourth heating wire are connected in parallel between the second electrode 132 and the first electrical connection part 122. between. That is, the four heating wires 121 in the heating film 12 are first connected in parallel, and then connected in series.
  • At least one heating film 12 is configured such that the power density on both sides of the midpoint in the length direction C of the containing structure 11 is different. That is, the heat generated by at least one heating film 12 prevents the high-temperature area in the accommodation cavity 110 of the accommodation structure 11 from being located in the central area of the accommodation cavity 110 along the length direction C. In this way, the temperature field of the containment structure 11 can be designed as expected, which facilitates the design of other asymmetric high-temperature region locations.
  • a plane M perpendicular to the length direction C of the containment structure 11 and passing through the midpoint divides the surface of the containment structure 11 into a first area A and a second area B; the second area B is located on the side of the first area A away from the proximal opening.
  • Part of each heating line 121 of each heating film 12 is located in the first area A, and the remaining part is located in the second area B; and the resistance density per unit area of the at least one heating film 12 in the first area A is consistent with the resistance density of the at least one heating film 12 in the first area A. 12The resistance density per unit area in the second region B is different.
  • the heating power of the first area A and the second area B of the accommodation structure 11 can be different, and then the heating power of the first area A and the second area B of the accommodation structure 11 can be formed.
  • Two areas with different temperatures can be used.
  • using the midline plane M as the dividing line between the first area A and the second area B can ensure that the formed high-temperature area is offset from the midpoint of the length direction C of the receiving cavity 110, which facilitates the design of other asymmetric high-temperature areas. Location.
  • the resistance density per unit area of at least one heating film 12 in the first region A can be made larger than that of multiple heating films 12 The resistance density per unit area in the second area B; in this way, since the heating films 12 in the first area A and the second area B are in a series relationship as a whole, after at least one heating film 12 is energized, the area with a higher resistance density
  • the power density is larger, that is, the heating power density of the first region A is greater than the heating power density of the second region B; correspondingly, the area where the inner surface of the base 111 and the heating film 12 overlap in the first region A is also greater than that of the second region B.
  • the area where the radiating layer 112 of area B overlaps with the heating film 12, and the radiating layer 112 corresponding to the first area A has a higher temperature than the radiating layer 112 corresponding to the second area B, and radiates more infrared rays to obtain the expected results.
  • the design effect is that the temperature of the first area A of the containment structure 11 is higher than the temperature of the second area B, that is, the expected design effect of the high-temperature area of the heating component 10 being located in the first area A is obtained; effectively improving the aerosol-generating product 2 Corresponding to the partial atomization efficiency of the first area A, the aerosol generation speed is accelerated.
  • each heating wire 121 in at least one heating film 12 are the same; if you want to design different temperature areas as expected, you can control the temperature of multiple heating parts in different areas.
  • the width and the length of at least one heating film 12 contained in each area along the length direction C of the containment structure 11 are used to control the resistance density of different areas, thereby achieving the design effect of areas with different temperatures.
  • the width of each heating line 121 in the at least one heating film 12 is the same, so that along the length direction C of the containing structure 11, the length of the portion of the at least one heating film 12 located in the first area A is shorter than the length of the portion located in the second area B.
  • the length and cross-sectional area are different, so that the resistance density per unit area of the at least one heating film 12 in the first region A is greater than the resistance density per unit area of the at least one heating film 12 in the second region B.
  • the width of the heating wire 121 refers to the size of the heating wire 121 along the width direction D.
  • Figure 11 is a perspective view of a heating assembly provided by another embodiment of the present application;
  • Figure 12 is a disassembly diagram of Figure 11;
  • Figure 13 is the heating film shown in Figure 11 and a schematic diagram of the power supply assembly deployed along the circumferential direction of the containing structure; the difference from the corresponding embodiments in Figures 4 to 10 is that both ends of each heating wire 121 are electrically connected to the first electrode 131 and the second electrode 132 respectively.
  • each heating wire 121 includes a first part 125 , a second part 126 and a third part 127 connected in sequence.
  • the first part 125 and the third part 127 respectively extend along the length direction C of the accommodation structure 11 and are electrically connected to the first electrode 131 and the second electrode 132 respectively; the second part 126 extends along the circumferential direction of the accommodation structure 11 extend towards.
  • the connection between the first part 125 and the second part 126 forms a corner, and the corner may be chamfered; the connection between the second part 126 and the third part 127 also forms a corner, and the corner may also be chamfered.
  • each heating wire 121 extends from the second area B to the first area A, and the second part 126 of each heating wire 121 is located in the first area A of the containing structure 11;
  • the third portion 127 extends from the first area A to the second area B to be electrically connected to the second electrode 132 .
  • the heating film 12 may include a first heating wire 121 a and a second heating wire 121 b connected in parallel.
  • the first part 125 of the first heating wire 121a may be in a curve; such as a U-shaped curve.
  • the second part 126 and the third part 127 of the first heating wire 121a are straight lines.
  • the first part 125, the second part 126 and the third part 127 of the second heating wire 121b are all straight lines.
  • the length of the second heating wire 121b is greater than the length of the first heating wire 121a, and the second heating wire 121b surrounds the periphery of the first heating wire 121a.
  • both ends of each heating wire 121 can be directly connected to the first electrode 131 or the second electrode 132 , that is, there is no need for the second electrical connection part 123 or/or the third electrical connection part 124 .
  • the resistance density of the corresponding area can also be controlled by controlling the material or thickness of each heating wire 121 in the corresponding area. This application is not limited to this, as long as it is ensured that at least one heating film 12 is located at the first The resistance density of a portion of a region A is different from the resistance density of a portion of at least one heating film 12 located in the second region B.
  • the above-mentioned containing structure 11 can also use another plane or multiple parallel planes perpendicular to its longitudinal direction C as dividing lines to divide the containing structure 11 into multiple regions.
  • the portions of the heating film 12 where at least two of the multiple regions are located have different widths along the length direction C of the containment structure 11 to correspond to regions with different temperatures; wherein, the high-temperature region in the multiple regions with different temperatures is different from the containment structure.
  • the midpoint of length direction C of 11 is offset.
  • the heating component 10 provided in this embodiment heats the aerosol-generating product 2 through infrared radiation.
  • infrared rays have certain penetrability and do not require a medium, the heating efficiency is high and can effectively
  • the preheating efficiency of the aerosol-generating product 2 is improved, and the temperature difference between the inside and outside of the aerosol-generating product 2 can be effectively reduced, so that the aerosol-generating product 2 is baked more evenly, and the aerosol-generating product 2 is prevented from being burned due to local high temperatures.
  • the problem of coke is compared with resistance heating or electromagnetic heating solutions, because infrared rays have certain penetrability and do not require a medium, the heating efficiency is high and can effectively The preheating efficiency of the aerosol-generating product 2 is improved, and the temperature difference between the inside and outside of the aerosol-generating product 2 can be effectively reduced, so that the aerosol-generating product 2 is baked more evenly, and the aerosol-generating product 2 is prevented from being burned due to local high temperatures. The problem of coke.
  • the temperature field can be designed as expected, which facilitates the design of other Asymmetric high temperature area location.
  • the resistance density of at least one heating film 12 in different areas is controlled, thereby controlling the power density of the heating films 12 contained in each different area; thus After at least one heating film 12 is energized, the heating power of at least two heating areas can be different, thereby forming multiple areas with different temperatures; in order to purposefully design the containment structure 11 suitable for atomization of the aerosol-generating product 2 The location of the high-temperature zone increases the rate of aerosol generation.
  • the temperature of the first region A of the containing structure 11 is higher than that of the second region B. temperature, thereby effectively improving the atomization efficiency of the first area A and speeding up the generation of aerosol.
  • FIG 14 is a transverse cross-sectional view of the heating assembly provided by the second embodiment of the present application.
  • a second heating component 10 is provided.
  • the difference from the heating component 10 provided in the first embodiment is that the radiation layer 112 is provided on the outer surface of the side wall of the base 111 .
  • the heating film 12 is specifically disposed on a side surface of the radiation layer 112 facing away from the base 111 .
  • the heat generated after the heating film 12 is energized is directly conducted to the radiation layer 112.
  • the radiation layer 112 is heated to generate infrared rays.
  • the infrared rays penetrate the transparent base 111 and enter the containing cavity 110 to heat the aerosol-generating product 2 contained in the containing cavity 110. .
  • the aerosol-generating product 2 may also be in direct contact with the transparent substrate 111 to conduct heat from the substrate 111 directly to the aerosol-generating product 2 for heating; or, the aerosol-generating product 2 may be spaced apart from the substrate 111 .
  • Figure 15 is a transverse cross-sectional view of the heating assembly provided by another specific embodiment of the present application; in order to avoid short circuit of the heating film 12; the surface of the radiation layer 112 is away from the base 111 A second insulating layer 114 is also provided, which is located between the radiation layer 112 and the heating film 12 .
  • the receiving structure 11 includes a base 111 .
  • the base body 111 is in the shape of a hollow tube, and the base body 111 includes a main body and infrared radiation materials dispersed in the main body.
  • the main body forms a receiving cavity 110 and a proximal opening communicating with the receiving cavity 110 to receive the aerosol-generating product 2 .
  • the base 111 radiates infrared rays when heated to heat the aerosol-generating article 2 . It can be understood that in this embodiment, the base 111 itself radiates infrared rays when heated, and no infrared layer is added on the surface of the base 111 .
  • the base 111 can be specifically a quartz tube.
  • an infrared radiating layer can also be further provided on the surface of the substrate 111; details can be found above and will not be described again here.

Landscapes

  • Resistance Heating (AREA)

Abstract

本申请提供一种加热组件及气溶胶生成装置。该加热组件包括:收容结构、至少一个加热膜及供电组件;其中,收容结构具有近端开口,用于通过所述近端开口收容气溶胶生成制品,并在被加热时辐射红外线以加热所述气溶胶生成制品;至少一个加热膜呈线状设置于所述收容结构上,用于在通电时加热所述收容结构;其中,每一所述加热膜的至少部分沿所述收容结构的长度方向延伸;供电组件,包括第一电极和第二电极;每一所述加热膜的两端分别与所述第一电极和所述第二电极电连接,以向所述至少一个加热膜供电。该加热组件有效提高了加热效率,且加热均匀性较好,避免了气溶胶生成制品局部高温,导致被烧焦的问题。

Description

加热组件及气溶胶生成装置
相关申请的交叉引用
本申请基于2022年09月16日提交的中国专利申请202211131838.5主张其优先权,此处通过参照引入其全部的记载内容。
【技术领域】
本发明涉及电子雾化技术领域,尤其涉及一种加热组件及气溶胶生成装置。
【背景技术】
加热不燃烧(Heat Not Burning,HNB)气溶胶生成装置因其具有使用安全、方便、健康、环保等优点,而越来越受到人们的关注和青睐。
现有的加热不燃烧气溶胶生成装置,其一般包括加热组件和电源组件;其中,加热组件用于在通电时加热并雾化气溶胶生成制品,以形成气溶胶;电源组件与加热组件连接,用于向加热组件供电。
然而,现有加热组件,加热效率较低,气溶胶生成制品内外的温度差较大,加热均匀性较差。另外,现有加热组件在加热时,高温区域位于发热体的中心区域,生成气溶胶的速度较慢,且无法按预期设计温度场,不便于设计其他非对称的高温区位置。
【发明内容】
本申请提供的加热组件及气溶胶生成装置,旨在解决现有加热组件,加热效率较低,气溶胶生成制品内外的温度差较大,加热均匀性较差。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种加热组件。该加热组件包括:收容结构、至少一个加热膜及供电组件;其中,收容结构具有近端开口,用于通过所述近端开口收容气溶胶生成制品,并在被加热时辐射红外线以加热所述气溶胶生成制品;至少一个加热膜呈线状设置于所述收容结构上,用于在通电时加热所述收容结构;其中,每一所述加热膜的至少部分沿所述收容结构的长度方向延伸;供电组件包括第一电极和第二电极;每一所述加热膜的两端分别与所述第一电极和所述第二电极电连接,以向所述至少一个加热膜供电。
其中,所述加热膜包括多条加热线,所述多条加热线中至少两条所述加热线并联在一起;且每一所述加热线的至少部分沿所述收容结构的长度方向延伸。
其中,所述多条加热线中的至少部分所述加热线为曲线。
其中,所述曲线为U型曲线或S型曲线。
其中,多条所述加热线分别沿所述收容结构的长度方向延伸,且部分所述加热线的第一端与所述第一电极电连接,第二端与其余部分所述加热线的第二端电连接;其余部分所述加 热线的第一端与所述第二电极电连接。
其中,所述加热膜还包括:沿所述收容结构的周向方向延伸的第一电连接部;每一所述加热线的第二端分别与所述第一电连接部电连接。
其中,所述加热膜还包括:
第二电连接部;所述多条加热线中的部分所述加热线的第一端分别与所述第二电连接部电连接,以通过所述第二电连接部与所述第一电极电连接;和/或,
第三电连接部;所述多条加热线中的其余部分所述加热线的第一端分别与所述第三电连接部电连接,以通过所述第三电连接部与所述第二电极电连接。
其中,所述加热膜包括第一加热线、第二加热线、第三加热线和第四加热线;所述第一加热线和所述第二加热线并联在所述第一电极和所述第一电连接部之间;所述第三加热线和所述第四加热线并联在所述第二电极和所述第一电连接部之间。
其中,每一所述加热线均为U型曲线。
其中,多条所述加热线沿所述加热膜的宽度方向的中轴线对称分布;相邻两个所述加热线沿其所在的中轴线对称分布。
其中,每一所述加热线的两端分别与所述第一电极和所述第二电极电连接。
其中,每一所述加热线包括依次连接的第一部分、第二部分以及第三部分;所述第一部分和所述第三部分分别所述收容结构的长度方向延伸,且分别与所述第一电极和所述第二电极电连接;所述第二部分沿所述收容结构的周向方向延伸。
其中,所述加热膜包括并联的第一加热线和第二加热线;
所述第一加热线的第一部分呈曲线;所述第一加热线的第二部分和第三部分呈直线;
所述第二加热线的所述第一部分、所述第二部分以及所述第三部分均呈直线。
其中,所述第二加热线的长度大于所述第一加热线的长度,且所述第二加热线包围所述第一加热线的外围。
其中,所述第一电极和所述第二电极位于所述收容结构的同一端。
其中,所述至少一个加热膜被配置为,在所述收容结构长度方向的中点两侧的功率密度不同。
其中,与所述收容结构的长度方向垂直且穿过所述中点的平面将所述收容结构的表面划分为第一区域和第二区域;所述第二区域位于所述第一区域背离所述近端开口的一侧;
所述至少一个加热膜在所述第一区域内的功率密度大于所述至少一个加热膜在所述第二区域内的功率密度。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种气溶胶生成装置。该气溶胶生成装置包括:加热组件及电源组件;其中,加热组件为上述所涉及的加热组件;电源组件与所述加热组件电连接,用于向所述加热组件供电。
本申请实施例的有益效果,区别于现有技术:本申请提供的加热组件及气溶胶生成装置, 该加热组件通过设置收容结构和至少一个加热膜,使至少一个加热膜设置于收容结构上,并使每一加热膜的至少部分沿收容结构的长度方向延伸,以通过该至少一个加热膜在通电时加热收容结构,从而使收容结构被加热而辐射红外线,以利用该红外线对收容于收容结构内的气溶胶生成制品进行加热并雾化。其中,通过红外线加热的方式,由于红外线具有一定的穿透性,不需要介质,加热效率较高,能够有效提高气溶胶生成制品的预热效率,且能够有效降低气溶胶生成制品内外的温度差,从而对气溶胶生成制品的烘烤更加均匀,避免出现局部高温导致气溶胶生成制品被烧焦的问题。同时,通过设置供电组件,使供电组件包括第一电极和第二电极,并每一加热膜的两端分别与第一电极和第二电极电连接,以通过该供电组件向每一加热膜供电,形成单段加热组件。
【附图说明】
图1是本申请一实施例提供的气溶胶生成系统的结构示意图;
图2是本申请一实施例提供的气溶胶生成装置的结构示意图;
图3为本申请第一实施例提供的加热组件的横向截面图;
图4为本申请一实施例提供的加热组件的立体图;
图5为图4的拆解示意图;
图6是本申请一具体实施例提供的加热组件的横向截面图;
图7为本申请一实施例提供的气溶胶生成制品收容于收容结构内的结构简图;
图8为本申请另一实施例提供的气溶胶生成制品收容于收容结构内的结构简图;
图9为图4所示加热膜和供电组件沿收容结构的周向方向展开的示意图;
图10为本申请另一实施例提供的加热膜和供电组件沿收容结构的周向方向展开的示意图;
图11为本申请另一实施例提供的加热组件的立体图;
图12为图11的拆解示意图;
图13为图11所示加热膜和供电组件沿收容结构的周向方向展开的示意图;
图14为本申请第二实施例提供的加热组件的横向截面图;
图15为本申请另一具体实施例提供的加热组件的横向截面图;
图16为本申请第三实施例提供的加热组件的横向截面图。
附图标记说明:
气溶胶生成装置1;气溶胶生成制品2;加热组件10;电源组件20;收容结构11;基体
111;收容腔110;第一端a;第二端b;辐射层112;第一绝缘层113;第二绝缘层114;加热膜12;第一加热线121a;第二加热线121b;加热线121;第一电连接部122;第二电连接部123;第三电连接部124;第一部分125;第二部分126;第三部分127;供电组件13;第一电极131;第二电极132;中线平面M;第一区域A;第二区域B。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个该特征。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
下面结合附图和实施例对本申请进行详细的说明。
请参阅图1,图1为本申请一实施例提供的气溶胶生成系统示意图;
在本实施例中,提供了一种气溶胶生成系统,该气溶胶生成系统包括气溶胶生成装置1和收容于气溶胶生成装置1内的气溶胶生成制品2。其中,气溶胶生成装置1用于加热并雾化该气溶胶生成制品2,以形成气溶胶,供用户抽吸。该气溶胶生成装置1具体可用于医疗、美容、保健、电子雾化等技术领域;其具体结构与功能可参见以下实施例提供的气溶胶生成装置1的描述。该气溶胶生成制品2可采用固体基质,可以包括烟草、香草叶、茶叶、薄荷叶等植物叶类一种或多种的粉末、颗粒、碎片细条、条带或薄片中的一种或多种;或者,固体基质可以包含附加的挥发性香味化合物,以在基质受热时被释放。当然,气溶胶生成制品也可为液体基质或膏状基质,比如添加香气成分的油类、药液等。
请参阅图2,图2为本申请一实施例提供的气溶胶生成装置示意图;
在本实施例中,提供了一种气溶胶生成装置1,该气溶胶生成装置1包括加热组件10和电源组件20。其中,加热组件10用于收容并在通电时雾化气溶胶生成制品2以产生气溶胶;加热组件10的具体结构与功能可参见以下任一实施例所涉及的加热组件10。电源组件20与加 热组件10电连接,用于向加热组件10供电。电源组件20具体可为锂离子电池。
请参阅图3和图4,图3为本申请第一实施例提供的加热组件的横向截面图;图4为本申请一实施例提供的加热组件的立体图;在第一实施例中,提供一种加热组件10。该加热组件10包括收容结构11、至少一个加热膜12和供电组件13。
其中,如图4所示,供电组件13包括第一电极131和第二电极132;至少一个加热膜12的两端分别第一电极131和第二电极132电连接,以通过该第一电极131和第二电极132同时向该至少一个加热膜12供电,以进行单端加热,即至少一个加热膜12共用第一电极131和第二电极132进行供电,至少一个加热膜12的供电功率相同。
供电组件13的第一电极131和第二电极132可位于收容结构11的同一端,并分别沿收容结构11的周向方向延伸。在具体实施例中,第一电极131和第二电极132具体可位于收容结构11背离近端开口的一端的端部;且第一电极131和第二电极132具体可采用银、金、铜以及含有金、银、和铜的合金等高导电率的金属材料。
如图3所示,收容结构11包括基体111和辐射层112。基体111为中空管状,且基体111具有收容腔110和与收容腔110连通的近端开口和远端开口,近端开口和远端开口沿基体111的长度方向C相对设置。收容腔110用于收容气溶胶生成制品2;气溶胶生成制品2具体通过近端开口沿收容腔110的长度方向C收容于收容腔110内或从收容腔110内移出。其中,近端开口为加热组件10靠近吸嘴的一端。具体的,基体111可为中空管状结构,该中空管状结构围设形成收容腔110。具体的,基体111的外径沿其长度方向C均一;基体111具体可为中空圆柱形。
具体的,基体111可采用绝缘材料制备,比如,基体111可以是石英管、陶瓷管或云母管等等。优选地,基体111可为透明石英管,以便于红外线穿过。当然,基体111也可以采用非绝缘材料制备,例如采用不锈钢、铝等金属制备。
辐射层112设置于基体111侧壁的内表面,用于在被加热时辐射红外线,以利用红外线加热并雾化收容于收容腔110内的气溶胶生成制品2。上述利用红外线加热气溶胶生成制品2,由于红外线具有一定的穿透性,不需要介质,加热效率较高,能够有效提高气溶胶生成制品2的预热效率,降低气溶胶生成制品2内外的温度差,从而使气溶胶生成制品2的烘烤更加均匀,避免出现局部高温导致气溶胶生成制品2被烧焦的问题。同时,通过将辐射层112设置于基体111的内表面,辐射层112辐射的红外线无需穿过基体111可直接辐射至气溶胶生成制品2,红外线的利用率较高。
其中,辐射层112具体可采用丝印、溅射、涂敷、印刷等方式形成于基体111侧壁的整个内表面。辐射层112具体可为红外层,红外层的材料包括钙钛矿体系、尖晶石体系、碳化物、硅化物、氮化物、氧化物以及稀土系材料等高红外发射率材料中的至少一种。
结合图3至图5,图5为图4的拆解示意图;加热膜12呈线状覆盖于收容结构11上。在一实施例中,至少一个加热膜12设置于基体111背离辐射层112的一侧,并沿收容结构11 的周向方向间隔设置于收容结构11的表面,用于在通电时产生热量,以加热辐射层112,使辐射层112被加热而辐射红外线。具体的,加热膜12使用通电释放焦耳热的电阻材料,如厚膜印刷电阻层、薄膜印刷电阻层或纳米电阻层等。
其中,如图3所示,在基体111为绝缘基体111时,加热膜12具体设置于基体111背离辐射层112的一侧表面,加热膜12产生的热量经基体111热传导至辐射层112以加热辐射层112。可以理解,在该实施例中,加热膜12直接设置于收容结构11的表面,即加热膜12与收容结构11的表面直接接触。在基体111为非绝缘基体111时,优选地,基体111为金属材料制成,例如采用不锈钢制成,如图6所示,图6为本申请一具体实施例提供的加热组件的横向截面图;基体111背离辐射层112的一侧表面还形成有耐高温的第一绝缘层113,加热膜12具体设置于第一绝缘层113背离基体111的一侧表面,以防止加热膜12与基体111之间短路;此时,加热膜12产生的热量依次经第一绝缘层113、基体111热传导至辐射层112以加热辐射层112。可以理解,在该实施例中,加热膜12通过第一绝缘层113设置于收容结构11上,即加热膜12与收容结构11的表面间接接触。在一个具体实施方式中,第一绝缘层113可以采用釉层。
在该实施例中,为了提高加热组件10的热量利用率,以进一步提高气溶胶生成制品2的加热效率;参阅图7,图7为本申请一实施例提供的气溶胶生成制品收容于收容结构内的结构简图;在气溶胶生成制品2收容于收容腔110内时,气溶胶生成制品2与收容结构11的侧壁的内表面(如辐射层112表面)直接接触。如此,在利用红外线辐射至气溶胶生成制品2的内部,以加热气溶胶生成制品2的同时,可同时通过收容结构11(如辐射层112)将加热膜12的热量传导至气溶胶生成制品2,以利用该热量进一步加热气溶胶生成制品2,提高了热量利用率,加快的雾化效率及气溶胶的生成速度。
当然,在其他实施例中,如图8所示,图8为本申请另一实施例提供的气溶胶生成制品收容于收容结构内的结构简图;在气溶胶生成制品2收容于收容腔110内时,气溶胶生成制品2也可与收容结构11的侧壁的内表面(如,辐射层112)间隔设置,以防止气溶胶生成制品2刮伤或蹭坏辐射层112的问题发生。可以理解,在该实施例中,气溶胶生成制品2主要通过红外线辐射加热。进一步的,加热膜12或/和辐射层112表面可以进一步涂覆保护层,保护层具体可以采用釉层。其中,辐射层112的厚度可以为10-100微米。优选地,辐射层112的厚度为20-40微米。在该实施方式中,辐射层112可采用厚膜印刷方式制作。辐射层112的材质可以包括黑硅、堇青石、过渡金属氧化物系列尖晶石、稀土氧化物、离子共掺杂钙钛矿、碳化硅、锆英石以及氮化硼中的一种或多种。当然,辐射层112的厚度还可以为1-10微米;优选地,辐射层112的厚度为1-5微米。在该实施方式中,辐射层112具体为薄膜镀膜。辐射层112材料可以为CrC、TiCN、类金刚石薄膜(DLC)。
结合图9,图9为图4所示加热膜和供电组件沿收容结构的周向方向展开的示意图;在一具体实施例中,加热膜12的数量为一,一个加热膜12包括并联的多条加热线121,多条 加热线121中至少两条加热线121并联在一起;且每一加热线121呈线条状;每一加热线121的至少部分沿收容结构11的长度方向C延伸。可以理解,线条状的加热线121其长度尺寸远远大于宽度尺寸。
具体的,如图9所示,多条加热线121中的至少部分加热线121为曲线。该曲线可为S型曲线。或者,如图10所示,图10为本申请另一实施例提供的加热膜12和供电组件13沿收容结构11的周向方向展开的示意图;该曲线还可以是U型曲线。当然,在其它具体实施例中,每一加热线121还可以是其它任意不规律弯曲的线条,比如,S型和U型组合的曲线;本申请对此并不加以限制。
在一具体实施例中,如图9所示,多条加热线121分别沿收容结构11的长度方向C延伸,且部分加热线121(以下称之为第一组加热线)的第一端与第一电极131电连接,第一组加热线中的每一加热线121的第二端与其余部分加热线121(以下称之为第二组加热线)的第二端电连接;第二组加热线中的每一加热线121的第一端与第二电极132电连接;以使第一组加热线中的多个加热线121并联在一起,第二组加热线中的多个加热线121并联在一起,然后使第一组加热线与第二组加热线串联在一起。
具体的,每一加热线121均为沿收容结构11的长度方向C延伸的S型曲线;当然,也可以是U型曲线。多条加热线121沿加热膜12的中轴线L可对称分布;且相邻两个加热线121沿这两个加热线121的中轴线对称分布。其中,中轴线L为加热膜12沿宽度方向D展开后的中轴线。
具体的,加热组件10还包括第一电连接部122、第二电连接部123以及第三电连接部124。第一电连接部122具体位于收容结构11靠近近端开口的一端,多条加热线121的第二端分别与第一电连接部122电连接,以通过该第一电连接部122实现多条加热线121的第二端的电连接,进而将第一组加热线和第二组加热线串联在一起。
第一组加热线中的多条加热线121的第一端分别与第二电连接部123电连接,以通过第二电连接部123与第一电极131电连接。第二组加热线中的多条加热线121的第一端分别与第三电连接部124电连接,以通过第三电连接部124与第二电极132电连接;从而通过第一电极131和第二电极132向该加热膜12供电。
具体的,该加热膜12包括第一加热线、第二加热线、第三加热线和第四加热线这四条加热线121。其中,第一加热线和第二加热线并联在第一电极131和第一电连接部122之间;第三加热线和第四加热线并联在第二电极132和第一电连接部122之间。即,该加热膜12中的四个加热线121先两两并联,再串联在一起。
在该具体实施例中,至少一个加热膜12被配置为,在收容结构11的长度方向C的中点两侧的功率密度不同。即,至少一个加热膜12产生的热量使收容结构11的收容腔110内的高温区域不位于收容腔110沿长度方向C的中心区域。这样能够按照预期设计收容结构11的温度场,便于设计其它非对称的高温区域位置。
具体的,如图4至图9所示,与收容结构11的长度方向C垂直且穿过中点的平面M将收容结构11的表面划分为第一区域A和第二区域B;第二区域B位于第一区域A背离近端开口的一侧。每一加热膜12的每一加热线121的部分位于第一区域A,其余部分位于第二区域B;且至少一个加热膜12在第一区域A内的单位面积的电阻密度与至少一个加热膜12在第二区域B内的单位面积的电阻密度不同。这样可以在至少一个加热膜12通电之后,使收容结构11的第一区域A的加热功率和第二区域B的加热功率存在差异,进而在收容结构11的第一区域A和第二区域B形成温度不同的两个区域。同时,上述以中线平面M为第一区域A和第二区域B的分割线,能够保证所形成的高温区域与收容腔110的长度方向C的中点偏置,便于设计其他非对称的高温区位置。
具体的,为了提高加热组件10靠近近端开口处的加热速度,以加快气溶胶的生成速度;可使至少一个加热膜12在第一区域A内的单位面积的电阻密度大于多个加热膜12在第二区域B内的单位面积的电阻密度;这样,由于第一区域A和第二区域B的加热膜12整体为串联关系,因此,至少一个加热膜12通电后,电阻密度较大的区域的功率密度较大,即,第一区域A的加热功率密度大于第二区域B的加热功率密度;相对应的,第一区域A的基体111内表面与加热膜12重叠的区域也大于第二区域B的辐射层112与加热膜12重叠的区域,以及第一区域A对应的辐射层112相较于第二区域B对应的辐射层112的温度较高,辐射更多红外线,以获得预期的收容结构11的第一区域A的温度高于第二区域B的温度的设计效果,即,获得预期的加热组件10的高温区域位于第一区域A的设计效果;有效提高了气溶胶生成制品2对应第一区域A的部分雾化效率,加快了气溶胶的生成速度。
在具体实施例中,结合图9,至少一个加热膜12中的每一加热线121的材料及厚度相同;若想要按照预期设计不同的温度区域,可以通过控制不同区域的多个加热部的宽度及各个区域所含的至少一个加热膜12沿收容结构11的长度方向C的长度,以控制不同区域的电阻密度大小,进而实现不同温度的区域的设计效果。比如,至少一个加热膜12中每一加热线121的宽度相同,可使沿收容结构11的长度方向C,至少一个加热膜12位于第一区域A的部分的长度小于位于第二区域B的部分的长度横截面积不同,以使至少一个加热膜12在第一区域A内的单位面积的电阻密度大于至少一个加热膜12在第二区域B内的单位面积的电阻密度。其中,加热线121的宽度指加热线121沿宽度方向D的尺寸。
在另一具体实施例中,参见图11至图13,图11为本申请另一实施例提供的加热组件的立体图;图12为图11的拆解示意图;图13为图11所示加热膜和供电组件沿收容结构的周向方向展开的示意图;与图4-图10所对应实施例不同的是:每一加热线121的两端分别与第一电极131和第二电极132电连接。
在该具体实施例中,如图13所示,每一加热线121包括依次连接的第一部分125、第二部分126以及第三部分127。第一部分125和第三部分127分别沿收容结构11的长度方向C延伸,且分别与第一电极131和第二电极132电连接;第二部分126沿收容结构11的周向方 向延伸。其中,第一部分125与第二部分126的连接处形成拐角,该拐角可为倒角;第二部分126与第三部分127的连接处也形成拐角,该拐角也可为倒角。
具体的,每一加热线121的第一部分125从第二区域B延伸至第一区域A,每一加热线121的第二部分126位于收容结构11的第一区域A;每一加热线121的第三部分127自第一区域A延伸至第二区域B以与第二电极132接触电连接。
具体的,结合图12和图13,加热膜12可包括并联的第一加热线121a和第二加热线121b。其中,第一加热线121a的第一部分125可呈曲线;比如为U型曲线。第一加热线121a的第二部分126和第三部分127呈直线。第二加热线121b的第一部分125、第二部分126以及第三部分127均呈直线。具体的,第二加热线121b的长度大于第一加热线121a的长度,且第二加热线121b包围第一加热线121a的外围。
在该具体实施例中,每一加热线121的两端可直接连接至第一电极131或第二电极132,即无需第二电连接部123或/或第三电连接部124。
当然,在其它实施例中,还可以通过控制对应区域的每一加热线121的材料或厚度来控制对应区域的电阻密度,本申请对此并不加以限制,只要保证至少一个加热膜12位于第一区域A的部分的电阻密度与至少一个加热膜12位于第二区域B的部分的电阻密度不同即可。
本领域技术人员可以理解,上述收容结构11也可以与其长度方向C垂直的其它一个平面或多个平行的平面作为分割线,以将收容结构11划分为多个区域。多个区域中至少两个区域所在的加热膜12的部分沿收容结构11的长度方向C的宽度不同,以对应形成不同温度的区域;其中,多个不同温度的区域中的高温区与收容结构11的长度方向C的中点偏置。
本实施例提供的加热组件10,通过红外线辐射加热气溶胶生成制品2,相比于电阻加热或电磁加热的方案,由于红外线具有一定的穿透性,不需要介质,加热效率较高,能够有效提高气溶胶生成制品2的预热效率,且能够有效降低气溶胶生成制品2内外的温度差,从而对气溶胶生成制品2的烘烤更加均匀,避免出现局部高温导致气溶胶生成制品2被烧焦的问题。同时,通过使至少一个加热膜12被配置为,在收容结构11的收容腔110内产生的高温区域与收容腔110的长度方向C的中点偏置,能够按照预期设计温度场,便于设计其它非对称的高温区域位置。另外,通过控制至少一个加热膜12的多条加热线121在不同区域的长度,以控制至少一个加热膜12在不同区域的电阻密度,从而控制各个不同区域所含加热膜12的功率密度;这样在至少一个加热膜12通电后,能够使至少两个加热区域的加热功率存在差异,由此形成温度不同的多个区域;以有目的性地设计适合气溶胶生成制品2雾化的收容结构11的高温区的位置,提高气溶胶的生成速度。此外,通过使至少一个加热膜12的位于第一区域A的部分的电阻密度大于位于第二区域B的部分的电阻密度,以使收容结构11的第一区域A的温度高于第二区域B的温度,进而有效提高了第一区域A的雾化效率,加快了气溶胶的生成速度。
在第二实施例中,参见图14,图14为本申请第二实施例提供的加热组件的横向截面图; 提供第二种加热组件10,与上述第一实施例提供的加热组件10不同的是:辐射层112设置于基体111的侧壁的外表面。
在该实施例中,如图14所示,在辐射层112为绝缘辐射层112时,加热膜12具体设置于辐射层112背离基体111的一侧表面。加热膜12通电后产生的热量直接热传导至辐射层112,辐射层112被加热产生红外线,红外线穿透透明的基体111进入至收容腔110,以加热收容于收容腔110内的气溶胶生成制品2。在该实施例中,气溶胶生成制品2也可直接于透明基体111接触,以将基体111的热量直接传导至气溶胶生成制品2进行加热;或者,气溶胶生成制品2与基体111间隔设置。
在辐射层112为非绝缘材质时,如图15所示,图15为本申请另一具体实施例提供的加热组件的横向截面图;为了避免加热膜12短路;辐射层112背离基体111的表面还设置有第二绝缘层114,第二绝缘层114位于辐射层112和加热膜12之间。
在第三实施例中,参加图16,图16为本申请第三实施例提供的加热组件的横向截面图;提供又一种加热组件10,与上述实施例提供的加热组件10不同的是:收容结构11包括基体111。
基体111呈中空管状,且基体111包括主体和分散于主体中的红外辐射材料。主体形成收容腔110和与收容腔110连通的近端开口,以收容气溶胶生成制品2。基体111被加热时辐射红外线以加热气溶胶生成制品2。可以理解,该实施例是基体111本身受热辐射红外线,基体111表面没有增设红外层。基体111具体可为石英管。
当然,为提高辐射红外线的量,以提高加热速度,也可在基体111的表面进一步设置辐射红外层;具体可参加上文,在此不再赘述。
以上仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (18)

  1. 一种加热组件,其中,包括:
    收容结构,具有近端开口,用于通过所述近端开口收容气溶胶生成制品,并在被加热时辐射红外线以加热所述气溶胶生成制品;
    至少一个加热膜,呈线状设置于所述收容结构上,用于在通电时加热所述收容结构;其中,每一所述加热膜的至少部分沿所述收容结构的长度方向延伸;
    供电组件,包括第一电极和第二电极;每一所述加热膜的两端分别与所述第一电极和所述第二电极电连接,以向所述至少一个加热膜供电。
  2. 根据权利要求1所述的加热组件,其中,
    所述加热膜包括多条加热线,所述多条加热线中至少两条所述加热线并联在一起;且每一所述加热线的至少部分沿所述收容结构的长度方向延伸。
  3. 根据权利要求2所述的加热组件,其中,所述多条加热线中的至少部分所述加热线为曲线。
  4. 根据权利要求3所述的加热组件,其中,所述曲线为U型曲线或S型曲线。
  5. 根据权利要求3所述的加热组件,其中,
    多条所述加热线分别沿所述收容结构的长度方向延伸,且部分所述加热线的第一端与所述第一电极电连接,第二端与其余部分所述加热线的第二端电连接;其余部分所述加热线的第一端与所述第二电极电连接。
  6. 根据权利要求5所述的加热组件,其中,
    所述加热膜还包括:沿所述收容结构的周向方向延伸的第一电连接部;每一所述加热线的第二端分别与所述第一电连接部电连接。
  7. 根据权利要求6所述的加热组件,其中,
    所述加热膜还包括:
    第二电连接部;所述多条加热线中的部分所述加热线的第一端分别与所述第二电连接部电连接,以通过所述第二电连接部与所述第一电极电连接;和/或,
    第三电连接部;所述多条加热线中的其余部分所述加热线的第一端分别与所述第三电连接部电连接,以通过所述第三电连接部与所述第二电极电连接。
  8. 根据权利要求7所述的加热组件,其中,
    所述加热膜包括第一加热线、第二加热线、第三加热线和第四加热线;所述第一加热线和所述第二加热线并联在所述第一电极和所述第一电连接部之间;所述第三加热线和所述第四加热线并联在所述第二电极和所述第一电连接部之间。
  9. 根据权利要求8所述的加热组件,其中,每一所述加热线均为U型曲线。
  10. 根据权利要求9所述的加热组件,其中,多条所述加热线沿所述加热膜的宽度方向 的中轴线对称分布;相邻两个所述加热线沿其所在的中轴线对称分布。
  11. 根据权利要求3所述的加热组件,其中,
    每一所述加热线的两端分别与所述第一电极和所述第二电极电连接。
  12. 根据权利要求11述的加热组件,其中,
    每一所述加热线包括依次连接的第一部分、第二部分以及第三部分;所述第一部分和所述第三部分分别所述收容结构的长度方向延伸,且分别与所述第一电极和所述第二电极电连接;所述第二部分沿所述收容结构的周向方向延伸。
  13. 根据权利要求11述的加热组件,其中,
    所述加热膜包括并联的第一加热线和第二加热线;
    所述第一加热线的第一部分呈曲线;所述第一加热线的第二部分和第三部分呈直线;
    所述第二加热线的所述第一部分、所述第二部分以及所述第三部分均呈直线。
  14. 根据权利要求13述的加热组件,其中,
    所述第二加热线的长度大于所述第一加热线的长度,且所述第二加热线包围所述第一加热线的外围。
  15. 根据权利要求1所述的加热组件,其中,所述第一电极和所述第二电极位于所述收容结构的同一端。
  16. 根据权利要求1所述的加热组件,其中,
    所述至少一个加热膜被配置为,在所述收容结构长度方向的中点两侧的功率密度不同。
  17. 根据权利要求16所述的加热组件,其中,
    与所述收容结构的长度方向垂直且穿过所述中点的平面将所述收容结构的表面划分为第一区域和第二区域;所述第二区域位于所述第一区域背离所述近端开口的一侧;
    所述至少一个加热膜在所述第一区域内的功率密度大于所述至少一个加热膜在所述第二区域内的功率密度。
  18. 一种气溶胶生成装置,其中,包括:
    加热组件,为如权利要求1-17任一项所述的加热组件;
    电源组件,与所述加热组件电连接,用于向所述加热组件供电。
PCT/CN2023/105222 2022-09-16 2023-06-30 加热组件及气溶胶生成装置 WO2024055720A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211131838.5A CN115606865A (zh) 2022-09-16 2022-09-16 加热组件及气溶胶生成装置
CN202211131838.5 2022-09-16

Publications (1)

Publication Number Publication Date
WO2024055720A1 true WO2024055720A1 (zh) 2024-03-21

Family

ID=84858697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105222 WO2024055720A1 (zh) 2022-09-16 2023-06-30 加热组件及气溶胶生成装置

Country Status (2)

Country Link
CN (1) CN115606865A (zh)
WO (1) WO2024055720A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115606865A (zh) * 2022-09-16 2023-01-17 深圳麦时科技有限公司 加热组件及气溶胶生成装置

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109076650A (zh) * 2016-05-13 2018-12-21 英美烟草(投资)有限公司 用于加热可抽吸材料的装置和方法
CN113080521A (zh) * 2019-12-23 2021-07-09 深圳市合元科技有限公司 加热器以及包含该加热器的烟具
CN215775577U (zh) * 2021-08-04 2022-02-11 深圳麦克韦尔科技有限公司 一种电加热组件及电加热装置
CN114052297A (zh) * 2021-11-26 2022-02-18 深圳麦时科技有限公司 加热组件及气溶胶产生装置
CN114304749A (zh) * 2021-12-31 2022-04-12 深圳麦时科技有限公司 加热不燃烧气溶胶形成装置及其加热件
CN216293048U (zh) * 2021-09-08 2022-04-15 深圳麦克韦尔科技有限公司 加热组件及气溶胶产生装置
CN114587021A (zh) * 2022-01-11 2022-06-07 深圳麦克韦尔科技有限公司 雾化芯、雾化器及电子雾化装置
CN114680384A (zh) * 2022-04-25 2022-07-01 湖南中烟工业有限责任公司 加热结构及加热雾化装置
CN216931913U (zh) * 2021-11-26 2022-07-12 深圳麦克韦尔科技有限公司 加热组件及气溶胶生成装置
WO2022148846A1 (en) * 2021-01-08 2022-07-14 Nicoventures Trading Limited An assembly for an aerosol provision device
CN114788585A (zh) * 2022-03-22 2022-07-26 深圳麦时科技有限公司 加热组件及气溶胶生成装置
CN115606866A (zh) * 2022-09-16 2023-01-17 深圳麦时科技有限公司 加热组件及气溶胶生成装置
CN115606865A (zh) * 2022-09-16 2023-01-17 深圳麦时科技有限公司 加热组件及气溶胶生成装置
CN218790571U (zh) * 2022-09-16 2023-04-07 深圳麦时科技有限公司 加热组件及气溶胶生成装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109076650A (zh) * 2016-05-13 2018-12-21 英美烟草(投资)有限公司 用于加热可抽吸材料的装置和方法
CN113080521A (zh) * 2019-12-23 2021-07-09 深圳市合元科技有限公司 加热器以及包含该加热器的烟具
WO2022148846A1 (en) * 2021-01-08 2022-07-14 Nicoventures Trading Limited An assembly for an aerosol provision device
CN215775577U (zh) * 2021-08-04 2022-02-11 深圳麦克韦尔科技有限公司 一种电加热组件及电加热装置
CN216293048U (zh) * 2021-09-08 2022-04-15 深圳麦克韦尔科技有限公司 加热组件及气溶胶产生装置
CN114052297A (zh) * 2021-11-26 2022-02-18 深圳麦时科技有限公司 加热组件及气溶胶产生装置
CN216931913U (zh) * 2021-11-26 2022-07-12 深圳麦克韦尔科技有限公司 加热组件及气溶胶生成装置
CN114304749A (zh) * 2021-12-31 2022-04-12 深圳麦时科技有限公司 加热不燃烧气溶胶形成装置及其加热件
CN114587021A (zh) * 2022-01-11 2022-06-07 深圳麦克韦尔科技有限公司 雾化芯、雾化器及电子雾化装置
CN114788585A (zh) * 2022-03-22 2022-07-26 深圳麦时科技有限公司 加热组件及气溶胶生成装置
CN114680384A (zh) * 2022-04-25 2022-07-01 湖南中烟工业有限责任公司 加热结构及加热雾化装置
CN115606866A (zh) * 2022-09-16 2023-01-17 深圳麦时科技有限公司 加热组件及气溶胶生成装置
CN115606865A (zh) * 2022-09-16 2023-01-17 深圳麦时科技有限公司 加热组件及气溶胶生成装置
CN218790571U (zh) * 2022-09-16 2023-04-07 深圳麦时科技有限公司 加热组件及气溶胶生成装置

Also Published As

Publication number Publication date
CN115606865A (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
WO2024055719A1 (zh) 加热组件及气溶胶生成装置
WO2024055731A1 (zh) 加热组件及气溶胶生成装置
WO2023179108A1 (zh) 加热组件及气溶胶生成装置
WO2023124534A1 (zh) 加热不燃烧气溶胶形成装置及其加热件
WO2024055720A1 (zh) 加热组件及气溶胶生成装置
CN109123805B (zh) 烘烤烟具及其金属基电加热件
WO2023093535A1 (zh) 加热组件及气溶胶生成装置
EP4190185A1 (en) Heater and smoking set comprising heater
WO2023093484A1 (zh) 气溶胶形成装置
WO2024055732A1 (zh) 加热组件、气溶胶生成装置及气溶胶生成系统
CN113068866A (zh) 加热器以及包括该加热器的烟具
WO2023124519A1 (zh) 加热元件及电子雾化装置
WO2023216701A1 (zh) 加热组件及气溶胶产生装置
CN216931913U (zh) 加热组件及气溶胶生成装置
CN217218203U (zh) 加热组件及气溶胶生成装置
CN218790571U (zh) 加热组件及气溶胶生成装置
CN218790573U (zh) 加热组件、气溶胶生成装置及气溶胶生成系统
WO2024027386A1 (zh) 加热组件、雾化器及气溶胶生成装置
WO2024103879A1 (zh) 气溶胶产生装置及其发热结构
WO2024060721A1 (zh) 气溶胶产生装置及其加热装置
CN113598422A (zh) 一种气溶胶生成制品
CN219781579U (zh) 加热器及气溶胶生成装置
CN218921682U (zh) 加热组件及气溶胶生成装置
CN219353089U (zh) 加热器及气溶胶生成装置
CN218605047U (zh) 加热组件以及气溶胶生成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864457

Country of ref document: EP

Kind code of ref document: A1