WO2023123884A1 - 四芳基乙氧基侧链单茂金属化合物、包含其的催化剂体系及应用进行的聚烯烃合成方法 - Google Patents

四芳基乙氧基侧链单茂金属化合物、包含其的催化剂体系及应用进行的聚烯烃合成方法 Download PDF

Info

Publication number
WO2023123884A1
WO2023123884A1 PCT/CN2022/098637 CN2022098637W WO2023123884A1 WO 2023123884 A1 WO2023123884 A1 WO 2023123884A1 CN 2022098637 W CN2022098637 W CN 2022098637W WO 2023123884 A1 WO2023123884 A1 WO 2023123884A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
catalyst system
tetraarylethoxy
side chain
combination
Prior art date
Application number
PCT/CN2022/098637
Other languages
English (en)
French (fr)
Inventor
马克存
王玉龙
高萌
杨春基
汲永刚
徐显明
赵光辉
曾群英
梁立伟
赵铁凯
Original Assignee
中国石油天然气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气股份有限公司 filed Critical 中国石油天然气股份有限公司
Publication of WO2023123884A1 publication Critical patent/WO2023123884A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/28Titanium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/08Butenes
    • C08F110/10Isobutene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to the field of catalytic polymerization of olefins, in particular to a tetraarylethoxy side chain mono-metallocene compound, a catalyst system containing the same and a method for synthesizing polyolefins by using the same.
  • Barsan et al. used ( ⁇ 5 -C 5 Me 5 )TiMe 3 /B(C 6 F 5 ) 3 metallocene catalyst system to synthesize medium and high molecular weight polyisobutene.
  • Andrew G.Carr et al. used Cp 2 ZrMe 2 and Cp* 2 ZrMe 2 /B(C 6 F 5 ) 3 catalyst systems to catalyze isobutylene homopolymerization and isobutylene/isoprene copolymerization to obtain medium and high molecular weight polyisobutylene (Carr A G, Dawsor D M. Zirconocenes as initiators for carbocationic isobutene home and opolymerizations [J]. Macromolecules, 1998, 31(7): 2035-2040.).
  • Patent application CN107417729A proposes a method for synthesizing a single metallocene compound, using Group IVB metal halides as raw materials, and cyclopentadiene ligands in a molar ratio of 1:1.
  • Rosa Fandos et al. based on the method of thermally induced CX bond activation in complexes containing neutral cyclopentadienyl ligands, using tetramethyl-methoxypropyl-cyclopentadienyl titanium ylide ⁇ 5 -C
  • the ligand can catalyze the polymerization of olefins.
  • A.Rajesh et al. used the ansa- ⁇ 5 -monofluorofluorenyl cyclohexyl zirconium (IV) complex/MAO catalytic system to synthesize polyethylenes of different structures and polyethylenes with linear ⁇ -olefins and long chains at 40-100°C. A mixture of alkanes.
  • the main catalyst structure is (Rajesh A, Sivaram S.Polymerization of ethylene to branched poly(ethylene)s using ansa- ⁇ 5 -monofluororenyl cyclohexanolato zirconium(IV)complex/methylaluminoxane[J].Polymer Bulletin,2011,67(3):383-399.
  • Bernhard Rieger used symmetrically substituted epoxides to react with fluorenyllithium to obtain corresponding alcohols, and prepared the general structure formula A catalyst for ethylene polymerization in combination with a cocatalyst Al(CH 3 ) 3 .
  • Bonhard, Rieger Preparation and some properties of chiral ansa-mono ( ⁇ 5 -fluorenyl) zirconium (IV) complexes [J]. Journal of Organometallic Chemistry, 1991.) Steven DR and others synthesized the structure as The single titanocene complex, but did not involve in its application research.
  • Patent application CN110218272A discloses a kind of synthetic method of polyisobutylene and its copolymer, this method adopts /Organoboron compound catalyst synthesizes polyisobutylene products with number average molecular weight (Mn) of 0.52 million to 678,000 under the condition of reaction temperature of -80°C to 50°C and time of 1/6 to 24h.
  • Mn number average molecular weight
  • Patent application CN106632768A and Yang Ke et al. (Study on the Polymerization of Isobutylene Initiated by Monocene, Ke Yang, Dalian University of Technology, D, 2019) disclosed a kind of rare earth butyl rubber and its preparation method.
  • the polyisobutylene product with a number average molecular weight (Mn) of more than 18,000 was synthesized by a monoscandium-based catalyst system composed of a cyclopentadienyl scandium complex/organoboride catalyst/aluminum alkyl.
  • Patent application CN101130467A discloses a catalyst system composed of a metallocene compound with a restricted geometry configuration containing a phenoxy side chain as the main catalyst, and an alkylaluminoxane and an alkylaluminum/boron compound as a cocatalyst to catalyze the oligomerization of ⁇ -olefins
  • a method for preparing lubricating oil base oil In this method, a metallocene catalyst is directly added to a reactor equipped with ⁇ -olefins and stirred to catalyze the oligomerization of olefins. The reaction mixture is filtered to remove the catalyst, and then dilute hydrochloric acid is added to stir and then separated and dried.
  • Patent application CN104877049A discloses a single titanocene complex containing a large steric hindered aryloxy side chain
  • the mixture of cocatalysts is used to catalyze ethylene homopolymerization and ethylene/ ⁇ -olefin copolymerization to obtain high molecular weight polymers.
  • the alkylaluminum is trimethylaluminum, triethylaluminum or triisobutylaluminum;
  • the alkylaluminoxane is methylalumoxane or modified methylalumoxane;
  • the organic The boron additive is Ph 3 CB(C 6 F 5 ) 4 , PhNMe 2 HB(C 6 F 5 ) 4 or B(C 6 F 5 ) 3 .
  • CN1431232A discloses that a metallocene compound catalyst containing a phenoxy side chain is used for ethylene homopolymerization and ethylene/ ⁇ -olefin copolymerization to obtain higher molecular weight polymers.
  • the olefins are ethylene, propylene, isobutene, 1-butene, 1-hexene, 1-octene, 1-decene and other terminal olefins with less than 20 carbons, or conjugated or non-conjugated bis alkenes or polyenes, styrene, norbornene or cyclohexene.
  • Patent application CN1431232A discloses a metallocene compound catalyst system containing phenoxy side chains for the homopolymerization of ethylene and the copolymerization of ethylene and olefins including isobutylene.
  • the first object of the present invention is to provide a tetraarylethoxy side chain single metallocene compound.
  • the second object of the present invention is to provide a catalyst system comprising the tetraarylethoxy side chain monometallocene compound.
  • the third object of the present invention is to provide a polyolefin synthesis method using the catalyst system.
  • the first aspect of the present invention provides a tetraarylethoxy side chain monometallocene compound, its structural formula is:
  • M is selected from Ti, Zr or Hf;
  • Cp' is selected from cyclopentadienyl, substituted cyclopentadienyl, indenyl, substituted indenyl, fluorenyl and substituted and fluorenyl;
  • the substituted cyclopentadienyl is a monosubstituted or polysubstituted cyclopentadienyl, and the substituent is selected from an alkyl group, an aryl group or an alkylmethylsilyl group;
  • Ar is selected from phenyl, single-substituted phenyl and multi-substituted phenyl, wherein the substituents are C1-C18 alkyl, typical Ar such as methylphenyl, ethylphenyl, butylphenyl, hexylphenyl , dodecylphenyl, octadecylphenyl, 2,4-dimethylphenyl or 2,4-di-tert-butylphenyl;
  • X is selected from halogen, C1-C20 alkyl, C1-C20 alkoxy, dialkylamino, phenyl, benzyl and trimethylsilylmethyl.
  • the tetraarylethoxy side chain single metallocene catalyst of the present invention has good stability and high catalytic activity due to the steric hindrance of the four aromatic groups, and the bridge group of two carbons makes the catalyst limited
  • the catalyst has the characteristics of geometric configuration, and at the same time, the catalyst is also easily soluble in alkane solvent systems except aromatic hydrocarbons.
  • the M is Ti.
  • the Cp' is selected from cyclopentadienyl, substituted cyclopentadienyl, indenyl and fluorenyl; more preferably, the The Cp' is selected from substituted cyclopentadienyl, more preferably tetramethylcyclopentadienyl.
  • the Ar is phenyl, methylphenyl, ethylphenyl, butylphenyl, hexylphenyl, dodecyl Phenyl, octadecylphenyl, 2,4-dimethylphenyl or 2,4-di-tert-butylphenyl; more preferably phenyl.
  • said X is selected from halogen, methyl, neopentyl, phenyl or benzyl, more preferably, said X is selected from halogen , more preferably Cl.
  • the second aspect of the present invention provides a catalyst system, wherein the catalyst system includes catalyst A, catalyst B and catalyst C;
  • the catalyst A is selected from the above-mentioned tetraarylethoxy side chain monometallocene compounds
  • the catalyst B is selected from Ph 3 CB(C 6 F 5 ) 4 , PhNMe 2 HB(C 6 F 5 ) 4 , B(C 6 F 5 ) 3 and [(C n H 2n+1 ) 2 NH(C One of m H 2m+1 )][B(C 6 F 5 ) 4 ], n is selected from an integer of 2 to 20, and m is selected from an integer of 1 to 20;
  • the catalyst C is selected from alkylaluminum compounds.
  • the molar ratio of catalyst A, catalyst B and catalyst C is 1:(1-2):(2-40).
  • n is an integer selected from 4-18; m is 1 or 2, preferably 1.
  • the alkylaluminum compound is selected from trimethylaluminum, triethylaluminum, triisopropylaluminum, triisobutylaluminum, tri-n-hexylaluminum, tri-n-octylaluminum , one of tri-n-decyl aluminum and tri-n-dodecyl aluminum; more preferably triethyl aluminum, triisopropyl aluminum or triisobutyl aluminum.
  • the third aspect of the present invention provides a polyolefin synthesis method, wherein the synthesis method uses the above-mentioned catalyst system to catalyze the polymerization of olefin to obtain the polyolefin.
  • the olefin is selected from one or a combination of two or more of C2-C20 1-alkenes.
  • the olefin may be selected from isobutene, a combination of ethylene and propylene, a combination of ethylene, propylene and norbornene, a combination of ethylene, propylene and ethylidene norbornene, a combination of ethylene and 1-hexene, a combination of ethylene and Combinations of 1-octene, combinations of ethylene and norbornene, combinations of ethylene and ethylidene norbornene.
  • the olefin is isobutene
  • the polyolefin is polyisobutene
  • the ⁇ -olefin content of the polyisobutene is ⁇ 95%
  • the number average molecular weight (Mn) is 300-10000
  • the molecular weight distribution 1 to 2.5 is preferably, the olefin is isobutene, and the polyolefin is polyisobutene; the ⁇ -olefin content of the polyisobutene is ⁇ 95%, the number average molecular weight (Mn) is 300-10000, and the molecular weight distribution 1 to 2.5.
  • the molar ratio of the isobutene to the catalyst A is (1 ⁇ 10 4 -1 ⁇ 10 7 ):1.
  • the polymerization reaction is carried out in a solvent;
  • the solvent is selected from C2-C12 linear alkanes, C4-C12 isoparaffins, C3-C8 cycloalkanes, benzene and toluene one or a combination of two or more. More preferably, the solvent is hexane, cyclohexane or toluene.
  • the temperature of the polymerization reaction is 0-100° C.
  • the time is 0.1-4 hours
  • the pressure is 0-2 MPa (gauge pressure).
  • the method further includes: removing the catalyst, separating unreacted monomers, solvents and oligomers, and obtaining a polyisobutylene product.
  • a kind of synthetic method of highly active polyisobutylene is provided in a preferred version of the present invention, comprises the following steps:
  • isobutene as a raw material, use the above catalyst system to catalyze the polymerization reaction; after the reaction, remove the catalyst, separate unreacted monomers, solvents and oligomers, and obtain polyisobutene; the number average molecular weight (Mn) of the polyisobutene It is 300-10000, the molecular weight distribution is 1-2.5, and the ⁇ -double bond content ( ⁇ -olefin content) at the end of the chain is ⁇ 95%.
  • Mn number average molecular weight of the polyisobutene It is 300-10000, the molecular weight distribution is 1-2.5, and the ⁇ -double bond content ( ⁇ -olefin content) at the end of the chain is ⁇ 95%.
  • the metallocene catalyst system of the present invention realizes the polymerization reaction of isobutene at high temperature and high monomer concentration.
  • Oxygen side chain monometallocene has a single active center, which highly inhibits the side reaction of ⁇ -olefin isomerization, can significantly increase the ⁇ -olefin content of polyisobutene products, and reduce the product molecular weight distribution.
  • the solvent (such as cyclohexane) and isobutylene are dried and removed to reduce the content of impurities such as water and oxygen to less than 1ppm, which meets the requirements of the metallocene catalyst system for the content of impurities such as water and oxygen.
  • the polymerization reaction is carried out in a high-pressure reactor.
  • the high-pressure reactor is heated, replaced with high-purity nitrogen to remove water, and deoxygenated so that the reaction environment meets the requirements for catalyst use.
  • solvent, isobutylene and catalyst C are added to the high-pressure reactor.
  • Alkyl aluminum) stirring reaction for a certain period of time further remove impurities such as trace water and oxygen in the reaction system that can poison and deactivate the metallocene catalyst, and then heat up to the reaction temperature, add catalyst A and catalyst B to carry out polymerization reaction.
  • the solvent is separated by distillation, and then the oligomer is separated by distillation under reduced pressure at -0.8 ⁇ -0.1MPa, 150 ⁇ 200°C, and the number average molecular weight (Mn) is 300 ⁇ 10000, and the ⁇ -double bond content at the chain end ( ⁇ - Olefin content) ⁇ 95%, highly reactive polyisobutene products with a molecular weight distribution of 1 to 2.5.
  • the catalyst has high activity and low consumption, which can save the catalyst consumption and reduce the production cost.
  • the catalyst has a single active center and no side reactions of isomerization, so that a highly active polyisobutene with a number average molecular weight of 300 to 10,000, a terminal ⁇ -double bond content ( ⁇ -olefin content) ⁇ 95%, and a molecular weight distribution of ⁇ 3 can be obtained.
  • the product has a single structure and high reactivity, greatly improves the quality of high-activity polyisobutene products, saves the consumption and cost of downstream products, and solves the technical problem of relatively low ⁇ -olefin content ( ⁇ 90%) in products existing in traditional technologies.
  • the high-temperature resistance of the catalyst system in the synthesis method of the present invention is good, and high-activity polyisobutene can be synthesized under higher temperature conditions of 0 to 100°C (compared with the reaction temperature of the BF3 system -30°C), and conventional cooling is adopted It only needs to remove the heat from the water, avoiding the harsh low-temperature reaction conditions (about -30°C) of the existing technical route, and greatly reducing production energy consumption and cost.
  • the catalyst system of the present application is non-toxic, harmless, non-polluting, and non-corrosive, which solves the technical problems of poisonous, harmful, corrosion, and pollution existing in the traditional technical route, and improves the operating environment for employees.
  • the product scheme can be flexibly adjusted to realize the production of various types of products with one set of equipment.
  • Fig. 1 is the nuclear magnetic hydrogen spectrogram of polyisobutylene product.
  • the solvent (such as cyclohexane) and isobutylene are dried and removed to reduce the content of impurities such as water and oxygen to less than 1ppm, which meets the requirements of the metallocene catalyst system for the content of impurities such as water and oxygen.
  • the polymerization reaction is carried out in a high-pressure reactor.
  • the high-pressure reactor is heated, replaced with high-purity nitrogen to remove water, and deoxygenated so that the reaction environment meets the requirements for catalyst use.
  • solvent, isobutylene and catalyst C are added to the high-pressure reactor.
  • Alkyl aluminum) stirring reaction for a certain period of time further remove impurities such as trace water and oxygen in the reaction system that can poison and deactivate the metallocene catalyst, and then heat up to the reaction temperature, add catalyst A and catalyst B to carry out polymerization reaction.
  • Atmospheric pressure or reduced pressure distillation separates the solvent, and then under the conditions of -0.8 ⁇ -0.1MPa, 150 ⁇ 200 ° C, vacuum distillation separates oligomers to obtain polyisobutylene products.
  • This embodiment prepares a tetraarylethoxy side chain monometallocene compound: tetraphenylethoxy-tetramethylcyclopentadienyl titanium dichloride, including the following process:
  • the present embodiment adopts the catalyst system of the present invention to catalyze the synthesis of polybutene, wherein the catalyst system includes catalyst A, catalyst B and catalyst C, and the specific circumstances are as follows:
  • Catalyst A Tetraphenylethoxy-tetramethylcyclopentadienyl titanium dichloride
  • Catalyst B [(C 18 H 37 ) 2 NHMe][B(C 6 F 5 ) 4 ]
  • This comparative example adopts similar catalyst system in the prior art to catalyze the synthesis of polybutene, wherein the catalyst system includes catalyst A, catalyst B and catalyst C, and the specific circumstances are as follows:
  • Catalyst B [(C 18 H 37 ) 2 NHMe][B(C 6 F 5 ) 4 ]
  • the present embodiment adopts the catalyst system of the present invention to catalyze the synthesis of polybutene, wherein the catalyst system includes catalyst A, catalyst B and catalyst C, and the specific circumstances are as follows:
  • Catalyst A Tetraphenylethoxy-tetramethylcyclopentadienyl titanium dichloride
  • Catalyst B [(C 8 H 17 ) 2 NHMe][B(C 6 F 5 ) 4 ]
  • Catalyst A dosage is 5 ⁇ mol
  • catalyst B/A 2:1
  • C/A 40:1
  • cyclohexane is used as solvent
  • dosage is 60mL
  • isobutene is 99g
  • react at 40°C for 2h separate unreacted monomer after reaction , release the reaction product, pickling, alkali washing, washing to neutrality in turn, to obtain a colorless and transparent intermediate product, decompression distillation to remove solvent, oligomers, to obtain a qualified high activity polyisobutylene product, weigh the product quality
  • the ⁇ -terminal olefin content of the product was determined by nuclear magnetic resonance spectrometer 400.13 MHz hydrogen spectroscopy, and the molecular weight and molecular weight distribution of highly active polyisobutene were determined by Agilent PL220 high-temperature gel chromatography. The results are shown in Table 1.
  • the present embodiment adopts the catalyst system of the present invention to catalyze the synthesis of polybutene, wherein the catalyst system includes catalyst A, catalyst B and catalyst C, and the specific circumstances are as follows:
  • Catalyst A Tetraphenylethoxy-tetramethylcyclopentadienyl titanium dichloride
  • Catalyst B [Ph 3 C][B(C 6 F 5 ) 4 ]
  • the catalyst provided by the application has a number-average molecular weight (Mn) of 300 to 10,000, a molecular weight distribution of 1 to 2.5, and a highly active polyisobutene with an ⁇ -double bond content ( ⁇ -olefin content) at the chain end ⁇ 95%. product.
  • Catalyst A Tetraphenylethoxy-tetramethylcyclopentadienyl titanium dichloride
  • Catalyst B [(C 18 H 37 ) 2 NHMe][B(C 6 F 5 ) 4 ]
  • Table 2 Concrete conditions and results are shown in Table 2.
  • IB refers to isobutylene
  • B/A refers to the molar ratio of catalyst B to catalyst A
  • C/A refers to the molar ratio of catalyst C to catalyst A.
  • the catalyst system of the present application can be used to synthesize polyisobutylene products with low molecular weight, high activity and narrow molecular weight distribution.
  • the catalyst system of the present invention is used to catalyze the polymerization reaction of 1-decene, wherein the catalyst system includes catalyst A, catalyst B and catalyst C, and the specific conditions are as follows:
  • Catalyst A Tetraphenylethoxy-tetramethylcyclopentadienyl titanium dichloride
  • Catalyst B [Ph 3 C][B(C 6 F 5 ) 4 ]
  • the 1-decene product was 88g, the measured viscosity at 100°C was 230, the viscosity index was 225, and the pour point was -24°C.
  • the catalyst system of the present application can be used for the polymerization of ⁇ -olefins such as 1-decene.

Abstract

本发明公开了一种四芳基乙氧基侧链单茂金属化合物、包含其的催化剂体系及应用进行的聚烯烃合成方法。该四芳基乙氧基侧链单茂金属化合物的结构式为:其中,M选自Ti、Zr或Hf;Cp'选自环戊二烯基、取代环戊二烯基、茚基、取代茚基、芴基和取代芴基;Ar选自苯基和取代苯基;X选自卤素、烷基、烷氧基和二烷基氨基、苯基和苄基。使用包含该四芳基乙氧基侧链单茂金属化合物的催化剂体系催化烯烃聚合反应,由于四芳基乙氧基侧链单茂金属的活性中心单一,高度抑制了α-烯烃异构化副反应,能够显著提高聚异丁烯产品的α-烯烃含量,降低产品分子量分布。

Description

四芳基乙氧基侧链单茂金属化合物、包含其的催化剂体系及应用进行的聚烯烃合成方法 技术领域
本发明涉及烯烃催化聚合领域,具体涉及一种四芳基乙氧基侧链单茂金属化合物、包含其的催化剂体系及应用进行的聚烯烃合成方法。
背景技术
高活性聚异丁烯(HRPIB)的生产是以异丁烯或混合碳四为原料、BF 3阳离子催化剂在-30℃左右条件下进行,但是由于该反应体系存在严重的异构化副反应,其链末端α-双键含量仅为90%左右,难以进一步提高。同时,由于反应需要在-30℃左右的低温条件下进行,生产成本较高。此外还存在设备腐蚀、含氟废水排放污染环境等问题。
Barsan等首次采用(η 5-C 5Me 5)TiMe 3/B(C 6F 5) 3茂金属催化体系合成了中高分子量聚异丁烯,在-20~-78℃温度范围内,聚异丁烯产物的Mw分子量由3×10 4(Mw/Mn=0~3)增加至2×10 5(Mw/Mn=0~2)(Barsan F.,Baird M C.The first example of polymerization of isobutylene induced by a metallocene like initiator[(η 5-C5Me 5)TiMe 2(μ-Me)B(C6F 5) 3][J].Chemical Communications,1995,1065-1066.)。
Andrew G.Carr等采用Cp 2ZrMe 2和Cp* 2ZrMe 2/B(C 6F 5) 3催化剂体系催化异丁烯均聚和异丁烯/异戊二烯共聚反应,得到中高分子量聚异丁烯(Carr A G,Dawsor D M.Zirconocenes as initiators for carbocationic isobutene home and opolymerizations[J].Macromolecules,1998,31(7):2035-2040.)。
王凤荣等提出了以茂金属催化剂体系能够合成其分子量在500~10000可调,α-双键含量≥95%,MWD≤2的聚异丁烯,但是没有提到具体的催化剂种类(王凤荣,高萌,张超等.《高活性聚异丁烯催化剂的研究进展》,炼油与化工,2019年第2期,3-4页)。
专利申请CN107417729A提出了单茂金属化合物的合成方法,以IVB族金属卤化物为原料,与环戊二烯类配体按摩尔比1:1的比例。
Rosa Fandos等基于包含中性环戊二烯基配体的复合物分子内热诱导C-X键活化的方法,使用四甲基-甲氧基丙基-环戊二烯基钛内鎓盐η 5-C 5Me 4(CH 2) 3OMe]TiCl 2(CHPPh 3)作为起始原料,合成具有伪三脚钢琴结构的双齿环戊二烯基醇盐配体C 5Me 4(CH 2) 3OTiCl 2,该配体可催化烯烃聚合。(Fandos R,Meetsma A,Teuben J H.Intramolecular C-X Activation as a Synthetic Route to Bidentate Cyclopentadienyl-Alkoxide Ligands:Preparation and Molecular Structure of (3-(2,3,4,5-Tetramethylcyclopentadienyl)propoxy)titanium Dichloride[J].Organometallics,1991,10(1):59-60.)
A.Rajesh等使用柄型-η 5-单氟芴基环己醇锆(IV)配合物/MAO催化体系在40~100℃合成不同结构的聚乙烯及聚乙烯与线性α-烯烃和长链烷烃的混合物。其中主催化剂结构为
Figure PCTCN2022098637-appb-000001
(Rajesh A,Sivaram S.Polymerization of ethylene to branched poly(ethylene)s using ansa-η 5-monofluorenyl cyclohexanolato zirconium(IV)complex/methylaluminoxane[J].Polymer Bulletin,2011,67(3):383-399.)Bernhard Rieger采用对称取代的环氧化物与芴基锂反应得到对应的醇类,并制备了结构通式为
Figure PCTCN2022098637-appb-000002
的催化剂,其与助催剂Al(CH 3) 3结合可催化乙烯聚合。(Bernhard,Rieger.Preparation and some properties of chiral ansa-mono(η 5-fluorenyl)zirconium(IV)complexes[J].Journal of Organometallic Chemistry,1991.)Steven D.R.等合成了结构为
Figure PCTCN2022098637-appb-000003
的单茂钛配合物,但并未涉及其应用研究。(SDR Christie,KW Man,RJ Whitby,等.Novel Routes to Bidentate Cyclopentadienyl-Alkoxide Complexes of Titanium:Synthesis of(η 5-σ-C 5R 14CHR 2CH 2CR 3R4O)TiCl 2[J].Organometallics,1999.)
Alexander Rau等采用一锅法和TiCl 3前体热分解两种方法合成具有柄型半三明治结构的[η 51-C 5H 4-C(CH 3) 2-2-C 6H 4O]TiCl 2,结构为
Figure PCTCN2022098637-appb-000004
并以其为主催化剂,MAO或Al(i-Bu 3)和[Me 2PhNH] +[B(C 6F 5) 4] -为助催化剂于210℃、150MPa条件下在高压反应釜进行了乙烯聚合反应和乙烯/1-己烯共聚反应。(SG Luft.Synthesis and application in high-pressure polymerization of a titanium complex with a linked  cyclopentadienyl-phenoxide ligand[J].Journal of Organometallic Chemistry,2000.)
Esther E等制备了连有环戊二烯基-醇盐辅助配体的钛配合物[η 5:η 1-C 5Me 4(CH 2) 3O]TiR 2(R=Cl、Me、CH 2Ph、CH 2CMe 3、CH 2SiMe 3)并用其催化丙烯聚合得到无规聚丙烯。(Gielens E,Tiesnitsch J Y,Hessen B,et al.Titanium Hydrocarbyl Complexes with a Linked Cyclopentadienyl-Alkoxide Ancillary Ligand;Participation of the Ligand in an Unusual Activation of a(Trimethylsilyl)methyl Group[J].Organometallics,1998,17(9):1652-1654.)
专利申请CN110218272A公开了一种聚异丁烯及其共聚物的合成方法,该方法采用
Figure PCTCN2022098637-appb-000005
/有机硼化合物类催化剂在反应温度为-80℃~50℃,时间为1/6~24h条件下合成了数均分子量(Mn)为0.52万~67.8万的聚异丁烯产品。
专利申请CN106632768A和杨珂等(单茂钪引发异丁烯聚合反应的研究,杨珂,大连理工大学,D,2019年)公开了一类稀土丁基橡胶及其制备方法,该方法采用由路易斯碱配位环戊二烯基钪系络合物/有机硼化物住催化剂/烷基铝组成的单茂钪类催化剂体系合成了数均分子量(Mn)为1.8万以上的聚异丁烯产品。
专利申请CN101130467A公开了由含苯氧基侧链的限制几何构型茂金属化合物为主催化剂、以烷基铝氧烷、烷基铝/硼化合物为助催化剂构成的催化剂体系催化α-烯烃齐聚制备润滑油基础油的方法,该方法将茂金属催化剂直接加入装有α-烯烃的反应器中并搅拌催化烯烃齐聚反应,反应混合物过滤脱除催化剂,然后加入稀盐酸搅拌后分液,干燥、过滤后减压蒸馏除去未反应的原料,同时也提到了反应混合物加入稀盐酸搅拌后干燥、过滤、减压蒸馏除去未反应的原料。该方法利用催化剂不溶于烯烃及其聚合物的原理过滤处理,同时用到酸终止反应,并且该专利也没有发现该催化剂体系能够合成高活性聚异丁烯。
专利申请CN104877049A公开了以含大空间位阻芳氧基侧链单茂钛配合物
Figure PCTCN2022098637-appb-000006
为主催化剂、以烷基铝氧烷、烷基铝、卤化烷基铝、Ph 3CB(C 6F 5) 4、R 4NB(C6F 5) 4、B(C 6F 5) 3或它们的混合物为助催化剂用于催化乙烯均聚及乙烯/α-烯烃共聚,得到高分子量聚合物的方法。该专利所述的含大空间位阻芳氧基侧链单茂钛配合物, 所述的α-烯烃是丙烯、1-丁烯、1-己烯、1-辛烯、1-癸烯;所述的烷基铝为三甲基铝、三乙基铝或三异丁基铝;所述的烷基铝氧烷为甲基铝氧烷或改性甲基铝氧烷;所述的有机硼助剂为Ph 3CB(C 6F 5) 4、PhNMe 2HB(C 6F 5) 4或B(C 6F 5) 3。CN1431232A公开了含苯氧基侧链茂金属化合物催化剂用于乙烯均聚及乙烯/α-烯烃共聚,得到较高分子量聚合物。所述的烯烃是乙烯、丙烯、异丁烯、1-丁烯、1-己烯、1-辛烯、1-癸烯及其它小于20个碳的端烯,或是共轭或非共轭的双烯或多烯,苯乙烯,降冰片烯或环己烯。
专利申请CN1431232A公开了一种含苯氧基侧链茂金属化合物催化剂体系用于乙烯均聚及乙烯与包括异丁烯在内的烯烃共聚的方法。
发明内容
本发明的第一个目的在于提供一种四芳基乙氧基侧链单茂金属化合物。
本发明的第二个目的在于提供一种包含所述四芳基乙氧基侧链单茂金属化合物的催化剂体系。
本发明的第三个目的在于提供一种应用所述催化剂体系进行的聚烯烃合成方法。
为了实现以上目的,本发明采用以下技术方案:
本发明第一方面提供一种四芳基乙氧基侧链单茂金属化合物,其结构式为:
Figure PCTCN2022098637-appb-000007
其中,M选自Ti、Zr或Hf;
Cp’选自环戊二烯基、取代环戊二烯基、茚基、取代茚基、芴基和取代和芴基;
所述取代环戊二烯基为单取代或多取代的环戊二烯基,取代基选自烷基、芳基或烷基甲基硅基;
Ar选自苯基、单取代苯基和多取代苯基,其中的取代基为C1~C18的烷基,典型的Ar如甲基苯基、乙基苯基、丁基苯基、己基苯基、十二烷基苯基、十八烷基苯基、2,4-二甲基苯基或2,4-二叔丁基苯基;
X选自卤素、C1~C20的烷基、C1~C20的烷氧基、二烷基氨基、苯基、苄基和三甲基硅基甲基。
本发明的四芳基乙氧基侧链单茂金属催化剂由于四个芳香基的空间位阻作用,使该类催化剂具有良好稳定性和高催化活性,并且两个碳的桥基使催化剂有限制几何构型催化剂的特点,同时该催化剂还易溶于除芳烃外的烷烃溶剂体系。
根据本发明的四芳基乙氧基侧链单茂金属化合物,优选地,所述M为Ti。
根据本发明的四芳基乙氧基侧链单茂金属化合物,优选地,所述Cp’选自环戊二烯基、取代环戊二烯基、茚基和芴基;更优选地,所述Cp’选自取代环戊二烯基,进一步优选为四甲基环戊二烯基。
根据本发明的四芳基乙氧基侧链单茂金属化合物,优选地,所述Ar为苯基、甲基苯基、乙基苯基、丁基苯基、己基苯基、十二烷基苯基、十八烷基苯基、2,4-二甲基苯基或2,4-二叔丁基苯基;更优选为苯基。
根据本发明的四芳基乙氧基侧链单茂金属化合物,优选地,所述X选自卤素、甲基、新戊基、苯基或苄基,更优选地,所述X选自卤素,进一步优选为Cl。
本发明第二个方面提供一种催化剂体系,其中,所述催化剂体系包括催化剂A、催化剂B和催化剂C;
所述催化剂A选自上述四芳基乙氧基侧链单茂金属化合物;
所述催化剂B选自Ph 3CB(C 6F 5) 4、PhNMe 2HB(C 6F 5) 4、B(C 6F 5) 3和[(C nH 2n+1) 2NH(C mH 2m+1)][B(C 6F 5) 4]中的一种,n选自2~20的整数,m选自1~20的整数;
所述催化剂C选自烷基铝化合物。
根据本发明的催化剂体系,优选地,所述催化剂A、催化剂B和催化剂C的摩尔比为1:(1~2):(2~40)。
根据本发明的催化剂体系,优选地,n选自4~18的整数;m为1或2,优选为1。
根据本发明的催化剂体系,优选地,所述烷基铝化合物选自三甲基铝、三乙基铝、三异丙基铝、三异丁基铝、三正己基铝、三正辛基铝、三正癸基铝和三正十二烷基铝中的一种;更优选为三乙基铝、三异丙基铝或三异丁基铝。
本发明第三方面提供一种聚烯烃合成方法,其中,该合成方法使用上述催化剂体系催化烯烃进行聚合反应,得到所述聚烯烃。
根据本发明的合成方法,优选地,所述烯烃选自C2-C20的1-烯烃中的一种或两种以上的组合。具体的,所述烯烃可以选自异丁烯,乙烯和丙烯的组合,乙烯、丙烯和降冰片烯的组合,乙烯、丙烯和乙叉降冰片烯的组合,乙烯和1-己烯的组合,乙烯和1-辛烯的组合,乙烯和降冰片烯的组合,乙烯和乙叉降冰片烯的组合。
根据本发明的合成方法,优选地,所述烯烃为异丁烯,所述聚烯烃为聚异丁烯;所述聚异丁烯的α-烯烃含量≥95%、数均分子量(Mn)为300~10000、分子量分布为1~ 2.5。
根据本发明的合成方法,优选地,所述异丁烯与所述催化剂A的摩尔比为:(1×10 4~1×10 7):1。
根据本发明的合成方法,优选地,所述聚合反应在溶剂中进行;所述溶剂选自C2~C12的直链烷烃、C4~C12的异构烷烃、C3~C8的环烷烃、苯和甲苯中的一种或两种以上的组合。更优选地,所述溶剂为己烷、环己烷或甲苯。
根据本发明的合成方法,优选地,所述聚合反应的温度为0~100℃,时间为0.1~4h,压力为0~2MPa(表压)。
根据本发明的合成方法,优选地,所述聚合反应结束后还包括:脱除催化剂,分离未反应的单体、溶剂及低聚物,得到聚异丁烯产品。
本发明的一优选方案中提供一种高活性聚异丁烯的合成方法,包括以下步骤:
以异丁烯为原料,使用以上催化剂体系催化进行聚合反应;反应结束后,脱除催化剂,分离未反应的单体、溶剂及低聚物,得到聚异丁烯;所述聚异丁烯的数均分子量(Mn)为300~10000,分子量分布为1~2.5,链末端的α-双键含量(α-烯烃含量)≥95%。
由于异丁烯高度异构化,空间位阻较大,常规茂金属催化剂体系难以催化异丁烯聚合反应,采用本发明的茂金属催化剂体系实现了异丁烯的高温、高单体浓度聚合反应,由于四芳基乙氧基侧链单茂金属的活性中心单一,高度抑制了α-烯烃异构化副反应,能够显著提高聚异丁烯产品的α-烯烃含量,降低产品分子量分布。聚合反应完成后,采用无机酸洗涤或碱液洗涤或者直接水洗脱除催化剂,接着分离单体、溶剂和低聚物,得到合格的链末端的α-双键含量(α-烯烃含量)≥95%、数均分子量(Mn)为300~10000、分子量分布1~2.5的高活性聚异丁烯产品。
在该优选方案中,更具体的步骤包括:
(1)原料及溶剂精制:
对溶剂(例如环己烷)和异丁烯进行干燥除杂处理,使水、氧等杂质含量将至1ppm以下,满足茂金属催化剂体系对水、氧等杂质含量的要求。
(2)聚合反应:
聚合反应在高压反应釜中进行,首先对高压反应釜进行加热、高纯氮气置换除水、除氧处理,使反应环境满足催化剂使用要求,接着向高压反应釜中加入溶剂、异丁烯和催化剂C(烷基铝)搅拌反应一定时间,进一步去除反应体系中能够使茂金属催化剂中毒失活的微量水、氧等杂质,然后升温至反应温度,加入催化剂A和催化剂B进行聚 合反应。
(3)催化剂分离:
反应结束后,从放空管中放出未反应的异丁烯单体,釜底放出反应产物并收集,加入无机酸溶液洗涤脱除催化剂,然后进行碱洗-水洗或直接水洗至中性,得到合格的中间产品。
(4)分离溶剂与低聚物:
蒸馏分离溶剂,之后在-0.8~-0.1MPa、150~200℃条件下减压蒸馏分离出低聚物,得到数均分子量(Mn)为300~10000,链末端的α-双键含量(α-烯烃含量)≥95%,分子量分布1~2.5的高活性聚异丁烯产品。
本申请提供的聚烯烃合成方法具有以下优点:
1)催化剂活性高、用量少,能够节省催化剂用量,降低生产成本。
2)催化剂活性中心单一,无异构化副反应,从而能够获得数均分子量300~10000,末端α-双键含量(α-烯烃含量)≥95%,分子量分布≤3的高活性聚异丁烯,产品结构单一,反应活性高,大幅提升高活性聚异丁烯产品质量,节省下游产品的用量及成本,解决了传统技术存在的产品α-烯烃含量相对较低(≤90%)的技术问题。
3)本发明合成方法中的催化剂体系的耐高温性能良好,实现了0~100℃较高温度条件下(相较于BF 3体系的反应温度-30℃)合成高活性聚异丁烯,采用常规冷却水撤热即可,避免了现有技术路线的苛刻低温反应条件(-30℃左右),大幅降低生产能耗和成本。
4)与传统BF 3催化剂体系相比,本申请的催化剂体系无毒、无害、无污染、无腐蚀,解决了传统技术路线存在的有毒有害、腐蚀、污染等技术难题,改善员工操作环境。
5)产品方案可灵活可调,实现一套装置生产多种型号的产品。
附图说明
图1为聚异丁烯产品的核磁氢谱图。
具体实施方式
为了更清楚地说明本发明,下面结合优选实施例对本发明做进一步的说明。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。
本发明所有数值指定(例如温度、时间、浓度及重量等,包括其中每一者的范围)通常可是适当以0.1或1.0的增量改变(+)或(-)的近似值。所有数值指定均可理解为前面 有术语“约”。
本发明实施例中异丁烯聚合反应的过程包括:
(1)原料及溶剂精制:
对溶剂(例如环己烷)和异丁烯进行干燥除杂处理,使水、氧等杂质含量将至1ppm以下,满足茂金属催化剂体系对水、氧等杂质含量的要求。
(2)聚合反应:
聚合反应在高压反应釜中进行,首先对高压反应釜进行加热、高纯氮气置换除水、除氧处理,使反应环境满足催化剂使用要求,接着向高压反应釜中加入溶剂、异丁烯和催化剂C(烷基铝)搅拌反应一定时间,进一步去除反应体系中能够使茂金属催化剂中毒失活的微量水、氧等杂质,然后升温至反应温度,加入催化剂A和催化剂B进行聚合反应。
(3)催化剂分离:
反应结束后,放出分离未反应的异丁烯单体,放出反应产物,加入常用的盐酸等无机酸溶液洗涤脱除催化剂,然后进行氢氧化钠溶液碱洗-水洗或直接水洗至中性,得到合格的中间产品。
(4)分离溶剂与低聚物:
常压或减压蒸馏分离溶剂,之后在-0.8~-0.1MPa、150~200℃条件下减压蒸馏分离出低聚物,得到聚异丁烯产品。
实施例1
本实施例制备一种四芳基乙氧基侧链单茂金属化合物:四苯基乙氧基-四甲基环戊二烯基二氯化钛,包括以下过程:
(1)四苯基环氧乙烷合成(参照文献:Margherita Barbero,Silvano,Stefano Cadamuro,et al.,o-Benzenedisulfonimide as Reusable
Figure PCTCN2022098637-appb-000008
Acid Catalyst for Acid-Catalyzed Organic Reactions.Synthesis 2008,No.9,1379–1388)
将邻苯二磺酰亚胺(330mg,1.5mmol)加入到四苯基乙二醇(5.50g,15mmol)的甲苯(100mL)溶液中,在90℃条件下搅拌反应2小时,之后蒸出甲苯溶剂,粗产物用柱色谱(200目柱层析硅胶,石油醚/二氯甲烷(体积比8/2)淋洗剂)分离纯化,得到纯的四苯基环氧乙烷产物4.60g(13.6mmol,产率91%)。
(2)四苯基羟乙基-四甲基环戊二烯合成
将四甲基环戊二烯(611mg,5.0mmol)溶于20mL乙醚中,在室温下向其中缓慢加入2mL正丁基锂溶液(2.5M甲苯溶液,5.0mmol),反应2小时后在冰水浴条件下向 反应液中缓慢加入四苯基环氧乙烷(1.742g,5.0mmol)的乙醚(40mL)溶液中,室温搅拌反应过夜。用50mL稀盐酸(1N)淬灭反应,分离有机相,进一步用40mL蒸馏水洗涤有机相两次。用无水硫酸镁干燥有机相后,旋蒸除去溶剂。粗产物用柱色谱(200目柱层析硅胶,石油醚/二氯甲烷(体积比8/2)淋洗剂)分离纯化,得到纯的四苯基羟乙基-四甲基环戊二烯产物2.19g(4.7mmol,产率93%)。
(3)四苯基乙氧基-四甲基环戊二烯基二氯化钛的合成
将四苯基羟乙基-四甲基环戊二烯(2.000g,4.25mmol)溶于50mL乙醚中,在室温下向其中缓慢加入3.4mL正丁基锂溶液(2.5M甲苯溶液,8.50mmol),搅拌反应过夜后,在-20℃下向反应混合物中缓慢滴加四氯化钛(0.806g,4.25mmol)乙醚溶液(10mL),之后让反应液自燃升至室温并搅拌过夜。旋蒸除去溶剂,用30mL二氯甲烷溶解反应产物,过滤掉不溶物。向溶液中加入20mL正己烷,直至有沉淀开始生成,之后慢慢浓缩或冷却,使产物结晶析出。过滤出产物,真空抽干溶剂,得纯的配合物1.025g(1.74mmol,产率41%)。
实施例2
本实施例采用本发明的催化剂体系催化聚丁烯的合成,其中催化剂体系包括催化剂A、催化剂B和催化剂C,具体情况如下:
催化剂A:四苯基乙氧基-四甲基环戊二烯基二氯化钛
催化剂B:[(C 18H 37) 2NHMe][B(C 6F 5) 4]
催化剂C:Al(iBu) 3
催化剂A用量5μmol,各催化剂摩尔比为:B/A=2:1,C/A=40:1,环己烷为溶剂,用量为60mL,异丁烯102g,在40℃下反应2h,反应结束后分离出未反应的单体,放出反应产物,依次酸洗、碱洗、水洗至中性,得到无色透明的中间产物,减压蒸馏脱除去溶剂、低聚物,得到合格的高活性聚异丁烯产品,称量产品质量,采用核磁共振波谱仪400.13MHz氢谱法测定产物α-端基烯烃含量为98%,如图1所示,4.65和4.65处为α-氢特征峰,5.13-5.18处为β-氢特征峰。
采用安捷伦PL220高温凝胶色谱测定高活性聚异丁烯分子量及分子量分布,结果如表1所示。
对比例2
本对比例采用现有技术中类似的催化剂体系催化聚丁烯的合成,其中催化剂体系包括催化剂A、催化剂B和催化剂C,具体情况如下:
催化剂A:
Figure PCTCN2022098637-appb-000009
R=CH 3(合成方法参照文献:Margherita Barbero,Silvano,Stefano Cadamuro,et al.,o-Benzenedisulfonimide as Reusable
Figure PCTCN2022098637-appb-000010
Acid Catalyst for Acid-Catalyzed Organic Reactions.Synthesis 2008,No.9,1379–1388)
催化剂B:[(C 18H 37) 2NHMe][B(C 6F 5) 4]
催化剂C:Al(iBu) 3
催化剂A用量5μmol,各催化剂的摩尔比为B/A=2:1,C/A=40:1,环己烷为溶剂,用量为60mL,异丁烯100g,在40℃下反应2h,反应结束后分离未反应单体,放出反应产物,依次酸洗、碱洗、水洗至中性,得到无色透明的中间产物,常压蒸馏脱除溶剂,未得到产品。
实施例3
本实施例采用本发明的催化剂体系催化聚丁烯的合成,其中催化剂体系包括催化剂A、催化剂B和催化剂C,具体情况如下:
催化剂A:四苯基乙氧基-四甲基环戊二烯基二氯化钛
催化剂B:[(C 8H 17) 2NHMe][B(C 6F 5) 4]
催化剂C:Al(iBu) 3
催化剂A用量5μmol,催化剂B/A=2:1,C/A=40:1,环己烷为溶剂,用量为60mL,异丁烯99g,在40℃下反应2h,反应结束后分离未反应单体,放出反应产物,依次酸洗、碱洗、水洗至中性,得到无色透明的中间产物,减压蒸馏脱除溶剂、低聚物,得到合格的高活性聚异丁烯产品,称量产品质量,采用核磁共振波谱仪400.13MHz氢谱法测定产物α-端基烯烃含量,安捷伦PL220高温凝胶色谱测定高活性聚异丁烯分子量及分子量分布,结果如表1所示。
实施例4
本实施例采用本发明的催化剂体系催化聚丁烯的合成,其中催化剂体系包括催化剂A、催化剂B和催化剂C,具体情况如下:
催化剂A:四苯基乙氧基-四甲基环戊二烯基二氯化钛
催化剂B:[Ph 3C][B(C 6F 5) 4]
催化剂C:Al(iBu) 3
催化剂A用量5μmol,各催化剂摩尔比为:B/A=2:1,C/A=40:1,甲苯为溶剂,用量为60mL,异丁烯99g,在40℃下反应2h,反应结束后分离未反应单体,放出反应产物,依次酸洗、碱洗、水洗至中性,得到无色透明的中间产物,减压蒸馏脱除溶剂、低聚物,得到合格的高活性聚异丁烯产品,称量产品质量,采用核磁共振波谱仪400.13MHz氢谱法测定产物α-端基烯烃含量,安捷伦PL220高温凝胶色谱测定高活性聚异丁烯分子量及分子量分布,结果如表1所示。
表1 实施例2~4及对比例2的产物分析结果
Figure PCTCN2022098637-appb-000011
由表1可知,本申请提供的催化剂数均分子量(Mn)为300~10000,分子量分布为1~2.5,链末端的α-双键含量(α-烯烃含量)≥95%的高活性聚异丁烯产品。
实施例5~15
采用本发明的催化剂体系催化聚丁烯的合成,各反应条件改变情况如表2所示。其中催化剂体系和溶剂具体情况如下:
催化剂A:四苯基乙氧基-四甲基环戊二烯基二氯化钛
催化剂B:[(C 18H 37) 2NHMe][B(C 6F 5) 4]
催化剂C:Al(iBu) 3
溶剂:己烷
具体条件及结果见表2,表2中IB指异丁烯,B/A指催化剂B与催化剂A的摩尔比,C/A指催化剂C与催化剂A的摩尔比。
由表2可知,采用本申请的催化剂体系能够合成出低分子量、高活性、窄分子量分布的聚异丁烯产品。
表2 实施例5~15的反应条件及产物分析结果
Figure PCTCN2022098637-appb-000012
Figure PCTCN2022098637-appb-000013
实施例16
本实施例采用本发明的催化剂体系催化1-癸烯的聚合反应,其中催化剂体系包括催化剂A、催化剂B和催化剂C,具体情况如下:
催化剂A:四苯基乙氧基-四甲基环戊二烯基二氯化钛
催化剂B:[Ph 3C][B(C 6F 5) 4]
催化剂C:Al(iBu) 3
催化剂A用量5μmol,各催化剂的摩尔比为:B/A=2:1,C/A=40:1,己烷为溶剂,用量为60mL,1-癸烯100g,在40℃下反应2h,反应结束后分离未反应单体,放出反应产物,依次酸洗、碱洗、水洗至中性,得到无色透明的中间产物,减压蒸馏脱除溶剂、单体二聚体,得到合格的聚1-癸烯产品88g,测定100℃粘度为230,粘度指数为225,倾点为-24℃。
由此可见,本申请的催化剂体系可用于1-癸烯等α-烯烃的聚合。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (22)

  1. 一种四芳基乙氧基侧链单茂金属化合物,其结构式为:
    Figure PCTCN2022098637-appb-100001
    其中,M选自Ti、Zr或Hf;
    Cp’选自环戊二烯基、取代环戊二烯基、茚基、取代茚基、芴基和取代芴基;
    所述取代环戊二烯基为单取代或多取代的环戊二烯基,取代基选自烷基、芳基或烷基甲基硅基;
    Ar选自苯基、单取代苯基和多取代苯基,其中的取代基为C1~C18的烷基;
    X选自卤素、C1~C20的烷基、C1~C20的烷氧基、二烷基氨基、苯基、苄基和三甲基硅基甲基。
  2. 根据权利要求1所述的四芳基乙氧基侧链单茂金属化合物,其中,所述M为Ti。
  3. 根据权利要求1所述的四芳基乙氧基侧链单茂金属化合物,其中,所述Cp’选自环戊二烯基、取代环戊二烯基、茚基和芴基。
  4. 根据权利要求3所述的四芳基乙氧基侧链单茂金属化合物,其中,所述Cp’为取代环戊二烯基。
  5. 根据权利要求4所述的四芳基乙氧基侧链单茂金属化合物,其中,所述Cp’为四甲基环戊二烯基。
  6. 根据权利要求1所述的四芳基乙氧基侧链单茂金属化合物,其中,所述Ar为苯基、甲基苯基、乙基苯基、丁基苯基、己基苯基、十二烷基苯基、十八烷基苯基、2,4-二甲基苯基或2,4-二叔丁基苯基。
  7. 根据权利要求6所述的四芳基乙氧基侧链单茂金属化合物,其中,所述Ar为苯基。
  8. 根据权利要求1所述的四芳基乙氧基侧链单茂金属化合物,其中,所述X选自卤素、甲基、新戊基、苯基或苄基。
  9. 根据权利要求8所述的四芳基乙氧基侧链单茂金属化合物,其中,所述X选自卤素。
  10. 一种催化剂体系,其中,所述催化剂体系包括催化剂A、催化剂B和催化剂C;
    所述催化剂A选自权利要求1-9任一项所述四芳基乙氧基侧链单茂金属化合物;
    所述催化剂B选自Ph 3CB(C 6F 5) 4、PhNMe 2HB(C 6F 5) 4、B(C 6F 5) 3和[(C nH 2n+1) 2NH(C mH 2m+1)][B(C 6F 5) 4]中的一种,n选自2~20的整数,m选自1~20的整数;
    所述催化剂C选自烷基铝化合物。
  11. 根据权利要求10所述的催化剂体系,其中,所述催化剂A、催化剂B和催化剂C的摩尔比为1:(1~2):(2~40)。
  12. 根据权利要求10所述的催化剂体系,其中,n选自4~18的整数;m为1或2。
  13. 根据权利要求10所述的催化剂体系,其中,所述烷基铝化合物选自三甲基铝、三乙基铝、三异丙基铝、三异丁基铝、三正己基铝、三正辛基铝、三正癸基铝和三正十二烷基铝中的一种。
  14. 根据权利要求13所述的催化剂体系,其中,所述烷基铝化合物选自三乙基铝、三异丙基铝或三异丁基铝。
  15. 一种聚烯烃合成方法,其中,该合成方法使用权利要求10-14任一项所述催化剂体系催化烯烃进行聚合反应,得到所述聚烯烃。
  16. 根据权利要求15所述的合成方法,其中,所述烯烃选自C2-C20的1-烯烃中的一种或两种以上的组合。
  17. 根据权利要求15所述的合成方法,其中,所述烯烃选自异丁烯,1-癸烯,乙烯和丙烯的组合,乙烯、丙烯和降冰片烯的组合,乙烯、丙烯和乙叉降冰片烯的组合,乙烯和1-己烯的组合,乙烯和1-辛烯的组合,乙烯和降冰片烯的组合,乙烯和乙叉降冰片烯的组合。
  18. 根据权利要求15所述的合成方法,其中,所述烯烃为异丁烯,所述聚烯烃为聚异丁烯;
    所述聚异丁烯的α-烯烃含量≥95%、数均分子量为300~10000、分子量分布为1~2.5。
  19. 根据权利要求18所述的合成方法,其中,所述异丁烯与所述催化剂A的摩尔比为:(1×10 4~1×10 7):1。
  20. 根据权利要求18所述的合成方法,其中,所述聚合反应在溶剂中进行;
    所述溶剂选自C2~C12的直链烷烃、C4~C12的异构烷烃、C3~C8的环烷烃、苯和甲苯中的一种或两种以上的组合。
  21. 根据权利要求20所述的合成方法,其中,所述溶剂选自己烷、环己烷或甲苯。
  22. 根据权利要求18所述的合成方法,其中,所述聚合反应的温度为0~100℃,时间为0.1h~4h,压力为0~2MPa。
PCT/CN2022/098637 2021-12-31 2022-06-14 四芳基乙氧基侧链单茂金属化合物、包含其的催化剂体系及应用进行的聚烯烃合成方法 WO2023123884A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111682472.6A CN116410223A (zh) 2021-12-31 2021-12-31 四芳基乙氧基侧链单茂金属化合物、包含其的催化剂体系及应用进行的聚烯烃合成方法
CN202111682472.6 2021-12-31

Publications (1)

Publication Number Publication Date
WO2023123884A1 true WO2023123884A1 (zh) 2023-07-06

Family

ID=86997327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098637 WO2023123884A1 (zh) 2021-12-31 2022-06-14 四芳基乙氧基侧链单茂金属化合物、包含其的催化剂体系及应用进行的聚烯烃合成方法

Country Status (2)

Country Link
CN (1) CN116410223A (zh)
WO (1) WO2023123884A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5977392A (en) * 1996-10-30 1999-11-02 Respol Quimica S.A. Organometallic catalysts for the polymerization and copolymerization of alpha-olefins
CN1431232A (zh) * 2003-01-10 2003-07-23 吉林大学 含苯氧基侧链茂金属催化剂及其用途
CN1593763A (zh) * 2003-09-10 2005-03-16 中国石油天然气股份有限公司 含氧茂金属催化剂及其制备方法与应用
CN104877049A (zh) * 2015-06-17 2015-09-02 吉林大学 含大空间位阻芳氧基侧链单茂钛配合物及其应用
CN106632768A (zh) * 2016-12-23 2017-05-10 大连理工大学 一类稀土丁基橡胶及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5977392A (en) * 1996-10-30 1999-11-02 Respol Quimica S.A. Organometallic catalysts for the polymerization and copolymerization of alpha-olefins
CN1431232A (zh) * 2003-01-10 2003-07-23 吉林大学 含苯氧基侧链茂金属催化剂及其用途
CN1593763A (zh) * 2003-09-10 2005-03-16 中国石油天然气股份有限公司 含氧茂金属催化剂及其制备方法与应用
CN104877049A (zh) * 2015-06-17 2015-09-02 吉林大学 含大空间位阻芳氧基侧链单茂钛配合物及其应用
CN106632768A (zh) * 2016-12-23 2017-05-10 大连理工大学 一类稀土丁基橡胶及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, HONGJIANG ET AL.: "Study on Titanium-oxygen Heterocycle Metallocene Catalyst for Ethylene-propylene Copolymerization", CHINA ELASTOMERICS, vol. 15, no. 5, 25 October 2005 (2005-10-25), XP009547346 *

Also Published As

Publication number Publication date
CN116410223A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
JP4383549B2 (ja) オレフィンの重合用触媒及びその方法
KR100568839B1 (ko) 올레핀 공중합용 브릿징된 메탈로센
US5470927A (en) Ionic metallocene catalyst compositions
JP2994746B2 (ja) モノシクロペンタジエニル遷移金属オレフィン重合触媒
KR980008316A (ko) 촉매 시스템 및 중합체 제조 방법
EP1124859A1 (en) Compound comprising a transition metal cation linked to an aluminoxate anion and its use as catalyst component
AU2005275740A1 (en) Catalysts for olefin polymerization, process for production of olefin polymers, olefin copolymers, novel transition metal compounds, and process for production of transition metal compounds
KR20060009330A (ko) 1-부텐의 중합 방법
EP1112293B1 (en) Polymerization process using an improved bulky ligand metallocene-type catalyst system
WO2001030858A1 (en) Stereospecific living polymerization of olefins by a novel ziegler-natta catalyst composition
JPWO2011099583A1 (ja) 立体選択的オレフィン重合用触媒及び立体選択的ポリオレフィンの製造方法
JPH06100613A (ja) α‐オレフィン重合体の製造法
CA2317588A1 (en) Bis(tetrahydro-indenyl) metallocenes as olefin-polymerisation-catalyst
JP2000513761A (ja) 官能性ポリオレフィンの製造法
AU669684B2 (en) Catalyst and process for the polymerization and copolymerization of olefins
RU2727806C1 (ru) Новое металлоценовое соединение-катализатор для получения полиолефиновой смолы или способ его получения
EP0863920B1 (en) Process for the preparation of olefinic polymers using metallocene catalyst
US6303718B1 (en) Composition based on fluorine-containing metal complexes
WO2023123884A1 (zh) 四芳基乙氧基侧链单茂金属化合物、包含其的催化剂体系及应用进行的聚烯烃合成方法
CN113354690B (zh) 一种桥连含氮杂环结构的茂金属化合物及其应用
JP2015137352A (ja) オレフィン重合体の製造方法
JP6896744B2 (ja) オリゴマーの製造方法および触媒
KR20030085390A (ko) 비대칭성 비가교형 메탈로센 화합물 및 이를 포함하는촉매 조성물
Dare et al. Polymerization behavior of propene with [t-BuNSiMe2Flu] TiMe2: effects of solvents and cocatalysts
RU2588496C2 (ru) Применение арилоксидов изобутилалюминия в качестве активаторов диалкильных металлоценовых катализаторов гомополимеризации этилена, пропилена, сополимеризации этилена с пропиленом и тройной сополимеризации этилена, пропилена и диена. гомогенные металлоценовые каталитические системы для синтеза гомо- и сополимеров олефинов и диенов. способ получения гомо- и сополимеров олефинов и диенов. способ стабилизации гомо- и сополимеров олефинов и диенов

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913173

Country of ref document: EP

Kind code of ref document: A1