WO2023120406A1 - ガイドワイヤ、及び、ガイドワイヤの製造方法 - Google Patents

ガイドワイヤ、及び、ガイドワイヤの製造方法 Download PDF

Info

Publication number
WO2023120406A1
WO2023120406A1 PCT/JP2022/046362 JP2022046362W WO2023120406A1 WO 2023120406 A1 WO2023120406 A1 WO 2023120406A1 JP 2022046362 W JP2022046362 W JP 2022046362W WO 2023120406 A1 WO2023120406 A1 WO 2023120406A1
Authority
WO
WIPO (PCT)
Prior art keywords
core shaft
region
linear
nonlinear
guidewire
Prior art date
Application number
PCT/JP2022/046362
Other languages
English (en)
French (fr)
Inventor
和史 佐藤
靖尚 ▲高▼橋
Original Assignee
朝日インテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 朝日インテック株式会社 filed Critical 朝日インテック株式会社
Publication of WO2023120406A1 publication Critical patent/WO2023120406A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires

Definitions

  • the present invention relates to a guidewire and a method for manufacturing a guidewire.
  • a guide wire used for inserting a catheter or the like into a blood vessel is known.
  • Such a guide wire has flexibility and resilience against bending, torque transmissibility and pushability to transmit the operation to the guide wire at the proximal portion to the tip side, and kink resistance that is strong against deformation due to bending and twisting. Desired.
  • the torque transmissibility and pushability are also collectively referred to as “operability”.
  • a first wire, a third wire, and a second wire are respectively arranged from the distal side to the proximal side.
  • the elastic modulus of the second wire is made larger than that of the first wire
  • the elastic modulus of the third wire is made larger than that of the first wire and smaller than that of the second wire (that is, the elastic modulus of the first wire is
  • a guidewire is disclosed that has a modulus intermediate that of the modulus of elasticity of the second wire.
  • the first wire and the third wire are connected by welding, and the third wire and the second wire are connected by welding. That is, in the guide wires described in Patent Documents 1 and 2, there are at least two portions where different wires are welded together (hereinafter also referred to as "welded portions").
  • welded portions since the weld between the wires is more fragile than the base metal of the wire, there is a possibility that the wire will deform starting from the weld due to the change in shape and the application of force due to the use of the guide wire. . Therefore, in order to improve the durability of the guide wire, it is preferable that the number of welded portions between the wires is small.
  • the number of welded portions between the wires is small.
  • the guide wire inserted into each organ in the human body, such as the lymphatic system, biliary system, urinary system, respiratory system, digestive system, secretory glands and reproductive organs.
  • the wire is also called a "core shaft".
  • the present invention has been made to solve at least part of the above-described problems, and aims to improve the operability and durability of guidewires.
  • the present invention has been made to solve at least part of the above problems, and can be implemented as the following forms.
  • a guidewire comprises a first core shaft arranged on the distal side, and a second core shaft arranged on the proximal side of the first core shaft and having hardness greater than that of the first core shaft.
  • the first core shaft is provided with a nonlinear pseudoelastic region having nonlinear pseudoelasticity and a linear pseudoelastic region having linear pseudoelasticity adjacent to each other from the distal end side to the proximal end side;
  • a welded portion is not formed at the boundary between the nonlinear pseudoelastic region and the linear pseudoelastic region, and the second core shaft has a base end between the base end of the linear pseudoelastic region and the tip of the second core shaft.
  • a welded portion is formed between the first core shaft and the second core shaft.
  • the first core shaft has a nonlinear pseudoelastic region having nonlinear pseudoelasticity (also called “superelasticity”) and a linear pseudoelastic region having linear pseudoelasticity from the distal end to the proximal end. are provided adjacent to each other.
  • the linear pseudoelastic region provided on the base end side of the first core shaft has a higher hardness than the nonlinear pseudoelastic region.
  • the second core shaft has a higher hardness than the first core shaft (the nonlinear pseudoelastic region and the linear pseudoelastic region). Therefore, according to this configuration, the hardness gap between the first core shaft and the second core shaft can be reduced by providing the linear pseudo-elastic region on the base end side of the first core shaft.
  • the welded portion can be easily formed between the proximal end portion of the linear pseudo-elastic region and the distal end portion of the second core shaft, and the operability of the guidewire can be improved. Also, in the first core shaft, no welded portion is formed at the boundary between the nonlinear pseudoelastic region and the linear pseudoelastic region. Therefore, according to this configuration, the durability of the guidewire can be improved as compared with the conventional guidewire having two welded portions. As a result, a guide wire with improved operability and durability can be provided.
  • the nonlinear pseudoelastic region and the linear pseudoelastic region may have substantially the same stoichiometric composition.
  • the nonlinear pseudoelastic region and the linear pseudoelastic region have substantially the same stoichiometric composition.
  • the length in the longitudinal direction of the linear pseudo-elastic region may be 1/4 or less of the length in the longitudinal direction of the non-linear pseudo-elastic region. good. According to this configuration, the length in the longitudinal direction of the linear pseudoelastic region is 1/4 or less of the length in the longitudinal direction of the nonlinear pseudoelastic region. can be improved.
  • hardness of the linear pseudo-elastic region may be higher than hardness of the non-linear pseudo-elastic region in the first core shaft.
  • the hardness of the linear pseudoelastic region in the first core shaft, is greater than the hardness of the nonlinear pseudoelastic region, so the linear pseudoelastic region creates a hardness gap between the first core shaft and the second core shaft can be reduced.
  • a method for manufacturing a guidewire includes a preparation step of preparing a first core shaft having linear pseudo-elasticity and a second core shaft having hardness greater than that of the first core shaft; Nonlinear pseudoelasticity having nonlinear pseudoelasticity on the distal end side of the first core shaft by a welding step of welding the distal end portion of the second core shaft and heat-treating a portion of the distal end side of the first core shaft. and a heat treatment step to form the regions.
  • the present manufacturing method welding step
  • the distal end portion of the second core shaft is welded to the proximal end portion of the first core shaft having linear pseudo-elasticity
  • the first core shaft having non-linear pseudo-elasticity as a whole is welded.
  • Welding can be performed more easily than when the second core shaft is welded to the core shaft.
  • the man-hours and cost of the welding process can be reduced compared to a conventional guide wire having two welds.
  • a nonlinear pseudoelastic region having nonlinear pseudoelasticity can be formed by heat-treating a portion of the first core shaft having linear pseudoelasticity on the distal end side.
  • the welding step may be performed after performing the heat treatment step. According to this configuration, since the welding process is performed after the heat treatment process is performed, it is possible to suppress the deterioration and damage of the welded portion due to the heat treatment compared to the reverse case.
  • a guide wire a core shaft for a guide wire (a joint of first and second core shafts, or a single first core shaft), a guide wire It can be realized in the form of a manufacturing method of
  • FIG. 2 is an explanatory diagram illustrating the configuration of the guidewire of the first embodiment
  • FIG. FIG. 4 is an explanatory diagram showing the configuration of a guidewire of a comparative example
  • FIG. 4 is a diagram showing changes in hardness of the core shaft in the vicinity of the welded portion
  • FIG. 4 is a diagram showing changes in stiffness of a core shaft
  • 1. It is a figure which shows an example of the manufacturing method of the guide wire shown in FIG. 1.
  • FIG. 4 is an explanatory diagram illustrating the configuration of a guidewire according to a second embodiment
  • FIG. 11 is an explanatory diagram illustrating the configuration of a guidewire according to a third embodiment
  • 4 is a graph showing SS curves for nonlinear pseudoelasticity and linear pseudoelasticity;
  • FIG. 1 is an explanatory diagram illustrating the configuration of the guidewire 1 of the first embodiment.
  • the guidewire 1 is a medical instrument used for inserting other medical devices (catheters, etc.) into blood vessels and digestive organs, and includes a first core shaft 10, a second core shaft 20, a welded portion 30, and a coil. It comprises a body 40 , a distal fixing portion 51 , a proximal fixing portion 52 and an intermediate fixing portion 53 .
  • the first core shaft 10 and the second core shaft 20 are connected by a single welded portion 30, and a linear pseudo-elastic region A2 is provided on the proximal end side of the first core shaft 10.
  • operability is a general term for torque transmissibility and pushability.
  • FIG. 1 illustrates XYZ axes that are orthogonal to each other.
  • the X-axis corresponds to the length direction of the guidewire 1
  • the Y-axis corresponds to the height direction of the guidewire 1
  • the Z-axis corresponds to the width direction of the guidewire 1 .
  • the distal side of the guide wire 1 and each component is called the “distal side” of the guide wire 1 and each component
  • the right side (+X axis direction) of FIG. 1 is called the “proximal side” of the guide wire 1 and each component. call.
  • the end located on the distal side is called the "tip”, and the tip and the vicinity thereof are called the “tip”.
  • the end located on the proximal side is called the "base end”, and the base end and the vicinity thereof are called the “base end”.
  • the distal side is inserted into the living body, and the proximal side is operated by an operator such as a doctor.
  • the first core shaft 10 is arranged on the distal side of the guide wire 1, in other words, on the distal side of the second core shaft 20.
  • the first core shaft 10 is a tapered elongated member having a large diameter on the proximal end side and a small diameter on the distal end side.
  • the first core shaft 10 of this embodiment is made of a NiTi (nickel titanium) alloy or an alloy of NiTi and another metal.
  • the first core shaft 10 has a small-diameter portion 11, a tapered portion 12, a first large-diameter portion 13, and a second large-diameter portion 14 in order from the distal end to the proximal end.
  • the outer diameter and length of each part can be determined arbitrarily.
  • the small diameter portion 11 is provided at the distal end portion of the first core shaft 10 .
  • the small-diameter portion 11 is a portion having the smallest outer diameter of the first core shaft 10, and is a substantially cylindrical portion having a substantially constant outer diameter.
  • the tapered portion 12 is provided between the small diameter portion 11 and the first large diameter portion 13 .
  • the tapered portion 12 is a substantially truncated conical portion whose outer diameter increases from the distal end side to the proximal end side.
  • substantially constant is synonymous with “substantially constant”, and means to be substantially constant while allowing fluctuations caused by manufacturing errors or the like.
  • approximately cylindrical shape/approximately truncated cone shape is synonymous with “approximately cylindrical shape/approximately truncated cone shape”, and means that the shape is generally the same while allowing for blurring due to manufacturing errors etc. do.
  • the first large diameter portion 13 is provided between the tapered portion 12 and the second large diameter portion 14 .
  • the first large-diameter portion 13 is a substantially cylindrical portion having a substantially constant outer diameter larger than that of the small-diameter portion 11 .
  • the second large-diameter portion 14 is provided at the proximal end portion of the first core shaft 10 .
  • the second large-diameter portion 14 is a substantially cylindrical portion that is larger than the small-diameter portion 11 and has the same outer diameter as the first large-diameter portion 13 .
  • the terms “identical” and “equal” are not limited to strict matching, and are meant to allow for differences due to manufacturing errors or the like.
  • the small-diameter portion 11, the tapered portion 12, and the first large-diameter portion 13 have nonlinear pseudoelasticity (also called “superelasticity”). is also called “nonlinear pseudoelastic region A1".
  • the nonlinear pseudoelastic region A1 is a section from the tip of the small diameter portion 11 to the base end of the first large diameter portion 13 .
  • the second large-diameter portion 14 has linear pseudo-elasticity, and a section having linear pseudo-elasticity in the first core shaft 10 is also called a "linear pseudo-elastic region A2".
  • the linear pseudo-elastic region A2 is a section from the distal end of the second large diameter portion 14 to the proximal end.
  • the length L1 in the longitudinal direction (X-axis direction) of the nonlinear pseudo-elastic region A1 and the length L2 in the longitudinal direction (X-axis direction) of the linear pseudo-elastic region A2 can be determined arbitrarily.
  • the length L2 is preferably 1/4 or less of the length L1. The difference between nonlinear pseudoelasticity (superelasticity) and linear pseudoelasticity will be described later.
  • a nonlinear pseudo-elastic region A1 and a linear pseudo-elastic region A2 are provided adjacent to each other from the distal side to the proximal side.
  • the boundary between the nonlinear pseudoelastic region A1 and the linear pseudoelastic region A2 is not welded, and a welded portion is formed. It has not been.
  • a nonlinear pseudoelastic region A1 that is, any portion of the small diameter portion 11, the tapered portion 12, and the first large diameter portion 13
  • a linear pseudoelastic region A2 that is, the second large diameter portion 14
  • ICP emission spectroscopy is an emission spectroscopy using high-frequency inductively coupled plasma as a light source.
  • substantially the same means that the existence ratio of each atom obtained as a result of analysis is within an error of 0.5%.
  • the second core shaft 20 is arranged on the proximal side of the guide wire 1 , in other words, on the proximal side of the first core shaft 10 .
  • the second core shaft 20 is a tapered elongated member having a large diameter on the proximal end side and a small diameter on the distal end side.
  • the second core shaft 20 of the present embodiment is made of a material having a higher hardness than the first core shaft 10 (specifically, the nonlinear pseudoelastic region A1 and the linear pseudoelastic region A2 of the first core shaft 10), such as SUS304. , stainless steel such as SUS316, or a CoCr alloy.
  • the second core shaft 20 has a small diameter portion 21, a tapered portion 22, and a large diameter portion 23 in order from the distal side to the proximal side.
  • the outer diameter and length of each part can be determined arbitrarily.
  • the small diameter portion 21 is provided at the distal end portion of the second core shaft 20 .
  • the small-diameter portion 21 is a portion of the second core shaft 20 with the smallest outer diameter, and has a substantially cylindrical shape having the same and substantially constant outer diameter as the second large-diameter portion 14 of the first core shaft 10 .
  • the tapered portion 22 is provided between the small diameter portion 21 and the large diameter portion 23 .
  • the tapered portion 22 has a substantially truncated cone shape with an outer diameter increasing from the distal end side to the proximal end side.
  • the large-diameter portion 23 is provided at the proximal end portion of the second core shaft 20 .
  • the large-diameter portion 23 is a portion having the largest outer diameter of the second core shaft 20 and has a substantially cylindrical shape with a substantially constant outer diameter. In order to distinguish the section from the tip of the small-diameter portion 21 to the base end of the large-diameter portion 23 of the second core shaft 20 from the nonlinear pseudoelastic region A1 and the linear pseudoelastic region A2 of the first core shaft 10, In addition, it is also called a “second core shaft region A3”.
  • the welded portion 30 is a portion where the first core shaft 10 and the second core shaft 20 are welded. As shown in FIG. 1 , the welded portion 30 is formed between the proximal end portion of the linear pseudo-elastic region A2 (second large-diameter portion 14) of the first core shaft 10 and the distal end portion of the second core shaft 20. is provided in In the example of FIG. 1, the welded portion 30 is planar and substantially perpendicular to the axis O. In the example of FIG. The welded portion 30 fixes the first core shaft 10 and the second core shaft 20 together.
  • the tip sides of the small diameter portion 11 , the tapered portion 12 and the first large diameter portion 13 are covered with the coil body 40 .
  • the base end side of the first large-diameter portion 13, the second large-diameter portion 14, and each portion of the second core shaft 20 are not covered with the coil body 40. It is exposed from the coil body 40 .
  • the large diameter portion 23 of the second core shaft 20 is used when the operator grips the guide wire 1 .
  • the coil body 40 is formed by spirally winding a wire 41 around the first core shaft 10, and has a substantially cylindrical shape.
  • the coil body 40 may be a single coil formed by winding one wire into a single wire, or may be a multiple coil formed by winding a plurality of wire into multiple wires. Alternatively, it may be a single twisted wire coil formed by winding a twisted wire obtained by twisting a plurality of strands into a single strand, and using a plurality of twisted wires obtained by twisting a plurality of strands, A multi-strand stranded wire coil formed by winding each stranded wire into a multi-strand may be used.
  • the wire diameter of the wire 41 of the coil body 40, the outer diameter and inner diameter of the coil body 40, and the length of the coil body 40 can be determined arbitrarily.
  • the wire 41 of the coil body 40 is made of, for example, stainless steel alloys such as SUS304 and SUS316, NiTi alloys, etc., piano wires, nickel-chromium alloys, radiolucent alloys such as cobalt alloys, gold, platinum, tungsten, and these elements. (eg, platinum-nickel alloy), or other known materials.
  • the distal end fixing portion 51 is provided at the distal end portion 1d of the guide wire 1, and integrally holds the distal end portion of the small diameter portion 11 of the first core shaft 10 and the distal end portion of the coil body 40.
  • the base end fixing portion 52 is provided at a part of the base end side of the first large diameter portion 13 of the first core shaft 10 and connects the first large diameter portion 13 of the first core shaft 10 and the base of the coil body 40 . It holds the ends integrally.
  • the intermediate fixing portion 53 is provided at a portion of the distal end side of the first large-diameter portion 13 of the first core shaft 10 , and connects the first large-diameter portion 13 of the first core shaft 10 and the central portion of the coil body 40 . are held together.
  • the intermediate fixing portion 53 may be omitted, or a plurality of intermediate fixing portions 53 may be provided.
  • the distal end fixing portion 51, the proximal end fixing portion 52, and the intermediate fixing portion 53 are made of any bonding agent, for example, metal solder such as silver solder, gold solder, zinc, Sn--Ag alloy, Au--Sn alloy, or epoxy-based solder. It can be formed by an adhesive such as glue.
  • the distal fixing portion 51, the proximal fixing portion 52, and the intermediate fixing portion 53 may each use the same bonding agent or different bonding agents.
  • FIG. 2 is an explanatory diagram showing the configuration of a guide wire 1x of a comparative example.
  • the guide wire 1 x has a first core shaft 10 x instead of the first core shaft 10 and a welded portion 30 x instead of the welded portion 30 .
  • the first core shaft 10x does not have the second large-diameter portion 14 described in FIG. 1, and the entirety from the distal end to the proximal end is a nonlinear pseudoelastic region A1 having nonlinear pseudoelasticity.
  • the welded portion 30x is a portion where the first core shaft 10x and the second core shaft 20 are welded.
  • the welded portion 30x is formed between the base end portion of the nonlinear pseudo-elastic region A1 (first large diameter portion 13) and the distal end portion of the second core shaft 20 in the first core shaft 10x. is provided in In the guide wire 1x of the comparative example, the first core shaft 10x and the second core shaft 20 are fixed by such a welded portion 30x.
  • Nonlinear pseudoelasticity (superelasticity) and linear pseudoelasticity are stress (N/mm 2 ) plotted on the vertical axis and elongation rate (%) plotted on the horizontal axis.
  • the behavior in the above part is different.
  • FIG. 9 shows SS curves for nonlinear pseudoelasticity and linear pseudoelasticity.
  • nonlinear pseudoelasticity (superelasticity) the elongation rate continues to increase to a certain extent (for example, about 7 to 8%) while the stress is kept almost constant, and then the stress increases as the elongation rate increases.
  • linear pseudoelasticity on the other hand, the stress increases with increasing elongation without keeping the stress constant.
  • the nonlinear pseudoelastic region A1 and the linear pseudoelastic region A2 have the following features a1 and a2.
  • Both are made of a NiTi alloy or an alloy of NiTi and another metal, and have substantially the same stoichiometric composition.
  • FIG. 3 is a diagram showing changes in hardness of the core shaft in the vicinity of the welded portion 30.
  • FIG. FIG. 3A shows changes in hardness of the first core shaft 10 and the second core shaft 20 in the vicinity of the welded portion 30 in the guidewire 1 of this embodiment described in FIG.
  • FIG. 3B shows changes in hardness of the first core shaft 10x and the second core shaft 20 in the vicinity of the welded portion 30x in the guide wire 1x of the comparative example described in FIG.
  • the vertical axis represents the Vickers hardness (Hv) obtained by a known Vickers hardness tester
  • the horizontal axis represents the regions A1 to A3 in the guidewires 1 and 1x. .
  • the hardness of the nonlinear pseudoelastic region A1 is the lowest, the hardness of the second core shaft region A3 is the highest, and the hardness of the linear pseudoelastic region A2 is the same as that of the nonlinear pseudoelastic region A1 and the hardness of the second core. It is between shaft area A3. In other words, the hardness of the linear pseudoelastic region A2 is greater than the hardness of the nonlinear pseudoelastic region A1. That is, as shown in FIG.
  • the hardness in the first core shaft 10 of the present embodiment, by providing the linear pseudoelastic region A2, the nonlinear pseudoelastic region A1, the linear pseudoelastic region A2, and the second core shaft region Along A3 and the longitudinal direction of the first core shaft 10, the hardness can be gradually changed stepwise.
  • FIG. 3B in the first core shaft 10x of the comparative example, a large hardness change occurs from the nonlinear pseudoelastic region A1 to the second core shaft region A3 with the welded portion 30x as the boundary. .
  • FIG. 4 is a diagram showing changes in stiffness of the core shaft.
  • FIG. 4A shows changes in rigidity of the first core shaft 10 and the second core shaft 20 in the vicinity of the welded portion 30 in the guidewire 1 of this embodiment described in FIG.
  • FIG. 4B shows changes in rigidity of the first core shaft 10x and the second core shaft 20 in the vicinity of the welded portion 30x in the guide wire 1x of the comparative example described with reference to FIG.
  • the vertical axis represents the slope of the stress in the portion where the elongation rate is 2% or more in the SS curve obtained by the well-known three-point bending test
  • the horizontal axis represents the guide Each region A1 to A3 in wire 1, 1x is represented.
  • the stiffness of the nonlinear pseudoelastic region A1 is the lowest, the stiffness of the second core shaft region A3 is the highest, and the stiffness of the linear pseudoelastic region A2 is the same as that of the nonlinear pseudoelastic region A1 and the stiffness of the second core. It is between shaft area A3. In other words, the stiffness of the linear pseudoelastic region A2 is greater than the stiffness of the nonlinear pseudoelastic region A1. That is, as shown in FIG.
  • the rigidity in the first core shaft 10 of the present embodiment, by providing the linear pseudoelastic region A2, the nonlinear pseudoelastic region A1, the linear pseudoelastic region A2, and the second core shaft region Along A3 and the longitudinal direction of the first core shaft 10, the rigidity can be gradually changed stepwise.
  • FIG. 4B in the first core shaft 10x of the comparative example, a large change in stiffness occurs from the nonlinear pseudo-elastic region A1 to the second core shaft region A3 with the welded portion 30x as a boundary. .
  • the first core shaft 10 includes the nonlinear pseudoelastic region A1 having nonlinear pseudoelasticity (superelasticity) from the distal end side to the proximal end side. , and a linear pseudoelastic region A2 having linear pseudoelasticity are provided adjacent to each other.
  • the linear pseudoelastic region A2 provided on the proximal end side of the first core shaft 10 has a higher hardness than the nonlinear pseudoelastic region A1 (FIG. 3).
  • the second core shaft 20 has a higher hardness than the first core shaft 10 (the nonlinear pseudoelastic region A1 and the linear pseudoelastic region A2).
  • the guidewire 1 of the first embodiment by providing the linear pseudo-elastic region A2 on the proximal side of the first core shaft 10, the hardness gap between the first core shaft 10 and the second core shaft 20 is reduced. can be reduced. As a result, the welded portion 30 can be easily formed between the proximal end portion of the linear pseudo-elastic region A2 and the distal end portion of the second core shaft 20, and the operability of the guidewire 1 can be improved. Further, in the first core shaft 10, no welded portion is formed at the boundary between the nonlinear pseudoelastic region A1 and the linear pseudoelastic region A2. Therefore, according to the guidewire 1 of the first embodiment, the durability of the guidewire 1 can be improved as compared with a conventional guidewire having two welded portions. As a result, it is possible to provide the guidewire 1 with improved operability and durability.
  • the nonlinear pseudoelastic region A1 and the linear pseudoelastic region A2 have substantially the same stoichiometric composition.
  • the elastic region A1 and the linear pseudo-elastic region A2 can be made of the same material, for example a NiTi alloy or an alloy of NiTi and another metal.
  • the hardness of the linear pseudoelastic region A2 is greater than the hardness of the nonlinear pseudoelastic region A1. As shown, the linear pseudo-elastic region A2 can reduce the hardness gap between the first core shaft 10 and the second core shaft 20 . Furthermore, according to the guidewire 1 of the first embodiment, in the first core shaft 10, the rigidity of the linear pseudo-elastic region A2 is greater than the rigidity of the non-linear pseudo-elastic region A1. As can be seen, the linear pseudo-elastic region A2 can reduce the stiffness gap between the first core shaft 10 and the second core shaft 20 .
  • the distal end side of the first core shaft 10 is provided with a nonlinear pseudoelastic region A1 having nonlinear pseudoelasticity (superelasticity), and a linear pseudoelastic region A2.
  • the length L2 in the longitudinal direction is 1/4 or less of the length L1 in the longitudinal direction of the nonlinear pseudoelastic region A1. Therefore, the distal end of the guidewire 1 can be configured flexibly, the blood vessel selectivity at the distal end of the guidewire 1 can be improved, and the resilience of the distal end of the guidewire 1 can be improved.
  • FIG. 5 is a diagram showing an example of a method of manufacturing the guidewire 1 shown in FIG.
  • FIG. 5A shows the preparation process and the heat treatment process.
  • FIG. 5B shows the state of the welding process.
  • FIG. 5(C) shows the completed core shaft joints 10 and 20.
  • FIG. 5A shows the preparation process and the heat treatment process.
  • FIG. 5B shows the state of the welding process.
  • FIG. 5(C) shows the completed core shaft joints 10 and 20.
  • a first core shaft 10z having linear pseudo-elasticity as a whole, a second core shaft 20 (not shown) having hardness greater than that of the first core shaft 10z prepare.
  • the small-diameter portion 11 and the tapered portion 12 have different properties (that is, linear pseudo-elasticity) from the properties described in FIG. are given reference numerals different from those in FIG.
  • a portion 10zd on the distal end side of the first core shaft 10z is subjected to heat treatment at 400 to 600 degrees for a predetermined period of time. Change linear pseudoelasticity to nonlinear pseudoelasticity.
  • the heat treatment time can be arbitrarily determined, and can be, for example, 30 seconds to 1 hour.
  • a nonlinear pseudoelastic region A1 (FIG. 5B: narrow diameter portion 11, tapered portion 12, and first large diameter portion 13) is provided in a portion 10zd on the distal side, and a linear pseudoelastic region is provided on the proximal side.
  • a first core shaft 10 having A2 (FIG. 5B: second large-diameter portion 14) can be formed.
  • the distal end portion 21d of the small diameter portion 11 of the second core shaft 20 is welded to the base end portion 14p of the second large diameter portion 14 of the first core shaft 10 .
  • Welding can be performed by well-known methods.
  • the base end of the linear pseudo-elastic region A2 of the first core shaft 10 and the tip end of the second core shaft 20 are joined by the weld 30.
  • the core-shaft joined bodies 10 and 20 (the first core shaft 10 and the second core shaft 20) can be obtained.
  • the separately formed coil body 40 is fixed to the core-shaft joint bodies 10 and 20 by the distal end fixing portion 51, the proximal end fixing portion 52, and the intermediate fixing portion 53, so that the guide wire shown in FIG. 1 can be manufactured.
  • a portion 10zd on the distal end side of the first core shaft 10z having linear pseudoelasticity is heat-treated to obtain a nonlinear pseudoelastic region having nonlinear pseudoelasticity.
  • A1 can be formed. That is, by changing the linear pseudo-elasticity of the first core shaft 10z to non-linear pseudo-elasticity by heat treatment, the non-linear pseudo-elastic region A1 and the linear pseudo-elastic region A2 can be easily created in one first core shaft 10. can be formed and coexisted. As a result, the guide wire 1 with improved operability and durability can be manufactured. Further, as described with reference to FIG. 1, the guide wire 1 is provided with the nonlinear pseudoelastic region A1 having nonlinear pseudoelasticity (superelasticity) on the distal end side of the first core shaft 10, so that the distal end is flexible. It has excellent blood vessel selectivity and resilience at the tip.
  • the welding process is performed after the heat treatment process is performed, so compared to the reverse case, deterioration and damage of the welded portion 30 due to the heat treatment can be suppressed. .
  • FIG. 6 is a diagram showing another example of the method of manufacturing the guidewire 1 shown in FIG.
  • FIG. 6A shows the preparation process and the welding process.
  • FIG. 6B shows the state of the heat treatment process.
  • FIG. 6(C) shows the completed core shaft joints 10 and 20.
  • FIG. 6A shows the preparation process and the welding process.
  • FIG. 6B shows the state of the heat treatment process.
  • FIG. 6(C) shows the completed core shaft joints 10 and 20.
  • a first core shaft 10z having linear pseudo-elasticity as a whole and a second core shaft 20 having a higher hardness than the first core shaft 10z are prepared.
  • the small diameter portion 11z and the tapered portion 12z are denoted by different reference numerals from those in FIG. 1 for the same reason as in FIG. 5A.
  • the distal end portion 21d of the small diameter portion 11 of the second core shaft 20 is welded to the base end portion 14p of the second large diameter portion 14 of the first core shaft 10z. Welding can be performed by well-known methods.
  • a portion 10zd on the distal end side of the first core shaft 10z (specifically, a portion where the nonlinear pseudo-elastic region A1 is desired to be formed) is subjected to a heat treatment in the same manner as in FIG. , transforms linear pseudoelasticity into nonlinear pseudoelasticity.
  • a nonlinear pseudoelastic region A1 (FIG. 6C: narrow diameter portion 11, tapered portion 12, and first large diameter portion 13) is provided in a portion 10zd on the distal side, and a linear pseudoelastic region is provided on the proximal side.
  • a first core shaft 10 having A2 (FIG. 6C: second large-diameter portion 14) can be formed.
  • FIG. 6(C) a A core shaft joined body 10 , 20 (first core shaft 10 and second core shaft 20 ) joined by welding portion 30 can be obtained.
  • the separately formed coil body 40 is fixed to the core-shaft joint bodies 10 and 20 by the distal end fixing portion 51, the proximal end fixing portion 52, and the intermediate fixing portion 53, so that the guide wire shown in FIG. 1 can be manufactured.
  • a guide wire with improved operability and durability can be manufactured in the same manner as in the manufacturing method illustrated in Fig. 5 .
  • the guide wire 1 is provided with the nonlinear pseudoelastic region A1 having nonlinear pseudoelasticity (superelasticity) on the distal end side of the first core shaft 10, so that the distal end is flexible. It has excellent blood vessel selectivity and resilience at the tip.
  • FIG. 7 is an explanatory diagram illustrating the configuration of the guidewire 1A of the second embodiment.
  • the guide wire 1A of the second embodiment includes a first core shaft 10A instead of the first core shaft 10, a second core shaft 20A instead of the second core shaft 20, A welded portion 30 ⁇ /b>A is provided instead of the welded portion 30 .
  • the second core shaft 20A does not have the small-diameter portion 21 and the tapered portion 22 described in the first embodiment, and is a substantially cylindrical large-diameter portion 23A having a substantially constant outer diameter as a whole.
  • the first core shaft 10A has a small diameter portion 11, a tapered portion 12, a first large diameter portion 13, a second tapered portion 15, a third large diameter portion 16, and a second large diameter portion 11, a tapered portion 12, a first large diameter portion 13, a second large diameter portion 16, and a second large diameter portion 13 in order from the distal end side to the proximal end side. It has a diameter portion 14A.
  • the configurations of the small-diameter portion 11, the tapered portion 12, and the first large-diameter portion 13 are the same as in the first embodiment.
  • the second tapered portion 15 is provided between the first large diameter portion 13 and the third large diameter portion 16 .
  • the second tapered portion 15 is a substantially truncated conical portion whose outer diameter increases from the distal end side to the proximal end side.
  • the third large diameter portion 16 is provided between the second tapered portion 15 and the second large diameter portion 14A.
  • the third large-diameter portion 16 is a portion having the largest outer diameter of the first core shaft 10A, and is a substantially cylindrical portion having a substantially constant outer diameter.
  • the second large-diameter portion 14A is provided at the proximal end portion of the first core shaft 10A.
  • the second large-diameter portion 14 ⁇ /b>A is a substantially cylindrical portion that is larger than the small-diameter portion 11 and the first large-diameter portion 13 and has the same outer diameter as the third large-diameter portion 16 .
  • the second tapered portion 15 and the third large diameter portion 16 also have nonlinear pseudoelasticity (superelasticity). are doing. Therefore, in the first core shaft 10A, the section from the tip of the small diameter portion 11 to the base end of the third large diameter portion 16 corresponds to the "nonlinear pseudoelastic region A1". Further, since the second large-diameter portion 14A has linear pseudo-elasticity, in the first core shaft 10A, the section from the tip to the proximal end of the second large-diameter portion 14A corresponds to the "linear pseudo-elastic region A2". do.
  • the welded portion 30A is a portion where the first core shaft 10A and the second core shaft 20A are welded together. As shown in FIG. 7, the welded portion 30A is formed between the base end portion of the linear pseudo-elastic region A2 (second large diameter portion 14A) and the second core shaft 20A (large diameter portion 23A) of the first core shaft 10A. is provided between the tip of the The welded portion 30A fixes the first core shaft 10A and the second core shaft 20A.
  • the configuration of the guide wire 1A can be variously modified, and the first core shaft 10A can be arbitrarily selected as long as the base end welded to the second core shaft 20A is the linear pseudo-elastic region A2. Can be shaped. Also, the second core shaft 20 can be of any shape. For example, as described with reference to FIG. 7, the first core shaft 10A has portions (the third large diameter portion 16 and the second large diameter portion 14A) having substantially the same outer diameter as the large diameter portion 23A of the second core shaft 20A. and may be welded to the second core shaft 20A at that portion.
  • first core shaft 10A may not have the above-described portion (for example, the small-diameter portion 11 or the tapered portion 12), and other portions (for example, the third large-diameter portion 16) may be omitted. diametrically configured ridges).
  • the guide wire 1A of the second embodiment can also achieve the same effects as the first embodiment.
  • FIG. 8 is an explanatory diagram illustrating the configuration of the guidewire 1B of the third embodiment.
  • the guide wire 1B of the third embodiment has the configuration of the first embodiment, with a second core shaft 20B instead of the second core shaft 20, a coil body 40B instead of the coil body 40, and a base end fixing portion. 52 is replaced with a base end fixing portion 52B.
  • the second core shaft 20B does not have the tapered portion 22 and the large-diameter portion 23 described in the first embodiment, and is entirely the small-diameter portion 21 .
  • the coil body 40B is formed by spirally winding the wire 41 around the first core shaft 10 and the second core shaft 20B. In other words, the coil body 40B covers the entire area from the distal end of the first core shaft 10 to the proximal end of the second core shaft 20B.
  • the base end fixing portion 52B is provided at the base end portion 1p of the guide wire 1B, and integrally holds the base end portion of the small diameter portion 21 of the second core shaft 20B and the base end portion of the coil body 40B. are doing.
  • the welded portion 30 is covered with a coil body 40B. By covering the welded portion 30 with the coil body 40B, it is possible to further improve the rigidity gap generated in the vicinity of the welded portion.
  • the configuration of the guide wire 1B can be modified in various ways, and the entire first core shaft 10 and second core shaft 20B may be covered with the coil body 40B. Also, the welded portion 30 where the first core shaft 10 and the second core shaft 20B are welded may be covered with the coil body 40B.
  • the guide wire 1B of the third embodiment can also achieve the same effects as the first embodiment.
  • the boundary surface between the nonlinear pseudoelastic region A1 and the linear pseudoelastic region A2 may not have a planar shape perpendicular to the axis O, and may have any shape.
  • the boundary surface between the nonlinear pseudoelastic region A1 and the linear pseudoelastic region A2 may be a plane inclined with respect to the axis O, or a portion of the tip surface of the linear pseudoelastic region A2 may be a guide.
  • It may have a curved surface shape that protrudes toward the distal side of the wire (in other words, a portion of the proximal surface of the nonlinear pseudoelastic region A1 is recessed toward the distal side), or the proximal surface of the nonlinear pseudoelastic region A1.
  • the weld surface between the first core shaft and the second core shaft does not have to be planar and perpendicular to the axis O, and can be of any shape.
  • it may have a planar shape that is inclined with respect to the axis O, or a curved surface that protrudes in the axial direction (the distal direction or the proximal direction).
  • the guidewire may not have a coiled body.
  • the distal end fixing portion, the proximal end fixing portion, and the intermediate fixing portion may also be omitted.
  • a portion of the coil body and portions of the first and second core shafts of the guidewire may be coated with a hydrophilic or hydrophobic coating.
  • the guidewire may be manufactured in a state in which a portion of the first core shaft on the distal side is pre-curved.
  • the guidewire may have other configurations not described above.
  • the nonlinear pseudoelastic region A1 (the small diameter portion 11, the tapered portion 12, the first large diameter portion 13) and the linear pseudoelastic region A2 (the second large diameter portion 14) are stoichiometrically
  • the theoretical composition may be different.
  • the longitudinal length L2 of the linear pseudoelastic region A2 may be greater than 1/4 of the longitudinal length L1 of the nonlinear pseudoelastic region A1. If the length L2 is larger than 1/4 of the length L1, the operability of the guidewires 1, 1A-1D is improved instead of the vessel selectivity, flexibility, and resilience of the guidewires 1, 1A-1D. can.
  • FIG. 5 an example (FIG. 5) and another example (FIG. 6) of the method for manufacturing the guidewire 1 are shown. These manufacturing methods are similarly applicable to the guide wires 1A and 1B of the second and third embodiments.
  • the method of manufacturing the guidewire can be modified in various ways.
  • a first core shaft 10y having nonlinear pseudoelasticity (superelasticity) as a whole may be prepared.
  • a portion of the base end side of the first core shaft 10y (specifically, the portion where the linear pseudo-elastic region A2 is desired to be formed) is subjected to plastic working (for example, swaging, pressing, etc.).
  • the first core shaft 10 having the linear pseudo-elastic region A2 in a portion of the base end side may be formed by changing the non-linear pseudo-elasticity to the linear pseudo-elasticity. Even in this way, the same effects as those of the manufacturing method described with reference to FIGS. 5 and 6 can be obtained.
  • Modification 3 The configurations of the guidewires of the first to third embodiments and the configurations of the guidewires of Modifications 1 and 2 may be combined as appropriate.
  • the shape of the boundary surface described in Modification 1 may be adopted.
  • the guide wires described in the second and third embodiments may be manufactured by the method described in Modification 2.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

ガイドワイヤは、先端側に配置された第1コアシャフトと、第1コアシャフトよりも基端側に配置された、第1コアシャフトよりも硬度の大きい第2コアシャフトと、を備える。第1コアシャフトには、先端側から基端側に向かって、非線形擬弾性を有する非線形擬弾性領域と、線形擬弾性を有する線形擬弾性領域とが隣接して設けられており、非線形擬弾性領域と線形擬弾性領域との境界には溶接部が形成されておらず、線形擬弾性領域の基端部と第2コアシャフトの先端部との間には、第1コアシャフトと第2コアシャフトとの溶接部が形成されている。

Description

ガイドワイヤ、及び、ガイドワイヤの製造方法
 本発明は、ガイドワイヤ、及び、ガイドワイヤの製造方法に関する。
 血管にカテーテル等を挿入する際に用いられるガイドワイヤが知られている。このようなガイドワイヤでは、曲げに対する柔軟性や復元性、手元部分におけるガイドワイヤへの操作を先端側へと伝達するトルク伝達性や押し込み性、及び、折れ、ヨレによる変形に強い耐キンク性が求められる。なお、トルク伝達性と押し込み性を総称して「操作性」とも呼ぶ。例えば、特許文献1及び特許文献2には、いずれも、操作性及び耐キンク性を向上させるために、先端側から基端側に向かって、第1ワイヤ、第3ワイヤ、第2ワイヤをそれぞれ配置し、第2ワイヤの弾性率を第1ワイヤよりも大きくすると共に、第3ワイヤの弾性率を第1ワイヤよりも大きく、かつ、第2ワイヤよりも小さくした(すなわち、第1ワイヤの弾性率と、第2ワイヤの弾性率の中間とした)ガイドワイヤが開示されている。
特開2004-65797号公報 特許第4455808号公報
 しかし、特許文献1及び特許文献2に記載のガイドワイヤでは、いずれも、第1ワイヤと第3ワイヤが溶接により連結され、かつ、第3ワイヤと第2ワイヤとが溶接により連結されている。すなわち、特許文献1及び特許文献2に記載のガイドワイヤでは、異なるワイヤ同士が溶接された部分(以降「溶接部」とも呼ぶ)が、少なくとも2か所存在している。ここで、ワイヤ同士の溶接部はワイヤ母材に比べて脆弱であるため、ガイドワイヤの使用に伴う形状変化や、力の付加に伴って、溶接部を起点としてワイヤが変形する可能性がある。従って、ガイドワイヤの耐久性向上のためには、ワイヤ同士の溶接部は少ない方が好ましい。また、ガイドワイヤの製造工数を削減し、ガイドワイヤの製造コストを低下させるという観点からも、ワイヤ同士の溶接部は少ない方が好ましい。なお、このような課題は、血管系に限らず、リンパ腺系、胆道系、尿路系、気道系、消化器官系、分泌腺及び生殖器官等、人体内の各器官に挿入されるガイドワイヤに共通する。なお、ワイヤは「コアシャフト」とも呼ばれる。
 本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、ガイドワイヤにおいて、操作性と耐久性を向上させることを目的とする。
 本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。
(1)本発明の一形態によれば、ガイドワイヤが提供される。このガイドワイヤは、先端側に配置された第1コアシャフトと、前記第1コアシャフトよりも基端側に配置された、前記第1コアシャフトよりも硬度の大きい第2コアシャフトと、を備え、前記第1コアシャフトには、先端側から基端側に向かって、非線形擬弾性を有する非線形擬弾性領域と、線形擬弾性を有する線形擬弾性領域とが隣接して設けられており、前記非線形擬弾性領域と前記線形擬弾性領域との境界には溶接部が形成されておらず、前記線形擬弾性領域の基端部と前記第2コアシャフトの先端部との間には、前記第1コアシャフトと前記第2コアシャフトとの溶接部が形成されている。
 この構成によれば、第1コアシャフトには、先端側から基端側に向かって、非線形擬弾性(「超弾性」とも呼ばれる)を有する非線形擬弾性領域と、線形擬弾性を有する線形擬弾性領域とが隣接して設けられている。ここで、第1コアシャフトの基端側に設けられた線形擬弾性領域は、非線形擬弾性領域よりも硬度が大きい。また、第2コアシャフトは、第1コアシャフト(非線形擬弾性領域及び線形擬弾性領域)よりも硬度が大きい。このため、本構成によれば、第1コアシャフトの基端側に線形擬弾性領域を設けることによって、第1コアシャフトと第2コアシャフトとの硬度ギャップを低減できる。この結果、線形擬弾性領域の基端部と第2コアシャフトの先端部との間に溶接部を形成しやすくできると共に、ガイドワイヤの操作性を向上できる。また、第1コアシャフトにおいて、非線形擬弾性領域と線形擬弾性領域との境界には溶接部が形成されていない。このため、本構成によれば、溶接部が2か所存在する従来のガイドワイヤと比較して、ガイドワイヤの耐久性を向上できる。これらの結果、操作性と耐久性を向上させたガイドワイヤを提供できる。
(2)上記形態のガイドワイヤでは、前記第1コアシャフトにおいて、前記非線形擬弾性領域と前記線形擬弾性領域とは、化学量論組成が実質的に同じであってもよい。
 この構成によれば、第1コアシャフトにおいて、非線形擬弾性領域と線形擬弾性領域とは、化学量論組成が実質的に同じであるため、非線形擬弾性領域と線形擬弾性領域とを、例えば、NiTi(ニッケルチタン)合金や、NiTiと他の金属との合金のような、同一の材料で形成できる。
(3)上記形態のガイドワイヤでは、前記第1コアシャフトにおいて、前記線形擬弾性領域の長手方向における長さは、前記非線形擬弾性領域の長手方向における長さの1/4以下であってもよい。
 この構成によれば、線形擬弾性領域の長手方向における長さは、非線形擬弾性領域の長手方向における長さの1/4以下であるため、ガイドワイヤにおける血管選択性、柔軟性、及び復元性を向上させることができる。
(4)上記形態のガイドワイヤでは、前記第1コアシャフトにおいて、前記線形擬弾性領域の硬度は、前記非線形擬弾性領域の硬度よりも大きくてもよい。
 この構成によれば、第1コアシャフトにおいて、線形擬弾性領域の硬度は、非線形擬弾性領域の硬度よりも大きいため、線形擬弾性領域によって、第1コアシャフトと第2コアシャフトとの硬度ギャップを低減できる。
(5)本発明の一形態によれば、ガイドワイヤの製造方法が提供される。この製造方法は、線形擬弾性を有する第1コアシャフトと、前記第1コアシャフトよりも硬度の大きい第2コアシャフトと、を準備する準備工程と、前記第1コアシャフトの基端部に、前記第2コアシャフトの先端部を溶接する溶接工程と、前記第1コアシャフトの先端側の一部分を加熱処理することにより、前記第1コアシャフトの先端側に、非線形擬弾性を有する非線形擬弾性領域を形成する加熱処理工程と、を含む。
 一般に、硬度差が大きい部材同士の溶接は困難である。この点、本製造方法(溶接工程)によれば、線形擬弾性を有する第1コアシャフトの基端部に、第2コアシャフトの先端部を溶接するため、全体が非線形擬弾性を有する第1コアシャフトに第2コアシャフトを溶接する場合と比較して、溶接を容易に行うことができる。また、溶接が1か所でよいため、溶接部が2か所存在する従来のガイドワイヤと比較して、溶接工程の工数及びコストを低減できる。さらに、本製造方法(加熱処理工程)によれば、線形擬弾性を有する第1コアシャフトの先端側の一部分を加熱処理することにより、非線形擬弾性を有する非線形擬弾性領域を形成できる。すなわち、加熱処理によって第1コアシャフトの線形擬弾性を非線形擬弾性へと変化させることで、1本の第1コアシャフト中に、非線形擬弾性領域と線形擬弾性領域とを簡単に形成し、共存させることができる。これらの結果、操作性と耐久性を向上させたガイドワイヤを製造できる。
(6)上記形態のガイドワイヤの製造方法では、前記加熱処理工程を行った後、前記溶接工程を実行してもよい。
 この構成によれば、加熱処理工程を行った後で溶接工程を実行するため、逆の場合と比較して、加熱処理に伴う溶接部の劣化や損傷を抑制できる。
 なお、本発明は、種々の態様で実現することが可能であり、例えば、ガイドワイヤ、ガイドワイヤ用のコアシャフト(第1,2コアシャフトの接合体や、第1コアシャフト単体)、ガイドワイヤの製造方法などの形態で実現することができる。
第1実施形態のガイドワイヤの構成を例示した説明図である。 比較例のガイドワイヤの構成を示す説明図である。 溶接部近傍におけるコアシャフトの硬度変化を表す図である。 コアシャフトの剛性変化を表す図である。 図1に示すガイドワイヤの製造方法の一例を示す図である。 図1に示すガイドワイヤの製造方法の他の例を示す図である。 第2実施形態のガイドワイヤの構成を例示した説明図である。 第3実施形態のガイドワイヤの構成を例示した説明図である。 非線形擬弾性及び線形擬弾性のSSカーブを示すグラフである。
<第1実施形態>
 図1は、第1実施形態のガイドワイヤ1の構成を例示した説明図である。ガイドワイヤ1は、血管や消化器官に他の医療デバイス(カテーテル等)を挿入する際に用いられる医療器具であり、第1コアシャフト10と、第2コアシャフト20と、溶接部30と、コイル体40と、先端固定部51と、基端固定部52と、中間固定部53とを備えている。ガイドワイヤ1は、第1コアシャフト10と第2コアシャフト20とが、1か所の溶接部30により接続されており、第1コアシャフト10の基端側に線形擬弾性領域A2が設けられていることにより、ガイドワイヤ1の操作性と耐久性を向上できる。なお、操作性とは、トルク伝達性と押し込み性の総称である。
 図1では、ガイドワイヤ1の中心を通る軸を軸線O(一点鎖線)で表す。図1の例では、軸線Oは、第1コアシャフト10、第2コアシャフト20、及びコイル体40の各中心を通る軸とそれぞれ一致している。しかし、軸線Oは、上述の各構成部材の各中心軸と相違していてもよい。図1には、相互に直交するXYZ軸を図示する。X軸はガイドワイヤ1の長さ方向に対応し、Y軸はガイドワイヤ1の高さ方向に対応し、Z軸はガイドワイヤ1の幅方向に対応する。図1の左側(-X軸方向)をガイドワイヤ1及び各構成部材の「先端側」と呼び、図1の右側(+X軸方向)をガイドワイヤ1及び各構成部材の「基端側」と呼ぶ。また、ガイドワイヤ1及び各構成部材について、先端側に位置する端部を「先端」と呼び、先端及びその近傍を「先端部」と呼ぶ。また、基端側に位置する端部を「基端」と呼び、基端及びその近傍を「基端部」と呼ぶ。先端側は、生体内部へ挿入され、基端側は、医師等の術者により操作される。これらの点は、図1以降においても共通する。
 第1コアシャフト10は、ガイドワイヤ1の先端側、換言すれば、第2コアシャフト20よりも先端側に配置されている。第1コアシャフト10は、基端側が太径で先端側が細径とされた、先細りした長尺形状の部材である。本実施形態の第1コアシャフト10は、NiTi(ニッケルチタン)合金や、NiTiと他の金属との合金により形成されている。第1コアシャフト10は、先端側から基端側に向かって順に、細径部11、テーパ部12、第1太径部13、第2太径部14を有している。各部の外径や長さは任意に決定できる。
 細径部11は、第1コアシャフト10の先端部に設けられている。細径部11は、第1コアシャフト10の外径が最小の部分であり、略一定の外径を有する略円柱形状の部分である。テーパ部12は、細径部11と第1太径部13との間に設けられている。テーパ部12は、先端側から基端側に向かって外径が拡大した略円錐台形状の部分である。なお、本実施形態において「略一定」とは「概ね一定」と同義であり、製造誤差等に起因したぶれを許容しつつ、概ね一定であることを意味する。同様に、「略円柱形状/略円錐台形状」とは「概ね円柱形状/概ね円錐台形状」と同義であり、製造誤差等に起因したぶれを許容しつつ、概ね当該形状であることを意味する。
 第1太径部13は、テーパ部12と第2太径部14との間に設けられている。第1太径部13は、細径部11よりも大きな略一定の外径を有する略円柱形状の部分である。第2太径部14は、第1コアシャフト10の基端部に設けられている。第2太径部14は、細径部11よりも大きく、かつ、第1太径部13と同一の外径を有する略円柱形状の部分である。なお、本実施形態において「同一」及び「等しい」とは、厳密に一致する場合に限らず、製造誤差等に起因した相違を許容する意味である。
 ここで、細径部11、テーパ部12、及び第1太径部13は、非線形擬弾性(「超弾性」とも呼ばれる)を有しており、第1コアシャフト10において非線形擬弾性を有する区間を「非線形擬弾性領域A1」とも呼ぶ。非線形擬弾性領域A1は、細径部11の先端から第1太径部13の基端までの区間である。また、第2太径部14は、線形擬弾性を有しており、第1コアシャフト10において線形擬弾性を有する区間を「線形擬弾性領域A2」とも呼ぶ。線形擬弾性領域A2は、第2太径部14の先端から基端までの区間である。非線形擬弾性領域A1の長手方向(X軸方向)における長さL1と、線形擬弾性領域A2の長手方向(X軸方向)における長さL2とは、任意に決定できる。ガイドワイヤ1における血管選択性、柔軟性、及び復元性を向上させるためには、長さL2は、長さL1の1/4以下であることが好ましい。なお、非線形擬弾性(超弾性)と、線形擬弾性との相違については、後述する。
 図1に示すように、第1コアシャフト10では、先端側から基端側に向かって、非線形擬弾性領域A1と、線形擬弾性領域A2とが隣接して設けられている。また、非線形擬弾性領域A1と線形擬弾性領域A2との境界(換言すれば、第1太径部13と第2太径部14との境界)は、溶接されておらず、溶接部が形成されていない。第1コアシャフト10において、非線形擬弾性領域A1(すなわち、細径部11、テーパ部12、第1太径部13の任意の部分)と、線形擬弾性領域A2(すなわち、第2太径部14の任意の部分)とは、ICP発光分光分析法による分析をした場合、化学量論組成が実質的に同じである。ICP発光分光分析法とは、高周波誘導結合プラズマを光源とする発光分光分析法である。ここで「実質的に同じ」とは、分析の結果、得られる各原子の存在割合が、誤差0.5%以内であることを意味する。
 第2コアシャフト20は、ガイドワイヤ1の基端側、換言すれば、第1コアシャフト10よりも基端側に配置されている。第2コアシャフト20は、基端側が太径で先端側が細径とされた、先細りした長尺形状の部材である。本実施形態の第2コアシャフト20は、第1コアシャフト10(具体的には、第1コアシャフト10の非線形擬弾性領域A1及び線形擬弾性領域A2)よりも硬度の大きい材料、例えば、SUS304、SUS316等のステンレス鋼や、CoCr合金により形成されている。第2コアシャフト20は、先端側から基端側に向かって順に、細径部21、テーパ部22、太径部23を有している。各部の外径や長さは任意に決定できる。
 細径部21は、第2コアシャフト20の先端部に設けられている。細径部21は、第2コアシャフト20の外径が最小の部分であり、第1コアシャフト10の第2太径部14と同一かつ略一定の外径を有する略円柱形状である。テーパ部22は、細径部21と太径部23との間に設けられている。テーパ部22は、先端側から基端側に向かって外径が拡大した略円錐台形状である。太径部23は、第2コアシャフト20の基端部に設けられている。太径部23は、第2コアシャフト20の外径が最大の部分であり、略一定の外径を有する略円柱形状である。なお、第2コアシャフト20のうち、細径部21の先端から太径部23の基端までの区間を、第1コアシャフト10の非線形擬弾性領域A1及び線形擬弾性領域A2と区別するために、「第2コアシャフト領域A3」とも呼ぶ。
 溶接部30は、第1コアシャフト10と第2コアシャフト20とが溶接された部分である。図1に示すように、溶接部30は、第1コアシャフト10のうち、線形擬弾性領域A2(第2太径部14)の基端部と、第2コアシャフト20の先端部との間に設けられている。図1の例では、溶接部30は、軸線Oに対してほぼ垂直な平面状である。この溶接部30によって、第1コアシャフト10と第2コアシャフト20とが固定されている。
 第1コアシャフト10のうち、細径部11、テーパ部12、及び第1太径部13の先端側は、コイル体40によって覆われている。一方、第1コアシャフト10のうち、第1太径部13の基端側、及び第2太径部14と、第2コアシャフト20の各部とは、コイル体40によって覆われておらず、コイル体40から露出している。なお、第2コアシャフト20の太径部23は、術者がガイドワイヤ1を把持する際に使用される。
 コイル体40は、第1コアシャフト10に対して素線41を螺旋状に巻回して形成されており、略円筒形状を有している。コイル体40は、1本の素線を単条に巻回して形成される単条コイルであってもよく、複数本の素線を多条に巻回して形成される多条コイルであってもよく、複数本の素線を撚り合せた撚線を単条に巻回して形成される単条撚線コイルであってもよく、複数本の素線を撚り合せた撚線を複数用い、各撚線を多条に巻回して形成される多条撚線コイルであってもよい。コイル体40の素線41の線径と、コイル体40の外径及び内径と、コイル体40の長さとは、任意に決定できる。
 コイル体40の素線41は、例えば、SUS304、SUS316等のステンレス合金、NiTi合金等、ピアノ線、ニッケル-クロム系合金、コバルト合金等の放射線透過性合金、金、白金、タングステン、これらの元素を含む合金(例えば、白金-ニッケル合金)等の放射線不透過性合金、上記以外の公知の材料によって形成できる。
 先端固定部51は、ガイドワイヤ1の先端部1dに設けられており、第1コアシャフト10の細径部11の先端部と、コイル体40の先端部とを一体的に保持している。基端固定部52は、第1コアシャフト10の第1太径部13の基端側の一部分に設けられており、第1コアシャフト10の第1太径部13と、コイル体40の基端部とを一体的に保持している。中間固定部53は、第1コアシャフト10の第1太径部13の先端側の一部分に設けられており、第1コアシャフト10の第1太径部13と、コイル体40の中央部とを一体的に保持している。なお、中間固定部53は無くてもよく、複数設けられていてもよい。先端固定部51、基端固定部52、及び中間固定部53は、任意の接合剤、例えば、銀ロウ、金ロウ、亜鉛、Sn-Ag合金、Au-Sn合金等の金属はんだや、エポキシ系接着剤などの接着剤によって形成できる。先端固定部51、基端固定部52、及び中間固定部53は、それぞれ同じ接合剤を用いてもよく、異なる接合剤を用いてもよい。
 図2は、比較例のガイドワイヤ1xの構成を示す説明図である。非線形擬弾性(超弾性)と、線形擬弾性との相違について説明する前に、比較例のガイドワイヤ1xについて説明する。ガイドワイヤ1xは、第1コアシャフト10に代えて第1コアシャフト10xを有すると共に、溶接部30に代えて溶接部30xを有している。第1コアシャフト10xは、図1で説明した第2太径部14を有しておらず、先端から基端までの全体が、非線形擬弾性を有する非線形擬弾性領域A1である。溶接部30xは、第1コアシャフト10xと第2コアシャフト20とが溶接された部分である。図2に示すように、溶接部30xは、第1コアシャフト10xのうち、非線形擬弾性領域A1(第1太径部13)の基端部と、第2コアシャフト20の先端部との間に設けられている。比較例のガイドワイヤ1xでは、このような溶接部30xによって、第1コアシャフト10xと第2コアシャフト20とが固定されている。
 非線形擬弾性(超弾性)と、線形擬弾性とは、応力(N/mm2)を縦軸にプロットし、伸び率(%)を横軸にプロットしたSSカーブのうち、伸び率が2%以上の部分における挙動が異なる。図9は、非線形擬弾性及び線形擬弾性のSSカーブを示している。非線形擬弾性(超弾性)では、応力をほぼ一定に維持したまま伸び率がある程度(例えば7~8%程度)まで上昇し続け、その後、伸び率の上昇と共に応力が上昇する。一方、線形擬弾性では、応力を一定に維持することなく、伸び率の上昇と共に応力が上昇する。
すなわち、本実施形態の第1コアシャフト10において、非線形擬弾性領域A1と、線形擬弾性領域A2とは、次のような特徴a1,a2を有する。
(a1)共に、NiTi合金や、NiTiと他の金属との合金により形成されており、化学量論組成が実質的に同じである。
(a2)SSカーブにおける挙動、硬度、及び剛性が、互いに相違する。
 図3は、溶接部30近傍におけるコアシャフトの硬度変化を表す図である。図3(A)は、図1で説明した本実施形態のガイドワイヤ1における、溶接部30近傍の第1コアシャフト10及び第2コアシャフト20の硬度変化を表す。図3(B)は、図2で説明した比較例のガイドワイヤ1xにおける、溶接部30x近傍の第1コアシャフト10x及び第2コアシャフト20の硬度変化を表す。図3(A),(B)において、縦軸は、周知のビッカース硬度試験機により得られたビッカース硬度(Hv)を表し、横軸は、ガイドワイヤ1,1xにおける各領域A1~A3を表す。
 図3(A)に示すように、非線形擬弾性領域A1の硬度は最も小さく、第2コアシャフト領域A3の硬度は最も大きく、線形擬弾性領域A2の硬度は非線形擬弾性領域A1と第2コアシャフト領域A3との間である。換言すれば、線形擬弾性領域A2の硬度は、非線形擬弾性領域A1の硬度よりも大きい。すなわち、図3(A)に示すように、本実施形態の第1コアシャフト10では、線形擬弾性領域A2を設けることによって、非線形擬弾性領域A1、線形擬弾性領域A2、第2コアシャフト領域A3と、第1コアシャフト10の長手方向に沿って、硬度を階段状に徐変させることができる。一方、図3(B)に示すように、比較例の第1コアシャフト10xでは、非線形擬弾性領域A1から第2コアシャフト領域A3へと、溶接部30xを境界として大きな硬度変化が起こっている。
 図4は、コアシャフトの剛性変化を表す図である。図4(A)は、図1で説明した本実施形態のガイドワイヤ1における、溶接部30近傍の第1コアシャフト10及び第2コアシャフト20の剛性変化を表す。図4(B)は、図2で説明した比較例のガイドワイヤ1xにおける、溶接部30x近傍の第1コアシャフト10x及び第2コアシャフト20の剛性変化を表す。図4(A),(B)において、縦軸は、周知の3点曲げ試験により得られたSSカーブのうち、伸び率が2%以上の部分における応力の傾きを表し、横軸は、ガイドワイヤ1,1xにおける各領域A1~A3を表す。
 図4(A)に示すように、非線形擬弾性領域A1の剛性は最も小さく、第2コアシャフト領域A3の剛性は最も大きく、線形擬弾性領域A2の剛性は非線形擬弾性領域A1と第2コアシャフト領域A3との間である。換言すれば、線形擬弾性領域A2の剛性は、非線形擬弾性領域A1の剛性よりも大きい。すなわち、図4(A)に示すように、本実施形態の第1コアシャフト10では、線形擬弾性領域A2を設けることによって、非線形擬弾性領域A1、線形擬弾性領域A2、第2コアシャフト領域A3と、第1コアシャフト10の長手方向に沿って、剛性を階段状に徐変させることができる。一方、図4(B)に示すように、比較例の第1コアシャフト10xでは、非線形擬弾性領域A1から第2コアシャフト領域A3へと、溶接部30xを境界として大きな剛性変化が起こっている。
 以上のように、第1実施形態のガイドワイヤ1によれば、第1コアシャフト10には、先端側から基端側に向かって、非線形擬弾性(超弾性)を有する非線形擬弾性領域A1と、線形擬弾性を有する線形擬弾性領域A2とが隣接して設けられている。ここで、図3(A)で説明した通り、第1コアシャフト10の基端側に設けられた線形擬弾性領域A2は、非線形擬弾性領域A1よりも硬度が大きい(図3)。また、第2コアシャフト20は、第1コアシャフト10(非線形擬弾性領域A1及び線形擬弾性領域A2)よりも硬度が大きい。このため、第1実施形態のガイドワイヤ1によれば、第1コアシャフト10の基端側に線形擬弾性領域A2を設けることによって、第1コアシャフト10と第2コアシャフト20との硬度ギャップを低減できる。この結果、線形擬弾性領域A2の基端部と第2コアシャフト20の先端部との間に溶接部30を形成しやすくできると共に、ガイドワイヤ1の操作性を向上できる。また、第1コアシャフト10において、非線形擬弾性領域A1と線形擬弾性領域A2との境界には溶接部が形成されていない。このため、第1実施形態のガイドワイヤ1によれば、溶接部が2か所存在する従来のガイドワイヤと比較して、ガイドワイヤ1の耐久性を向上できる。これらの結果、操作性と耐久性を向上させたガイドワイヤ1を提供できる。
 また、第1実施形態のガイドワイヤ1によれば、第1コアシャフト10において、非線形擬弾性領域A1と線形擬弾性領域A2とは、化学量論組成が実質的に同じであるため、非線形擬弾性領域A1と線形擬弾性領域A2とを、例えば、NiTi合金や、NiTiと他の金属との合金のような、同一の材料で形成できる。
 さらに、第1実施形態のガイドワイヤ1によれば、第1コアシャフト10において、線形擬弾性領域A2の硬度は、非線形擬弾性領域A1の硬度よりも大きいため、図3(A)で説明した通り、線形擬弾性領域A2によって、第1コアシャフト10と第2コアシャフト20との硬度ギャップを低減できる。さらに、第1実施形態のガイドワイヤ1によれば、第1コアシャフト10において、線形擬弾性領域A2の剛性は、非線形擬弾性領域A1の剛性よりも大きいため、図4(A)で説明した通り、線形擬弾性領域A2によって、第1コアシャフト10と第2コアシャフト20との剛性ギャップを低減できる。
 さらに、第1実施形態のガイドワイヤ1によれば、第1コアシャフト10の先端側には、非線形擬弾性(超弾性)を有する非線形擬弾性領域A1が設けられており、線形擬弾性領域A2の長手方向における長さL2は、非線形擬弾性領域A1の長手方向における長さL1の1/4以下である。このため、ガイドワイヤ1の先端部を柔軟に構成することができると共に、ガイドワイヤ1の先端部における血管選択性を向上させ、ガイドワイヤ1の先端部の復元性を向上させることができる。
<ガイドワイヤ1の製造方法>
 図5は、図1に示すガイドワイヤ1の製造方法の一例を示す図である。図5(A)は、準備工程及び加熱処理工程の様子を示す。図5(B)は、溶接工程の様子を示す。図5(C)は、完成したコアシャフト接合体10,20を示す。
 この方法ではまず、図5(A)に示すように、全体が線形擬弾性を有する第1コアシャフト10zと、第1コアシャフト10zよりも硬度の大きい第2コアシャフト20(図示省略)と、を準備する。なお、図5(A)では、細径部11及びテーパ部12について、図1で説明した性質とは異なる性質(すなわち線形擬弾性)を有することから、細径部11z及びテーパ部12zのように、図1とは異なる符号を付している。次に、第1コアシャフト10zの先端側の一部分10zd(具体的には、非線形擬弾性領域A1を形成したい部分)に対して、400度~600度で所定時間、加熱処理を施すことで、線形擬弾性を非線形擬弾性に変化させる。加熱処理の時間は任意に決定でき、例えば、30秒~1時間とできる。これにより、先端側の一部分10zdに非線形擬弾性領域A1(図5(B):細径部11、テーパ部12、及び第1太径部13)を有し、基端側に線形擬弾性領域A2(図5(B):第2太径部14)を有する第1コアシャフト10が形成できる。
 次に、図5(B)に示すように、第1コアシャフト10の第2太径部14の基端部14pに、第2コアシャフト20の細径部11の先端部21dを溶接する。溶接は、周知の方法で実施できる。
 この結果、図5(C)に示すように、第1コアシャフト10の線形擬弾性領域A2の基端部と、第2コアシャフト20の先端部との間に形成された溶接部30によって接合された、コアシャフト接合体10,20(第1コアシャフト10及び第2コアシャフト20)を得ることができる。その後、コアシャフト接合体10,20に対して、別途形成されたコイル体40を、先端固定部51、基端固定部52、及び中間固定部53によって固定することで、図1に示すガイドワイヤ1を製造することができる。
 一般に、硬度差が大きい部材同士の溶接は困難である。この点、図5で説明した製造方法(溶接工程)によれば、線形擬弾性を有する第1コアシャフト10の第2太径部14の基端部14pに、第2コアシャフト20の先端部21dを溶接する。このため、図2で説明した比較例のガイドワイヤ1xのように、全体が非線形擬弾性を有する第1コアシャフト10xに第2コアシャフト20を溶接する場合と比較して、溶接を容易に行うことができる。また、溶接が1か所でよいため、溶接部が2か所存在する従来のガイドワイヤと比較して、溶接工程の工数及びコストを低減できる。さらに、図5で説明した製造方法(加熱処理工程)によれば、線形擬弾性を有する第1コアシャフト10zの先端側の一部分10zdを加熱処理することにより、非線形擬弾性を有する非線形擬弾性領域A1を形成できる。すなわち、加熱処理によって第1コアシャフト10zの線形擬弾性を非線形擬弾性へと変化させることで、1本の第1コアシャフト10中に、非線形擬弾性領域A1と線形擬弾性領域A2とを簡単に形成し、共存させることができる。これらの結果、操作性と耐久性を向上させたガイドワイヤ1を製造できる。また、ガイドワイヤ1は、図1で説明した通り、第1コアシャフト10の先端側に、非線形擬弾性(超弾性)を有する非線形擬弾性領域A1が設けられているため、先端部が柔軟であり、先端部における血管選択性、及び、復元性に優れている。
 また、図5で説明した製造方法によれば、加熱処理工程を行った後で溶接工程を実行するため、逆の場合と比較して、加熱処理に伴う溶接部30の劣化や損傷を抑制できる。
 図6は、図1に示すガイドワイヤ1の製造方法の他の例を示す図である。図6(A)は、準備工程及び溶接工程の様子を示す。図6(B)は、加熱処理工程の様子を示す。図6(C)は、完成したコアシャフト接合体10,20を示す。
 この方法ではまず、図6(A)に示すように、全体が線形擬弾性を有する第1コアシャフト10zと、第1コアシャフト10zよりも硬度の大きい第2コアシャフト20と、を準備する。なお、図6(A)では、細径部11z及びテーパ部12zについて、図5(A)と同様の理由によって、図1とは異なる符号を付している。次に、第1コアシャフト10zの第2太径部14の基端部14pに、第2コアシャフト20の細径部11の先端部21dを溶接する。溶接は、周知の方法で実施できる。
 次に、第1コアシャフト10zの先端側の一部分10zd(具体的には、非線形擬弾性領域A1を形成したい部分)に対して、図5(A)と同様の方法で加熱処理を施すことで、線形擬弾性を非線形擬弾性に変化させる。これにより、先端側の一部分10zdに非線形擬弾性領域A1(図6(C):細径部11、テーパ部12、及び第1太径部13)を有し、基端側に線形擬弾性領域A2(図6(C):第2太径部14)を有する第1コアシャフト10が形成できる。
 この結果、本方法によっても、図6(C)に示すように、第1コアシャフト10の線形擬弾性領域A2の基端部と、第2コアシャフト20の先端部との間に形成された溶接部30によって接合された、コアシャフト接合体10,20(第1コアシャフト10及び第2コアシャフト20)を得ることができる。その後、コアシャフト接合体10,20に対して、別途形成されたコイル体40を、先端固定部51、基端固定部52、及び中間固定部53によって固定することで、図1に示すガイドワイヤ1を製造することができる。
 図6で説明した製造方法(溶接工程)においても、図5で説明した製造方法と同様に、操作性と耐久性を向上させたガイドワイヤを製造できる。また、ガイドワイヤ1は、図1で説明した通り、第1コアシャフト10の先端側に、非線形擬弾性(超弾性)を有する非線形擬弾性領域A1が設けられているため、先端部が柔軟であり、先端部における血管選択性、及び、復元性に優れている。
<第2実施形態>
 図7は、第2実施形態のガイドワイヤ1Aの構成を例示した説明図である。第2実施形態のガイドワイヤ1Aは、第1実施形態の構成において、第1コアシャフト10に代えて第1コアシャフト10Aを備え、第2コアシャフト20に代えて第2コアシャフト20Aを備え、溶接部30に代えて溶接部30Aを備える。第2コアシャフト20Aは、第1実施形態で説明した細径部21及びテーパ部22を有しておらず、全体が略一定の外径を有する略円柱形状の太径部23Aである。
 第1コアシャフト10Aは、先端側から基端側に向かって順に、細径部11、テーパ部12、第1太径部13、第2テーパ部15、第3太径部16、第2太径部14Aを有している。細径部11、テーパ部12、及び第1太径部13の構成は、第1実施形態と同じである。第2テーパ部15は、第1太径部13と第3太径部16との間に設けられている。第2テーパ部15は、先端側から基端側に向かって外径が拡大した略円錐台形状の部分である。第3太径部16は、第2テーパ部15と第2太径部14Aとの間に設けられている。第3太径部16は、第1コアシャフト10Aの外径が最大の部分であり、略一定の外径を有する略円柱形状の部分である。第2太径部14Aは、第1コアシャフト10Aの基端部に設けられている。第2太径部14Aは、細径部11及び第1太径部13よりも大きく、かつ、第3太径部16と同一の外径を有する略円柱形状の部分である。
 第1コアシャフト10Aでは、細径部11、テーパ部12、第1太径部13に加えて、第2テーパ部15及び第3太径部16についても、非線形擬弾性(超弾性)を有している。このため、第1コアシャフト10Aでは、細径部11の先端から第3太径部16の基端までの区間が「非線形擬弾性領域A1」に相当する。また、第2太径部14Aは線形擬弾性を有しているため、第1コアシャフト10Aでは、第2太径部14Aの先端から基端までの区間が「線形擬弾性領域A2」に相当する。
 溶接部30Aは、第1コアシャフト10Aと第2コアシャフト20Aとが溶接された部分である。図7に示すように、溶接部30Aは、第1コアシャフト10Aのうち、線形擬弾性領域A2(第2太径部14A)の基端部と、第2コアシャフト20A(太径部23A)の先端部との間に設けられている。この溶接部30Aによって、第1コアシャフト10Aと第2コアシャフト20Aとが固定されている。
 このように、ガイドワイヤ1Aの構成は種々の変更が可能であり、第1コアシャフト10Aは、第2コアシャフト20Aと溶接された基端部が線形擬弾性領域A2である限りにおいて、任意の形状とできる。また、第2コアシャフト20についても任意の形状とできる。例えば、第1コアシャフト10Aは、図7で説明した通り、第2コアシャフト20Aの太径部23Aと略同一の外径を有する部分(第3太径部16及び第2太径部14A)を有し、当該部分において第2コアシャフト20Aと溶接されていてもよい。また、第1コアシャフト10Aは、上述した一部分(例えば、細径部11やテーパ部12)を有していなくてもよく、上述しない他の部分(例えば、第3太径部16よりも太径に構成された隆起部)を有していてもよい。このような第2実施形態のガイドワイヤ1Aにおいても、第1実施形態と同様の効果を奏することができる。
<第3実施形態>
 図8は、第3実施形態のガイドワイヤ1Bの構成を例示した説明図である。第3実施形態のガイドワイヤ1Bは、第1実施形態の構成において、第2コアシャフト20に代えて第2コアシャフト20Bを備え、コイル体40に代えてコイル体40Bを備え、基端固定部52に代えて基端固定部52Bを備える。
 第2コアシャフト20Bは、第1実施形態で説明したテーパ部22及び太径部23を有しておらず、全体が細径部21である。コイル体40Bは、第1コアシャフト10と第2コアシャフト20Bとに対して、素線41を螺旋状に巻回して形成されている。換言すれば、コイル体40Bは、第1コアシャフト10の先端から、第2コアシャフト20Bの基端までの全体を覆っている。基端固定部52Bは、ガイドワイヤ1Bの基端部1pに設けられており、第2コアシャフト20Bの細径部21の基端部と、コイル体40Bの基端部とを一体的に保持している。図8に示すように、第3実施形態のガイドワイヤ1Bでは、溶接部30が、コイル体40Bによって覆われている。溶接部30がコイル体40Bによって覆われていることで、溶接部付近で生じる剛性ギャップをより改善することができる。
 このように、ガイドワイヤ1Bの構成は種々の変更が可能であり、第1コアシャフト10及び第2コアシャフト20Bの全体が、コイル体40Bによって覆われていてもよい。また、第1コアシャフト10と第2コアシャフト20Bとを溶接した溶接部30は、コイル体40Bによって覆われていてもよい。このような第3実施形態のガイドワイヤ1Bにおいても、第1実施形態と同様の効果を奏することができる。
<本実施形態の変形例>
 本発明は上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
 [変形例1]
 上記第1~3実施形態では、ガイドワイヤ1,1A,1Bの構成を例示した。しかし、ガイドワイヤの構成は種々の変更が可能である。例えば、第1コアシャフトにおいて、非線形擬弾性領域A1と、線形擬弾性領域A2との境界面は、軸線Oに対して垂直な平面状でなくてもよく、任意の形状とできる。具体的には、非線形擬弾性領域A1と線形擬弾性領域A2との境界面は、軸線Oに対して傾斜した平面状であってもよいし、線形擬弾性領域A2の先端面の一部分がガイドワイヤの先端側に向かって突出した(換言すれば、非線形擬弾性領域A1の基端面の一部分が先端側に向かって凹んだ)曲面形状であってもよいし、非線形擬弾性領域A1の基端面の一部分がガイドワイヤの基端側に向かって突出した(換言すれば、線形擬弾性領域A2の先端面の一部分が基端側に向かって凹んだ)曲面形状であってもよい。
 例えば、第1コアシャフトと第2コアシャフトとの溶接面は、軸線Oに対して垂直な平面状でなくてもよく、任意の形状とすることができる。例えば、軸線Oに対して傾斜した平面状であってもよいし、軸線方向(先端方向又は基端方向)に向かって突出した曲面状であってもよい。
 例えば、ガイドワイヤは、コイル体を有していなくてもよい。この場合、先端固定部、基端固定部、及び中間固定部についても省略してよい。例えば、ガイドワイヤのうち、コイル体の一部分や、第1及び第2コアシャフトの一部分には、親水性または疎水性を有するコーティングが施されていてもよい。例えば、ガイドワイヤは、第1コアシャフトの先端側の一部分が、予め湾曲された状態で製品化されてもよい。例えば、ガイドワイヤは、上述しない他の構成を有していてもよい。
 例えば、第1コアシャフトにおいて、非線形擬弾性領域A1(細径部11、テーパ部12、第1太径部13)と、線形擬弾性領域A2(第2太径部14)とは、化学量論組成が相違してもよい。例えば、第1コアシャフトにおいて、線形擬弾性領域A2の長手方向における長さL2は、非線形擬弾性領域A1の長手方向における長さL1の、1/4より大きくてもよい。長さL2を長さL1の1/4より大きくすれば、ガイドワイヤ1,1A~1Dの血管選択性、柔軟性、及び復元性に代えて、ガイドワイヤ1,1A~1Dの操作性を向上できる。
 [変形例2]
 上記第1実施形態では、ガイドワイヤ1の製造方法について、一例(図5)及び他の例(図6)を示した。これらの製造方法は、第2,第3実施形態のガイドワイヤ1A,1Bについても同様に適用可能である。また、ガイドワイヤの製造方法は、種々の変更が可能である。例えば、第1コアシャフト10zに代えて、全体が非線形擬弾性(超弾性)を有する第1コアシャフト10yを準備してもよい。この場合、溶接工程に先立って、第1コアシャフト10yの基端側の一部分(具体的には、線形擬弾性領域A2を形成したい部分)に対して、塑性加工(例えば、スウェージング加工、プレス加工、ダイス加工等)を施す。これにより、非線形擬弾性を線形擬弾性に変化させることで、基端側の一部分に線形擬弾性領域A2を有する第1コアシャフト10を形成してもよい。このようにしても、図5及び図6で説明した製造方法と同様の効果を奏することができる。
 [変形例3]
 第1~3実施形態のガイドワイヤの構成、及び上記変形例1,2のガイドワイヤの構成は、適宜組み合わせてもよい。例えば、第2,第3実施形態で説明した構成において、変形例1で説明した境界面の形状を採用してもよい。例えば、第2,第3実施形態で説明したガイドワイヤを、変形例2で説明した方法により製造してもよい。
 以上、実施形態、変形例に基づき本態様について説明してきたが、上記した態様の実施の形態は、本態様の理解を容易にするためのものであり、本態様を限定するものではない。本態様は、その趣旨並びに特許請求の範囲を逸脱することなく、変更、改良され得ると共に、本態様にはその等価物が含まれる。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することができる。
  1,1A,1B…ガイドワイヤ
  1x…ガイドワイヤ(比較例)
  10,10A,10B…第1コアシャフト
  10x…第1コアシャフト(比較例)
  11…細径部
  12…テーパ部
  13…第1太径部
  14,14A…第2太径部
  15…第2テーパ部
  16…第3太径部
  20,20A,20B…第2コアシャフト
  21…細径部
  22…テーパ部
  23,23A…太径部
  30,30A…溶接部
  30x…溶接部(比較例)
  40,40B…コイル体
  41…素線
  51…先端固定部
  52,52B…基端固定部
  53…中間固定部
  131…基端面
  141…先端面
  A1…非線形擬弾性領域
  A2…線形擬弾性領域
  A3…第2コアシャフト領域

Claims (6)

  1.  ガイドワイヤであって、
     先端側に配置された第1コアシャフトと、
     前記第1コアシャフトよりも基端側に配置された、前記第1コアシャフトよりも硬度の大きい第2コアシャフトと、
    を備え、
     前記第1コアシャフトには、先端側から基端側に向かって、非線形擬弾性を有する非線形擬弾性領域と、線形擬弾性を有する線形擬弾性領域とが隣接して設けられており、
     前記非線形擬弾性領域と前記線形擬弾性領域との境界には溶接部が形成されておらず、
     前記線形擬弾性領域の基端部と前記第2コアシャフトの先端部との間には、前記第1コアシャフトと前記第2コアシャフトとの溶接部が形成されている、ガイドワイヤ。
  2.  請求項1に記載のガイドワイヤであって、
     前記第1コアシャフトにおいて、前記非線形擬弾性領域と前記線形擬弾性領域とは、化学量論組成が実質的に同じである、ガイドワイヤ。
  3.  請求項1または請求項2に記載のガイドワイヤであって、
     前記第1コアシャフトにおいて、前記線形擬弾性領域の長手方向における長さは、前記非線形擬弾性領域の長手方向における長さの1/4以下である、ガイドワイヤ。
  4.  請求項1から請求項3のいずれか一項に記載のガイドワイヤであって、
     前記第1コアシャフトにおいて、前記線形擬弾性領域の硬度は、前記非線形擬弾性領域の硬度よりも大きい、ガイドワイヤ。
  5.  ガイドワイヤの製造方法であって、
     線形擬弾性を有する第1コアシャフトと、前記第1コアシャフトよりも硬度の大きい第2コアシャフトと、を準備する準備工程と、
     前記第1コアシャフトの基端部に、前記第2コアシャフトの先端部を溶接する溶接工程と、
     前記第1コアシャフトの先端側の一部分を加熱処理することにより、前記第1コアシャフトの先端側に、非線形擬弾性を有する非線形擬弾性領域を形成する加熱処理工程と、
    を含む、ガイドワイヤの製造方法。
  6.  請求項5に記載のガイドワイヤの製造方法であって、
     前記加熱処理工程を行った後、前記溶接工程を実行する、ガイドワイヤの製造方法。
PCT/JP2022/046362 2021-12-22 2022-12-16 ガイドワイヤ、及び、ガイドワイヤの製造方法 WO2023120406A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021208107A JP2023092856A (ja) 2021-12-22 2021-12-22 ガイドワイヤ、及び、ガイドワイヤの製造方法
JP2021-208107 2021-12-22

Publications (1)

Publication Number Publication Date
WO2023120406A1 true WO2023120406A1 (ja) 2023-06-29

Family

ID=86902606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046362 WO2023120406A1 (ja) 2021-12-22 2022-12-16 ガイドワイヤ、及び、ガイドワイヤの製造方法

Country Status (2)

Country Link
JP (1) JP2023092856A (ja)
WO (1) WO2023120406A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02289267A (ja) * 1989-04-28 1990-11-29 Tokin Corp カテーテルガイドワイヤの芯材及びカテーテルガイドワイヤ
JP2003159333A (ja) * 2001-11-27 2003-06-03 Tokusen Kogyo Co Ltd 医療用ガイドワイヤ用芯材および医療用ガイドワイヤ
JP2004181089A (ja) * 2002-12-05 2004-07-02 Terumo Corp ガイドワイヤ
JP2008237253A (ja) * 2007-03-23 2008-10-09 Terumo Corp ガイドワイヤ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02289267A (ja) * 1989-04-28 1990-11-29 Tokin Corp カテーテルガイドワイヤの芯材及びカテーテルガイドワイヤ
JP2003159333A (ja) * 2001-11-27 2003-06-03 Tokusen Kogyo Co Ltd 医療用ガイドワイヤ用芯材および医療用ガイドワイヤ
JP2004181089A (ja) * 2002-12-05 2004-07-02 Terumo Corp ガイドワイヤ
JP2008237253A (ja) * 2007-03-23 2008-10-09 Terumo Corp ガイドワイヤ

Also Published As

Publication number Publication date
JP2023092856A (ja) 2023-07-04

Similar Documents

Publication Publication Date Title
EP2586483A1 (en) Guidewire
WO2016047499A1 (ja) ガイドワイヤ
US20220176083A1 (en) Guide wire and method for manufacturing guide wire
JP7269934B2 (ja) ガイドワイヤ
JP2015177847A (ja) ガイドワイヤ
WO2023120406A1 (ja) ガイドワイヤ、及び、ガイドワイヤの製造方法
JP7175311B2 (ja) ガイドワイヤ及びガイドワイヤを製造する方法
JP2022078561A (ja) ガイドワイヤ
CN117136085A (zh) 医疗用线材以及导丝
JP7184890B2 (ja) ガイドワイヤ
WO2022137367A1 (ja) ガイドワイヤ
WO2021181936A1 (ja) ガイドワイヤ
JP7021350B2 (ja) ガイドワイヤ
JP2022166396A (ja) ガイドワイヤ
JP7509922B2 (ja) ガイドワイヤ
JP7389123B2 (ja) ガイドワイヤ
JP7261879B2 (ja) ガイドワイヤ
WO2024116318A1 (ja) 医療デバイス
WO2024117123A1 (ja) 医療デバイス用シャフト、及び、医療デバイス
WO2021224984A1 (ja) ガイドワイヤ
CN112312954A (zh) 导丝
JP2020137854A (ja) ガイドワイヤ
JP2018187225A (ja) ガイドワイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911110

Country of ref document: EP

Kind code of ref document: A1