WO2023116019A1 - 一种磷酸铁锂材料及其制备方法 - Google Patents

一种磷酸铁锂材料及其制备方法 Download PDF

Info

Publication number
WO2023116019A1
WO2023116019A1 PCT/CN2022/115295 CN2022115295W WO2023116019A1 WO 2023116019 A1 WO2023116019 A1 WO 2023116019A1 CN 2022115295 W CN2022115295 W CN 2022115295W WO 2023116019 A1 WO2023116019 A1 WO 2023116019A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
phosphoric acid
preparation
iron phosphate
source
Prior art date
Application number
PCT/CN2022/115295
Other languages
English (en)
French (fr)
Inventor
钟应声
余海军
谢英豪
李爱霞
秦存鹏
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
宜昌邦普时代新能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 宜昌邦普时代新能源有限公司 filed Critical 广东邦普循环科技有限公司
Priority to HU2400068A priority Critical patent/HUP2400068A1/hu
Priority to DE112022000945.4T priority patent/DE112022000945T5/de
Priority to GB2309619.1A priority patent/GB2616238A/en
Priority to US18/288,687 priority patent/US12098072B2/en
Priority to MA62188A priority patent/MA62188A1/fr
Publication of WO2023116019A1 publication Critical patent/WO2023116019A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium ion battery materials, in particular to a lithium iron phosphate material and a preparation method thereof.
  • lithium iron phosphate Ferous lithium phosphate, LiFePO 4 , LFP
  • the lithium iron phosphate material accounts for more than 40% of the cost of lithium iron phosphate batteries, and has a pivotal position.
  • lithium iron phosphate material is one of the core materials of current lithium-ion batteries.
  • the output and installed capacity of lithium iron phosphate batteries in my country will reach more than 50% in the middle of the year.
  • Lithium iron phosphate batteries are expected to account for more than half of the battery types used in passenger vehicles.
  • global shipments of lithium iron phosphate batteries will exceed 550GWh, and the demand for lithium iron phosphate materials will exceed 120wt, reaching an average annual growth rate of more than 60%. .
  • the current main methods are: on the one hand, through efficient recycling of discarded lithium iron phosphate batteries, to obtain excellent phosphoric acid and new lithium resources. strategies to achieve low pollution to the environment and high returns on resources; on the other hand, to utilize the abundant phosphorus and lithium resources in my country and other parts of the world to expand from the source of required material resources and increase production. Therefore, it is particularly important to research and develop phosphorus and lithium resources, especially to study and synthesize lithium iron phosphate precursors and lithium iron phosphate materials based on my country's abundant phosphorus resources.
  • the existing preparation methods of lithium iron phosphate materials are mostly dry-mixing process. Although this process is simple, the electrochemical performance of the prepared lithium iron phosphate material is poor, which cannot meet the increasingly high quality requirements of the market for electrode materials. .
  • the present invention aims to solve at least one of the technical problems existing in the prior art. Therefore, the present invention proposes a lithium iron phosphate material and a preparation method thereof.
  • the lithium iron phosphate material prepared by the method has better electrochemical properties and can meet the increasingly higher quality requirements of the market for electrode materials.
  • a preparation method of lithium iron phosphate material comprising the following steps: (1) mixing a zinc source, a copper source and a complexing agent solution, then mixing with an iron source and a phosphoric acid source, evaporating and dehydrating to obtain a jelly, and then mixing the jelly
  • the solid-phase material is obtained by sintering once under a protective atmosphere; (2) the solid-phase material prepared in step (1) is mixed with a lithium source, ground, and sintered twice under a protective atmosphere to obtain.
  • the complexing agent solution is obtained by mixing citric acid solution and acetylacetone, the concentration of citric acid in the citric acid solution is 1-20w/w%, and the ratio of acetylacetone to the citric acid solution is 1-12v/v%.
  • the mass of the zinc source accounts for 0.1-5w/w% of the citric acid solution
  • the mass of the copper source accounts for 0.1-5w/w% of the citric acid solution.
  • the molar ratio of phosphoric acid, iron, and lithium in the phosphoric acid, iron source, and lithium source is (1.0-1.2):(1.0-1.05):(1.0-1.01).
  • the sintering temperature of the first sintering and the second sintering is 600-950°C, and the sintering time is 6-15h.
  • the particle size of the ground material in step (2) is ⁇ 80 ⁇ m.
  • the lithium source is at least one of lithium hydroxide, lithium carbonate, lithium nitrate and lithium chloride.
  • the phosphoric acid source is at least one of phosphoric acid, ammonium phosphate, potassium phosphate, lithium phosphate, ammonium dihydrogen phosphate, sodium dihydrogen phosphate and potassium dihydrogen phosphate.
  • the protective atmosphere described in step 1 is at least one of Ne, Ar, Kr, and He.
  • the iron source is at least one of ferrous chloride, ferrous sulfate and ferrous hydroxide.
  • the phosphoric acid source is phosphoric acid
  • the phosphoric acid is prepared from phosphorous concentrate.
  • the preparation method of said phosphoric acid comprises the following steps:
  • A1 Preparation of crude phosphoric acid: add the first acid to the phosphate concentrate for activation reaction, then add the second acid, leaching, pressure filtration, after obtaining the filtrate, add water to adjust the concentration to obtain crude phosphoric acid.
  • A2 Preparation of phosphoric acid: add leaching agent to crude phosphoric acid, mix and leaching, oscillate, and separate to obtain primary leaching liquid and impurity liquid. Secondary extraction solution, pickling the secondary extraction solution to obtain secondary phosphoric acid, and then repeatedly extracting secondary phosphoric acid and acid washing (3-8 times) to obtain the required phosphoric acid.
  • the mass proportion of P 2 O 5 in the phosphorous concentrate described in step A1 is ⁇ 24%.
  • the first acid described in step A1 is at least one of formic acid, acetic acid and phosphoric acid.
  • the metering ratio (kg/L) of phosphorous concentrate to the first acid used in the activation reaction in step A1 is (0.1-15):(0.2-30).
  • the second acid described in step A1 is hydrochloric acid with a concentration of 5.0-37.5w/w%.
  • the metering ratio (kg/L) of phosphorous concentrate to the second acid in step A1 is (0.1-15):(0.2-100).
  • the leaching temperature in step A1 is 35-70°C.
  • the concentration of phosphoric acid in the obtained crude phosphoric acid is 1-30%.
  • the extraction agent described in step A2 is obtained by mixing propyl acetate/propyl formate and diisopropyl ether according to the volume ratio (0.5-5):(0.5-3).
  • the leaching described in step A2 is leaching after mixing the crude phosphoric acid and the leaching agent according to the volume ratio (1-2):(3-20).
  • the acid washing described in step A2 is to mix the deionized water and the extract solution according to the volume ratio of 1: (1-5), shake for 1-10min, and let stand for 5-30min, the lower liquid is the phosphoric acid solution .
  • the impurity content in the phosphoric acid prepared in step A2 Ca ⁇ 0.01%, Mg ⁇ 0.02%, Al ⁇ 0.02%.
  • the zinc source is at least one of zinc oxide, zinc hydroxide, zinc chloride and zinc sulfate.
  • the copper source is at least one of copper oxide, copper hydroxide, copper chloride and copper sulfate.
  • a lithium iron phosphate material prepared by the above-mentioned preparation method.
  • the preparation method of the lithium iron phosphate material of the present invention uses a specific complexing agent to mix the zinc source, the copper source, the phosphoric acid and the iron source and then sinters it into a solid phase, and then mixes it with the lithium source and sinters it to prepare zinc/
  • the copper-doped bark porous lithium iron phosphate material makes it have a larger surface area and more abundant lithium ion binding sites, thereby increasing the chemical reaction sites for electrochemical reactions.
  • the structure is stable and can make lithium iron phosphate and
  • the contact range between the electrolytes is expanded, and the synthesized lithium iron phosphate has a corresponding increase in its lithium storage sites, and at the same time shortens the lithium ion diffusion path, and improves the lithium ion deintercalation rate during charge and discharge, so that it has better performance.
  • Electrochemical performance can meet the market's increasingly high quality requirements for electrode materials;
  • the phosphorus source used in the preparation method of the lithium iron phosphate material of the present invention is obtained from phosphorus concentrate, and the phosphoric acid in the crude phosphoric acid is leached by using a specific leaching agent, so that there are few impurities in the prepared phosphoric acid , high purity, good separation effect, and only leaching agent and deionized water are needed for leaching phosphoric acid at the same time.
  • the production process and equipment are relatively simple, continuous operation is possible, the production capacity is large, and it is suitable for industrial production.
  • Fig. 1 is the SEM figure of the lithium iron phosphate material of embodiment 2;
  • Example 2 is an SEM image of the lithium iron phosphate material of Example 5.
  • a preparation method of lithium iron phosphate material comprising the following steps:
  • step (3) Add 1mL acetylacetone, 0.05g cupric chloride, 0.35g zinc chloride to 20mL 17.3w/w% citric acid, mix to obtain citric acid solution, then add 5.5mL of phosphoric acid prepared in step (2), 50mL of 1.45mol/L ferrous sulfate solution, mixed evenly, evaporated and dehydrated to obtain a jelly, charged with Ar, sintered the jelly in a tube furnace at 640°C for 12h, then cooled to obtain a solid phase.
  • step (3) Mix the solid phase obtained in step (3) with 110mL of 0.708mol/L lithium hydroxide solution evenly, send it to the drying box for dehydration, obtain the solid phase, grind it, and charge it with Ar in the tubular Sinter in a furnace at 710°C for 7 hours and anneal to obtain lithium iron phosphate material.
  • a lithium iron phosphate material prepared by the above preparation method.
  • a preparation method of lithium iron phosphate material comprising the following steps:
  • step (3) Mix the solid phase obtained in step (3) with 1L of 0.708mol/L lithium hydroxide solution evenly, send it to a drying oven for dehydration, obtain the solid phase, grind it, and charge it with Ar in a tubular Sinter in a furnace at 710°C for 7 hours and anneal to obtain lithium iron phosphate material.
  • a lithium iron phosphate material prepared by the above preparation method.
  • a preparation method of lithium iron phosphate material comprising the following steps:
  • Preparation of phosphoric acid take 9.4L of crude phosphoric acid solution prepared in step (1) and 15L of extraction agent (propyl acetate:diisopropyl ether volume ratio 2.2:1.0) for mixing and extraction, and send to the oscillator , shake for 15 minutes, stand still, and separate to obtain about 15.3L of the upper layer of the 1st leaching liquid and 9L of the lower layer of impurity liquid.
  • Hypophosphorous acid was repeated 4 times with the above leaching agent leaching and deionized acid washing to obtain 5 hypophosphoric acid, and then evaporated and dehydrated at 107°C to obtain about 90 mL of phosphoric acid.
  • step (3) Add 2mL of acetylacetone, 0.1g of copper chloride, and 0.25g of zinc chloride to 25mL of 17.3w/w% citric acid, mix to obtain a citric acid solution, then add 5mL of phosphoric acid prepared in step (2), 50mL of 1.45 mol/L ferrous sulfate solution, mixed evenly, evaporated and dehydrated to obtain a jelly, charged with Ar, sintered the jelly in a tube furnace at 670°C for 6 hours, and cooled to obtain a solid phase.
  • step (3) Mix the solid phase obtained in step (3) with 105ml of 0.708mol/L lithium hydroxide solution evenly, send it to the drying box for dehydration, obtain the solid phase, grind it, charge it under Ar, charge it under Ar , sintered in a tube furnace at 710°C for 7h, and annealed to obtain lithium iron phosphate material.
  • a lithium iron phosphate material prepared by the above preparation method.
  • a preparation method of lithium iron phosphate material comprising the following steps:
  • step (3) Add 3mL acetylacetone, 0.1g copper sulfate, 0.2g zinc sulfate to 25mL 17.3w/w% citric acid, mix to obtain citric acid solution, then add 5mL phosphoric acid prepared in step (2), 50mL 1.45mol /L of ferrous sulfate solution, mixed evenly, evaporated and dehydrated to obtain jelly, under Ar charging, sintered the jelly in a tube furnace at 650°C for 7.5h, then cooled to obtain solid phase.
  • step (3) Mix the solid phase obtained in step (3) with 110mL of 0.708mol/L lithium hydroxide solution evenly, send it to the drying box for dehydration, obtain the solid phase, grind it, and charge it with Ar in the tubular Sinter in a furnace at 630°C for 8 hours and anneal to obtain lithium iron phosphate material.
  • a lithium iron phosphate material prepared by the above preparation method.
  • a preparation method of lithium iron phosphate material comprising the following steps:
  • Preparation of phosphoric acid take 9.9L of crude phosphoric acid solution prepared in step (1) and 18L of extraction agent (propyl acetate:diisopropyl ether volume ratio 2.5:1.3) for mixing and extraction, and send to the oscillator , shake for 15 minutes, stand still, and separate to obtain about 18.2L of the first leaching liquid of the upper layer and 9.7L of the impurity liquid of the lower layer.
  • the 1st leaching liquid is mixed with 3.8L of deionized water and sent to the oscillator, washed with acid to obtain the first phosphoric acid of the lower layer.
  • step (3) Add 3mL acetylacetone, 0.1g copper sulfate, 0.3g zinc sulfate to 30mL 17.3w/w% citric acid and mix to obtain citric acid solution, then add 5.5mL phosphoric acid prepared in step (2), 52mL 1.45mol /L of ferrous sulfate solution, mixed evenly, evaporated and dehydrated to obtain jelly, under Ar charging, sintered the jelly in a tube furnace at 650°C for 7.5h, then cooled to obtain solid phase.
  • step (3) Mix the solid phase obtained in step (3) with 115mL of 0.708mol/L lithium hydroxide solution evenly, send it to the oven for dehydration, obtain the solid phase, grind it, fill it with Ar, Sinter in a furnace at 630°C for 8 hours and anneal to obtain lithium iron phosphate material.
  • a lithium iron phosphate material prepared by the above preparation method.
  • a preparation method of lithium iron phosphate material comprising the following steps:
  • Preparation of phosphoric acid take 9.2L of crude phosphoric acid solution prepared in step (1) and 14L of extraction agent (propyl acetate:diisopropyl ether volume ratio 2:0.6 mixed) to mix and extract, and send to the shaker , shake for 15 minutes, stand still, and separate to obtain about 14.2L of the first leaching liquid of the upper layer and 9.1L of the impurity liquid of the lower layer.
  • extraction agent propyl acetate:diisopropyl ether volume ratio 2:0.6 mixed
  • step (3) Mix 5 mL of phosphoric acid prepared in step (2) and 50 mL of 1.45 mol/L ferrous sulfate solution evenly, evaporate and dehydrate to obtain a solid substance, and sinter the solid substance in a tube furnace at 740 ° C for 7.5 After h, the temperature was lowered to obtain a solid phase.
  • step (3) Mix the solid phase obtained in step (3) with 110mL of 0.708mol/L lithium hydroxide evenly, send it to the oven for dehydration, obtain the solid phase, grind it, and charge it with Ar in a tube furnace Sintering at 680°C for 10 hours and annealing to obtain lithium iron phosphate material.
  • a lithium iron phosphate material prepared by the above preparation method.
  • a preparation method of lithium iron phosphate material comprising the following steps:
  • step (3) In 30mL of 17.3w/w% citric acid, add 5mL of phosphoric acid prepared in step (2), and mix evenly with 50mL of 1.45mol/L ferrous sulfate solution, evaporate and dehydrate to obtain a colloidal substance, and charge it under Ar.
  • the colloidal substance was sintered in a tube furnace at 650° C. for 7.5 hours, and the temperature was lowered to obtain a solid phase.
  • step (3) Mix the solid phase obtained in step (3) with 110mL of 0.708mol/L lithium hydroxide solution evenly, and send it to a drying box to obtain the solid phase, grind it, and charge it with Ar in a tube furnace Sintering at 680°C for 10 hours and annealing to obtain lithium iron phosphate material.
  • a lithium iron phosphate material prepared by the above preparation method.
  • test result is shown in Table 1, simultaneously the phosphoric acid that embodiment 1-5 and comparative example 1-2 make The lithium iron material was used as the positive electrode material of the battery to make a button battery, and then the electrochemical performance of the button battery was tested.
  • the test results are shown in Table 2.
  • Table 1 The impurity content in the crude phosphoric acid and phosphoric acid that make in embodiment 1-5 and comparative example 1-2
  • Example 2 the SEM test was performed on the lithium iron phosphate material in Example 2, and the test results are shown in FIG. 1 .
  • the SEM test was performed on the lithium iron phosphate material in Example 5, and the test results are shown in FIG. 2 .
  • the specific surface area of the lithium iron phosphate material prepared by the preparation method of the lithium iron phosphate material of the present application can reach 1.2m 2 /g or more, and at the same time, the phosphoric acid obtained by the preparation method of the lithium iron phosphate material of the present application
  • the first discharge specific capacity of the battery can reach 146.9mAh g -1 and above.
  • the discharge specific capacity is still 124.6mAh g -1 and above, and its first coulombic efficiency At 80.4% and above, after 100 cycles, its Coulombic efficiency can still reach 95.8% and above.
  • Example 1 Compared Example 1 with Comparative Examples 1-2, it can be seen that when the zinc source and the copper source are not mixed with the specific complexing agent of the present invention during the preparation of the lithium iron phosphate material, the ratio of the prepared lithium iron phosphate material is The surface area will be greatly reduced, and after the lithium iron phosphate material is assembled into a battery, the performance of the battery will also be greatly reduced.
  • Comparative Example 1 Comparative Example 2
  • the crude phosphoric acid solution is obtained by leaching with hydrochloric acid from phosphorous concentrate
  • the specific leaching agent in the description of the present invention, calcium, magnesium, Impurities such as aluminum will be greatly reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Powder Metallurgy (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种磷酸铁锂材料的制备方法,包括以下步骤:(1)将锌源、铜源及络合剂溶液混合,再与铁源及磷酸源混合,蒸发脱水得到胶状物,然后将胶状物在保护气氛下1次烧结得到固相物;(2)将步骤(1)制得的固相物与锂源混合后,研磨,保护气氛下2次烧结,即得。该方法制备得到的磷酸铁锂材料具有较好的电化学性能,能满足市场对电极材料越来越高的质量要求。

Description

一种磷酸铁锂材料及其制备方法 技术领域
本发明属于锂离子电池材料技术领域,特别涉及一种磷酸铁锂材料及其制备方法。
背景技术
近十年来,以锂离子电池为支撑的新能源产业技术发展迅速,取得了巨大的商业成功。在各种锂离子电池技术中,磷酸铁锂(Ferrous lithium phosphate,LiFePO 4,LFP)电池以其优异的安全性能、长循环稳定性和经济性在电力储能、电动交通中发挥着关键作用。而磷酸铁锂材料在磷酸铁锂电池的成本中占比超过4成,具有举足轻重的位置。
不可否认,磷酸铁锂材料是当下锂离子电池的主材料的核心之一,2021年我国磷酸铁锂电池产量、装机量均在年中达到了50%以上,预计在2022-2023年乘用车磷酸铁锂电池占乘用车用电池类型比率有望超过一半,在2024年,全球磷酸铁锂电池出货将超过550GWh,磷酸铁锂材料需求量可突破120wt,达到60%以上的年均增长率。为满足当前以及未来磷酸铁锂材料消费需求量,解决磷酸铁锂电池上下游供需矛盾,当前主要方法有:一方面通过高效回收废弃的磷酸铁锂电池、从中获得优异的磷酸、锂资源的新策略,达到对环境的低污染、资源的高收益的目的;另一方面,发挥我国以及全球其他地区储量丰富的磷、锂资源,从所需材料资源的源头上扩增,提高产量。因此研究开发磷、锂资源,尤其是基于我国丰富的磷资源来研究合成磷酸铁锂前驱体、磷酸铁锂材料尤为重要。
现有的磷酸铁锂材料的制备方法多为干混工艺,这种工艺虽然简单,但是制备得到的磷酸铁锂材料的电化学性能较差,不能满足市场对电极材料越来越高的质量要求。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种磷酸铁锂材料及其制备方法,通过该方法制备得到的磷酸铁锂材料具有较好的电化学性能,能满足市场对电极材料越来越高的质量要求。
本发明的上述技术目的是通过以下技术方案得以实现的:
一种磷酸铁锂材料的制备方法,包括以下步骤:(1)将锌源、铜源及络合剂溶液混合,再与铁源及磷酸源混合,蒸发脱水得到胶状物,然后将胶状物在保护气氛下1次烧结得到固相物;(2)将步骤(1)制得的固相物与锂源混合后,研磨,保护气氛下2次烧结,即得。
优选的,所述络合剂溶液为柠檬酸溶液与乙酰丙酮混合得到,所述柠檬酸溶液中柠檬酸的浓度为1-20w/w%,所述乙酰丙酮占所述柠檬酸溶液的比为1-12v/v%。
优选的,所述锌源的质量占所述柠檬酸溶液的0.1-5w/w%,所述铜源的质量占所述柠檬 酸溶液的0.1-5w/w%。
优选的,所述磷酸、铁源、锂源中磷酸、铁、锂物质的摩尔量比为(1.0-1.2):(1.0-1.05):(1.0-1.01)。
优选的,所述1次烧结及2次烧结的烧结温度为600-950℃,烧结时间为6-15h。
优选的,步骤(2)中研磨后物料的粒度<80μm。
优选的,所述锂源为氢氧化锂、碳酸锂、硝酸锂及氯化锂中的至少一种。
优选的,所述磷酸源为磷酸、磷酸铵、磷酸钾、磷酸锂、磷酸二氢铵、磷酸二氢钠及磷酸二氢钾中的至少一种。
优选的,步骤1中所述的保护气氛为Ne、Ar、Kr、He中的至少一种。
优选的,所述铁源为氯化亚铁、硫酸亚铁及氢氧化亚铁中的至少一种。
优选的,所述磷酸源为磷酸,所述磷酸为从磷精矿中制备得到。
进一步优选的,所述磷酸的制备方法包括以下步骤:
A1:制备粗磷酸:在磷精矿中加第一酸进行活化反应,然后再加入第二酸,浸出,压滤,得到滤液后加水调浓度得到粗磷酸。
A2:制备磷酸:在粗磷酸中加入浸提剂混合浸提、振荡,分离得到一次浸提液以及杂质液,一次浸提液洗酸得到一次磷酸,一次磷酸进行二次浸提、振荡分离得到二次浸提液,酸洗二次浸提液得到二次磷酸,然后将二次磷酸重复浸提、洗酸(3-8次),得到所需要求的磷酸。
优选的,步骤A1中所述磷精矿中P 2O 5的质量占比≥24%。
优选的,步骤A1中所述第一酸为甲酸、乙酸及磷酸中的至少一种。
优选的,步骤A1中所述活化反应用到的磷精矿与第一酸计量比(kg/L)为(0.1-15):(0.2-30)。
优选的,步骤A1中所述第二酸为盐酸,浓度为5.0-37.5w/w%。
优选的,步骤A1中所述磷精矿与第二酸计量比(kg/L)为(0.1-15):(0.2-100)。
优选的,步骤A1中浸出的温度为35-70℃。
优选的,步骤A1中加水调浓度后,得到的粗磷酸中磷酸浓度在1-30%。
优选的,步骤A2中所述的浸提剂为乙酸丙酯/甲酸丙酯与二异丙醚按照体积比(0.5-5):(0.5-3)混合得到。
优选的,步骤A2中所述的浸提是将粗磷酸与浸提剂按照体积比(1-2):(3-20)混合后浸提。
优选的,步骤A2中所述的洗酸为将去离子水与浸提液按照体积比1:(1-5)混合后,振荡1-10min,静置5-30min,下层液体即为磷酸溶液。
优选的,步骤A2制得的磷酸中杂质含量:Ca<0.01%,Mg<0.02%,Al<0.02%。
优选的,所述锌源为氧化锌、氢氧化锌、氯化锌及硫酸锌中的至少一种。
优选的,所述铜源为氧化铜、氢氧化铜、氯化铜及硫酸铜中的至少一种。
一种磷酸铁锂材料,由如上所述的制备方法制备得到。
本发明的有益效果是:
(1)本发明磷酸铁锂材料的制备方法通过使用特定的络合剂将锌源、铜源与磷酸及铁源混合后烧结成固相物,再与锂源混合后烧结,制备得到锌/铜掺杂型的树皮多孔状磷酸铁锂材料,使得其具有较大的表面积,锂离子结合位点更丰富,从而增加电化学反应的化学反应位点,结构稳定,能使得磷酸铁锂和电解质之间的接触范围扩大,合成的磷酸铁锂,其储锂位点也相应的增加,同时缩短锂离子扩散路径,提高了充放电时锂离子的脱嵌速率,从而使得其具有较好的电化学性能,能满足市场对电极材料越来越高的质量要求;
(2)本发明磷酸铁锂材料的制备方法中使用的磷源从磷精矿中制得,通过使用特定的浸提剂对粗磷酸中的磷酸进行浸提,使得制得的磷酸中杂质少,纯度高,分离效果好,同时浸提磷酸仅需要浸提剂及去离子水,生产工艺和设备比较简单,可以连续操作、生产能力大、适合工业化生产。
附图说明
图1为实施例2的磷酸铁锂材料的SEM图;
图2为实施例5的磷酸铁锂材料的SEM图。
具体实施方式
下面结合具体实施例对本发明做进一步的说明。
实施例1:
一种磷酸铁锂材料的制备方法,包括以下步骤:
(1)制备粗磷酸:称取0.5kg磷精矿,磷精矿中P 2O 5计的质量占比为27.3%,与1.2L14.7w/w%的乙酸混合,进行活化反应,加入6.2L 26.5w/w%的盐酸浸出,浸出温度为39℃,压滤,得到滤液加2.1L水调浓度得到8.3L粗磷酸溶液。
(2)制备磷酸:取步骤(1)制备得到的8.3L粗磷酸溶液与12L浸提剂(乙酸丙酯:二异丙醚体积比2:0.5混合)进行混合、浸提,送至振荡器,振荡15min,静置,分离得到约12.4L上层1次浸提液以及7.9L下层杂质液,1次浸提液加3L去离子水混合送至振荡器、洗酸得到下层的1次磷酸,1次磷酸再重复6次上述的浸提剂浸提、去离子水洗酸,得到7次 磷酸,再在107℃进行蒸发脱水得到约91mL的磷酸。
(3)在20mL 17.3w/w%的柠檬酸中加入1mL乙酰丙酮、0.05g氯化铜、0.35g氯化锌,混合得到柠檬酸溶液,再加入5.5mL步骤(2)制得的磷酸、50mL 1.45mol/L的硫酸亚铁溶液,混合均匀后蒸发脱水得到胶状物,充Ar下,将胶状物在管式炉中640℃烧结12h后,降温得到固相物。
(4)将步骤(3)制得的固相物与110mL 0.708mol/L的氢氧化锂溶液混合均匀、送至烘干箱脱水,得到固相物,进行研磨,充Ar下,在管式炉中710℃烧结7h,退火,得到磷酸铁锂材料。
一种磷酸铁锂材料,由上述制备方法制备得到。
实施例2:
一种磷酸铁锂材料的制备方法,包括以下步骤:
(1)制备粗磷酸:称取0.5kg磷精矿,磷精矿中P 2O 5计的质量占比为27.2%,与1.3L14.7w/w%的乙酸混合,进行活化反应,加入6.3L 26.5w/w%的盐酸浸出,浸出温度为52℃,压滤,得到滤液加2.5L水调浓度得到8.4L粗磷酸溶液。
(2)制备磷酸:取步骤(1)制备得到的8.4L粗磷酸溶液与12.5L浸提剂(乙酸丙酯:二异丙醚体积比2:0.8混合)进行混合、浸提,送至振荡器,振荡15min,静置,分离得到约12.8L上层1次浸提液以及8.1L下层杂质液,1次浸提液加3.5L去离子水混合送至振荡器、洗酸得到下层1次磷酸,1次磷酸再重复5次上述的浸提剂浸提、去离子洗酸,得到7次磷酸,再在107℃进行蒸发脱水得到约91mL的磷酸。
(3)在20mL 17.3w/w%的柠檬酸中加入2mL乙酰丙酮、0.15g氯化铜、0.1g氯化锌,混合得到柠檬酸溶液,再加入5.5mL步骤(2)制得的磷酸、50mL 1.45mol/L的硫酸亚铁溶液,混合均匀后蒸发脱水得到胶状物,充Ar下,将胶状物在管式炉中640℃烧结8h后,降温得到固相物。
(4)将步骤(3)制得的固相物与1L 0.708mol/L的氢氧化锂溶液混合均匀、送至烘干箱脱水,得到固相物,进行研磨,充Ar下,在管式炉中710℃烧结7h,退火,得到磷酸铁锂材料。
一种磷酸铁锂材料,由上述制备方法制备得到。
实施例3:
一种磷酸铁锂材料的制备方法,包括以下步骤:
(1)制备粗磷酸:称取0.5kg磷精矿,磷精矿中P 2O 5计的质量占比为27.4%,与1.4L14.7w/w%的乙酸混合,进行活化反应,加入6.8L 26.5w/w%的盐酸浸出,浸出温度为54℃, 压滤,得到滤液加2.8L水调浓度得到9.4L粗磷酸溶液。
(2)制备磷酸:取步骤(1)制备得到的9.4L粗磷酸溶液与15L浸提剂(乙酸丙酯:二异丙醚体积比2.2:1.0混合)进行混合、浸提,送至振荡器,振荡15min,静置,分离得到约15.3L上层1次浸提液以及9L下层杂质液,1次浸提液加3.6L去离子水混合送至振荡器、洗酸得到下层1次磷酸,1次磷酸再重复4次上述的浸提剂浸提、去离子洗酸,得到5次磷酸,再在107℃进行蒸发脱水得到约90mL的磷酸。
(3)在25mL 17.3w/w%的柠檬酸中加入2mL乙酰丙酮、0.1g氯化铜、0.25g氯化锌,混合得到柠檬酸溶液,再加入5mL步骤(2)制得的磷酸、50mL 1.45mol/L的硫酸亚铁溶液,混合均匀后蒸发脱水得到胶状物,充Ar下,将胶状物在管式炉中670℃烧结6h后,降温得到固相物。
(4)将步骤(3)制得的固相物与105ml 0.708mol/L的氢氧化锂溶液混合均匀、送至烘干箱脱水,得到固相物,进行研磨,充Ar下,充Ar下,在管式炉中710℃烧结7h,退火,得到磷酸铁锂材料。
一种磷酸铁锂材料,由上述制备方法制备得到。
实施例4:
一种磷酸铁锂材料的制备方法,包括以下步骤:
(1)制备粗磷酸:称取0.5kg磷精矿,磷精矿中P 2O 5计的质量占比为27.3%,与1.5L14.7w/w%的乙酸混合,进行活化反应,加入7.3L 26.5w/w%的盐酸浸出,浸出温度为65℃,压滤,得到滤液加2.4L水调浓度得到9.6L粗磷酸溶液。
(2)制备磷酸:取步骤(1)制备得到的9.6L粗磷酸溶液与16L浸提剂(乙酸丙酯:二异丙醚体积比2.4:1.0混合)进行混合、浸提,送至振荡器,振荡15min,静置,分离得到约16.2L上层1次浸提液以及9.4L下层杂质液,1次浸提液加3.8L去离子水混合送至振荡器、洗酸得到下层1次磷酸,1次磷酸再重复7次上述的浸提剂浸提、去离子洗酸,得到8次磷酸,再在107℃进行蒸发脱水得到约89mL的磷酸。
(3)在25mL 17.3w/w%的柠檬酸中加入3mL乙酰丙酮、0.1g硫酸铜、0.2g硫酸锌,混合得到柠檬酸溶液,再加入5mL步骤(2)制得的磷酸、50mL 1.45mol/L的硫酸亚铁溶液,混合均匀后蒸发脱水得到胶状物,充Ar下,将胶状物在管式炉中650℃烧结7.5h后,降温得到固相物。
(4)将步骤(3)制得的固相物与110mL 0.708mol/L的氢氧化锂溶液混合均匀、送至烘干箱脱水,得到固相物,进行研磨,充Ar下,在管式炉中630℃烧结8h,退火,得到磷酸铁锂材料。
一种磷酸铁锂材料,由上述制备方法制备得到。
实施例5:
一种磷酸铁锂材料的制备方法,包括以下步骤:
(1)制备粗磷酸:称取0.5kg磷精矿,磷精矿中P 2O 5计的质量占比为27.3%,与1.0L14.7w/w%的乙酸混合,进行活化反应,加入7.6L 26.5w/w%的盐酸浸出,浸出温度为68℃,压滤,得到滤液加2.5L水调浓度得到9.9L粗磷酸溶液。
(2)制备磷酸:取步骤(1)制备得到的9.9L粗磷酸溶液与18L浸提剂(乙酸丙酯:二异丙醚体积比2.5:1.3混合)进行混合、浸提,送至振荡器,振荡15min,静置,分离得到约18.2L上层1次浸提液以及9.7L下层杂质液,1次浸提液加3.8L去离子水混合送至振荡器、洗酸得到下层1次磷酸,1次磷酸再重复5次上述的浸提剂浸提、去离子洗酸,得到6次磷酸,再在107℃进行蒸发脱水得到约86mL的磷酸。
(3)在30mL 17.3w/w%的柠檬酸中加入3mL乙酰丙酮、0.1g硫酸铜、0.3g硫酸锌混合得到柠檬酸溶液,再加入5.5mL步骤(2)制得的磷酸、52mL 1.45mol/L的硫酸亚铁溶液,混合均匀后蒸发脱水得到胶状物,充Ar下,将胶状物在管式炉中650℃烧结7.5h后,降温得到固相物。
(4)将步骤(3)制得的固相物与115mL 0.708mol/L的氢氧化锂溶液混合均匀、送至烘干箱脱水,得到固相物,进行研磨,充Ar下,在管式炉中630℃烧结8h,退火,得到磷酸铁锂材料。
一种磷酸铁锂材料,由上述制备方法制备得到。
对比例1:
一种磷酸铁锂材料的制备方法,包括以下步骤:
(1)制备粗磷酸:称取0.5kg磷精矿,磷精矿中P 2O 5计的质量占比为27.3%,与1.2L14.7w/w%的乙酸混合,进行活化反应,加入7.3L 26.5w/w%的盐酸浸出,浸出温度约为45℃,压滤,得到滤液加2.5L水调浓度得到9.2L粗磷酸溶液。
(2)制备磷酸:取步骤(1)制备得到的9.2L粗磷酸溶液与14L浸提剂(乙酸丙酯:二异丙醚体积比2:0.6混合)进行混合、浸提,送至振荡器,振荡15min,静置,分离得到约14.2L上层1次浸提液以及9.1L下层杂质液,1次浸提液加3.5L去离子水混合送至振荡器、洗酸得到下层1次磷酸,1次磷酸再重复5次上述的浸提剂浸提、去离子洗酸,得到6次磷酸,再在107℃进行蒸发脱水得到约91mL的磷酸。
(3)将5mL步骤(2)制得的磷酸、溶液50mL 1.45mol/L的硫酸亚铁溶液混合均匀,蒸发脱水得到固体物质,充Ar下,将固体物质在管式炉中740℃烧结7.5h后,降温得到固相物。
(4)将步骤(3)制得的固相物与110mL 0.708mol/L的氢氧化锂混合均匀、送至烘干箱脱水,得到固相物,进行研磨,充Ar下,在管式炉中680℃烧结10h,退火,得到磷酸铁锂材料。
一种磷酸铁锂材料,由上述制备方法制备得到。
对比例2:
一种磷酸铁锂材料的制备方法,包括以下步骤:
(1)制备粗磷酸:称取0.5kg磷精矿,磷精矿中P 2O 5计的质量占比为27.3%,与1.2L14.7w/w%的乙酸混合,进行活化反应,加入7.3L 26.5w/w%的盐酸浸出,浸出温度约为45℃,压滤,得到滤液加2.5L水调浓度得到9.2L粗磷酸溶液。
(2)制备磷酸:取步骤(1)制备得到的9.2L粗磷酸溶液与14L乙酸丙酯进行混合、浸提,送至振荡器,振荡15min,静置,分离得到约14.3L上层1次浸提液以及8.9L下层杂质液,1次浸提液加3.2L去离子水混合送至振荡器、洗酸得到下层1次磷酸,1次磷酸再重复5次上述的浸提剂浸提、去离子洗酸,得到6次磷酸,再在107℃进行蒸发脱水得到约88mL的磷酸。
(3)在30mL 17.3w/w%的柠檬酸中加入5mL步骤(2)制得的磷酸、50mL 1.45mol/L的硫酸亚铁溶液混合均匀,蒸发脱水得到胶状物质,充Ar下,将胶状物质在管式炉中650℃烧结7.5h后,降温得到固相物。
(4)将步骤(3)制得的固相物与110mL 0.708mol/L的氢氧化锂溶液混合均匀、送至烘干箱,得到固相物,进行研磨,充Ar下,在管式炉中680℃烧结10h,退火,得到磷酸铁锂材料。
一种磷酸铁锂材料,由上述制备方法制备得到。
试验例:
对实施例1-5及对比例1-2中制得的粗磷酸及磷酸中的杂质含量进行测试,测试结果见表1,同时将实施例1-5及对比例1-2制得的磷酸铁锂材料作为电池正极材料制作成扣式电池,然后对扣式电池的电化学性能做测试,测试结果见表2。
表1:实施例1-5及对比例1-2中制得的粗磷酸及磷酸中的杂质含量
Figure PCTCN2022115295-appb-000001
Figure PCTCN2022115295-appb-000002
表2:实施例1-5与对比例1-2制得的磷酸铁锂材料电化学性能数据
Figure PCTCN2022115295-appb-000003
同时,对实施例2的磷酸铁锂材料做SEM测试,测试结果如图1所示,对实施例5的磷酸铁锂材料做SEM测试,测试结果如图2所示。
由表2可知,本申请的磷酸铁锂材料的制备方法制备得到的磷酸铁锂材料的比表面积能达到1.2m 2/g及以上,同时本申请的磷酸铁锂材料的制备方法制备得到的磷酸铁锂材料组装成电池后,电池的首次放电比容量能达到146.9mAh·g -1及以上,经过100次循环后,其放电比容量仍在124.6mAh·g -1及以上,其首次库伦效率在80.4%及以上,经过100次循环后,其库伦效率仍然能达到95.8%及以上。
此外,对比实施例1与对比例1-2可知,当磷酸铁锂材料的制备过程中,不通过本发明特定的络合剂混合锌源及铜源时,制得的磷酸铁锂材料的比表面积会大幅下降,磷酸铁锂材料组装成电池后,电池的性能也较大幅度下降。
对比对比例1及对比例2可知,当在从磷精矿中用盐酸浸出得到粗磷酸溶液,当使用本发明说明书中特定的浸提剂时,蒸发脱水后制得的磷酸中钙、镁、铝等杂质会大幅度降低。
此外,由图1、图2可知,实施例2、5的磷酸铁锂材料呈现树皮状疏松多孔的结构,同时图2中显示实施例5的磷酸铁锂材料中夹杂部分20-50μm的球形颗粒。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种磷酸铁锂材料的制备方法,其特征在于,包括以下步骤:
    (1)将锌源、铜源及络合剂溶液混合,再与铁源及磷酸源混合,蒸发脱水得到胶状物,然后将胶状物在保护气氛下1次烧结得到固相物;
    (2)将步骤(1)制得的固相物与锂源混合后,研磨,保护气氛下2次烧结,即得。
  2. 根据权利要求1所述的一种磷酸铁锂材料的制备方法,其特征在于,所述络合剂溶液为柠檬酸溶液与乙酰丙酮混合得到,所述柠檬酸溶液中柠檬酸的浓度为1-20w/w%,所述乙酰丙酮占所述柠檬酸溶液的比为1-12v/v%。
  3. 根据权利要求2所述的一种磷酸铁锂材料的制备方法,其特征在于,所述锌源的质量占所述柠檬酸溶液的0.1-5w/w%,所述铜源的质量占所述柠檬酸溶液的0.1-5w/w%。
  4. 根据权利要求1所述的一种磷酸铁锂材料的制备方法,其特征在于,所述磷酸、铁源、锂源中磷酸、铁、锂物质的摩尔量比为(1.0-1.2):(1.0-1.05):(1.0-1.01)。
  5. 根据权利要求1所述的一种磷酸铁锂材料的制备方法,其特征在于,所述1次烧结及2次烧结的烧结温度为600-950℃,烧结时间为6-15h。
  6. 根据权利要求1所述的一种磷酸铁锂材料的制备方法,其特征在于,步骤(2)中研磨后物料的粒度<80μm。
  7. 根据权利要求1所述的一种磷酸铁锂材料的制备方法,其特征在于,所述锂源为氢氧化锂、碳酸锂、硝酸锂及氯化锂中的至少一种。
  8. 根据权利要求1所述的一种磷酸铁锂材料的制备方法,其特征在于,所述磷酸源为磷酸、磷酸铵、磷酸钾、磷酸锂、磷酸二氢铵、磷酸二氢钠及磷酸二氢钾中的至少一种。
  9. 根据权利要求8所述的一种磷酸铁锂材料的制备方法,其特征在于,所述磷酸源为磷酸,所述磷酸为从磷精矿中制备得到。
  10. 一种磷酸铁锂材料,其特征在于,由权利要求1-9任一项所述的制备方法制备得到。
PCT/CN2022/115295 2021-12-22 2022-08-26 一种磷酸铁锂材料及其制备方法 WO2023116019A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
HU2400068A HUP2400068A1 (hu) 2021-12-22 2022-08-26 Lítium-vas-foszfát anyag és elõállítási módja
DE112022000945.4T DE112022000945T5 (de) 2021-12-22 2022-08-26 Lithium-eisenphosphat-material und verfahren zu dessen herstellung
GB2309619.1A GB2616238A (en) 2021-12-22 2022-08-26 Lithium iron phosphate material and preparation method therefor
US18/288,687 US12098072B2 (en) 2021-12-22 2022-08-26 Lithium iron phosphate material and preparation method therefor
MA62188A MA62188A1 (fr) 2021-12-22 2022-08-26 Matériau de lithium-fer-phosphate et sa méthode de préparation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111578337.7 2021-12-22
CN202111578337.7A CN114380281B (zh) 2021-12-22 2021-12-22 一种磷酸铁锂材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2023116019A1 true WO2023116019A1 (zh) 2023-06-29

Family

ID=81197699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115295 WO2023116019A1 (zh) 2021-12-22 2022-08-26 一种磷酸铁锂材料及其制备方法

Country Status (6)

Country Link
CN (1) CN114380281B (zh)
DE (1) DE112022000945T5 (zh)
GB (1) GB2616238A (zh)
HU (1) HUP2400068A1 (zh)
MA (1) MA62188A1 (zh)
WO (1) WO2023116019A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114380281B (zh) * 2021-12-22 2023-07-07 广东邦普循环科技有限公司 一种磷酸铁锂材料及其制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1792780A (zh) * 2005-10-27 2006-06-28 复旦大学 一种锌离子掺杂的橄榄石结构LiFePO4及其制备方法和用途
CN101332985A (zh) * 2008-07-31 2008-12-31 福建师范大学 一种掺杂导电磷化物的磷酸亚铁锂正极材料的制备方法
CN101428781A (zh) * 2008-12-08 2009-05-13 广州丰江电池新技术有限公司 一种团聚型纳米结构磷酸铁锂正极材料及其制备方法
CN101508431A (zh) * 2009-03-24 2009-08-19 北京理工大学 一种均分散球形磷酸铁锂的制备方法
CN101593831A (zh) * 2009-06-29 2009-12-02 南开大学 基于磷酸铁的磷酸亚铁锂正极材料的溶胶-凝胶制备方法
CN102751548A (zh) * 2012-06-18 2012-10-24 浙江大学 一种从磷酸铁锂废旧电池中回收制备磷酸铁锂的方法
CN104733728A (zh) * 2013-12-24 2015-06-24 中国电子科技集团公司第十八研究所 高功率型磷酸亚铁锂材料的制备方法
CN106328939A (zh) * 2015-07-08 2017-01-11 浙江大学 一种锂电池电极材料及其制备方法
CN108448070A (zh) * 2018-01-23 2018-08-24 四川大学 金属掺杂磷酸铁锂/碳复合材料及制备方法
CN109148837A (zh) * 2017-06-27 2019-01-04 周霞 一种铜、锌离子共同掺杂的磷酸亚铁锂阴极材料及其制备方法
CN111217346A (zh) * 2019-11-22 2020-06-02 贵州唯特高新能源科技有限公司 一种高性能磷酸亚铁的制备方法
CN114380281A (zh) * 2021-12-22 2022-04-22 广东邦普循环科技有限公司 一种磷酸铁锂材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5231535B2 (ja) * 2007-05-28 2013-07-10 ビーワイディー カンパニー リミテッド リチウムイオン二次電池用の正極活物質としてのリチウムリン酸鉄の調製方法
EP2142473B1 (en) * 2007-07-31 2014-04-02 Byd Company Limited Method for preparing lithium iron phosphate as positive electrode active material for lithium ion secondary battery
CN102020260A (zh) * 2009-07-17 2011-04-20 中国科学院成都有机化学有限公司 一种磷酸铁锂复合材料及其制备方法
WO2014012258A1 (zh) * 2012-07-20 2014-01-23 深圳市德方纳米科技有限公司 一种电池正极材料的自热蒸发液相合成法
CN103066258B (zh) * 2012-12-06 2016-06-01 合肥国轩高科动力能源有限公司 一种高振实密度的钒氧化物与磷酸铁锂复合材料的制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1792780A (zh) * 2005-10-27 2006-06-28 复旦大学 一种锌离子掺杂的橄榄石结构LiFePO4及其制备方法和用途
CN101332985A (zh) * 2008-07-31 2008-12-31 福建师范大学 一种掺杂导电磷化物的磷酸亚铁锂正极材料的制备方法
CN101428781A (zh) * 2008-12-08 2009-05-13 广州丰江电池新技术有限公司 一种团聚型纳米结构磷酸铁锂正极材料及其制备方法
CN101508431A (zh) * 2009-03-24 2009-08-19 北京理工大学 一种均分散球形磷酸铁锂的制备方法
CN101593831A (zh) * 2009-06-29 2009-12-02 南开大学 基于磷酸铁的磷酸亚铁锂正极材料的溶胶-凝胶制备方法
CN102751548A (zh) * 2012-06-18 2012-10-24 浙江大学 一种从磷酸铁锂废旧电池中回收制备磷酸铁锂的方法
CN104733728A (zh) * 2013-12-24 2015-06-24 中国电子科技集团公司第十八研究所 高功率型磷酸亚铁锂材料的制备方法
CN106328939A (zh) * 2015-07-08 2017-01-11 浙江大学 一种锂电池电极材料及其制备方法
CN109148837A (zh) * 2017-06-27 2019-01-04 周霞 一种铜、锌离子共同掺杂的磷酸亚铁锂阴极材料及其制备方法
CN108448070A (zh) * 2018-01-23 2018-08-24 四川大学 金属掺杂磷酸铁锂/碳复合材料及制备方法
CN111217346A (zh) * 2019-11-22 2020-06-02 贵州唯特高新能源科技有限公司 一种高性能磷酸亚铁的制备方法
CN114380281A (zh) * 2021-12-22 2022-04-22 广东邦普循环科技有限公司 一种磷酸铁锂材料及其制备方法

Also Published As

Publication number Publication date
CN114380281B (zh) 2023-07-07
DE112022000945T5 (de) 2023-12-14
CN114380281A (zh) 2022-04-22
GB202309619D0 (en) 2023-08-09
MA62188A1 (fr) 2024-01-31
HUP2400068A1 (hu) 2024-07-28
US20240140799A1 (en) 2024-05-02
GB2616238A (en) 2023-08-30

Similar Documents

Publication Publication Date Title
CN103746115B (zh) 一种利用硫铁矿烧渣制备电池级磷酸铁锂的方法
CN106622116B (zh) 一种尖晶石型锂离子筛的制备方法
CN101339992B (zh) 锂离子电池正极材料硅酸钒锂的制备方法
CN104425820A (zh) 磷酸铁锰锂材料、其制备方法及锂离子电池正极材料
CN111180709A (zh) 碳纳米管、金属铜共掺杂草酸亚铁锂电池复合负极材料及其制备方法
CN115893522B (zh) 一种中空型三元正极材料、前驱体及其制备方法
CN102867957A (zh) 一种球形介孔磷酸铁锂正极材料的制备方法
WO2024125561A1 (zh) 以废弃磷酸铁锂制备碳包覆的氟磷酸铁钠的方法及其应用
WO2023116019A1 (zh) 一种磷酸铁锂材料及其制备方法
CN111463414B (zh) 一种夹层材料及其制备方法和应用
CN114933293A (zh) 氟磷酸钒钠的制备和在钠离子电池中的应用
CN107342407B (zh) 一种多孔碳负载介孔SiOx/C复合负极材料及其制备方法
Sun et al. A novel acid-free leaching route of recovering Li2CO3 and FePO4 from spent LiFePO4 black powder
CN112777611B (zh) 一种菱形相普鲁士蓝衍生物及其制备方法和应用
CN105810943A (zh) 一种利用磷化渣制备锌掺杂磷酸铁锂的方法
WO2023226556A1 (zh) 一种磷酸铁锂的制备方法及其应用
CN104993142A (zh) 磺化石墨烯类锂电池正极添加剂及其应用
CN108682831B (zh) 一种锂电池单质硫-碳复合正极材料的制备方法
CN106654264A (zh) 一种LiFePO4/C多级复合微球的溶剂热辅助制备方法
CN114069083B (zh) 正极边角料回收合成高安全性正极材料的方法和应用
WO2024036906A1 (zh) 一种锂离子电池正极材料及其制备方法
CN110429250A (zh) 一种高比容量钠硫电池正极材料及其制备方法
CN102412399B (zh) 一种磷酸锰锂前躯体的制备方法
CN108539146A (zh) 一种锂离子电池复合正极材料及其制备方法与应用
US12098072B2 (en) Lithium iron phosphate material and preparation method therefor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202309619

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220826

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909344

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112022000945

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: P202390162

Country of ref document: ES

WWE Wipo information: entry into national phase

Ref document number: 18288687

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: P2400068

Country of ref document: HU