WO2023112195A1 - 半導体装置および半導体装置の製造方法 - Google Patents

半導体装置および半導体装置の製造方法 Download PDF

Info

Publication number
WO2023112195A1
WO2023112195A1 PCT/JP2021/046236 JP2021046236W WO2023112195A1 WO 2023112195 A1 WO2023112195 A1 WO 2023112195A1 JP 2021046236 W JP2021046236 W JP 2021046236W WO 2023112195 A1 WO2023112195 A1 WO 2023112195A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
insulating substrate
region
circuit pattern
semiconductor
Prior art date
Application number
PCT/JP2021/046236
Other languages
English (en)
French (fr)
Inventor
佑樹 矢野
毅 松岡
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023567380A priority Critical patent/JPWO2023112195A1/ja
Priority to PCT/JP2021/046236 priority patent/WO2023112195A1/ja
Publication of WO2023112195A1 publication Critical patent/WO2023112195A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N

Definitions

  • the present disclosure relates to a semiconductor device having metal lead electrodes.
  • a semiconductor device such as a power semiconductor device
  • a method for circuit connection between a semiconductor element and an external electrode there is a method in which the semiconductor element is directly bonded to the metal lead electrode without using a metal wire bond for the main current path (for example, Patent Document 1). According to this method, a large current, long life and high reliability of the semiconductor device can be realized.
  • the technique of the present disclosure has been made to solve the above-described problems.
  • the purpose is to suppress the occurrence of scratches or cracks on the upper surface.
  • a semiconductor device of the present disclosure includes: a plurality of semiconductor elements; and an insulating substrate having, on the upper surface thereof, a mounting area where the plurality of semiconductor elements are mounted, and a non-mounting area which protrudes upward from the mounting area and does not mount the plurality of semiconductor elements. and a metal lead electrode bonded to the upper surface of each semiconductor element with a bonding material, and the difference in height between the mounting area and the non-mounting area is equal to or greater than the thickness of each semiconductor element.
  • the semiconductor device of the present disclosure when the bonding material is supplied onto each semiconductor element by screen printing in the manufacturing process, a gap is created between the metal mask and each semiconductor element. Therefore, the bonding material can be stably and collectively supplied to the upper surface of each semiconductor element by screen printing without damaging the upper surface of each semiconductor element. Therefore, the semiconductor device of the present disclosure is a semiconductor device that is stable, has a long life, and can be manufactured with high productivity. Objects, features, aspects and advantages of the present disclosure will become more apparent with the following detailed description and accompanying drawings.
  • FIG. 4 is a flow chart showing manufacturing steps of the semiconductor device according to the first embodiment;
  • FIG. 4 is a cross-sectional view showing a manufacturing process of the semiconductor device according to the first embodiment;
  • FIG. 4 is a cross-sectional view showing a manufacturing process of the semiconductor device according to the first embodiment;
  • FIG. 4 is a cross-sectional view showing a manufacturing process of the semiconductor device according to the first embodiment;
  • FIG. 4 is a cross-sectional view showing a manufacturing process of the semiconductor device according to the first embodiment;
  • FIG. 4 is a cross-sectional view showing a manufacturing process of the semiconductor device according to the first embodiment;
  • FIG. 4 is a cross-sectional view showing a manufacturing process of the semiconductor device according to the first embodiment;
  • FIG. 4 is a cross-sectional view showing a manufacturing process of the semiconductor device according to the first embodiment;
  • FIG. 4 is a cross-sectional view showing a manufacturing process of the semiconductor device according to the first embodiment;
  • FIG. 4 is a cross
  • FIG. 11 is a cross-sectional view of a semiconductor device according to a second embodiment;
  • FIG. 11 is a cross-sectional view of a semiconductor device according to a third embodiment;
  • FIG. 11 is a cross-sectional view of a semiconductor device according to a fourth embodiment;
  • FIG. 11 is a cross-sectional view showing a manufacturing process of a semiconductor device according to a fourth embodiment;
  • FIG. 21 is a cross-sectional view showing a manufacturing process of a semiconductor device according to a modification of the fourth embodiment;
  • FIG. 1 is a cross-sectional view of a semiconductor device 101 according to Embodiment 1.
  • FIG. A semiconductor device 101 includes an insulating substrate 2 , a plurality of semiconductor elements 1 , and metal lead electrodes 4 .
  • the insulating substrate 2 includes an insulating substrate 2b, a circuit pattern 2a formed on the upper surface of the insulating substrate 2b, and a circuit pattern 2c formed on the lower surface of the insulating substrate 2b.
  • the insulating base material 2b is made of ceramic having excellent thermal conductivity such as aluminum nitride or silicon nitride, or resin.
  • the circuit patterns 2a and 2c are made of a material having excellent electrical conductivity and thermal conductivity, such as aluminum alloy or copper.
  • the upper surface of the circuit pattern 2 a constitutes the upper surface of the insulating substrate 2 .
  • the circuit pattern 2c of the insulating substrate 2 may be bonded to a base plate such as an aluminum alloy or copper having excellent heat conductivity with a bonding material such as solder or soft wax.
  • a plurality of semiconductor elements 1 are joined to the mounting area 2a1 on the upper surface of the circuit pattern 2a of the insulating substrate 2 with a joining material 3b such as solder.
  • a region of the upper surface of the circuit pattern 2a of the insulating substrate 2 where the plurality of semiconductor elements 1 are not mounted is referred to as a non-mounting region 2a2. That is, the upper surface of circuit pattern 2a has mounting area 2a1 and non-mounting area 2a2.
  • IGBTs, diodes, or reverse-conducting IGBTs made of a silicon (Si) material are often used for the semiconductor element 1, but materials such as silicon carbide (SiC) or gallium nitride (GaN), which have a larger bandgap than Si, are used.
  • a MOSFET, a Schottky diode, or the like formed of may also be used.
  • each semiconductor element 1 a surface electrode for metal bonding with a bonding material 3a such as solder is formed by Ni--Au plating or the like.
  • the upper surface of each semiconductor element 1 on which surface electrodes are formed is joined to metal lead electrodes 4 with a joining material 3a such as solder.
  • the metal lead electrode 4 is joined to the upper surface of the semiconductor element 1 in FIG. 1, it may be joined to the circuit pattern 2a in addition to this.
  • the non-mounting area 2a2 of the circuit pattern 2a is provided with a plurality of protrusions 2d projecting upward from the mounting area 2a1.
  • the end surface of the protrusion 2d is higher than the upper surface of each semiconductor element 1 mounted on the mounting area 2a1 of the circuit pattern 2a.
  • the end face of the protrusion 2d is set to a height that can ensure a necessary insulation distance from the metal lead electrode 4.
  • Projection 2 d is provided while ensuring a necessary insulation distance from the outer circumference of semiconductor element 1 .
  • the metal lead electrode 4 may be bent upward or laterally at a position corresponding to the protrusion 2d.
  • the metal lead electrodes 4 are electrically connected to external output terminals, and the plurality of semiconductor elements 1 are electrically connected to each other.
  • the semiconductor device 101 is shown in a simplified manner in FIG. 1, and wires such as signal lines, signal terminals, external output terminals, sealing resin material, and the like are omitted in FIG.
  • FIG. 2 is a flow chart showing the manufacturing process of the semiconductor device 101. As shown in FIG. 3 to 7 are cross-sectional views showing states in the middle of manufacturing the semiconductor device 101. FIG. The manufacturing process of the semiconductor device 101 will be described below with reference to FIGS.
  • a plurality of semiconductor elements 1 are bonded to an insulating substrate 2 (step S101 in FIG. 2). Specifically, the plurality of semiconductor elements 1 are bonded to the mounting area 2a1 of the circuit pattern 2a of the insulating substrate 2 with the bonding material 3b. Solder is generally used for the bonding material 3b.
  • the bonding material 3b may be preformed such as plate solder, or may be solder paste or other soft wax. The paste-like bonding material 3b may be applied using screen printing, dispensing, or the like. By heating the bonding material 3b on the circuit pattern 2a to a temperature exceeding its melting point, the plurality of semiconductor elements 1 are bonded onto the circuit pattern 2a.
  • a metal mask 5 is arranged on the plurality of semiconductor elements 1 bonded to the insulating substrate 2 (step S102 in FIG. 2).
  • the end faces of the projections 2d are higher than the upper surfaces of the semiconductor elements 1 mounted on the mounting region 2a1, so the metal mask 5 is in contact with the end faces of the projections 2d of the circuit pattern 2a and is not on the upper surface of the semiconductor elements 1. do not come into contact. In other words, there is a clearance between the metal mask 5 and the top surface of the semiconductor element 1 .
  • the metal mask 5 is generally made of a rigid metal material such as SUS, which has excellent wear resistance.
  • An opening 5 a for supplying a bonding material 3 a to the upper surface of each semiconductor element 1 is provided in a region of the metal mask 5 corresponding to each semiconductor element 1 .
  • the region of the metal mask 5 corresponding to each semiconductor element 1 is the region of the metal mask 5 that overlaps with each semiconductor element 1 in plan view.
  • the area of the opening 5a is made larger than the area of the bonding material 3a.
  • the thickness of the metal mask 5 is designed in consideration of the volume required for the bonding material 3a between the semiconductor element 1 and the metal lead electrode 4, and is generally 0.1 mm or more and less than 0.2 mm.
  • a bonding material 3a such as solder paste is supplied to the openings 5a of the metal mask 5 (step S103 in FIG. 2). Specifically, as shown in FIG. 5, a bonding material 3a is supplied onto a metal mask 5, and a squeegee 6 made of SUS, urethane, or the like is used to rub the bonding material 3a against the opening 5a a required number of times. It fills in the opening 5a. As described above, since there is a clearance between the metal mask 5 and the upper surface of the semiconductor element 1, the semiconductor element 1 does not come into contact with the metal mask 5, and the upper surface of the semiconductor element 1, that is, the metal lead electrode 4 is bonded. A bonding material 3a is supplied to the surface.
  • the bonding material 3 a may flow from the opening 5 a of the metal mask 5 and leak out between the upper surface of the semiconductor element 1 and the metal mask 5 .
  • the printing conditions such as the printing speed, printing angle, and printing pressure of the squeegee 6 according to the viscosity or thixotropy of the bonding material 3a, it is possible to adjust the leaking amount of the bonding material 3a.
  • the metal mask 5 is removed from the insulating substrate 2 (step S104 in FIG. 2).
  • the metal mask 5 is separated from the insulating substrate 2
  • there is a method of reducing the shear force acting on the wall surface of the opening 5a by adjusting the speed and acceleration of separating the metal mask 5 from the insulating substrate 2 in multiple steps a method of reducing the wall surface roughness of the opening 5a, and a method of reducing the roughness of the wall surface of the opening 5a.
  • a method of coating the wall surface with a resin material or the like is generally known.
  • the metal lead electrodes 4 are placed on the bonding material 3a supplied onto the semiconductor element 1 (step S105 in FIG. 2).
  • the metal lead electrode 4 is held by the thixotropy of the bonding material 3a.
  • An end portion of the metal lead electrode 4 may be joined to an external electrode or the like.
  • the metal lead electrode 4 itself may be extended as it is to serve as an external electrode.
  • the metal lead electrodes 4 are bonded to the semiconductor element 1, but in addition to this, they may be bonded to the circuit pattern 2a of the insulating substrate 2 with another bonding material.
  • a plurality of metal lead electrodes 4 may be bonded to the semiconductor element 1 or the circuit pattern 2a with different bonding materials.
  • the bonding material 3a is heated with a heating device such as a reflow furnace, and is melted by raising the temperature to a temperature higher than its melting point (step S106 in FIG. 2).
  • a heating device such as a reflow furnace
  • the bonding material 3b between the semiconductor element 1 and the insulating substrate 2 may be melted again.
  • remelting of the bonding material 3b may be avoided by using a bonding material having a melting point higher than that of the bonding material 3a.
  • the bonding between the upper surface of the semiconductor element 1 and the metal lead electrodes 4 is completed.
  • the semiconductor device 101 shown in FIG. 1 is completed through a circuit formation process by wire bonding or the like, a resin sealing process, and a characteristic inspection process.
  • the upper surface of the insulating substrate 2 includes a mounting area 2a1 in which the plurality of semiconductor elements 1 are mounted and a non-mounting area which protrudes upward from the mounting area 2a1 and in which the plurality of semiconductor elements 1 are not mounted. 2a2.
  • the height difference between the mounting region 2a1 and the non-mounting region 2a2 is equal to or greater than the thickness of each semiconductor element 1.
  • FIG. The semiconductor device 101 includes metal lead electrodes 4 bonded to the upper surface of each semiconductor element 1 with a bonding material 3b.
  • the metal mask 5 used for collectively supplying the bonding material 3a to the upper surface of each semiconductor element 1 is in contact with the mounting area 2a1 on the upper surface of the insulating substrate 2 and mounted on the mounting area 2a1.
  • the upper surface of each semiconductor element 1 is not contacted. Therefore, it is possible to collectively supply the bonding material 3a to a plurality of semiconductor elements 1 by screen printing without damaging them. According to screen printing, the bonding material 3a can be supplied to a plurality of semiconductor elements 1 in a shorter time than dispensing coating. Therefore, the semiconductor device 101 having a long life can be stably manufactured with good productivity.
  • the method for manufacturing the semiconductor device 101 of the first embodiment includes (a) a plurality of semiconductor elements 1, and an insulating substrate 2 having a mounting region 2a1 and a non-mounting region 2a2 protruding upward from the mounting region 2a1 on the upper surface thereof. (b) each semiconductor element 1 is mounted on the mounting region 2a1 on the upper surface of the insulating substrate 2; 5 is placed on the upper surface of the insulating substrate 2 in contact with the non-mounting region 2a2 on the upper surface of the insulating substrate 2; (e) remove the metal mask 5; The height difference between the mounting region 2a1 and the non-mounting region 2a2 is equal to or greater than the thickness of each semiconductor element 1.
  • FIG. According to the above configuration, since the metal mask 5 does not come into contact with the upper surface of each semiconductor element 1, it is possible to collectively supply the bonding material 3a to the plurality of semiconductor elements 1 by screen printing without damaging them. .
  • FIG. 8 is a cross-sectional view of semiconductor device 102 according to the second embodiment.
  • the semiconductor device 102 differs from the semiconductor device 101 according to the first embodiment in that the upper surface of the circuit pattern 2a has a recess 2e instead of the projection 2d.
  • the top surface of the semiconductor element 1 mounted in the recess 2e must be lower than the top surface of the circuit pattern 2a other than the recess 2e.
  • the depth of the recess 2e is designed in consideration of this.
  • a required insulating distance is provided between the side surface of the recess 2e and the outer circumference of the semiconductor element 1.
  • FIG. The configuration of the semiconductor device 102 other than the above is the same as that of the semiconductor device 101 .
  • the method of manufacturing the semiconductor device 102 is the same as the method of manufacturing the semiconductor device 101 except for the top surface shape of the circuit pattern 2a.
  • the metal mask 5 used for collectively supplying the bonding material 3a to the upper surface of each semiconductor element 1 is in contact with the upper surface of the circuit pattern 2a other than the concave portion 2e. do not come into contact. Therefore, it is possible to collectively supply the bonding material 3a to a plurality of semiconductor elements 1 by screen printing without damaging them. According to screen printing, the bonding material 3a can be supplied to a plurality of semiconductor elements 1 in a shorter time than dispensing coating. Therefore, the semiconductor device 102 having a long life can be stably manufactured with good productivity.
  • the metal mask 5 is in close contact with the upper surface of the non-mounting region 2a2 of the circuit pattern 2a, it is only necessary to form the opening 5a in the metal mask 5 in order to provide the junction with the metal lead electrode 4 on the circuit pattern 2a.
  • a bonding material can be supplied to the circuit pattern 2a.
  • FIG. 9 is a cross-sectional view of semiconductor device 103 according to the third embodiment.
  • the semiconductor device 103 is different from the semiconductor device 101 according to the first embodiment in that the circuit pattern 2a does not have the plurality of protrusions 2d, but has the plurality of insulating members 7 provided on the upper surface of the circuit pattern 2a. different.
  • the top surface of each insulating member 7 is higher than the top surface of each semiconductor element 1 mounted on the mounting region 2a1. That is, each insulating member 7 is thicker than each semiconductor element 1 .
  • the material of the insulating member 7 may be resin such as PPS (Polyphenylene sulfide) having necessary insulating performance, or may be ceramic.
  • the planar shape of the insulating member 7 may be a frame shape.
  • Each insulating member 7 may consist of a combination of a plurality of spaced apart members.
  • the insulating member 7 may partially support the metal lead electrode 4 from below. It is not necessary to secure an insulating distance between the insulating member 7 and the semiconductor element 1 . Therefore, the insulating member 7 may be used for positioning the semiconductor element 1 .
  • the method of manufacturing the semiconductor device 103 is the same as the method of manufacturing the semiconductor device 101 except for the shape of the circuit pattern 2a and the insulating member 7.
  • the metal mask 5 used for collectively supplying the bonding material 3 a to the upper surface of each semiconductor element 1 contacts the insulating member 7 and does not contact the upper surface of the semiconductor element 1 . Therefore, it is possible to collectively supply the bonding material 3a to a plurality of semiconductor elements 1 by screen printing without damaging them. According to screen printing, the bonding material 3a can be supplied to a plurality of semiconductor elements 1 in a shorter time than dispensing coating. Therefore, the semiconductor device 103 having a long life can be stably manufactured with high productivity.
  • the size of the semiconductor device 103 can be reduced.
  • a separate jig for positioning the semiconductor element 1 is required when the semiconductor element 1 is bonded to the insulating substrate 2 using the bonding material 3b of plate solder.
  • the semiconductor device 103 since the semiconductor element 1 can be positioned using the insulating member 7, the process can be simplified by omitting the jig.
  • it can also be used for positioning the metal lead electrode 4 in the height direction.
  • FIG. 10 is a cross-sectional view of semiconductor device 104 according to the fourth embodiment.
  • Semiconductor device 104 differs from semiconductor device 101 according to the first embodiment in that circuit pattern 2a does not have a plurality of projections 2d.
  • the manufacturing process of the semiconductor device 104 differs from the manufacturing process of the semiconductor device 101 only in the shape of the metal mask 5 used for supplying the bonding material 3 b to the upper surfaces of the plurality of semiconductor elements 1 .
  • FIG. 11 is a cross-sectional view showing a state in which the metal mask 5 is arranged on the semiconductor element 1 in the manufacturing process of the semiconductor device 104.
  • a convex portion 5b is provided on the lower surface of the metal mask 5 at a position corresponding to the non-mounting region 2a2 of the circuit pattern 2a.
  • the convex portion 5b is higher than the sum of the semiconductor element 1 and the bonding material 3b.
  • the lower surface of the metal mask other than the convex portion 5b is a first region that does not contact the upper surface of the circuit pattern 2a and the upper surface of each semiconductor element 1. Further, the end face of the convex portion 5b is the second region that contacts the upper surface of the circuit pattern 2a.
  • the lower surface of metal mask 5 has a first region and a second region protruding downward from the first region.
  • the metal mask 5 has an opening 5a in the first region, and the opening 5a overlaps each semiconductor element 1, and the second region is in contact with the upper surface of the circuit pattern 2a. It is arranged on the upper surface of the substrate 2 .
  • FIG. 11 shows this state.
  • the protrusions 5b may be formed by half-etching the lower surface of the metal mask 5 other than the portions where the protrusions 5b are to be formed.
  • the height of the convex portion 5b is equal to or greater than the thickness of each semiconductor element 1. As shown in FIG. In other words, the height difference between the first region and the second region is equal to or greater than the thickness of each semiconductor element 1 . Therefore, the upper surface of the semiconductor element 1 does not come into contact with the metal mask 5 because the end surfaces of the projections 5b of the metal mask 5 come into contact with the upper surface of the circuit pattern 2a.
  • the lower surface of the metal mask 5 may be provided with recesses 5c at positions overlapping with the respective semiconductor elements 1 instead of the protrusions 5b. That is, the bottom surface of the recess 5c is the first region, and the bottom surface of the metal mask 5 other than the recess 5c is the second region.
  • the depth of the concave portion 5c is greater than or equal to the thickness of each semiconductor element 1. As shown in FIG. In other words, the height difference between the first region and the second region is equal to or greater than the thickness of each semiconductor element 1 . Therefore, since the lower surface of the metal mask 5 other than the recess 5c contacts the upper surface of the circuit pattern 2a, the upper surface of the semiconductor element 1 does not contact the bottom surface of the recess 5c.
  • the method for manufacturing the semiconductor device 104 of the fourth embodiment includes (a) preparing a plurality of semiconductor elements 1 and an insulating substrate 2, (b) mounting each semiconductor element 1 on the upper surface of the insulating substrate 2, and (c ) a metal mask 5 having a first region and a second region protruding downward from the first region on the lower surface thereof, and having an opening 5a in the first region, the second region being in contact with the upper surface of the insulating substrate 2; and placed on the upper surface of the insulating substrate 2 so that the openings 5a overlap the respective semiconductor elements 1 mounted on the insulating substrate 2; (e) removing the metal mask 5; (f) removing the metal mask 5;
  • the height difference between the first region and the second region is equal to or greater than the thickness of each semiconductor element 1 .
  • each semiconductor element 1 does not contact the first area of the lower surface of the metal mask 5 by contacting the second area of the lower surface of the metal mask 5 with the insulating substrate 2 . Therefore, it is possible to collectively supply the bonding material 3a to a plurality of semiconductor elements 1 by screen printing without damaging them. According to screen printing, the bonding material 3a can be supplied to a plurality of semiconductor elements 1 in a shorter time than dispensing coating. Therefore, the semiconductor device 104 having a long life can be stably manufactured with high productivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Die Bonding (AREA)

Abstract

本開示は、半導体素子に金属リード電極を接続するための接合材をスクリーン印刷によって半導体素子上に供給する際、半導体素子の上面への傷またはクラックの発生を抑制することを目的とする。本開示に係る半導体装置101は、複数の半導体素子(1)と、上面に、複数の半導体素子(1)が搭載される搭載領域(2a1)と、搭載領域(2a1)より上方に突出し複数の半導体素子(1)が搭載されない非搭載領域(2a2)とを有する絶縁基板(2)と、各半導体素子(1)の上面に接合材(3a)により接合される金属リード電極(4)と、を備え、搭載領域(2a1)と非搭載領域(2a2)との高さの差は各半導体素子(1)の厚み以上である。

Description

半導体装置および半導体装置の製造方法
 本開示は、金属リード電極を有する半導体装置に関する。
 電力半導体装置などの半導体装置において、半導体素子と外部電極との回路接続を行う方法として、金属ワイヤボンドを主電流の経路に使用せず、半導体素子を金属リード電極と直接接合する方法がある(例えば特許文献1)。この方法によれば、半導体装置の大電流化、長寿命化および高信頼性が実現する。
 半導体素子を金属リード電極と直接接合するため、半導体素子上にペーストはんだなどの接合材を供給する必要がある。その方法として、ディスペンス供給とスクリーン印刷による供給とがある。
国際公開第2020/039986号
 ディスペンス供給の場合、各半導体素子に対して1箇所ずつディスペンス塗布を行うため、多数の半導体素子が存在する場合には時間がかかるという問題がある。また、接合材の供給量が半導体素子ごとにばらつくと、金属リード電極に傾きが生じ、金属リード電極と半導体素子との間の接合不良が生じるという問題がある。
 一方、スクリーン印刷の場合、半導体素子上にメタルマスクが直接接触することで半導体素子の上面が傷つくという問題がある。また、メタルマスク上をスキージが通過する時に半導体素子に応力がかかってクラックが生じ、特性不良を招くという問題がある。
 本開示の技術は、上記の様な問題点を解決するためになされたもので、半導体素子に金属リード電極を接続するための接合材をスクリーン印刷によって半導体素子上に供給する際、半導体素子の上面への傷またはクラックの発生を抑制することを目的とする。
 本開示の半導体装置は、複数の半導体素子と、上面に、複数の半導体素子が搭載される搭載領域と、搭載領域より上方に突出し複数の半導体素子が搭載されない非搭載領域とを有する絶縁基板と、各半導体素子の上面に接合材により接合される金属リード電極と、を備え、搭載領域と非搭載領域との高さの差は各半導体素子の厚み以上である。
 本開示の半導体装置によれば、その製造工程でスクリーン印刷によって各半導体素子上に接合材を供給する際、メタルマスクと各半導体素子との間に隙間ができる。従って、各半導体素子の上面を傷つけることなく、スクリーン印刷によって各半導体素子の上面に接合材を安定的かつ一括供給することができる。従って、本開示の半導体装置は、安定的かつ長寿命で、生産性良く製造可能な半導体装置である。本開示の目的、特徴、態様、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
実施の形態1に係る半導体装置の断面図である。 実施の形態1に係る半導体装置の製造工程を示すフローチャートである。 実施の形態1に係る半導体装置の製造工程を示す断面図である。 実施の形態1に係る半導体装置の製造工程を示す断面図である。 実施の形態1に係る半導体装置の製造工程を示す断面図である。 実施の形態1に係る半導体装置の製造工程を示す断面図である。 実施の形態1に係る半導体装置の製造工程を示す断面図である。 実施の形態2に係る半導体装置の断面図である。 実施の形態3に係る半導体装置の断面図である。 実施の形態4に係る半導体装置の断面図である。 実施の形態4に係る半導体装置の製造工程を示す断面図である。 実施の形態4の変形例に係る半導体装置の製造工程を示す断面図である。
 <A.実施の形態1>
 <A-1.構成>
 図1は、実施の形態1に係る半導体装置101の断面図である。半導体装置101は、絶縁基板2、複数の半導体素子1、および金属リード電極4を備える。
 絶縁基板2は、絶縁基材2bと、絶縁基材2bの上面に形成された回路パターン2aと、絶縁基材2bの下面に形成された回路パターン2cとを備える。絶縁基材2bは、窒化アルミニウムまたは窒化ケイ素などの熱伝導性に優れたセラミック、もしくは樹脂などからなる。回路パターン2a,2cは、アルミ合金または銅などの電気伝導性および熱伝導性に優れる材質からなる。回路パターン2aの上面が絶縁基板2の上面を構成する。図示しないが、絶縁基板2の回路パターン2cは、アルミ合金または銅などの熱伝導に優れるベース板に、はんだまたは軟ろうなどの接合材により接合されてもよい。
 絶縁基板2の回路パターン2aの上面の搭載領域2a1には、複数の半導体素子1がはんだなどの接合材3bにより接合される。なお、絶縁基板2の回路パターン2aの上面のうち複数の半導体素子1が搭載されない領域を非搭載領域2a2と称する。すなわち、回路パターン2aの上面は搭載領域2a1と非搭載領域2a2とを有する。
 半導体素子1には、シリコン(Si)素材のIGBT、ダイオードまたは逆導通IGBTが用いられることが多いが、シリコンカーバイド(SiC)または窒化ガリウム(GaN)系などのSiに比べてバンドギャップの大きい素材で形成されたMOSFETまたはショットキーダイオードなどが用いられてもよい。図1において3つの半導体素子1が示されているが、回路パターン2aに搭載される半導体素子1の個数はこれに限らず、半導体装置101の用途に応じて適宜定められる。
 図示しないが、各半導体素子1の上面には、はんだなどの接合材3aと金属接合するための表面電極がNi-Auめっきなどにより形成される。表面電極が形成された各半導体素子1の上面は、はんだなどの接合材3aによって金属リード電極4と接合される。金属リード電極4は、図1において半導体素子1の上面と接合されているが、これに加えて回路パターン2aと接合されてもよい。
 回路パターン2aの非搭載領域2a2には、搭載領域2a1より上方に突出した複数の突起部2dが設けられる。突起部2dの端面は、回路パターン2aの搭載領域2a1に搭載された各半導体素子1の上面より高い。また、突起部2dの端面は、金属リード電極4との間に必要な絶縁距離を確保できる高さに設定される。図1には2つの突起部2dが示されているが、突起部2dの個数はこれに限定されない。突起部2dは、半導体素子1の外周との間に必要な絶縁距離を確保して設けられる。金属リード電極4と突起部2dとの間の絶縁距離を確保するため、金属リード電極4は突起部2dに対応する位置で上方向または横方向に曲げられてもよい。
 後に説明する半導体装置101の製造工程において、金属リード電極4は外部出力端子と電気的に接続され、また複数の半導体素子1は互いに電気的に接続される。しかし、図1において半導体装置101は簡略化されて図示されており、信号線などのワイヤ、信号端子、外部出力端子、および封止樹脂材などは図1において図示を省略されている。
 <A-2.製造工程>
 図2は、半導体装置101の製造工程を示すフローチャートである。図3から図7は、半導体装置101の製造途中の状態を示す断面図である。以下、図2から図7を用いて半導体装置101の製造工程を説明する。
 まず、図3に示されるように、複数の半導体素子1を絶縁基板2に接合する(図2のステップS101)。具体的には、複数の半導体素子1を絶縁基板2の回路パターン2aの搭載領域2a1に接合材3bで接合する。一般的に接合材3bにははんだが用いられる。接合材3bは、板はんだなどのあらかじめ成形されたものでもよいし、はんだペーストまたはその他の軟ろうであってもよい。ペースト状の接合材3bは、スクリーン印刷またはディスペンス等を用いて塗布されてもよい。回路パターン2a上の接合材3bがその融点を超える温度に加熱されることで、複数の半導体素子1は回路パターン2a上に接合される。
 次に、図4に示されるように、絶縁基板2に接合された複数の半導体素子1上にメタルマスク5を配置する(図2のステップS102)。上述のとおり、突起部2dの端面は搭載領域2a1に搭載された各半導体素子1の上面より高いため、メタルマスク5は回路パターン2aの突起部2dの端面と接触し、半導体素子1の上面には接触しない。すなわち、メタルマスク5と半導体素子1の上面との間にはクリアランスが存在する。メタルマスク5は、一般的にはSUSなどの耐摩耗性に優れた剛性のある金属材質からなる。メタルマスク5の各半導体素子1に対応する領域には、各半導体素子1の上面に接合材3aを供給するための開口5aが設けられている。メタルマスク5の各半導体素子1に対応する領域とは、平面視において各半導体素子1と重なるメタルマスク5の領域である。開口5aの面積は、各半導体素子1と金属リード電極4との接合材3aに必要な面積を考慮し、接合材3aの面積以上とする。また、メタルマスク5の厚みは、半導体素子1と金属リード電極4との接合材3aに必要な体積を考慮して設計され、一般的には0.1mm以上0.2mm未満である。
 その後、メタルマスク5の開口5aにペースト状のはんだなどの接合材3aを供給する(図2のステップS103)。具体的には、図5に示されるように、メタルマスク5上に接合材3aを供給し、SUSまたはウレタンなどからなるスキージ6を用いて接合材3aを開口5aに必要な回数擦り付けることにより、開口5a内に充填する。上述のとおりメタルマスク5と半導体素子1の上面との間にはクリアランスが存在するため、半導体素子1はメタルマスク5と接触することなく、半導体素子1の上面、すなわち金属リード電極4との接合面に接合材3aが供給される。なお、接合材3aはメタルマスク5の開口5aから流動し、半導体素子1の上面とメタルマスク5との間に漏れ出る可能性がある。しかし、接合材3aの粘性またはチクソ性に応じてスキージ6による印刷速度、印刷角度および印刷圧力などの印刷条件を調整することにより、接合材3aの漏れ出る量を調整することが可能である。
 次に、図6に示されるように、メタルマスク5を絶縁基板2上から除去する(図2のステップS104)。メタルマスク5を絶縁基板2から離す際、接合材3aがその粘性によりメタルマスク5の開口5aの壁面にこびりついてしまうと、開口5aの面積よりも小さい面積しか半導体素子1の接合面に残らない。その対策として、メタルマスク5を絶縁基板2から離す速度および加速度を多段階調整することにより開口5aの壁面に働くせん断力を下げる手法、開口5aの壁面粗さを小さくする手法、および開口5aの壁面を樹脂材などでコーティングする手法が一般的に知られている。
 その後、図7に示されるように、半導体素子1上に供給された接合材3aの上に金属リード電極4を配置する(図2のステップS105)。金属リード電極4は接合材3aのチクソ性により保持される。金属リード電極4の端部は外部電極などと接合されてもよい。あるいは、金属リード電極4自身がそのまま延伸され、外部電極となってもよい。図7において、金属リード電極4は半導体素子1と接合されているが、これに加えて別の接合材により絶縁基板2の回路パターン2aと接合されてもよい。また、図7には1つの金属リード電極4が示されているが、複数の金属リード電極4がそれぞれ別の接合材によって半導体素子1または回路パターン2aと接合されてもよい。
 次に、接合材3aをリフロー炉などの加熱装置で加熱し、その融点よりも高い温度に昇温させることで溶融させる(図2のステップS106)。例えば接合材3aの融点が220度の場合、最高温度270度に達する温度のリフロー槽により5分間220℃以上で加熱する。この工程で、半導体素子1と絶縁基板2との間の接合材3bが再溶融してもよい。あるいは、接合材3aより融点の高い接合材を接合材3bに用いることにより、接合材3bの再溶融を避けてもよい。
 その後、接合材3aを冷却し凝固させることによって、半導体素子1の上面と金属リード電極4との接合が完了する。その後、ワイヤボンディングなどによる回路形成工程、樹脂封止工程、および特性検査工程を経て、図1に示された半導体装置101が完成する。
 <A-3.効果>
 実施の形態1に係る半導体装置101において、絶縁基板2の上面は、複数の半導体素子1が搭載される搭載領域2a1と、搭載領域2a1より上方に突出し複数の半導体素子1が搭載されない非搭載領域2a2とを有する。搭載領域2a1と非搭載領域2a2との高さの差は各半導体素子1の厚み以上である。そして、半導体装置101は、各半導体素子1の上面に接合材3bにより接合される金属リード電極4を備える。
 以上の構成によれば、各半導体素子1の上面に接合材3aを一括供給するために用いられるメタルマスク5は、絶縁基板2の上面の搭載領域2a1に接触し、搭載領域2a1に搭載された各半導体素子1の上面には接触しない。従って、複数の半導体素子1に対してこれらを傷つけることなくスクリーン印刷により接合材3aを一括供給することが可能である。スクリーン印刷によればディスペンス塗布に比べて短時間に接合材3aを複数の半導体素子1に対して供給することができる。従って、安定的に長寿命な半導体装置101を生産性良く製造することができる。
 実施の形態1の半導体装置101の製造方法は、(a)複数の半導体素子1と、上面に搭載領域2a1と搭載領域2a1より上方に突出した非搭載領域2a2とを有する絶縁基板2と、を用意し、(b)絶縁基板2の上面の搭載領域2a1に各半導体素子1を搭載し、(c)各半導体素子1の搭載後、各半導体素子1と対応する位置に開口5aを有するメタルマスク5を、絶縁基板2の上面の非搭載領域2a2と接触して、絶縁基板2の上面上に配置し、(d)メタルマスク5の開口を介して各半導体素子1の上面に接合材3aを供給し、(e)メタルマスク5を除去し、(f)メタルマスク5の除去後、各半導体素子1の上面の接合材3aに金属リード電極4を接着する。そして、搭載領域2a1と非搭載領域2a2との高さの差は各半導体素子1の厚み以上である。以上の構成によれば、メタルマスク5が各半導体素子1の上面に接触しないため、複数の半導体素子1に対してこれらを傷つけることなくスクリーン印刷により接合材3aを一括供給することが可能である。
 <B.実施の形態2>
 <B-1.構成>
 図8は、実施の形態2に係る半導体装置102の断面図である。半導体装置102は、回路パターン2aの上面において突起部2dに代えて凹部2eを有する点で、実施の形態1に係る半導体装置101と異なる。半導体素子1は、凹部2eに搭載された状態でその上面が回路パターン2aの凹部2e以外の上面より低くなければならない。このことを考慮して凹部2eの深さは設計される。凹部2eの側面と半導体素子1の外周との間には、必要な絶縁距離が設けられる。上記以外の半導体装置102の構成は、半導体装置101と同様である。
 回路パターン2aの上面形状以外について、半導体装置102の製造方法は半導体装置101の製造方法と同様である。
 <B-2.効果>
 すなわち、実施の形態2においては、回路パターン2aの凹部2eの底面が搭載領域2a1となり、凹部2e以外の回路パターン2aの上面が非搭載領域2a2となる。
 以上の構成によれば、各半導体素子1の上面に接合材3aを一括供給するために用いられるメタルマスク5は、回路パターン2aの凹部2e以外の上面と接触するため、半導体素子1の上面には接触しない。従って、複数の半導体素子1に対してこれらを傷つけることなくスクリーン印刷により接合材3aを一括供給することが可能である。スクリーン印刷によればディスペンス塗布に比べて短時間に接合材3aを複数の半導体素子1に対して供給することができる。従って、安定的に長寿命な半導体装置102を生産性良く製造することができる。
 また、メタルマスク5は回路パターン2aの非搭載領域2a2の上面と密着するため、回路パターン2a上に金属リード電極4との接合部を設ける場合には、メタルマスク5に開口5aを設けるだけで回路パターン2aに接合材を供給することができる。
 <C.実施の形態3>
 <C-1.構成>
 図9は、実施の形態3に係る半導体装置103の断面図である。半導体装置103は、回路パターン2aが複数の突起部2dを有さない代わりに、回路パターン2aの上面に設けられた複数の絶縁部材7を備える点で、実施の形態1に係る半導体装置101と異なる。各絶縁部材7の上面は、搭載領域2a1に搭載された各半導体素子1の上面より高い。すなわち、各絶縁部材7は各半導体素子1より厚い。絶縁部材7の材料は、PPS(Polyphenylenesulfide)などの必要な絶縁性能を有する樹脂でもよいし、セラミックでもよい。絶縁部材7の平面形状は枠型でもよい。各絶縁部材7は、複数の離間した部材の組み合わせからなっていてもよい。
 絶縁部材7は、部分的に金属リード電極4を下側から支持してもよい。絶縁部材7と半導体素子1との間に絶縁距離を確保する必要はない。従って、絶縁部材7は半導体素子1の位置決めに用いられてもよい。
 回路パターン2aの形状と絶縁部材7以外に関して、半導体装置103の製造方法は、半導体装置101の製造方法と同様である。
 <C-2.効果>
 すなわち、実施の形態3においては、回路パターン2aの上面上に設けられた絶縁部材7の上面が非搭載領域2a2となり、回路パターン2aの上面のうち絶縁部材7が設けられていない領域が搭載領域2a1となる。
 以上の構成によれば、各半導体素子1の上面に接合材3aを一括供給するために用いられるメタルマスク5は絶縁部材7と接触し、半導体素子1の上面には接触しない。従って、複数の半導体素子1に対してこれらを傷つけることなくスクリーン印刷により接合材3aを一括供給することが可能である。スクリーン印刷によればディスペンス塗布に比べて短時間に接合材3aを複数の半導体素子1に対して供給することができる。従って、安定的に長寿命な半導体装置103を生産性良く製造することができる。
 また、絶縁部材7と半導体素子1との間に絶縁距離を確保する必要がないため、半導体装置103の小型化が可能である。なお、実施の形態1に係る半導体装置101であれば、半導体素子1を板はんだの接合材3bを用いて絶縁基板2に接合する際、半導体素子1を位置決めする治具が別途必要となる。しかし、半導体装置103では絶縁部材7を用いて半導体素子1を位置決めすることができるため、治具の省略による工程の簡略化が可能である。また、絶縁部材7の形状によっては金属リード電極4の高さ方向の位置決めに用いることもできる。
 <D.実施の形態4>
 <D-1.構成>
 図10は、実施の形態4に係る半導体装置104の断面図である。半導体装置104は、回路パターン2aが複数の突起部2dを有さない点で、実施の形態1に係る半導体装置101と異なる。
 <D-2.製造工程>
 半導体装置104の製造工程は、複数の半導体素子1の上面に接合材3bを供給するために用いられるメタルマスク5の形状においてのみ、半導体装置101の製造工程と異なる。
 図11は、半導体装置104の製造工程において、半導体素子1上にメタルマスク5を配置した状態を示す断面図である。メタルマスク5の下面には、回路パターン2aの非搭載領域2a2と対応する位置に、凸部5bが設けられている。凸部5bは、半導体素子1と接合材3bを合わせたよりも高い。
 凸部5b以外のメタルマスクの下面は、回路パターン2aの上面および各半導体素子1の上面と接触しない第1領域である。また、凸部5bの端面は、回路パターン2aの上面と接触する第2領域である。言い換えれば、メタルマスク5の下面は、第1領域と第1領域より下方に突出した第2領域とを有する。また、メタルマスク5は第1領域に開口5aを有しており、この開口5aが各半導体素子1と重なるようにして、かつ第2領域が回路パターン2aの上面と接触するようにして、絶縁基板2の上面上に配置される。この状態を示したのが図11である。
 凸部5bは、メタルマスク5の下面の凸部5bを形成する箇所以外をハーフエッチングすることにより形成されてもよい。凸部5bの高さは、各半導体素子1の厚み以上である。言い換えれば、第1領域と第2領域との高さの差は各半導体素子1の厚み以上である。従って、メタルマスク5の凸部5bの端面が回路パターン2aの上面と接触することにより、半導体素子1の上面はメタルマスク5と接触しない。
 <D-3.変形例>
 図12に示されるように、メタルマスク5の下面には、凸部5bに代えて各半導体素子1と重なる位置に凹部5cが設けられていてもよい。すなわち、凹部5cの底面が第1領域となり、凹部5c以外のメタルマスク5の下面が第2領域となる。凹部5cの深さは、各半導体素子1の厚み以上である。言い換えれば、第1領域と第2領域との高さの差は各半導体素子1の厚み以上である。従って、凹部5c以外のメタルマスク5の下面が回路パターン2aの上面と接触することにより、半導体素子1の上面は凹部5cの底面に接触しない。
 <D-4.効果>
 実施の形態4の半導体装置104の製造方法は、(a)複数の半導体素子1と、絶縁基板2とを用意し、(b)絶縁基板2の上面に各半導体素子1を搭載し、(c)下面に第1領域と第1領域より下方に突出した第2領域とを有し、かつ第1領域に開口5aを有するメタルマスク5を、第2領域が絶縁基板2の上面と接触し、かつ開口5aが絶縁基板2に搭載された各半導体素子1と重なるようにして、絶縁基板2の上面上に配置し、(d)メタルマスク5の開口5aを介して各半導体素子1の上面に接合材3aを供給し、(e)メタルマスク5を除去し、(f)メタルマスク5の除去後、各半導体素子1の上面の接合材3aに金属リード電極4を接着する。ここで、第1領域と第2領域との高さの差は各半導体素子1の厚み以上である。
 従って、メタルマスク5の下面の第2領域が絶縁基板2と接触することによって、各半導体素子1の上面はメタルマスク5の下面の第1領域と接触しない。そのため、複数の半導体素子1に対してこれらを傷つけることなくスクリーン印刷により接合材3aを一括供給することが可能である。スクリーン印刷によればディスペンス塗布に比べて短時間に接合材3aを複数の半導体素子1に対して供給することができる。従って、安定的に長寿命な半導体装置104を生産性良く製造することができる。
 また、実施の形態1,2と異なり、回路パターン2aの形状に制約がないため、容易に絶縁基板2を設計することができる。
 なお、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。上記の説明は、すべての態様において、例示である。例示されていない無数の変形例が想定され得るものと解される。
 1 半導体素子、2 絶縁基板、2a 回路パターン、2a1 搭載領域、2a2 非搭載領域、2b 絶縁基材、2c 回路パターン、2d 突起部、2e 凹部、3a,3b 接合材、4 金属リード電極、5 メタルマスク、5a 開口、5b 凸部、5c 凹部、6 スキージ、7 絶縁部材、101-104 半導体装置。

Claims (11)

  1.  複数の半導体素子と、
     上面に、前記複数の半導体素子が搭載される搭載領域と、前記搭載領域より上方に突出し前記複数の半導体素子が搭載されない非搭載領域とを有する絶縁基板と、
     各前記半導体素子の上面に接合材により接合される金属リード電極と、を備え、
     前記搭載領域と前記非搭載領域との高さの差は各前記半導体素子の厚み以上である、
    半導体装置。
  2.  前記絶縁基板は、
     絶縁基材と、
     前記絶縁基材上に設けられた回路パターンと、を備え、
     前記回路パターンの上面は凸部を有し、
     前記凸部の端面は前記非搭載領域であり、
     前記凸部以外の前記回路パターンの上面は前記搭載領域である、
    請求項1に記載の半導体装置。
  3.  前記絶縁基板は、
     絶縁基材と、
     前記絶縁基材上に設けられた回路パターンと、を備え、
     前記回路パターンの上面は凹部を有し、
     前記凹部の底面が前記搭載領域であり、
     前記凹部以外の前記回路パターンの上面は前記非搭載領域である、
    請求項1に記載の半導体装置。
  4.  前記絶縁基板は、
     絶縁基材と、
     前記絶縁基材上に設けられた回路パターンと、
     前記回路パターンの上面上に設けられた絶縁部材と、を備え、
     前記絶縁部材の上面は前記非搭載領域であり、
     前記回路パターンの上面のうち前記絶縁部材が設けられていない領域が前記搭載領域である、
    請求項1に記載の半導体装置。
  5.  (a)複数の半導体素子と、上面に搭載領域と前記搭載領域より上方に突出した非搭載領域とを有する絶縁基板と、を用意し、
     (b)前記絶縁基板の上面の前記搭載領域に各前記半導体素子を搭載し、
     (c)各前記半導体素子の搭載後、各前記半導体素子と対応する位置に開口を有するメタルマスクを、前記絶縁基板の上面の前記非搭載領域と接触して、前記絶縁基板の上面上に配置し、
     (d)前記メタルマスクの前記開口を介して各前記半導体素子の上面に接合材を供給し、
     (e)前記メタルマスクを除去し、
     (f)前記メタルマスクの除去後に、各前記半導体素子の上面の前記接合材に金属リード電極を接着する、
    半導体装置の製造方法であって、
     前記搭載領域と前記非搭載領域との高さの差は各前記半導体素子の厚み以上である、
    半導体装置の製造方法。
  6.  前記絶縁基板は、
     絶縁基材と、
     前記絶縁基材上に設けられた回路パターンと、を備え、
     前記回路パターンの上面は凸部を有し、
     前記凸部の端面は前記非搭載領域であり、
     前記凸部以外の前記回路パターンの上面は前記搭載領域である、
    請求項5に記載の半導体装置の製造方法。
  7.  前記絶縁基板は、
     絶縁基材と、
     前記絶縁基材上に設けられた回路パターンと、を備え、
     前記回路パターンの上面は凹部を有し、
     前記凹部以外の前記回路パターンの上面は前記搭載領域であり、
     前記凹部の底面が前記非搭載領域である、
    請求項5に記載の半導体装置の製造方法。
  8.  前記絶縁基板は、
     絶縁基材と、
     前記絶縁基材上に設けられた回路パターンと、
     前記回路パターンの上面上に設けられた絶縁部材と、を備え、
     前記絶縁部材の上面は前記非搭載領域であり、
     前記回路パターンの上面のうち前記絶縁部材が設けられていない領域が前記搭載領域である、
    請求項5に記載の半導体装置の製造方法。
  9.  (a)複数の半導体素子と、絶縁基板とを用意し、
     (b)前記絶縁基板の上面に各前記半導体素子を搭載し、
     (c)下面に第1領域と前記第1領域より下方に突出した第2領域とを有し、かつ前記第1領域に開口を有するメタルマスクを、前記第2領域が前記絶縁基板の上面と接触し、かつ前記開口が前記絶縁基板に搭載された各前記半導体素子と重なるようにして、前記絶縁基板の上面上に配置し、
     (d)前記メタルマスクの前記開口を介して各前記半導体素子の上面に接合材を供給し、
     (e)前記メタルマスクを除去し、
     (f)前記メタルマスクの除去後に、各前記半導体素子の上面の前記接合材に金属リード電極を接着する、
    半導体装置の製造方法であって、
     前記第1領域と前記第2領域との高さの差は各前記半導体素子の厚み以上である、
    半導体装置の製造方法。
  10.  前記メタルマスクは下面に凸部を備え、
     前記凸部の端面が前記第2領域であり、
     前記凸部以外の前記メタルマスクの下面が前記第1領域である、
    請求項9に記載の半導体装置の製造方法。
  11.  前記メタルマスクは下面に凹部を備え、
     前記凹部の底面が前記第1領域であり、
     前記凹部以外の前記メタルマスクの下面が前記第2領域である、
    請求項9に記載の半導体装置の製造方法。
PCT/JP2021/046236 2021-12-15 2021-12-15 半導体装置および半導体装置の製造方法 WO2023112195A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023567380A JPWO2023112195A1 (ja) 2021-12-15 2021-12-15
PCT/JP2021/046236 WO2023112195A1 (ja) 2021-12-15 2021-12-15 半導体装置および半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/046236 WO2023112195A1 (ja) 2021-12-15 2021-12-15 半導体装置および半導体装置の製造方法

Publications (1)

Publication Number Publication Date
WO2023112195A1 true WO2023112195A1 (ja) 2023-06-22

Family

ID=86773790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046236 WO2023112195A1 (ja) 2021-12-15 2021-12-15 半導体装置および半導体装置の製造方法

Country Status (2)

Country Link
JP (1) JPWO2023112195A1 (ja)
WO (1) WO2023112195A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016012659A (ja) * 2014-06-30 2016-01-21 株式会社日立製作所 半導体装置およびその製造方法
JP2016129254A (ja) * 2012-10-01 2016-07-14 富士電機株式会社 半導体装置
JP2016167527A (ja) * 2015-03-10 2016-09-15 株式会社日立製作所 半導体モジュール及びその製造方法
WO2018138902A1 (ja) * 2017-01-30 2018-08-02 三菱電機株式会社 パワー半導体装置の製造方法およびパワー半導体装置
JP2019125678A (ja) * 2018-01-16 2019-07-25 三菱電機株式会社 半導体装置および電力変換装置
JP2019220648A (ja) * 2018-06-22 2019-12-26 三菱電機株式会社 パワーモジュール、電力変換装置、及びパワーモジュールの製造方法
WO2020039986A1 (ja) * 2018-08-21 2020-02-27 三菱電機株式会社 電力用半導体装置およびその製造方法、ならびに電力変換装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016129254A (ja) * 2012-10-01 2016-07-14 富士電機株式会社 半導体装置
JP2016012659A (ja) * 2014-06-30 2016-01-21 株式会社日立製作所 半導体装置およびその製造方法
JP2016167527A (ja) * 2015-03-10 2016-09-15 株式会社日立製作所 半導体モジュール及びその製造方法
WO2018138902A1 (ja) * 2017-01-30 2018-08-02 三菱電機株式会社 パワー半導体装置の製造方法およびパワー半導体装置
JP2019125678A (ja) * 2018-01-16 2019-07-25 三菱電機株式会社 半導体装置および電力変換装置
JP2019220648A (ja) * 2018-06-22 2019-12-26 三菱電機株式会社 パワーモジュール、電力変換装置、及びパワーモジュールの製造方法
WO2020039986A1 (ja) * 2018-08-21 2020-02-27 三菱電機株式会社 電力用半導体装置およびその製造方法、ならびに電力変換装置

Also Published As

Publication number Publication date
JPWO2023112195A1 (ja) 2023-06-22

Similar Documents

Publication Publication Date Title
JP5602077B2 (ja) 半導体装置
JP5807348B2 (ja) 半導体装置およびその製造方法
WO2013111276A1 (ja) 電力用半導体装置
CN101335263A (zh) 半导体模块和半导体模块的制造方法
US11869865B2 (en) Semiconductor device having a contact clip with a contact region having a convex shape and method for fabricating thereof
JP3972821B2 (ja) 電力用半導体装置
JP7233604B2 (ja) 半導体装置およびその製造方法
JPH11265976A (ja) パワー半導体モジュールおよびその製造方法
JP5328740B2 (ja) 半導体装置および半導体装置の製造方法
CN104600038B (zh) 半导体装置
WO2023112195A1 (ja) 半導体装置および半導体装置の製造方法
JP7229384B2 (ja) 半導体装置および半導体装置の製造方法
JP7310161B2 (ja) 半導体装置及びその製造方法
WO2024111058A1 (ja) 半導体装置および半導体装置の製造方法
JP7496796B2 (ja) 半導体装置
WO2019116910A1 (ja) 半導体装置および半導体装置の製造方法
WO2021240944A1 (ja) 半導体装置
JP6274986B2 (ja) パワー半導体モジュールおよびその製造方法
JP7359317B2 (ja) 半導体装置、半導体装置の製造方法
JP4047572B2 (ja) 電力用半導体装置
JP6119553B2 (ja) 電力用半導体装置およびその製造方法
WO2023042372A1 (ja) 半導体装置、及び半導体装置の製造方法
JP2014179385A (ja) Led発光装置およびその製造方法
JP2007317761A (ja) 半導体装置
JP2022144711A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968112

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023567380

Country of ref document: JP