JP6119553B2 - 電力用半導体装置およびその製造方法 - Google Patents

電力用半導体装置およびその製造方法 Download PDF

Info

Publication number
JP6119553B2
JP6119553B2 JP2013219898A JP2013219898A JP6119553B2 JP 6119553 B2 JP6119553 B2 JP 6119553B2 JP 2013219898 A JP2013219898 A JP 2013219898A JP 2013219898 A JP2013219898 A JP 2013219898A JP 6119553 B2 JP6119553 B2 JP 6119553B2
Authority
JP
Japan
Prior art keywords
metal layer
electrode substrate
power semiconductor
semiconductor chip
sintered metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013219898A
Other languages
English (en)
Other versions
JP2015082581A (ja
Inventor
伸緒 横村
伸緒 横村
卓 楠
卓 楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013219898A priority Critical patent/JP6119553B2/ja
Publication of JP2015082581A publication Critical patent/JP2015082581A/ja
Application granted granted Critical
Publication of JP6119553B2 publication Critical patent/JP6119553B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)

Description

本発明は、電力用半導体チップが焼結金属で接合された電力用半導体装置およびその製造方法に関するものである。
半導体装置の中でも電力用半導体装置は、産業用機器から家電・情報端末まで幅広い機器の主電力(パワー)の制御に用いられ、とくに高い信頼性と小型化が求められている。近年、とくに大電流を流すことができ、高温動作も可能なワイドバンドギャップ半導体材料である例えば炭化珪素(SiC)がシリコン(Si)に代わる半導体材料として開発が進められている。
一方、これまで用いられてきたはんだでは、高温動作への対応は困難であり、ナノあるいはマイクロレベルの金属微粒子を含むペーストを焼結して得られる焼結金属による接合が高温対応の接合技術として提案されている(例えば、特許文献1参照。)。
特開2011−71301号公報(段落0023〜0032、図1〜図5)
このような焼結金属による接合は、接合時の温度よりも接合後の融点の方が高くなるため、高温運転が想定される電力用半導体装置の信頼性を向上させることが期待できる。しかしながら、焼結金属用のペーストを用いて接合する場合は、所定の接合力を得るためには、原理的に焼結時に加圧力を必要とする。そのため、焼結金属用のペーストを加圧した際に半導体チップの外周に露出したペーストやペースト印刷時に生じる印刷ニジミのある部分は焼結時に圧力の掛からない無加圧状態となり、以降の工程で端部から脱離しやすい。この脱離物が製品内に残留すると、様々な不具合を引き起こす可能性があり、信頼性を阻害する要因となっていた。
本発明は、上記のような課題を解決するためになされたもので、高温運転に対応し、かつ信頼性の高い電力用半導体装置およびその製造方法を得ることを目的とする。
本発明の電力用半導体装置は、矩形板状の電極基板と、前記電極基板の厚さ方向において前記電極基板上に接合される電力用半導体チップと、前記電極基板と前記電力用半導体チップとの間に介在すると共に、前記電極基板と前記電力用半導体チップとを前記厚さ方向において接合し、第1の金属を少なくとも含む微細粒子の第1の焼結金属層と、前記電極基板と前記電力用半導体チップとの前記厚さ方向における間に位置し、前記電極基板と前記厚さ方向において接し、前記第1の金属とは異なる第2の金属を少なくとも含む凝固金属層と、前記厚さ方向において前記凝固金属層を介して前記電極基板に対向する位置に配置してあり、前記厚さ方向に垂直な前記電極基板の縦幅または横幅方向において前記第1の焼結金属層と接し、前記第1の金属を少なくとも含む微細粒子の第2の焼結金属層と、前記厚さ方向において前記凝固金属層と前記第2の焼結金属層とに接し、前記縦幅または横幅方向において前記第1の焼結金属層に接し、前記第1の金属と前記第2の金属とを少なくとも含む拡散金属層とを備え、前記凝固金属層は、前記縦幅または横幅方向において前記電極基板または前記第1の焼結金属層に接し、前記電力用半導体チップ、前記第1の焼結金属層、および前記電極基板は、前記電力用半導体チップが接合されるチップ領域において、前記厚さ方向に沿って前記電力用半導体チップ、前記第1の焼結金属層、前記電極基板の順に配置され、前記第2の焼結金属層、前記拡散金属層、前記凝固金属層および前記電極基板は、前記チップ領域の外周側において、前記厚さ方向に沿って前記第2の焼結金属層、前記拡散金属層、前記凝固金属層、前記電極基板の順に配置されることを特徴とする。
また、本発明の電力用半導体装置の製造方法は、矩形板状の電極基板と第1の金属を少なくとも含む微細粒子の第1の焼結金属層を介して前記電極基板へ前記電極基板の厚さ方向に接合される電力用半導体チップとを準備する工程と、前記電極基板上において前記電力用半導体チップが接合されるチップ領域の外周側の範囲に前記第1の金属とは異なる第2の金属を少なくとも含む金属部を設置する工程と、前記チップ領域上と前記金属部上とに前記第1の金属を含有するペーストを印刷する工程と、前記ペースト上において、前記チップ領域と対向する位置に前記電力用半導体チップをマウントする工程と、前記電極基板と前記電力用半導体チップとの間に圧力をかけながら加熱して、前記ペーストの焼結によって前記第1の焼結金属層を形成し、前記金属部の溶融および凝固によって前記第2の金属を少なくとも含む凝固金属層を形成し、前記厚さ方向に垂直な前記電極基板の縦幅または横幅方向において前記第1の焼結金属層と接して前記第1の金属を少なくとも含む微細粒子の第2の焼結金属層を前記焼結によって形成し、前記厚さ方向において前記凝固金属層と前記第2の焼結金属層とに接して前記第1の金属と前記第2の金属とを少なくとも含む拡散金属層を前記溶融および凝固を介して形成し、前記電力用半導体チップと前記電極基板とを接合する工程とを備え、前記拡散金属層が前記縦幅または横幅方向において前記第1の焼結金属層に接し、前記凝固金属層が前記縦幅または横幅方向において前記電極基板または前記第1の焼結金属層に接し、前記電力用半導体チップ、前記第1の焼結金属層、および前記電極基板が前記チップ領域において前記厚さ方向に沿って前記電力用半導体チップ、前記第1の焼結金属層、前記電極基板の順に配置され、前記第2の焼結金属層、前記拡散金属層、前記凝固金属層および前記電極基板が前記外周側において前記厚さ方向に沿って前記第2の焼結金属層、前記拡散金属層、前記凝固金属層、前記電極基板の順に配置された電力用半導体装置を製造することを特徴とする。
本発明によれば、接合過程における焼結時に圧力のかからない部分の端部からの脱離を抑制できるので、高温運転に対応し、かつ信頼性が高い電力用半導体装置を得ることができる。
本発明の実施の形態1にかかる電力用半導体装置の平面図である。 本発明の実施の形態1にかかる電力用半導体装置の断面図である。 本発明の実施の形態1にかかる電力用半導体装置の製造方法における製造工程ごとの平面図および断面図である。 本発明の実施の形態2にかかる電力用半導体装置の平面図である。 本発明の実施の形態2にかかる電力用半導体装置の断面図である。 本発明の実施の形態2にかかる電力用半導体装置の製造方法における製造工程ごとの平面図および断面図である。
実施の形態1.
図1および図2は、本発明の実施の形態1にかかる電力用半導体装置の構成を示すものであって、図1は平面図、図2は図1におけるA−A線による断面図である。図3(A)〜(e)は、本実施の形態にかかる電力用半導体装置の製造方法を説明するためのもので、本実施の形態にかかる電力用半導体装置の平面図(A)〜(E)及びそれぞれの平面図のA−A線による断面図(a)〜(e)の製造工程ごとの状態を示す図である。
本実施の形態にかかる電力用半導体装置の基本構成について、図1および図2を用いて説明する。電力用半導体装置100は、窒化ケイ素(Si)等のセラミックス板を絶縁基材とし、両面に銅(Cu)の電極がろう付け処理された上面が平坦な電極基板42を備える。電極基板42は、縦幅10mm×横幅10mmの矩形であり、厚さは0.5mmである。電極基板42上には、高温動作も可能なワイドバンドギャップ半導体材料である炭化珪素(SiC)等を用いた電力用半導体チップ10が実装されている。電力用半導体チップ10は、縦幅5mm×横幅5mmの矩形であり、厚さは0.3mmである。なお、電極基板42及び電力用半導体チップ10の寸法は一例であって、以下で説明する大小関係が成り立てば他の寸法であっても良いのは言うまでもない。
そして、上面が平坦な電極基板42上にあって、電力用半導体チップ10の配置領域直下の外周側、すなわち図1の上面視で電極基板42の電力用半導体チップ10が接合されたチップ領域の外周側であると共に、図2の断面視で平坦な電極基板42の上面に、すずめっきが溶けて凝固した凝固金属層31が備えられている。具体的には、凝固金属層31は、上面が平坦な電極基板42の表面上に接して設けられている。凝固金属層31の内周は、縦幅6mm×横幅6mmの矩形であり、縦幅横幅共に電力用半導体チップ10よりも1mmだけ大きくしているが、チップと同じ寸法でも問題ない。また、凝固金属層31の外周は、縦幅8mm×横幅8mmの矩形である。凝固金属層31の厚さは、上面視で後述する焼結金属層21で隠れていないところは、3〜5μmで、上面視で後述する焼結金属層21で隠れているところは拡散金属層50が存在する分薄くなっている。
そして、図2の断面視で上面が平坦な電極基板42と電力用半導体チップ10との間に位置し、凝固金属層31に内包される領域には、ナノあるいはマイクロレベルの銀(Ag)微粒子が焼結した第1の焼結金属層21aが備えられている。また、図2の断面視で凝固金属層31上に位置し、第1の焼結金属層21aの外周側にも同じ微粒子が焼結した第2の焼結金属層21bが備えられている。第1の焼結金属層21a及び第2の焼結金属層21bからなる焼結金属層21の外周は、縦幅7mm×横幅7mmであり、電極基板42上の凝固金属層31の内周4辺を内包するように配置されている。そして、図2の断面視で凝固金属層31と第2の焼結金属層21bとの間には拡散金属層50が形成されている。第1の焼結金属層21aの厚さは20〜200μmである。第2の焼結金属層21bの厚さは、拡散金属層50および凝固金属層31が存在する分薄くなっている。
電力用半導体チップ10は、例えば、スイッチング素子としてIGBT(Insulated Gate Bipolar Transistor)を用いた場合、裏面にはコレクタ電極が形成され、主面(表面)には主電力電極であるエミッタ電極と、制御電極であるゲート電極が形成されている。さらに、電力用半導体チップ1としては、MOSFET(Metal Oxide Semiconductor Field−Effect Transistor)の他、整流素子であるSBD(Schottky Barrier diode)などを用いることができる。
なお、電極基板42の電極及び電力用半導体チップ10の表面側には、外部回路との電気接続を行うための図示しない電極端子等が設けられている。電極基板42の電極には、電力用半導体チップ10で発生した熱を除去するために、図示しない冷却部材が設けられている。そして、電力用半導体チップ10は図示しない封止樹脂で覆われていることが一般的に行われている。
次に、本実施の形態にかかる電力用半導体装置100の製造方法について図3を用いて説明する。まず、図3の(A)および(a)において、上面が平坦な電極基板40(縦幅10mm×横幅10mm)上の電力用半導体チップ10が配置されるチップ領域1(設置領域:縦幅5mm×横幅5mm)の周辺にすずめっきを施したすずめっき層30を形成する。すずめっき層30の内周は、縦幅6mm×横幅6mmの矩形であり、縦幅横幅共に電力用半導体チップ10よりも1mmだけ大きくしているが、チップと同じ寸法でも問題ない。また、すずめっき層30の外周は、縦幅8mm×横幅8mmの矩形である。すずめっき層30の厚さは、3〜5μmである。
次に、図3の(B)および(b)に示すように、電極基板40上のすずめっき層30の内周を内包するように、メタルマスクを用いて、縦幅7mm×横幅7mmの範囲にマイクロあるいはナノレベルの銀(Ag)粒子を含む焼結金属用のペーストを印刷し、ペースト層20を形成する。図3(b)において便宜的に、ペースト層20の内、下部に電極基板40のみが介在している部分を第1のペースト層20aと呼び、下部にすずめっき層30および電極基板40が介在している部分を第2のペースト層20bと呼ぶこととする。第1のペースト層20aの電極基板40からの厚みは、後述する焼結後の段階で20〜200μmである。第2のペースト層20bは、すずめっき層30の存在により、厚さは薄くなっている。なお、ペースト層20を形成する上で、ペーストの印刷パターン及び印刷回数は問わない。また、焼結金属用のペーストに含まれる金属粒子は、銀に限ることなく、電力用半導体チップ10と電極基板40とを接合できるのであれば、他の材料であってもよい。印刷においてニジミが発生したが、すずめっきの外周サイズ縦幅8mm×横幅8mmの領域の範囲内であった。
焼結金属用のペースト印刷後、ペースト層20上に、図3の(C)および(c)に示すように、高温動作も可能なワイドバンドギャップ半導体材料である炭化珪素(SiC)等を用いた電力用半導体チップ10をマウントする。電力用半導体チップ10は、縦幅5mm×横幅5mmの矩形であり、厚さは0.3mmである。
そして、図3の(C)および(c)に示された状態で、電力用半導体チップ10を押圧することで、ペースト層20の内、電力用半導体チップ10と電極基板40とに挟まれた部分に1〜10MPaの圧力をかけながら、250〜300℃に加熱する。その結果、図3の(D)および(d)に示されているように、ペースト層20が焼結することで焼結金属層21が得られる。なお、図3の(D)および(d)における電極基板41は、加熱により表面が酸化した電極基板40を示している。
そして、ペースト層20の一部である第1のペースト層20aが加熱により焼結することで、電極基板41と電力用半導体チップ10とを接合する第1の焼結金属層21aが得られる。また、ペースト層20の一部である第2のペースト層20bが加熱により焼結することで、第2の焼結金属層21bが得られる。さらに、加熱することで、すずめっき層30が溶融・凝固し、凝固金属層31が得られるとともに、凝固金属層31と第2の焼結金属層21bとの界面に拡散金属層50が形成される。この結果、第2の焼結金属層21bの厚さは、拡散金属層50および凝固金属層31が存在する分、第1の焼結金属層21aよりも薄くなっている。第2の焼結金属層21bは、無加圧状態である電力用半導体チップ10の外周に露出したペーストやペースト印刷時に生じる印刷ニジミのある部分を含んでいるが、拡散金属層50の存在により、凝固金属層31を介して電極基板41と強固に密着し凝固する。
次に、図3の(E)および(e)に示すように、電力用半導体チップ10が接合された電極基板41に除去剤を用いて湿式超音波洗浄を5分間実施し、電極基板41上の酸化膜を除去することで、電極基板42が得られる。なお、除去剤で酸化膜を除去する方法に代えて、ペーストに銅酸化膜還元剤を添加してもよく、その場合は、酸化膜は自然酸化膜程度の薄い被膜であるので印刷後に還元されることで、酸化膜は消失する。
ここで、電極基板40上にすずめっき層30を形成する必要性を、以下述べる。本発明の課題である、加圧・加熱時に圧力の掛からない無加圧状態である電力用半導体チップ10の外周に露出したペーストやペースト印刷時に生じる印刷ニジミのある部分を含む第2の焼結金属層21bが電極基板40から脱離することを防止するためには、電極基板40と焼結金属の密着性を向上する必要がある。無加圧部分の密着性を向上させるためには、電極基板40上に例えばめっきにより金(Au)や銀(Ag)を形成する方法がある。金や銀は貴金属であり、電極表面が銅の場合と比較して、焼結時の表面酸化の影響が軽減され焼結金属との密着性は向上すると思われる。ただし、電極表面材質が銅の場合よりは密着性が向上するものの、無加圧下での固相間接合となるため、信頼性の高い密着を得ることは難しい。
この課題を解決するには、銅電極基板上にすずまたはすず系はんだを配置し、電力用半導体チップ10と電極基板40との焼結時の熱によりそれらを溶融・凝固させることが有効である。溶融・凝固処理により、凝固金属層31と第2の焼結金属層21bとの界面に拡散金属層50が得られる。これにより、第2の焼結金属層21bは拡散金属層50と凝固金属層31を介して銅電極基板と接合され、強固で信頼性の高い密着性を得ることができ、焼結金属層20の端部から剥離することが抑制されている。また、溶融・凝固処理により、凝固金属層31と電極基板41との間についても、界面で反応して密着に固着している。ただし、電極基板41上であっても、すずめっき層30を電力用半導体チップ10が配置されるチップ領域1に形成すると、チップ通電時の発熱の影響を大きく受けて、すずの拡散が進行し、析出物の生成等の組織変化が生じる。その結果、焼結金属による接合の本来の特長である高パワーサイクル耐性が損なわれることになる。よって、電力用半導体チップ10が配置される領域1(設置領域:縦幅5mm×横幅5mm)の周辺にすずめっきにより厚さ3〜5μmのすずめっき層30を形成する。なお、すずめっき層30の形成方法について、上記の条件を満たすならば被覆方法は問わない。なお、この条件を満たす金属であれば、すずに限らない。
また、ここでは、電力用半導体チップ10は、縦幅5mm×横幅5mmの矩形としている。そして、すずめっき層30の内周は、縦幅6mm×横幅6mmの矩形であり、縦幅横幅共に電力用半導体チップ10よりも1mmだけ大きくしているが、すずめっき層30の内周の大きさがチップサイズより大きい場合であっても、無加圧部分の端側にある焼結金属層21である第2の焼結金属層21bの存在により、焼結金属層21は拡散金属層50と凝固金属層31を介して電極基板41と接合され、強固で信頼性の高い密着性を得ることができる。なお、すずめっき層30の内周は、チップと同じ寸法でも問題ないことはいうまでもない。
比較例として、電極基板40上の電力用半導体チップ10の配置領域の外周側周辺にすずめっき層30を形成せずに接合を行い、電力用半導体装置を作成した結果、焼結銀の脱離物が検出された。
以上のように、本発明の実施の形態1にかかる電力用半導体装置によれば、上面が平坦な電極基板と電極基板上に搭載された電力用半導体チップと、電極基板と電力用半導体チップとの間に介在すると共に、電極基板と電力用半導体チップとを接合し、第1の金属を少なくとも含む微細粒子の第1の焼結金属層と、上面視で電極基板の電力用半導体チップが接合されたチップ領域の外周側であると共に断面視で電極基板の上面の表面上に形成され、第1の金属とは異なる第2の金属を少なくとも含む凝固金属層と、断面視で凝固金属層上であって、上面視で凝固金属層の領域内に第1の焼結金属層と一体的に設けられ、第1の金属を少なくとも含む微細粒子の第2の焼結金属層と、凝固金属層と第2の焼結金属層との間に介在し、第1の金属と第2の金属とを少なくとも含む拡散金属層とを備えることを特徴として構成したので、焼結時に圧力のかからない部分の脱離を抑制できるので、高温運転に対応し、かつ信頼性が高い電力用半導体装置を得ることができる。
実施の形態2.
実施の形態1にかかる電力用半導体装置100では、上面が平坦な電極基板42の上面の表面上に凝固金属層31を形成する例について説明した。本実施の形態にかかる電力用半導体装置101では、切欠き形状の溝を有した電極基板45に凝固金属層34を形成する点が実施の形態1とは異なり、それ以外については実施の形態1と同様である。そこで、異なる部分を中心に説明する。
図4および図5は、本発明の実施の形態2にかかる電力用半導体装置の構成を示すものであって、図4は平面図、図5は図4におけるB−B線による断面図である。図6(A)〜(g)は、本実施の形態にかかる電力用半導体装置の製造方法を説明するためのもので、本実施の形態にかかる電力用半導体装置の平面図(A)〜(G)及びそれぞれの平面図のB−B線による断面図(a)〜(g)の製造工程ごとの状態を示す図である。なお、実施の形態1と同様の部分については同じ符号を付し、詳細な説明は省略する。
本実施の形態にかかる電力用半導体装置の基本構成について、図4および図5において説明する。電力用半導体装置101は、窒化ケイ素(Si)等のセラミックス板を絶縁基材とし、両面に銅(Cu)の電極がろう付け処理された電極基板45を備える。電極基板45は、縦幅10mm×横幅10mmの矩形であり、厚さは0.5mmである。電極基板45上には、高温動作も可能なワイドバンドギャップ半導体材料である炭化珪素(SiC)等を用いた電力用半導体チップ10が実装されている。電力用半導体チップ10は、縦幅5mm×横幅5mmの矩形であり、厚さは0.3mmである。なお、電極基板45及び電力用半導体チップ10の寸法は一例であって、以下で説明する大小関係が成り立てば他の寸法であっても良いのは言うまでもない。
電極基板45は、電力用半導体チップ10の配置領域直下の外周側、すなわち図4の上面視で電極基板45の電力用半導体チップ10が接合されたチップ領域の外周側に切欠き形状を有する溝を有している。溝の内周は、縦幅6mm×横幅6mmの矩形であり、縦幅横幅共に電力用半導体チップ10よりも1mmだけ大きくしているが、チップと同じ寸法でも問題ない。溝の外周は、縦幅8mm×横幅8mmの矩形である。溝の深さは、電極基板45の表面から20〜30μmである。そして、形成された溝には、すずが溶けて凝固した凝固金属層34が形成されている。
そして、図5の断面視で電極基板45と電力用半導体チップ10との間に位置し、凝固金属層34に内包される領域には、ナノあるいはマイクロレベルの銀(Ag)微粒子が焼結した第1の焼結金属層23aが備えられている。また、図5の断面視で凝固金属層34上に位置し、第1の焼結金属層23aの外周側にも同じ微粒子が焼結した第2の焼結金属層23bが備えられている。第1の焼結金属層23aおよび第2の焼結金属層23bからなる焼結金属層23の外周は、縦幅7mm×横幅7mmであり、電極基板45上の凝固金属層34の内周4辺を内包するように配置されている。そして、図5の断面視で凝固金属層34と第2の焼結金属層23bとの間には拡散金属層51が形成されている。焼結金属層23aの厚さは20〜200μmである。焼結金属層23bの厚さは、拡散金属層51が存在する分薄くなっている。
次に、本実施の形態にかかる電力用半導体装置101の製造方法について図6を用いて説明する。まず、図6の(A)および(a)において、電極基板43(縦幅10mm×横幅10mm)の上面の表面のうち、電力用半導体チップ10が配置されるチップ領域2(設置領域:縦幅5mm×横幅5mm)の周辺領域にエッチング加工により切欠き形状を有する溝を形成する。溝の内周は、縦幅6mm×横幅6mmの矩形であり、縦幅横幅共に電力用半導体チップ10よりも1mmだけ大きくしているが、チップと同じ寸法でも問題ない。また、溝の外周は、縦幅8mm×横幅8mmの矩形である。溝の電極基板43からの深さは、20〜30μmである。
次に、図6の(B)および(b)に示すように、上記溝に、融点が接合温度以下のすず系鉛フリーはんだボールを用いて、すずを充填したすず系鉛フリーはんだ層32を形成する。すず系鉛フリーはんだボールを用いたのは、溝へのすずの充填に対して作業性が良いからであるが、同様の効果を有するものであれば、すず系鉛フリーはんだボールに限られない。
次に、図6の(B)および(b)に示された状態で、還元リフロー装置により溝内のはんだボールを融解凝固させることで、図6の(C)および(c)に示すように、融解すず系鉛フリーはんだ層33が得られる。はんだは液相拡散反応により電極基板43の銅と強固に密着する。また還元リフロー装置のため電極基板43は酸化しておらず、後述する焼結によるチップ接合を阻害することはない。
次に、図6の(D)および(d)に示すように、電極基板43の溝に形成された融解すず系鉛フリーはんだ層33の内周を内包するように、縦幅7mm×横幅7mmの範囲にメタルマスクを用いて、マイクロあるいはナノレベルの銀(Ag)粒子を含む焼結金属用のペーストを印刷し、ペースト層22を形成する。図6(d)において便宜的に、ペースト層22の内、下部に電極基板43のみが介在している部分を図6(d)において第1のペースト層22aと呼び、下部に融解すず系鉛フリーはんだ層33および電極基板43が介在している部分を第2のペースト層23bと呼ぶこととする。ペースト層22の電極基板43からの厚みは、後述する焼結後の段階で20〜200μmである。なお、ペースト層22を形成する上で、ペーストの印刷パターン及び印刷回数は問わない。また、焼結金属は銀に限ることなく、電力用半導体チップ10と電極基板43とを接合できるのであれば、他の材料であってもよい。印刷においてニジミが発生したが、すずめっきの外周サイズ縦幅8mm×横幅8mmの領域の範囲内であった。
焼結金属用のペースト印刷後、ペースト層22上に、図6の(E)および(e)に示すように、高温動作も可能なワイドバンドギャップ半導体材料である炭化珪素(SiC)等を用いた電力用半導体チップ10をマウントする。電力用半導体チップ10は、縦幅5mm×横幅5mmの矩形であり、厚さは0.3mmである。
そして、図6の(E)および(e)に示された状態で、電力用半導体チップ10を押圧することで、ペースト層22の内、電力用半導体チップ10と電極基板43とに挟まれた部分に1〜10MPaの圧力をかけながら、250〜300℃に加熱する。その結果、図3の(F)および(f)に示されているように、ペースト層22が焼結することで焼結金属層23が得られる。なお、図6の(F)および(f)における電極基板44は、加熱により表面が酸化した電極基板43を示している。
そして、ペースト層22の一部である第1のペースト層22aが加熱により焼結することで、電極基板44と電力用半導体チップ10とを接合する第1の焼結金属層23aが得られる。また、ペースト層22の一部である第2のペースト層22bが加熱により焼結することで、第2の焼結金属層23bが得られる。さらに、加熱することで、融解すず系鉛フリーはんだ層33が溶融・凝固し、凝固金属層34が得られるとともに、凝固金属層34と第2の焼結金属層23bとの界面に拡散金属層51が形成される。この結果、第2の焼結金属層23bの厚さは、拡散金属層51が存在する分、第1の焼結金属層23aよりも薄くなっている。第2の焼結金属層23bは、無加圧状態である電力用半導体チップ10の外周に露出したペーストやペースト印刷時に生じる印刷ニジミのある部分を含んでいるが、拡散金属層51の存在により、凝固金属層34を介して電極基板45と強固に密着し凝固する。
さらに、図6の(G)および(g)に示すように、電力用半導体チップ10が接合された電極基板44に除去剤を用いて湿式超音波洗浄を5分間実施し、電極基板44上の酸化膜を除去することで、電極基板45が得られる。なお、除去剤で酸化膜を除去する方法に代えて、ペーストに銅酸化膜還元剤を添加してもよく、その場合は、酸化膜は自然酸化膜程度の薄い被膜であるので印刷後に還元されることで、酸化膜は消失する。
比較例として、電極基板43の電力用半導体チップ10の配置領域外周側周辺に形成された溝にすず系鉛フリーはんだ層32形成せずに接合を行い、電力用半導体装置を作成した結果、焼結銀の脱離物が検出された。
以上のように、本発明の実施の形態2にかかる電力用半導体装置によれば、所定領域に切欠き形状の溝が形成された電極基板と、電極基板上に搭載された電力用半導体チップと、電極基板と電力用半導体チップとの間に介在すると共に、電極基板と電力用半導体チップとを接合し、第1の金属を少なくとも含む微細粒子の第1の焼結金属層と、溝中に形成され、第1の金属とは異なる第2の金属を少なくとも含む凝固金属層と、断面視で凝固金属層上であって、上面視で凝固金属層の領域内に第1の焼結金属層と一体的に設けられ、第1の金属を少なくとも含む微細粒子の第2の焼結金属層と、凝固金属層と第2の焼結金属層との間に介在し、第1の金属と前記第2の金属とを少なくとも含む拡散金属層とを備えることを特徴として構成したので、焼結時に圧力のかからない部分の脱離を抑制できるので、高温運転に対応し、かつ信頼性が高い電力用半導体装置を得ることができる。
なお、上記各実施の形態においては、電力用半導体チップ10としては、シリコンウエハを基材とした一般的な素子でも良いが、本発明においては炭化ケイ素(SiC)や窒化ガリウム(GaN)系材料、またはダイヤモンドといったシリコンと較べてバンドギャップが広い、いわゆるワイドバンドギャップ半導体材料を用い、高耐圧および高温動作が可能な半導体素子を用いた場合に、特に顕著な効果が現れる。特に炭化ケイ素を用いた電力用半導体素子に好適である。
ワイドバンドギャップ半導体によって形成されたスイッチング素子や整流素子は、ケイ素で形成された素子よりも電力損失が低いため、スイッチング素子や整流素子における高効率化が可能であり、ひいては、電力用半導体装置の高効率化が可能となる。さらに、耐電圧性が高く、許容電流密度も高いため、スイッチング素子や整流素子の小型化が可能であり、これら小型化されたスイッチング素子や整流素子を用いることにより、電力用半導体装置も小型化が可能となる。また耐熱性が高いので、高温動作が可能であり、ヒートシンクの放熱フィンの小型化や、水冷部の空冷化も可能となるので、電力用半導体装置の一層の小型化が可能になる。
その際、本発明による効果を発揮することで、ワイドバンドギャップ半導体の特性を活かすことができるようになる。なお、複数の半導体素子全てが、ワイドバンドギャップ半導体によって形成されていても、一部の半導体素子がワイドバンドギャップ半導体によって形成されていてもよい。
1、2:電力用半導体チップが配置されるチップ領域、10:電力用半導体チップ、 20、22:ペースト層、20a、22a:第1のペースト層、20b、22b:第2のペースト層分、21、23:焼結金属層、21a、23a:第1の焼結金属層、 21b、23b:第2の焼結金属層、30:すずめっき層、31、34:凝固金属層、 32:すず系鉛フリーはんだ層、33:融解すず系鉛フリーはんだ層、 40、41、42、43、44、45:電極基板、50、51:拡散金属層、100:電力用半導体装置。

Claims (10)

  1. 矩形板状の電極基板と、
    前記電極基板の厚さ方向において前記電極基板上に接合される電力用半導体チップと、
    前記電極基板と前記電力用半導体チップとの間に介在すると共に、前記電極基板と前記電力用半導体チップとを前記厚さ方向において接合し、第1の金属を少なくとも含む微細粒子の第1の焼結金属層と、
    前記電極基板と前記電力用半導体チップとの前記厚さ方向における間に位置し、前記電極基板と前記厚さ方向において接し、前記第1の金属とは異なる第2の金属を少なくとも含む凝固金属層と、
    前記厚さ方向において前記凝固金属層を介して前記電極基板に対向する位置に配置してあり、前記厚さ方向に垂直な前記電極基板の縦幅または横幅方向において前記第1の焼結金属層と接し、前記第1の金属を少なくとも含む微細粒子の第2の焼結金属層と、
    前記厚さ方向において前記凝固金属層と前記第2の焼結金属層とに接し、前記縦幅または横幅方向において前記第1の焼結金属層に接し、前記第1の金属と前記第2の金属とを少なくとも含む拡散金属層とを備え
    前記凝固金属層は、前記縦幅または横幅方向において前記電極基板または前記第1の焼結金属層に接し、
    前記電力用半導体チップ、前記第1の焼結金属層、および前記電極基板は、前記電力用半導体チップが接合されるチップ領域において、前記厚さ方向に沿って前記電力用半導体チップ、前記第1の焼結金属層、前記電極基板の順に配置され、
    前記第2の焼結金属層、前記拡散金属層、前記凝固金属層および前記電極基板は、前記チップ領域の外周側において、前記厚さ方向に沿って前記第2の焼結金属層、前記拡散金属層、前記凝固金属層、前記電極基板の順に配置される
    ことを特徴とする電力用半導体装置。
  2. 前記第1の焼結金属層が接合される前記電極基板の上面は、平坦であり、
    前記凝固金属層は、前記上面に形成してある
    ことを特徴とする請求項1記載の電力用半導体装置。
  3. 前記第1の焼結金属層が接合される前記電極基板の上面は、接合によって前記第1の焼結金属層と前記電極基板とが接する接触領域の外側の位置に前記厚さ方向に窪む溝が形成してあり、
    前記凝固金属層は、前記溝に形成してある
    ことを特徴とする請求項1記載の電力用半導体装置。
  4. 前記第1の金属は、銀である
    ことを特徴とする請求項1項記載の電力用半導体装置。
  5. 前記第2の金属は、すずである
    ことを特徴とする請求項1項記載の電力用半導体装置。
  6. 前記第2の金属は、すずめっきである
    ことを特徴とする請求項1項記載の電力用半導体装置。
  7. 前記凝固金属層は、融点が接合温度以下のスズ系鉛フリーはんだ材を含む
    ことを特徴とする請求項1記載の電力用半導体装置。
  8. 前記電力用半導体チップは、炭化ケイ素、窒化ガリウム系材料及びダイヤモンドのうちのいずれかであるワイドバンドギャップ半導体材料により形成してある
    ことを特徴とする請求項1に記載の電力用半導体装置。
  9. 矩形板状の電極基板と第1の金属を少なくとも含む微細粒子の第1の焼結金属層を介して前記電極基板へ前記電極基板の厚さ方向に接合される電力用半導体チップとを準備する工程と、
    前記電極基板上において前記電力用半導体チップが接合されるチップ領域の外周側の範囲に前記第1の金属とは異なる第2の金属を少なくとも含む金属部を設置する工程と、
    前記チップ領域上と前記金属部上とに前記第1の金属を含有するペーストを印刷する工程と、
    前記ペースト上において、前記チップ領域と対向する位置に前記電力用半導体チップをマウントする工程と、
    前記電極基板と前記電力用半導体チップとの間に圧力をかけながら加熱して、前記ペーストの焼結によって前記第1の焼結金属層を形成し、前記金属部の溶融および凝固によって前記第2の金属を少なくとも含む凝固金属層を形成し、前記厚さ方向に垂直な前記電極基板の縦幅または横幅方向において前記第1の焼結金属層と接して前記第1の金属を少なくとも含む微細粒子の第2の焼結金属層を前記焼結によって形成し、前記厚さ方向において前記凝固金属層と前記第2の焼結金属層とに接して前記第1の金属と前記第2の金属とを少なくとも含む拡散金属層を前記溶融および凝固を介して形成し、前記電力用半導体チップと前記電極基板とを接合する工程とを備え、
    前記拡散金属層が前記縦幅または横幅方向において前記第1の焼結金属層に接し、前記凝固金属層が前記縦幅または横幅方向において前記電極基板または前記第1の焼結金属層に接し、前記電力用半導体チップ、前記第1の焼結金属層、および前記電極基板が前記チップ領域において前記厚さ方向に沿って前記電力用半導体チップ、前記第1の焼結金属層、前記電極基板の順に配置され、前記第2の焼結金属層、前記拡散金属層、前記凝固金属層および前記電極基板が前記外周側において前記厚さ方向に沿って前記第2の焼結金属層、前記拡散金属層、前記凝固金属層、前記電極基板の順に配置された電力用半導体装置を製造する
    ことを特徴とする電力用半導体装置の製造方法。
  10. 前記第1の金属は銀であり、前記第2の金属はすず、またはすずめっきである
    ことを特徴とする請求項9に記載の電力用半導体装置の製造方法。
JP2013219898A 2013-10-23 2013-10-23 電力用半導体装置およびその製造方法 Expired - Fee Related JP6119553B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013219898A JP6119553B2 (ja) 2013-10-23 2013-10-23 電力用半導体装置およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013219898A JP6119553B2 (ja) 2013-10-23 2013-10-23 電力用半導体装置およびその製造方法

Publications (2)

Publication Number Publication Date
JP2015082581A JP2015082581A (ja) 2015-04-27
JP6119553B2 true JP6119553B2 (ja) 2017-04-26

Family

ID=53013025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013219898A Expired - Fee Related JP6119553B2 (ja) 2013-10-23 2013-10-23 電力用半導体装置およびその製造方法

Country Status (1)

Country Link
JP (1) JP6119553B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6991950B2 (ja) * 2018-09-26 2022-01-13 日立Astemo株式会社 パワーモジュール

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5636720B2 (ja) * 2010-04-01 2014-12-10 三菱電機株式会社 半導体装置の製造方法および接合治具
JP5807213B2 (ja) * 2011-06-01 2015-11-10 パナソニックIpマネジメント株式会社 半導体装置、実装構造体、及び実装構造体の製造方法
JP2014127537A (ja) * 2012-12-26 2014-07-07 Hitachi Power Semiconductor Device Ltd 導電性接合材料を用いた半導体装置及びその半導体装置の製造方法。

Also Published As

Publication number Publication date
JP2015082581A (ja) 2015-04-27

Similar Documents

Publication Publication Date Title
TWI485817B (zh) 微電子封裝及其散熱方法
JP5141076B2 (ja) 半導体装置
JP6479036B2 (ja) 半導体装置及びその製造方法
CN109616460B (zh) 电力用半导体装置
JP6816776B2 (ja) 半導体装置
JP6094533B2 (ja) 半導体装置
JP6116413B2 (ja) 電力用半導体装置の製造方法
JP6399906B2 (ja) パワーモジュール
JP6440794B1 (ja) 半導体装置
JP2010097963A (ja) 回路基板及びその製造方法、電子部品モジュール
JP2012138470A (ja) 半導体素子、半導体装置および半導体装置の製造方法
JP5579148B2 (ja) 電力用半導体装置
JP6129090B2 (ja) パワーモジュール及びパワーモジュールの製造方法
JP6119553B2 (ja) 電力用半導体装置およびその製造方法
CN111433910B (zh) 半导体装置以及半导体装置的制造方法
JP5830704B2 (ja) 接合体、パワー半導体装置及びそれらの製造方法
JP5734493B2 (ja) 電力用半導体装置
CN112889148B (zh) 具有自由浮动封装概念的功率半导体装置
CN108369912B (zh) 半导体装置及其制造方法
JP6064845B2 (ja) 半導体装置
JP6529823B2 (ja) 半導体装置および半導体装置の製造方法
JP2014143342A (ja) 半導体モジュール及びその製造方法
JP2018116960A (ja) 電力用半導体装置
JP5884625B2 (ja) 半導体デバイス
JP2012209469A (ja) 電力用半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170313

R151 Written notification of patent or utility model registration

Ref document number: 6119553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees