WO2023109752A1 - 一种甲酯类化合物的制备方法 - Google Patents

一种甲酯类化合物的制备方法 Download PDF

Info

Publication number
WO2023109752A1
WO2023109752A1 PCT/CN2022/138385 CN2022138385W WO2023109752A1 WO 2023109752 A1 WO2023109752 A1 WO 2023109752A1 CN 2022138385 W CN2022138385 W CN 2022138385W WO 2023109752 A1 WO2023109752 A1 WO 2023109752A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
methyl
dimethyl ether
glycolic acid
acid
Prior art date
Application number
PCT/CN2022/138385
Other languages
English (en)
French (fr)
Inventor
倪友明
朱文良
刘中民
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to EP22906497.7A priority Critical patent/EP4438587A1/en
Publication of WO2023109752A1 publication Critical patent/WO2023109752A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7042TON-type, e.g. Theta-1, ISI-1, KZ-2, NU-10 or ZSM-22
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/24Preparation of carboxylic acid esters by reacting carboxylic acids or derivatives thereof with a carbon-to-oxygen ether bond, e.g. acetal, tetrahydrofuran
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/31Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by introduction of functional groups containing oxygen only in singly bound form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/36Preparation of carboxylic acid esters by reaction with carbon monoxide or formates
    • C07C67/37Preparation of carboxylic acid esters by reaction with carbon monoxide or formates by reaction of ethers with carbon monoxide

Definitions

  • the application relates to a method for preparing methyl ester compounds, which belongs to the field of catalytic chemistry.
  • Methyl glycolate (HOCH 2 COOCH 3 , MG) is an important platform compound.
  • Ethylene glycol can be produced through hydrogenation reaction; glycolic acid can be prepared through hydrolysis reaction; polyglycolic acid can be synthesized through polymerization reaction (PGA).
  • Ethylene glycol is a widely used monomer of polyethylene terephthalate (PET) material, and has a large market demand.
  • PET polyethylene terephthalate
  • Glycolic acid is an excellent chemical cleaning agent and cosmetic raw material, and can also self-polymerize to form PGA.
  • Polyglycolic acid PGA is the simplest linear polyester in polyhydroxyalkanoate. It is a fully biodegradable material and can be synthesized by condensation of monomers such as methyl glycolate and glycolic acid. The degradation conditions are mild, and under the action of water and microorganisms, it can achieve rapid degradation in the natural environment, and the final degradation products are carbon dioxide and water. In addition, PGA can also be degraded in seawater, and its degradation products are harmless to human body and environment.
  • Methyl glycolate can be prepared by carbonylation of formaldehyde. Although the raw materials are cheap and easy to obtain, it needs to be carried out under the conditions of high temperature, high pressure, strong liquid acid, and organic solvent; the equipment is easy to corrode, and the product purification is difficult, resulting in high industrial production costs. In recent years, with the large-scale industrial application of "coal to ethylene glycol" technology, the partial hydrogenation of dimethyl oxalate to methyl glycolate has attracted widespread attention.
  • the partial hydrogenation catalyst of dimethyl oxalate is immature, with low conversion efficiency and poor stability; on the other hand, the production process of dimethyl oxalate is long and the cost is high; this seriously restricts the development of this method.
  • the industrial production technology of methyl glycolate monomer is not yet mature, resulting in insufficient production capacity and high price of PGA plastics, which limits its large-scale replacement application.
  • the application provides a green, economical and efficient synthesis technology route of methyl ester compounds, especially methyl glycolate.
  • a method for preparing methyl ester compounds is provided.
  • the raw materials containing methoxyacetic acid, methanol and/or dimethyl ether are passed through the reactor for esterification to obtain products of methyl esters.
  • esterification of methoxyacetic acid and glycolic acid not only the yield of methyl glycolate can be increased, but also there is no need to separate methoxyacetic acid and glycolic acid; this can greatly simplify the separation process and save energy consumption.
  • the raw materials containing methoxyacetic acid, glycolic acid, methanol and dimethyl ether are passed through the reactor, and the Under the reaction conditions, an esterification reaction occurs to produce methyl methoxyacetate and methyl glycolate.
  • the hydrolysis reaction of methyl methoxyacetate can generate other hydrolysis products such as methoxyacetic acid, glycolic acid, methanol and dimethyl ether in addition to the target product methyl glycolate. Since methoxyacetic acid is less used and the purification of low-concentration glycolic acid consumes a lot of energy, methyl methoxyacetate and methyl glycolate can be further generated through an easy esterification reaction. In this way, not only the yield of methyl glycolate can be increased, but also the separation process can be greatly simplified and energy consumption can be saved.
  • the esterification reaction mainly includes the following reactions:
  • the raw materials containing carboxyl compounds, methanol and/or dimethyl ether are passed through the reactor to undergo an esterification reaction to obtain methyl ester compounds;
  • carboxyl compound is selected from at least one of the compounds shown in formula I;
  • R is methoxy or hydroxyl
  • the methyl ester compound includes at least one of methyl methoxyacetate and methyl glycolate.
  • the conditions of the esterification reaction are: reaction temperature 40-300°C, reaction pressure 0.1-0.5MPa.
  • the esterification reaction is carried out without a catalyst or under the condition of an esterification catalyst.
  • the esterification catalyst is a solid catalyst insoluble in raw materials and products.
  • the solid catalyst is at least one of acidic molecular sieves and acidic cation exchange resins.
  • the esterification reaction is performed on one of the following inert components: at least one of quartz sand, aluminum oxide, silicon oxide, silicon carbide, glass, and ceramics.
  • the reactor is not loaded with any catalyst, or is loaded with a solid catalyst insoluble in raw materials and products.
  • methoxyacetic acid and glycolic acid themselves can be used as catalysts, which is a self-catalyzed reaction, so no catalyst is required.
  • the solid catalyst insoluble in raw materials and products includes acidic solid catalyst and non-acidic solid catalyst.
  • the non-acidic solid catalyst mainly plays the role of promoting the mixing and dispersion of materials; the acidic solid catalyst not only has the above-mentioned role, but also can catalyze the esterification reaction.
  • the solid catalyst insoluble in raw materials and products is spherical or cylindrical.
  • the raw material is methoxyacetic acid, methanol and/or dimethyl ether; or
  • the raw material is glycolic acid, methanol and/or dimethyl ether; or
  • the raw materials are methoxyacetic acid, glycolic acid and methanol; or
  • the raw materials are methoxyacetic acid, glycolic acid and dimethyl ether; or
  • the raw materials are methoxyacetic acid, glycolic acid, methanol and dimethyl ether.
  • methyl glycolate is also included in the product.
  • the molar ratios of methoxyacetic acid, glycolic acid, methanol and dimethyl ether in the raw materials are arbitrary ratios.
  • the raw materials include methoxyacetic acid, glycolic acid, methanol and dimethyl ether;
  • the molar ratio of methoxyacetic acid/glycolic acid in the raw material is 3:1-10:1, and the molar ratio of (methanol+dimethyl ether)/(methoxyacetic acid+glycolic acid) is 1:1-5:1.
  • the raw material does not contain methanol, the molar ratio of methoxyacetic acid/glycolic acid is 3:1-10:1, and the molar ratio of dimethyl ether/(methoxyacetic acid+glycolic acid) is 1:1- 5:1.
  • the raw materials do not contain methanol and glycolic acid, and the molar ratio of dimethyl ether/methoxyacetic acid is 1:1 ⁇ 5:1.
  • the raw material does not contain dimethyl ether
  • the molar ratio of methoxyacetic acid/glycolic acid is 3:1 ⁇ 10:1, and the molar ratio of methanol/(methoxyacetic acid+glycolic acid) is 1:1 ⁇ 5:1.
  • the reaction temperature can be selected from 40°C, 50°C, 60°C, 70°C, 80°C, 90°C, 100°C, 110°C, 120°C, 130°C, 140°C, 150°C, 160°C, 170°C, 180°C, 190°C, 200°C, 210°C, 220°C, 230°C, 240°C, 250°C, 260°C, 270°C, 280°C, 290°C and 300°C or any value in between range value.
  • reaction pressure may be any value selected from 0.1MPa, 0.15MPa, 0.20MPa, 0.25MPa, 0.30MPa, 0.35MPa, 0.40MPa, 0.45MPa and 0.50MPa or a range determined by any two values.
  • the molar ratio of methoxyacetic acid/glycolic acid can be selected from 3:1, 3.5:1, 4:1, 4.5:1, 5:1, 5.5:1, 6:1, 6.5:1, Any value among 7:1, 7.5:1, 8:1, 8.5:1, 9:1, 9.5:1 and 10:1 or the range determined by any two values.
  • the (methanol+dimethyl ether)/(methoxyacetic acid+glycolic acid) molar ratio is 0.5:1, 1.0:1, 1.5:1, 2.0:1, 2.5:1, 3.0:1, 3.5:1, 4.0:1, 4.5:1, 5.0:1, 5.5:1, 6.0:1, 6.5:1, 7.0:1, 7.5:1 and 8.0:1 Any value or the range determined by any two values value.
  • the raw material does not contain methanol or dimethyl ether
  • the mol ratio of the methoxyacetic acid/glycolic acid can be selected from 3:1, 3.5:1, 4:1, 4.5:1, 5: 1, 5.5:1, 6:1, 6.5:1, 7:1, 7.5:1, 8:1, 8.5:1, 9:1, 9.5:1 and 10:1 any value or any two values to determine range of values.
  • the dimethyl ether (or methanol)/(methoxyacetic acid+glycolic acid) molar ratio is 1:1, 1.5:1, 2.0:1, 2.5:1, 3.0:1, 3.5:1, Any value among 4.0:1, 4.5:1 and 5.0:1 or the range value determined by any two values.
  • the starting material is produced by hydrolysis of methyl methoxyacetate.
  • a feedstock containing methoxyacetic acid, glycolic acid, methanol and dimethyl ether is produced by hydrolysis of methyl methoxyacetate.
  • the reactor is one of a fixed bed reactor or a tank reactor.
  • the reactor is preferably a fixed bed reactor.
  • the reaction process includes a carrier gas
  • the carrier gas includes at least one of nitrogen, argon, helium, hydrogen, carbon monoxide, and carbon dioxide.
  • the application provides a method for preparing methyl glycolate, the method comprising the steps of:
  • step b) Pass the raw material containing methyl methoxyacetate and water obtained in step a) through a reactor loaded with an acidic molecular sieve catalyst, and perform a hydrolysis reaction under predetermined conditions to generate methyl glycolate, glycolic acid, methoxy Glycolic acid, methanol, and dimethyl ether, which upon isolation yield methyl glycolate; and
  • step c) pass the glycolic acid, methoxyacetic acid, methanol and dimethyl ether obtained in step b) through the reactor, and carry out esterification reaction under predetermined conditions to generate methyl methoxyacetate and methyl glycolate product, which upon isolation yielded methyl glycolate.
  • the technical route constituted by the combination of steps a) to c) provides an industrially available route for the synthesis of methyl glycolate.
  • the methylal carbonylation reaction of step a) mainly includes the following reactions:
  • the methyl methoxyacetate hydrolysis reaction of step b) mainly comprises following reaction:
  • the esterification reaction of step c) mainly comprises following reaction:
  • the dimethyl ether and methanol obtained through the separation systems of a) and b) can be used for the preparation of methylal.
  • the reactions involved are:
  • the technical route formed by the combination of the above steps a) to c) can realize full utilization of non-target products, and only methyl formate (HCOOCH 3 ) with very low selectivity is a by-product.
  • the method also includes step a'): returning unreacted methylal and carbon monoxide in step a) to the reactor of step a) to continue the carbonylation reaction.
  • the method also includes step b'): returning the unreacted methyl methoxyacetate in step b) to the reactor of step b) and continuing the hydrolysis reaction with water.
  • the method also includes step c'): passing the product methyl methoxyacetate obtained in step c) into the reactor of step b) to perform hydrolysis reaction with water.
  • the acidic molecular sieve catalyst in step a) or step b) is selected from acidic molecular sieves with MFI structure, acidic molecular sieves with Y structure, acidic molecular sieves with FER structure, acidic molecular sieves with BEA structure, MOR structure At least one of acidic molecular sieves and acidic molecular sieves with MWW structure.
  • the acidic molecular sieve catalyst in step a) or step b) is hydrogen type ZSM-5 molecular sieve, hydrogen type Y molecular sieve, hydrogen type ZSM-35 molecular sieve, hydrogen type ⁇ molecular sieve, hydrogen type mordenite molecular sieve, hydrogen type MCM - at least one of 22 molecular sieves.
  • step a) or step b) further includes feeding a carrier gas into the reactor, and the carrier gas includes any content of at least one of nitrogen, argon, helium, hydrogen, carbon monoxide, and carbon dioxide.
  • the reaction conditions in step a) are: the reaction temperature is 60-140°C, the reaction pressure is 2-10 MPa, the mass space velocity of methylal is 0.2-10.0h -1 , and the molar ratio of carbon monoxide to methylal 2:1 ⁇ 20:1.
  • reaction temperature in step a) is any of 60°C, 65°C, 70°C, 75°C, 80°C, 85°C, 90°C, 100°C, 110°C, 120°C, 130°C and 140°C value or a range of values determined by any two values.
  • the reaction pressure in step a) is 2MPa, 2.5MPa, 3.0MPa, 3.5MPa, 4.0MPa, 4.5MPa, 5.0MPa, 5.5MPa, 6.0MPa, 6.5MPa, 7.0MPa, 7.5MPa, 8.0MPa, Any value of 8.5MPa, 9.0MPa, 9.5MPa and 10.0MPa or a range determined by any two values.
  • the mass space velocity of methylal in step a) is 0.2h -1 , 0.5h -1 , 0.8h -1 , 1.0h -1 , 1.5h -1 , 2.0h -1 , 2.5h -1 , 3.0h -1 , 3.5h -1 , 4.0h -1 , 4.5h -1 , 5.0h -1 , 5.5h -1 , 6.0h -1 , 6.5h -1 , 7.0h -1 , 7.5h -1 , any value of 8.0h -1 , 8.5h -1 , 9.0h -1 , 9.5h -1 and 10.0h -1 or a range determined by any two values.
  • the molar ratio of carbon monoxide and methylal in step a) is 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1, 10:1, 11:1, 12:1, 13:1, 14:1, 15:1, 16:1, 17:1, 18:1, 19:1 and 20:1 or any two Value determines the range of values.
  • the reaction conditions in step b) are: the reaction temperature is 140-220°C, the reaction pressure is 0.1-0.5MPa, the mass space velocity of methyl methoxyacetate is 0.1-3.0h -1 , water and methoxy The molar ratio of methyl acetate is 0.5:1 to 8:1.
  • the reaction conditions in step c) are: the reaction temperature is 40-300° C., the reaction pressure is 0.1-0.5 MPa, and the molar ratio of (methanol+dimethyl ether)/(glycolic acid+methoxyacetic acid) is 0.5 :1 ⁇ 8:1.
  • reaction state in step a) is a gas-liquid-solid three-phase reaction state.
  • step c) the esterification reaction in step c) is carried out without a catalyst or under the condition of an esterification catalyst.
  • the esterification catalyst is a solid catalyst insoluble in raw materials and products.
  • the solid catalyst is at least one of acidic molecular sieves and acidic cation exchange resins
  • the esterification reaction is performed on one of the following inert components: at least one of quartz sand, aluminum oxide, silicon oxide, silicon carbide, glass, and ceramics.
  • the esterification reaction is carried out on quartz sand.
  • Fig. 1 The core part of the technical route involved in the present invention is shown in Fig. 1 .
  • An acidic molecular sieve catalyst is loaded in the reactor used for the carbonylation reaction, and an acidic molecular sieve catalyst is loaded in the hydrolysis reactor used for the hydrolysis reaction.
  • the esterification reaction is a self-catalyzed reaction. In order to enhance the mass transfer, the esterification reactor can be loaded with inert quartz sand particles.
  • the carbonylation reactor includes a fixed-bed reactor, and may also include multiple fixed-bed reactors connected in parallel or in series.
  • the carbonylation reactor generally uses a tubular fixed-bed reactor.
  • the hydrolysis reactor includes a fixed-bed reactor, and may also include multiple fixed-bed reactors connected in parallel or in series.
  • Hydrolysis reactors are generally selective adiabatic fixed-bed reactors.
  • the separation system used to separate carbonylation products includes chemical equipment such as gas-liquid separation tanks and rectification towers commonly used in chemical separation units.
  • the separation system used to separate the hydrolyzate also includes chemical equipment such as gas-liquid separation tanks and rectification towers commonly used in chemical separation units.
  • the present invention provides a kind of brand-new synthetic route method of methyl glycolate, and reaction condition is gentle, by-product selectivity is low, target product methyl glycolate selectivity is high, atom economy is strong;
  • the reaction adopted in this route The separation equipment and separation equipment are all conventional equipment, which is convenient for large-scale production of a single set; raw materials and catalysts containing sulfur, nitrogen, chlorine and other elements are not introduced in this route, and the product methyl glycolate is of high quality; the catalysts used in this route are all acidic Molecular sieve catalysts do not require expensive noble metal catalysts.
  • Fig. 1 is the schematic flow sheet of the methyl glycolate synthetic route of the present application.
  • Agilent7890A gas chromatograph was used to analyze products and unreacted raw materials, its FID detector was connected to DB-FFAP capillary column, and its TCD detector was connected to Porapak Q packed column. After the reaction product passes through the back pressure valve, it is heated to a vaporized state and enters the chromatographic on-line analysis. Both conversion and selectivity are calculated based on the number of carbon moles of methylal:
  • Methylal conversion rate [(moles of methylal in the raw material) - (moles of methylal in the product)] ⁇ (moles of methylal in the raw material) ⁇ (100%)
  • Dimethyl ether selectivity (the number of carbon moles of dimethyl ether in the product) ⁇ [(the number of carbon moles of methylal in the raw material) - (the number of carbon moles of methylal in the product)] ⁇ (100%)
  • Methyl formate selectivity (the number of carbon moles of methyl formate in the product) ⁇ [(the number of carbon moles of methylal in the raw material) - (the number of carbon moles of methylal in the product)] ⁇ (100%)
  • Agilent7890B gas chromatograph was used to analyze products except glycolic acid and unreacted raw materials. Its FID detector was connected to DB-FFAP capillary column, and its TCD detector was connected to Porapak Q packed column. Glycolic acid was analyzed by liquid chromatography, the separation column was a C 18 column, and the detector was an ultraviolet detector. Conversions and selectivities are calculated based on moles of carbon:
  • the conversion rate of methyl methoxyacetate [(the number of carbon moles of methyl methoxyacetate in the feed) - (the number of carbon moles of methyl methoxyacetate in the output)] ⁇ (the number of moles of methyl methoxyacetate in the feed) Ester carbon moles) ⁇ 100%
  • Methyl glycolate selectivity [(carbon moles of methyl glycolate in the output)] ⁇ [(carbon moles of methyl methoxyacetate in the feed) - (carbon moles of methyl methoxyacetate in the output number)] ⁇ 100%
  • Methoxyacetic acid selectivity [(the number of carbon moles of methoxyacetic acid in the output)] ⁇ [(the number of carbon moles of methyl methoxyacetate in the feed)-(the number of carbon moles of methyl methoxyacetate in the output number)] ⁇ 100%
  • Glycolic acid selectivity [(carbon moles of glycolic acid in the output)] ⁇ [(carbon moles of methyl methoxyacetate in the feed)-(carbon moles of methyl methoxyacetate in the output)] ⁇ 100%
  • Methanol selectivity [(carbon moles of methanol in the output)] ⁇ [(carbon moles of methyl methoxyacetate in the input)-(carbon moles of methyl methoxyacetate in the output)] ⁇ 100%
  • Dimethyl ether selectivity [(the number of carbon moles of dimethyl ether in the output)] ⁇ [(the number of carbon moles of methyl methoxyacetate in the feed)-(the number of carbon moles of methyl methoxyacetate in the output) ] ⁇ 100%
  • Agilent7890B gas chromatograph was used to analyze products except glycolic acid and unreacted raw materials. Its FID detector was connected to DB-FFAP capillary column, and its TCD detector was connected to Porapak Q packed column. Glycolic acid was analyzed by liquid chromatography, the separation column was a C 18 column, and the detector was an ultraviolet detector. Considering that methoxyacetic acid is directional esterified into methoxyacetic acid methyl ester, and glycolic acid is directional esterified into glycolic acid methyl ester, so the esterification reaction results only calculate the conversion rate of methoxyacetic acid and glycolic acid.
  • Glycolic acid conversion rate [(moles of glycolic acid in the feed) - (moles of glycolic acid in the output)] ⁇ (moles of glycolic acid in the feed) ⁇ 100%
  • Methoxyacetic acid conversion rate [(moles of methoxyacetic acid in the feed) - (moles of methoxyacetic acid in the output)] ⁇ (moles of methoxyacetic acid in the feed) ⁇ 100%
  • the unconverted methylal and carbon monoxide in Examples 1-3 can be recycled to the carbonylation reactor for the carbonylation reaction as shown in Figure 1 to fully utilize the raw materials and improve the utilization rate of the raw materials.
  • reaction temperature 180°C
  • reaction pressure 0.1MPa
  • mass space velocity of methyl methoxyacetate 1.5h -1
  • molar ratio of water to methyl methoxyacetate 2:1
  • carrier gas hydrogen Flow 1.5 L/min.
  • reaction temperature 170°C
  • reaction pressure 0.12MPa
  • mass space velocity of methyl methoxyacetate 0.5h -1
  • molar ratio of water to methyl methoxyacetate 1:1
  • carrier gas hydrogen Flow 1.5 L/min.
  • the unconverted methyl methoxyacetate in Examples 4-6 can be recycled to the hydrolysis reactor for the hydrolysis reaction as shown in Figure 1 to make full use of raw materials and improve the utilization rate of raw materials.
  • the reactor has of thermowells.
  • the methoxyacetic acid, glycolic acid and dimethyl ether prepared in Examples 4 to 6 were separated and passed through a silica bed for esterification.
  • the product is collected by condensation, and analyzed by gas chromatography and liquid chromatography after weighing, and the non-condensable gas is analyzed online by gas chromatography.
  • the reactor has of thermowells.
  • the methoxyacetic acid, glycolic acid and dimethyl ether prepared in Examples 4 to 6 were separated and passed through a glass bed for esterification.
  • the product is collected by condensation, and analyzed by gas chromatography and liquid chromatography after weighing, and the non-condensable gas is analyzed online by gas chromatography.
  • reaction temperature 90°C
  • reaction pressure 0.1MPa
  • methoxyacetic acid mass 50g
  • methoxyacetic acid: glycolic acid: methanol (molar ratio) 5:1:10, magnetically stirred.
  • the methyl methoxyacetate obtained in Examples 7-11 can be recycled to the hydrolysis reactor used for the hydrolysis reaction to fully utilize the product and improve atom economy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

甲酯类化合物的制备方法,其包括使得羧基化合物、甲醇和/或二甲醚的原料发生酯化反应,得到甲酯类化合物;其中,羧基类化合物的通式I为R-CH 2-COOH,R为甲氧基或羟基;甲酯类化合物包括甲氧基乙酸甲酯、乙醇酸甲酯中的至少一种。乙醇酸甲酯的制备方法,包括步骤:a)使得甲缩醛与一氧化碳通进行羰化反应得到甲氧基乙酸甲酯;b)使得甲氧基乙酸甲酯与水,进行水解反应,以得到乙醇酸甲酯;c)使得乙醇酸、甲氧基乙酸与甲醇和二甲醚进行酯化反应,以得到乙醇酸甲酯。上述方法能大幅度简化分离工艺,节约能耗,为合成甲酯类化合物、尤其是乙醇酸甲酯提供了新的合成路线。

Description

一种甲酯类化合物的制备方法 技术领域
本申请涉及一种甲酯类化合物的制备方法,属于催化化学领域。
背景技术
乙醇酸甲酯(HOCH 2COOCH 3,MG)是一种重要的平台化合物,通过加氢反应,可以生产乙二醇;通过水解反应,可以制备乙醇酸;通过聚合反应,可以合成聚乙醇酸(PGA)。乙二醇是用途广泛的聚对苯二甲酸乙二醇酯(PET)材料的单体,市场需求大。乙醇酸是优良的化学清洗剂和化妆品原料,也能够自身聚合生成PGA。2021年1月1日,史上最严“限塑令”正式在中国生效。一次性不可降解塑料吸管、不可降解塑料包装等均被明确禁止使用,改用绿色环保材料已是大势所趋,而可降解塑料产业近期成为市场关注的热点。聚乙醇酸PGA是聚羟基脂肪酸酯中最简单的线性聚酯,为全生物降解材料,可以通过乙醇酸甲酯、乙醇酸等单体缩合合成。其降解条件温和,在水和微生物作用下,在自然环境中能实现快速降解,最终降解产物为二氧化碳和水。除此之外,PGA还能在海水中进行降解,其降解产物对人体和环境皆无害。
乙醇酸甲酯可以通过甲醛羰化法制备。尽管原料便宜易得,但需要在高温、高压、强液体酸、有机溶剂条件下进行;设备容易腐蚀,产品提纯难度大,导致工业生产成本高。近年来,随着“煤制乙二醇”技术的大规模工业化应用,其中间产物草酸二甲酯部分加氢制乙醇酸甲酯法被广泛关注。然而,一方面草酸二甲酯部分加氢催化剂还不成熟,转化效率低、稳定性差;另一方面草酸二甲酯生产流程长、成本较高;这严重制约了该方法的发展。目前乙醇酸甲酯单体的工业生产技术尚不成熟,导致PGA塑料产能不足、价格昂贵,限制了其大规模的替代应用。
发明内容
为了克服现有技术中的缺陷,本申请提供了一种绿色、经济、高效的甲酯类化合物、尤其是乙醇酸甲酯合成技术路线。
根据本申请的一个方面,提供了一种甲酯类化合物的制备方法,将含有甲氧基乙酸、甲醇和/或二甲醚的原料通过反应器,发生酯化反应,得到含有甲氧基乙酸甲酯的产物。通过容易进行的甲氧基乙酸和乙醇酸酯化反应,不仅可以增加乙醇酸甲酯的收率,还不需要对甲氧基乙酸和乙醇酸进行分离;这能大幅度简化分离工艺,节约能耗。
作为其中一种具体的实施方式,本申请中所述甲氧基乙酸和乙醇酸酯化的方法,将含有甲氧基乙酸、乙醇酸、甲醇和二甲醚的原料通过反应器,在预定的反应条件下发生酯化反应,制取甲氧基乙酸甲酯和乙醇酸甲酯。
根据水解反应机理,甲氧基乙酸甲酯水解反应除了生成目标产物乙醇酸甲酯以外,还能够生成甲氧基乙酸、乙醇酸、甲醇和二甲醚等其它水解产物。由于甲氧基乙酸用途较小,低浓度乙醇酸提纯能耗大,可以通过容易进行的酯化反应进一步生成甲氧基乙酸甲酯和乙醇酸甲酯。这样,不仅可以增加乙醇酸甲酯的收率,还能大幅度简化分离工艺,节约能耗。
酯化反应主要包括下列反应:
CH 3OCH 2COOH+CH 3OH=CH 3OCH 2COOCH 3+H 2O
HOCH 2COOH+CH 3OH=HOCH 2COOCH 3
CH 3OCH 2COOH+CH 3OCH 3=CH 3OCH 2COOCH 3+CH 3OH
HOCH 2COOH+CH 3OCH 3=HOCH 2COOCH 3+CH 3OH
所述酯化的方法,将含有羧基化合物、甲醇和/或二甲醚的原料通过反应器,发生酯化反应,得到甲酯类化合物;
其中,所述羧基化合物选自具有式I所示化合物中的至少一种;
R-CH 2-COOH   式I
R为甲氧基或羟基;
所述甲酯类化合物包括甲氧基乙酸甲酯、乙醇酸甲酯中的至少一种。
可选地,所述酯化反应的条件为:反应温度40~300℃,反应压 力0.1~0.5MPa。
所述酯化反应在无催化剂或在酯化催化剂条件下进行。
所述酯化催化剂为不溶于原料和产物的固体催化剂。
可选地,所述固体催化剂为酸性分子筛、酸性阳离子交换树脂中的至少一种。
可选地,所述酯化反应在选自如下惰性成分之一上进行:石英砂、氧化铝、氧化硅、碳化硅、玻璃、陶瓷的至少一种。
作为其中一种具体实施方式,所述反应器中不载有任何催化剂,或载有不溶于原料和产物的固体催化剂。
可选地,所述甲氧基乙酸和乙醇酸酯化反应,甲氧基乙酸和乙醇酸自身可以作为催化剂,是一种自催化反应,因此可以不需要催化剂。
可选地,所述不溶于原料和产物的固体催化剂包括酸性固体催化剂和非酸性固体催化剂。非酸性固体催化剂主要起到促进物料混合和分散的作用;酸性固体催化剂不仅有上述作用,还可以催化酯化反应。
可选地,所述不溶于原料和产物的固体催化剂为球形或圆柱形。
可选地,所述原料为甲氧基乙酸,甲醇和/或二甲醚;或
所述原料为乙醇酸,甲醇和/或二甲醚;或
所述原料为甲氧基乙酸,乙醇酸和甲醇;或
所述原料为甲氧基乙酸,乙醇酸和二甲醚;或
所述原料为甲氧基乙酸,乙醇酸、甲醇和二甲醚。
可选地,所述产物中还包括乙醇酸甲酯。
作为其中一种具体的实施方式,原料中甲氧基乙酸、乙醇酸、甲醇和二甲醚的摩尔比例为任意比例。
可选地,所述原料包括甲氧基乙酸、乙醇酸、甲醇和二甲醚;
所述原料中甲氧基乙酸/乙醇酸摩尔比为3:1~10:1,(甲醇+二甲醚)/(甲氧基乙酸+乙醇酸)摩尔比为1:1~5:1。
可选地,所述原料中不含甲醇,甲氧基乙酸/乙醇酸摩尔比为3:1~10:1,二甲醚/(甲氧基乙酸+乙醇酸)摩尔比为1:1~5:1。
可选地,所述原料中不含甲醇和乙醇酸,二甲醚/甲氧基乙酸摩尔比为1:1~5:1。
可选地,所述原料中不包含二甲醚,
甲氧基乙酸/乙醇酸摩尔比为3:1~10:1,甲醇/(甲氧基乙酸+乙醇酸)摩尔比为1:1~5:1。
可选地,所述反应温度可以选自40℃、50℃、60℃、70℃、80℃、90℃、100℃、110℃、120℃、130℃、140℃、150℃、160℃、170℃、180℃、190℃、200℃、210℃、220℃、230℃、240℃、250℃、260℃、270℃、280℃、290℃和300℃任意值或任意两者之间的范围值。
可选地,所述反应压力可以选自0.1MPa、0.15MPa、0.20MPa、0.25MPa、0.30MPa、0.35MPa、0.40MPa、0.45MPa和0.50MPa中的任意值或任意两值确定的范围值。
可选地,所述甲氧基乙酸/乙醇酸的摩尔比可以选择3:1、3.5:1、4:1、4.5:1、5:1、5.5:1、6:1、6.5:1、7:1、7.5:1、8:1、8.5:1、9:1、9.5:1和10:1中的任意值或任意两值确定的范围值。
可选地,所述(甲醇+二甲醚)/(甲氧基乙酸+乙醇酸)摩尔比为0.5:1、1.0:1、1.5:1、2.0:1、2.5:1、3.0:1、3.5:1、4.0:1、4.5:1、5.0:1、5.5:1、6.0:1、6.5:1、7.0:1、7.5:1和8.0:1中的任意值或任意两值确定的范围值。
可选地,所述原料中不含甲醇或者不含二甲醚,所述甲氧基乙酸/乙醇酸的摩尔比可以选择3:1、3.5:1、4:1、4.5:1、5:1、5.5:1、6:1、6.5:1、7:1、7.5:1、8:1、8.5:1、9:1、9.5:1和10:1中的任意值或任意两值确定的范围值。
可选地,所述二甲醚(或甲醇)/(甲氧基乙酸+乙醇酸)摩尔比为1:1、1.5:1、2.0:1、2.5:1、3.0:1、3.5:1、4.0:1、4.5:1和5.0:1中的任意值或任意两值确定的范围值。
可选地,所述原料通过甲氧基乙酸甲酯水解反应生成。
可选地,含有甲氧基乙酸、乙醇酸、甲醇和二甲醚的原料通过甲氧基乙酸甲酯水解反应生成。
可选地,所述反应器为固定床反应器或釜式反应器中的一种。
所述反应器优选固定床反应器。
作为其中一种具体的实施方式,所述反应过程中包含载气,所述 载气包括氮气、氩气、氦气、氢气、一氧化碳、二氧化碳中的至少一种。
根据本申请的第二方面,本申请提供了一种乙醇酸甲酯的制备方法,该方法包括如下步骤:
a)将含有甲缩醛与一氧化碳的原料通过载有酸性分子筛催化剂的反应器,在预定的条件下进行羰化反应以生成含有甲氧基乙酸甲酯、二甲醚和甲酸甲酯的产物,其在进行分离后得到甲氧基乙酸甲酯;
b)将含有步骤a)得到的甲氧基乙酸甲酯与水的原料通过载有酸性分子筛催化剂的反应器,在预定的条件下进行水解反应,生成包含乙醇酸甲酯、乙醇酸、甲氧基乙酸、甲醇和二甲醚的产物,其在进行分离后得到乙醇酸甲酯;以及
c)将含有步骤b)得到的乙醇酸、甲氧基乙酸与甲醇和二甲醚通过反应器,在预定的条件下进行酯化反应,生成包含甲氧基乙酸甲酯和乙醇酸甲酯的产物,其在进行分离后得到乙醇酸甲酯。
通过步骤a)至c)的组合构成的技术路线为合成乙醇酸甲酯提供了工业上可用的路线。
其中,步骤a)的甲缩醛羰化反应主要包括下列反应:
CH 3OCH 2OCH 3+CO=CH 3OCH 2COOCH 3(1)
2CH 3OCH 2OCH 3=2CH 3OCH 3+HCOOCH 3(2)
步骤b)的甲氧基乙酸甲酯水解反应主要包括下列反应:
CH 3OCH 2COOCH 3+H 2O=HOCH 2COOCH 3+CH 3OH(3)
CH 3OCH 2COOCH 3+H 2O=CH 3OCH 2COOH+CH 3OH(4)
CH 3OCH 2COOCH 3+2H 2O=HOCH 2COOH+2CH 3OH(5)
2CH 3OH=CH 3OCH 3+H 2O(6)
步骤c)的酯化反应主要包括下列反应:
CH 3OCH 2COOH+CH 3OH=CH 3OCH 2COOCH 3+H 2O(7)
HOCH 2COOH+CH 3OH=HOCH 2COOCH 3(8)
CH 3OCH 2COOH+CH 3OCH 3=CH 3OCH 2COOCH 3+CH 3OH(9)
HOCH 2COOH+CH 3OCH 3=HOCH 2COOCH 3+CH 3OH(10)
上述(3)~(10)反应是可逆的。
所述经过a)和b)的分离系统得到的二甲醚和甲醇,可用于甲缩醛的制备。涉及到的反应有:
2CH 3OH+O 2=2HCHO+2H 2O(11)
CH 3OCH 3+O 2=2HCHO+H 2O(12)
2CH 3OH+HCHO=CH 3OCH 2OCH 3+H 2O(13)
综合上述反应(1)-(13)可知,结合甲缩醛合成、甲缩醛羰化、甲氧基乙酸甲酯水解、和甲氧基乙酸与乙醇酸酯化等反应,利用甲醇、一氧化碳、氧气就能合成乙醇酸甲酯,总体反应方程式如下:
4CH 3OH+O 2+2CO=2HOCH 2COOCH 3+2H 2O(14)
综上可知,因此,上述步骤a)至c)的组合构成的技术路线能够实现非目标产物的充分利用,只有选择性很低的甲酸甲酯(HCOOCH 3)为副产品。
可选地,所述方法还包括步骤a’):将步骤a)未反应完的甲缩醛与一氧化碳返回步骤a)的反应器继续进行羰化反应。
可选地,所述方法还包括步骤b’):将步骤b)未反应完的甲氧基乙酸甲酯返回步骤b)的反应器与水继续进行水解反应。
可选地,所述方法还包括步骤c’):将步骤c)得到的产物甲氧基乙酸甲酯通入步骤b)的反应器与水进行水解反应。
可选地,步骤a)或步骤b)中的酸性分子筛催化剂选自具有MFI结构的酸性分子筛、具有Y结构的酸性分子筛、具有FER结构的酸性分子筛、具有BEA结构的酸性分子筛、具有MOR结构的酸性分子筛、具有MWW结构的酸性分子筛中的至少一种。
可选地,步骤a)或步骤b)中的酸性分子筛催化剂为氢型ZSM-5分子筛、氢型Y分子筛、氢型ZSM-35分子筛、氢型β分子筛、氢型丝光沸石分子筛、氢型MCM-22分子筛中的至少一种。
可选地,步骤a)或步骤b)还包括向反应器中通入有载气,所述载气包括任意含量的氮气、氩气、氦气、氢气、一氧化碳、二氧化碳中的至少一种。
可选地,步骤a)中的反应条件为:反应温度为60~140℃、反 应压力为2~10MPa、甲缩醛质量空速为0.2~10.0h -1、一氧化碳与甲缩醛的摩尔比为2:1~20:1。
可选地,步骤a)中的反应温度为60℃、65℃、70℃、75℃、80℃、85℃、90℃、100℃、110℃、120℃、130℃和140℃中的任意值或任意两值确定的范围值。
可选地,步骤a)中的反应压力为2MPa、2.5MPa、3.0MPa、3.5MPa、4.0MPa、4.5MPa、5.0MPa、5.5MPa、6.0MPa、6.5MPa、7.0MPa、7.5MPa、8.0MPa、8.5MPa、9.0MPa、9.5MPa和10.0MPa的任意值或任意两值确定的范围值。
可选地,步骤a)中的甲缩醛质量空速为0.2h -1、0.5h -1、0.8h -1、1.0h -1、1.5h -1、2.0h -1、2.5h -1、3.0h -1、3.5h -1、4.0h -1、4.5h -1、5.0h -1、5.5h -1、6.0h -1、6.5h -1、7.0h -1、7.5h -1、8.0h -1、8.5h -1、9.0h -1、9.5h -1和10.0h -1的任意值或任意两值确定的范围值。
可选地,步骤a)中的一氧化碳与甲缩醛的摩尔比为2:1、3:1、4:1、5:1、6:1、7:1、8:1、9:1、10:1、11:1、12:1、13:1、14:1、15:1、16:1、17:1、18:1、19:1和20:1中的任意值或任意两值确定的范围值。
可选地,步骤b)中的反应条件为:反应温度为140~220℃、反应压力为0.1~0.5MPa、甲氧基乙酸甲酯质量空速为0.1~3.0h -1、水与甲氧基乙酸甲酯的摩尔比为0.5:1~8:1。
可选地,步骤c)中的反应条件为:反应温度为40~300℃、反应压力0.1~0.5MPa,(甲醇+二甲醚)/(乙醇酸+甲氧基乙酸)的摩尔比为0.5:1~8:1。
可选地,步骤a)中的反应状态为气液固三相反应状态。
可选地,步骤c)中的酯化反应在无催化剂或在酯化催化剂条件下进行。
可选地,所述酯化催化剂为不溶于原料和产物的固体催化剂。
可选地,所述固体催化剂为酸性分子筛、酸性阳离子交换树脂中的至少一种;
可选地,所述酯化反应在选自如下惰性成分之一上进行:石英砂、氧化铝、氧化硅、碳化硅、玻璃、陶瓷的至少一种。
优选地,所述酯化反应在石英砂上进行。
本发明涉及技术路线核心部分如图1所示。用于羰化反应的反应器中装载有酸性分子筛催化剂,用于水解反应的水解反应器中装载有酸性分子筛催化剂。酯化反应是自催化反应,为了增强传质,酯化反应器中可装载惰性的石英砂颗粒。
可选地,羰化反应器包含一个固定床反应器,也可以包含多个并联或串联的固定床反应器。为了便于移走反应热,羰化反应器一般选用列管式固定床反应器。
可选地,水解反应器包含一个固定床反应器,也可以包含多个并联或串联的固定床反应器。水解反应器一般选择性绝热式固定床反应器。
用于分离羰化产物的分离系统包括化工分离单元中常用的气液分离罐、精馏塔等化工设备。
用于分离水解产物的分离系统也包括化工分离单元中常用的气液分离罐、精馏塔等化工设备。
由于水解产物的种类已经包含所有的酯化产物,所以可以共用一个分离系统。
本申请能产生的有益效果包括:
(1)本申请中所述方法简单高效,易操作。
(2)通过容易进行的甲氧基乙酸和乙醇酸酯化反应,不仅可以增加乙醇酸甲酯的收率,还不需要对甲氧基乙酸和乙醇酸进行分离;这能大幅度简化分离工艺,节约能耗。
(3)本发明提供了一种全新的乙醇酸甲酯合成路线方法,反应条件温和、副产物选择性低、目标产物乙醇酸甲酯选择性高、原子经济性强;该路线中采用的反应和分离设备都为常规设备,便于单套大规模生产;该路线中不引入含硫、氮、氯等元素的原料和催化剂,产物乙醇酸甲酯品质高;该路线中使用的催化剂均为酸性分子筛催化剂,不需要昂贵的贵金属催化剂。
附图说明
图1为本申请的乙醇酸甲酯合成路线的流程简图。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
在本申请中所公开的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解包括接近这些范围或值。对于数值范围而言,各个范围的端点值和单独的点值之间,可以彼此组合而得到一个或多个新的数值范围,这些数值范围应该被视为在本文中具体公开。
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
如无特别说明,本申请的实施例中的原料和催化剂均通过商业途径购买。
本发明涉及到的关键技术为图1中所示的羰化、水解和酯化三个反应,因此对它们分别进行实施例说明。
1)甲缩醛羰化反应的分析方法如下:
利用Agilent7890A气相色谱仪分析产物和未反应完的原料,它的FID检测器连接DB-FFAP毛细管柱,它的TCD检测器连接Porapak Q填充柱。反应产物经过背压阀后,加热到汽化状态,进入色谱在线分析。转化率和选择性都基于甲缩醛的碳摩尔数进行计算:
甲缩醛转化率=[(原料中甲缩醛碳摩尔数)-(产物中甲缩醛碳摩尔数)]÷(原料中甲缩醛碳摩尔数)×(100%)
甲氧基乙酸甲酯选择性=(产物中甲氧基乙酸甲酯除去羰基后的碳摩尔数)÷[(原料中甲缩醛碳摩尔数)-(产物中甲缩醛碳摩尔数)]×(100%)
二甲醚选择性=(产物中二甲醚的碳摩尔数)÷[(原料中甲缩醛碳摩尔数)-(产物中甲缩醛碳摩尔数)]×(100%)
甲酸甲酯选择性=(产物中甲酸甲酯的碳摩尔数)÷[(原料中甲缩醛碳摩尔数)-(产物中甲缩醛碳摩尔数)]×(100%)
2)甲氧基乙酸甲酯水解反应的分析方法如下:
利用Agilent7890B气相色谱仪进行分析除乙醇酸以外的产物和未反应完的原料,它的FID检测器连接DB-FFAP毛细管柱,它的TCD检测器连接Porapak Q填充柱。利用液相色谱仪分析乙醇酸,分离柱为C 18柱,检测器为紫外检测器。转化率和选择性基于碳摩尔数进行计算:
甲氧基乙酸甲酯转化率=[(进料中甲氧基乙酸甲酯碳摩尔数)-(出料中甲氧基乙酸甲酯碳摩尔数)]÷(进料中甲氧基乙酸甲酯碳摩尔数)×100%
乙醇酸甲酯选择性=[(出料中乙醇酸甲酯碳摩尔数)]÷[(进料中甲氧基乙酸甲酯碳摩尔数)-(出料中甲氧基乙酸甲酯碳摩尔数)]×100%
甲氧基乙酸选择性=[(出料中甲氧基乙酸碳摩尔数)]÷[(进料中甲氧基乙酸甲酯碳摩尔数)-(出料中甲氧基乙酸甲酯碳摩尔数)]×100%
乙醇酸选择性=[(出料中乙醇酸碳摩尔数)]÷[(进料中甲氧基乙酸甲酯碳摩尔数)-(出料中甲氧基乙酸甲酯碳摩尔数)]×100%
甲醇选择性=[(出料中甲醇碳摩尔数)]÷[(进料中甲氧基乙酸甲酯碳摩尔数)-(出料中甲氧基乙酸甲酯碳摩尔数)]×100%
二甲醚选择性=[(出料中二甲醚碳摩尔数)]÷[(进料中甲氧基乙酸甲酯碳摩尔数)-(出料中甲氧基乙酸甲酯碳摩尔数)]×100%
3)酯化反应的分析方法如下:
利用Agilent7890B气相色谱仪进行分析除乙醇酸以外的产物和未反应完的原料,它的FID检测器连接DB-FFAP毛细管柱,它的TCD检测器连接Porapak Q填充柱。利用液相色谱仪分析乙醇酸,分离柱为C 18柱,检测器为紫外检测器。考虑到甲氧基乙酸定向酯化成甲氧基乙酸甲酯,乙醇酸定向酯化成乙醇酸甲酯,故酯化反应结果只计算甲氧基乙酸和乙醇酸的转化率。
乙醇酸转化率=[(进料中乙醇酸摩尔数)-(出料中乙醇酸摩尔 数)]÷(进料中乙醇酸摩尔数)×100%
甲氧基乙酸转化率=[(进料中甲氧基乙酸摩尔数)-(出料中甲氧基乙酸摩尔数)]÷(进料中甲氧基乙酸摩尔数)×100%
实施例1
将300g酸性H-β分子筛(SiO 2/Al 2O 3=150)填到内径为
Figure PCTCN2022138385-appb-000001
的固定床反应器中,反应器内部有
Figure PCTCN2022138385-appb-000002
的热偶套管。甲缩醛与一氧化碳通过催化剂床层发生羰化反应,产物经过背压阀后,汽化进入气相色谱,进行在线分析。反应条件为:反应温度=68℃,反应压力=6MPa,甲缩醛质量空速为0.7h -1,一氧化碳与甲缩醛的摩尔比为10:1。运行5天后,反应结果见表1。
实施例2
将300g酸性H-Y分子筛(SiO 2/Al 2O 3=25)填到内径为
Figure PCTCN2022138385-appb-000003
的固定床反应器中,反应器内部有
Figure PCTCN2022138385-appb-000004
的热偶套管。甲缩醛与一氧化碳通过催化剂床层发生羰化反应,产物经过背压阀后,汽化进入气相色谱,进行在线分析。反应条件为:反应温度=90℃,反应压力=5MPa,甲缩醛质量空速为1.0h -1,一氧化碳与甲缩醛的摩尔比为7:1。运行5天后,反应结果见表1。
实施例3
将300g酸性H-ZSM-5分子筛(SiO 2/Al 2O 3=180)填到内径为
Figure PCTCN2022138385-appb-000005
的固定床反应器中,反应器内部有
Figure PCTCN2022138385-appb-000006
的热偶套管。甲缩醛与一氧化碳通过催化剂床层发生羰化反应,产物经过背压阀后,汽化进入气相色谱,进行在线分析。反应条件为:反应温度=80℃,反应压力=8MPa,甲缩醛质量空速为1.2h -1,一氧化碳与甲缩醛的摩尔比为5:1。运行5天后,反应结果见表1。
表1实施例1~3中甲缩醛羰化反应结果
Figure PCTCN2022138385-appb-000007
在本申请中,实施例1~3中没有转化的甲缩醛和一氧化碳可如图1所示循环至用于羰化反应的羰化反应器以充分利用原料,提高原料利用率。
实施例4
将300g酸性H-ZSM-5分子筛(SiO 2/Al 2O 3=30)催化剂装填到内径为
Figure PCTCN2022138385-appb-000008
的固定床反应器中,反应器内部有
Figure PCTCN2022138385-appb-000009
的热偶套管。将实施例1~3制备的甲氧基乙酸甲酯经分离后与水通过催化剂床层发生水解反应。产物经过冷凝收集,称重后利用气相色谱和液相色谱分析,不冷凝气体利用气相色谱在线分析。反应条件为:反应温度=180℃,反应压力=0.1MPa,甲氧基乙酸甲酯质量空速=1.5h -1,水与甲氧基乙酸甲酯的摩尔比=2:1,载气氢气流量=1.5L/min。运行5天后,反应结果见表2。
实施例5
将300g酸性H-ZSM-35分子筛(SiO 2/Al 2O 3=20)催化剂装填到内径为
Figure PCTCN2022138385-appb-000010
的固定床反应器中,反应器内部有
Figure PCTCN2022138385-appb-000011
的热偶套管。将实施例1~3制备的甲氧基乙酸甲酯经分离后与水通过催化剂床层发生水解反应。产物经过冷凝收集,称重后利用气相色谱和液相色谱分析,不冷凝气体利用气相色谱在线分析。反应条件为:反应温度=170℃,反应压力=0.12MPa,甲氧基乙酸甲酯质量空速=0.5h -1,水与甲氧基乙酸甲酯的摩尔比=1:1,载气氢气流量=1.5L/min。运行5 天后,反应结果见表2。
实施例6
将300g酸性H-MCM-22分子筛(SiO 2/Al 2O 3=40)催化剂装填到内径为
Figure PCTCN2022138385-appb-000012
的固定床反应器中,反应器内部有
Figure PCTCN2022138385-appb-000013
的热偶套管。将实施例1~3制备的甲氧基乙酸甲酯经分离后与水通过催化剂床层发生水解反应。产物经过冷凝收集,称重后利用气相色谱和液相色谱分析,不冷凝气体利用气相色谱在线分析。反应条件为:反应温度=190℃,反应压力=0.2MPa,甲氧基乙酸甲酯质量空速=0.4h -1,水与甲氧基乙酸甲酯的摩尔比=3:1,载气氢气流量=1.5L/min。运行5天后,反应结果见表2。
表2实施例4~6中甲氧基乙酸甲酯水解反应结果
Figure PCTCN2022138385-appb-000014
在本申请中,实施例4~6中没有转化的甲氧基乙酸甲酯可如图1所示循环至用于水解反应的水解反应器以充分利用原料,提高原料利用率。
实施例7
将300g粒度为3mm的石英砂颗粒装填到内径为
Figure PCTCN2022138385-appb-000015
的固定床反应器中,反应器内部有
Figure PCTCN2022138385-appb-000016
的热偶套管。将实施例4至6制备的甲氧基乙酸、乙醇酸、甲醇与二甲醚经分离后通过石英砂床层发生酯化反应。产物经过冷凝收集,称重后利用气相色谱和液相色谱分析,不冷凝气体利用气相色谱在线分析。反应条件为:反应温度=180℃,反应压力=0.1MPa,甲氧基乙酸流量=120g/h,甲氧基乙酸: 乙醇酸:甲醇:二甲醚(摩尔比)=5:1:10:10。运行5天后,反应结果见表3。
实施例8
将300g粒度为3mm的氧化硅颗粒装填到内径为
Figure PCTCN2022138385-appb-000017
的固定床反应器中,反应器内部有
Figure PCTCN2022138385-appb-000018
的热偶套管。将实施例4至6制备的甲氧基乙酸、乙醇酸与二甲醚经分离后通过氧化硅床层发生酯化反应。产物经过冷凝收集,称重后利用气相色谱和液相色谱分析,不冷凝气体利用气相色谱在线分析。反应条件为:反应温度=200℃,反应压力=0.5MPa,甲氧基乙酸流量=120g/h,甲氧基乙酸:乙醇酸:二甲醚(摩尔比)=6:1:7。运行5天后,反应结果见表3。
实施例9
将300g粒度为3mm的玻璃颗粒装填到内径为
Figure PCTCN2022138385-appb-000019
的固定床反应器中,反应器内部有
Figure PCTCN2022138385-appb-000020
的热偶套管。将实施例4至6制备的甲氧基乙酸、乙醇酸与二甲醚经分离后通过玻璃床层发生酯化反应。产物经过冷凝收集,称重后利用气相色谱和液相色谱分析,不冷凝气体利用气相色谱在线分析。反应条件为:反应温度=300℃,反应压力=0.2MPa,甲氧基乙酸流量=120g/h,甲氧基乙酸:乙醇酸:二甲醚(摩尔比)=5:1:8。运行5天后,反应结果见表3。
实施例10
将甲氧基乙酸、乙醇酸、甲醇原料装入1L反应釜中,反应温度=40℃,反应压力=0.1MPa,甲氧基乙酸质量=50g,甲氧基乙酸:乙醇酸:甲醇(摩尔比)=5:1:10,磁子搅拌。运行4小时后,反应结果见表3。
实施例11
将将实施例4至6制备的甲氧基乙酸、乙醇酸、甲醇原料经分离后装入1L反应釜中,反应温度=90℃,反应压力=0.1MPa,甲氧基 乙酸质量=50g,D001强酸性阳离子交换树脂(丹东明珠公司)=5g,甲氧基乙酸:乙醇酸:甲醇(摩尔比)=5:1:10,磁子搅拌。运行4小时后,反应结果见表1。
表3实施例7-11酯化反应结果
实施例 甲氧基乙酸转化率(%) 乙醇酸转化率(%)
7 75.5 99.5
8 80.4 99.1
9 94.8 99.6
10 35.8 80.2
11 82.2 96.7
在本申请中,实施例7~11中得到的甲氧基乙酸甲酯可循环至用于水解反应的水解反应器以充分利用产物,提高原子的经济性。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (28)

  1. 一种甲酯类化合物的制备方法,其特征在于,将含有羧基化合物、甲醇和/或二甲醚的原料通过反应器,发生酯化反应,得到甲酯类化合物;
    其中,所述羧基化合物选自具有式I所示化合物中的至少一种;
    R-CH 2-COOH  式I
    R为甲氧基或羟基;
    所述甲酯类化合物包括甲氧基乙酸甲酯、乙醇酸甲酯中的至少一种。
  2. 根据权利要求1所述的方法,其特征在于,所述酯化反应的条件为:反应温度40~300℃,反应压力0.1~0.5MPa;
    所述酯化反应无催化剂或在酯化催化剂条件下进行;
    所述酯化催化剂为不溶于原料和产物的固体催化剂。
  3. 根据权利要求2所述的方法,其特征在于,所述固体催化剂为酸性分子筛、酸性阳离子交换树脂中的至少一种。
  4. 根据权利要求1所述的方法,其特征在于,所述酯化反应在选自如下惰性成分之一上进行:石英砂、氧化铝、氧化硅、碳化硅、玻璃、陶瓷的至少一种。
  5. 根据权利要求1所述的方法,其特征在于,所述原料为甲氧基乙酸,甲醇和/或二甲醚;或
    所述原料为乙醇酸,甲醇和/或二甲醚;或
    所述原料为甲氧基乙酸,乙醇酸和甲醇;或
    所述原料为甲氧基乙酸,乙醇酸和二甲醚;或
    所述原料为甲氧基乙酸,乙醇酸、甲醇和二甲醚。
  6. 根据权利要求1所述的方法,其特征在于,所述原料包括甲氧基乙酸、乙醇酸、甲醇和二甲醚;所述原料中甲氧基乙酸/乙醇酸摩尔比为3:1~10:1,(甲醇+二甲醚)/(甲氧基乙酸+乙醇酸)摩尔比为1:1~5:1。
  7. 根据权利要求1所述的方法,其特征在于,所述原料中不含甲醇,甲氧基乙酸/乙醇酸摩尔比为3:1~10:1,二甲醚/(甲氧基乙酸+乙醇酸)摩尔比为1:1~5:1。
  8. 根据权利要求1所述的方法,其特征在于,所述原料中不含甲醇和乙醇酸,二甲醚/甲氧基乙酸摩尔比为1:1~5:1。
  9. 根据权利要求1所述的方法,其特征在于,所述原料中不包含二甲醚,甲氧基乙酸/乙醇酸摩尔比为3:1~10:1,甲醇/(甲氧基乙酸+乙醇酸)摩尔比为1:1~5:1。
  10. 根据权利要求1或5所述的方法,其特征在于,所述原料通过甲氧基乙酸甲酯水解反应生成。
  11. 根据权利要求5所述的方法,其特征在于,含有甲氧基乙酸、乙醇酸、甲醇和二甲醚的原料通过甲氧基乙酸甲酯水解反应生成。
  12. 根据权利要求1所述的方法,其特征在于,所述反应器为固定床反应器或釜式反应器中的一种。
  13. 根据权利要求1所述的方法,其特征在于,所述反应的条件中包含任意含量的氮气、氩气、氦气、氢气、一氧化碳、二氧化碳载气中的一种。
  14. 一种乙醇酸甲酯的制备方法,其特征在于,所述方法包括如 下步骤:
    a)将含有甲缩醛与一氧化碳的原料通过载有酸性分子筛催化剂的反应器,在预定的条件下进行羰化反应以生成含有甲氧基乙酸甲酯、二甲醚和甲酸甲酯的产物,其在进行分离后得到甲氧基乙酸甲酯;
    b)将含有步骤a)得到的甲氧基乙酸甲酯与水的原料通过载有酸性分子筛催化剂的反应器,在预定的条件下进行水解反应,生成包含乙醇酸甲酯、乙醇酸、甲氧基乙酸、甲醇和二甲醚的产物,其在进行分离后得到乙醇酸甲酯;以及
    c)将含有步骤b)得到的乙醇酸、甲氧基乙酸与甲醇和二甲醚通过反应器,在预定的条件下进行酯化反应,生成包含甲氧基乙酸甲酯和乙醇酸甲酯的产物,其在进行分离后得到乙醇酸甲酯。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括步骤a’):将步骤a)未反应完的甲缩醛与一氧化碳返回步骤a)的反应器继续进行羰化反应。
  16. 根据权利要求14所述的方法,其特征在于,所述方法还包括步骤b’):将步骤b)未反应完的甲氧基乙酸甲酯返回步骤b)的反应器与水继续进行水解反应。
  17. 根据权利要求14所述的方法,其特征在于,所述方法还包括步骤c’):将步骤c)得到的产物甲氧基乙酸甲酯通入步骤b)的反应器与水进行水解反应。
  18. 根据权利要求14所述的方法,其特征在于,步骤a)或步骤b)中的酸性分子筛催化剂选自具有MFI结构的酸性分子筛、具有Y结构的酸性分子筛、具有FER结构的酸性分子筛、具有BEA结构的酸性分子筛、具有MOR结构的酸性分子筛、具有MWW结构的酸性分子筛中的至少一种。
  19. 根据权利要求14所述的方法,其特征在于,步骤a)或步骤b)中的酸性分子筛催化剂为氢型ZSM-5分子筛、氢型Y分子筛、氢型ZSM-35分子筛、氢型β分子筛、氢型丝光沸石分子筛、氢型MCM-22分子筛中的至少一种。
  20. 根据权利要求14所述的方法,其特征在于,步骤a)或步骤b)还包括向反应器中通入有载气,所述载气包括任意含量的氮气、氩气、氦气、氢气、一氧化碳、二氧化碳中的至少一种。
  21. 根据权利要求14所述的方法,其特征在于,步骤a)中的反应条件为:反应温度为60~140℃、反应压力为2~10MPa、甲缩醛质量空速为0.2~10.0h -1、一氧化碳与甲缩醛的摩尔比为2:1~20:1。
  22. 根据权利要求14所述的方法,其特征在于,步骤b)中的反应条件为:反应温度为140~220℃、反应压力为0.1~0.5MPa、甲氧基乙酸甲酯质量空速为0.1~3.0h -1、水与甲氧基乙酸甲酯的摩尔比为0.5:1~8:1。
  23. 根据权利要求14所述的方法,其特征在于,步骤c)中的反应条件为:反应温度为40~300℃、反应压力0.1~0.5MPa,(甲醇+二甲醚)/(乙醇酸+甲氧基乙酸)的摩尔比为0.5:1~8:1。
  24. 根据权利要求14所述的方法,其特征在于,步骤a)中的反应状态为气液固三相反应状态。
  25. 根据权利要求14所述的方法,其特征在于,步骤c)中的酯化反应在无催化剂或在酯化催化剂条件下进行。
  26. 根据权利要求25所述的方法,其特征在于,所述酯化催化剂为不溶于原料和产物的固体催化剂。
  27. 根据权利要求26所述的方法,其特征在于,所述固体催化剂为酸性分子筛、酸性阳离子交换树脂中的至少一种。
  28. 根据权利要求25所述的方法,其特征在于,所述酯化反应在选自如下惰性成分之一上进行:石英砂、氧化铝、氧化硅、碳化硅、玻璃、陶瓷的至少一种。
PCT/CN2022/138385 2021-12-13 2022-12-12 一种甲酯类化合物的制备方法 WO2023109752A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22906497.7A EP4438587A1 (en) 2021-12-13 2022-12-12 Method for preparing methyl ester compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111522952.6 2021-12-13
CN202111522952.6A CN116262699A (zh) 2021-12-13 2021-12-13 一种甲酯类化合物的制备方法

Publications (1)

Publication Number Publication Date
WO2023109752A1 true WO2023109752A1 (zh) 2023-06-22

Family

ID=86723329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138385 WO2023109752A1 (zh) 2021-12-13 2022-12-12 一种甲酯类化合物的制备方法

Country Status (3)

Country Link
EP (1) EP4438587A1 (zh)
CN (1) CN116262699A (zh)
WO (1) WO2023109752A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1180067A (zh) * 1997-07-11 1998-04-29 清华大学 同时合成羟基乙酸甲酯和甲氧基乙酸甲酯的方法
US20170001941A1 (en) * 2013-12-23 2017-01-05 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Method for preparing polyoxymethylene dimethyl ether carbonyl compound and methyl methoxyacetate
CN107445825A (zh) * 2017-07-20 2017-12-08 沈阳化工大学 一种分子筛催化剂制备乙醇酸甲酯并副产甲氧基乙酸甲酯的方法
CN112705238A (zh) * 2019-10-25 2021-04-27 中国石油化工股份有限公司 一种用于合成乙醇酸甲酯的催化剂及其制备方法和应用
CN112705253A (zh) * 2019-10-25 2021-04-27 中国石油化工股份有限公司 一种用于制备甲氧基乙酸甲酯的固体酸催化剂及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1180067A (zh) * 1997-07-11 1998-04-29 清华大学 同时合成羟基乙酸甲酯和甲氧基乙酸甲酯的方法
US20170001941A1 (en) * 2013-12-23 2017-01-05 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Method for preparing polyoxymethylene dimethyl ether carbonyl compound and methyl methoxyacetate
CN107445825A (zh) * 2017-07-20 2017-12-08 沈阳化工大学 一种分子筛催化剂制备乙醇酸甲酯并副产甲氧基乙酸甲酯的方法
CN112705238A (zh) * 2019-10-25 2021-04-27 中国石油化工股份有限公司 一种用于合成乙醇酸甲酯的催化剂及其制备方法和应用
CN112705253A (zh) * 2019-10-25 2021-04-27 中国石油化工股份有限公司 一种用于制备甲氧基乙酸甲酯的固体酸催化剂及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN, DONGLIANG ET AL.: "Study on The Synthesis of Methyl Glycolate", SPECIALITY PETROCHEMICALS, no. 3, 31 May 2000 (2000-05-31), XP009547123 *

Also Published As

Publication number Publication date
EP4438587A1 (en) 2024-10-02
CN116262699A (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
EP2318334B1 (en) Ethylene production from acetic acid utilizing dual reaction zone process
CN103012062B (zh) 一种合成气间接生产乙醇的工艺及其应用
CN101475442B (zh) 由草酸酯生产乙二醇的方法
EP2310345A1 (en) Process for catalytically producing ethylene directly from acetic acid in a single reaction zone
WO2012138540A1 (en) Ethanol production from acetic acid utilizing a molybdenum carbide catalyst
CN104995162B (zh) 用于生产乙酸的集成方法
CN101121624A (zh) 乙醇脱水制乙烯的方法
CN101121625B (zh) 乙醇脱水制备乙烯的方法
CN107162912B (zh) 一种采用分段式绝热固定床反应器制备乙酸甲酯的方法
EP2196447A1 (en) An improved process for hydrogenating alkyl ester(s) in the presence of carbon monoxide
CN105683172B (zh) 对苯二甲酸的制备方法
CN101125802A (zh) 一种甲醇气相连续生产二甲醚的方法
WO2015096009A1 (zh) 制备聚甲氧基二甲醚羰化物及甲氧基乙酸甲酯的方法
WO2023109752A1 (zh) 一种甲酯类化合物的制备方法
WO2022165662A1 (zh) 甲氧基乙酸甲酯和甲氧基乙酸水解制取乙醇酸和乙醇酸甲酯的方法
CN102757341A (zh) 一种醋酸乙酯和/或醋酸异丙酯的制备方法
CN115636739B (zh) 一种合成气一步法制丙酮的方法
CN114853592B (zh) 一种烷氧基乙酸酯水解制取乙醇酸的方法
EA031809B1 (ru) Способ получения метилформиата и попутного производства диметилового эфира
CN114040905A (zh) 使用锥形逐级反应器合成二烷基醚的强化方法
WO2015095999A1 (zh) 制备聚甲氧基二甲醚羰化物及甲氧基乙酸甲酯的方法
CN102050732A (zh) 一种低碳烯烃直接酯化生产乙酸低碳酯的方法
CN116003351B (zh) 一种γ-丁内酯和异丙醇的联产工艺方法
CN116253634A (zh) 甲氧基乙酸甲酯水解制乙醇酸甲酯和乙醇酸的方法
KR102587537B1 (ko) 락테이트 에스테르로부터 프로필렌 글리콜의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906497

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022906497

Country of ref document: EP

Effective date: 20240628

NENP Non-entry into the national phase

Ref country code: DE