WO2022165662A1 - 甲氧基乙酸甲酯和甲氧基乙酸水解制取乙醇酸和乙醇酸甲酯的方法 - Google Patents

甲氧基乙酸甲酯和甲氧基乙酸水解制取乙醇酸和乙醇酸甲酯的方法 Download PDF

Info

Publication number
WO2022165662A1
WO2022165662A1 PCT/CN2021/075023 CN2021075023W WO2022165662A1 WO 2022165662 A1 WO2022165662 A1 WO 2022165662A1 CN 2021075023 W CN2021075023 W CN 2021075023W WO 2022165662 A1 WO2022165662 A1 WO 2022165662A1
Authority
WO
WIPO (PCT)
Prior art keywords
acidic
catalyst
molecular sieve
acid
methyl
Prior art date
Application number
PCT/CN2021/075023
Other languages
English (en)
French (fr)
Inventor
倪友明
朱文良
刘中民
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to EP21923690.8A priority Critical patent/EP4279477A4/en
Priority to PCT/CN2021/075023 priority patent/WO2022165662A1/zh
Priority to JP2023546202A priority patent/JP2024504821A/ja
Priority to US18/275,444 priority patent/US20240109833A1/en
Publication of WO2022165662A1 publication Critical patent/WO2022165662A1/zh
Priority to ZA2023/07576A priority patent/ZA202307576B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/377Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/31Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by introduction of functional groups containing oxygen only in singly bound form

Definitions

  • the application relates to a method for preparing glycolic acid and methyl glycolate by hydrolysis of methyl methoxyacetate and methoxyacetic acid, and belongs to the technical field of chemical product preparation.
  • Glycolic acid also known as hydroxyacetic acid
  • Methyl glycolate can not only be hydrogenated to produce ethylene glycol, but also easily hydrolyzed to produce glycolic acid under mild conditions. Because the molecular structure of glycolic acid contains both hydroxyl and carboxyl groups, it can polymerize itself to form polyglycolic acid (PGA).
  • PGA polyglycolic acid
  • Polyglycolic acid not only has good biocompatibility, but also has safe biodegradability. Therefore, it is not only widely used in medical surgical sutures, drug release materials, degradable human tissue scaffolds, etc., but also can produce commonly used plastic products.
  • Glycolic acid can also be copolymerized with lactic acid, hydroxypropionic acid and other monomers to form polymer materials with excellent performance and wide application.
  • glycolic acid is also an excellent chemical cleaning agent and cosmetic raw material.
  • the production and preparation methods of glycolic acid mainly include chloroacetic acid hydrolysis method, formaldehyde carbonylation method, oxalate ester hydrogenation/hydrolysis method, etc.
  • Chloroacetic acid hydrolysis method is not only polluted in the preparation process of raw material chloroacetic acid, but also produces a large amount of waste salt in the hydrolysis process, causing serious pollution and poor product quality, which is basically eliminated at present.
  • the formaldehyde carbonylation method although the raw materials are cheap and easy to obtain, needs to be carried out under the conditions of high temperature, high pressure, strong liquid acid, and organic solvent; the equipment is easy to corrode, and the product purification is difficult, resulting in high industrial production costs.
  • the oxalate hydrogenation/hydrolysis method is to partially hydrogenate the oxalate to methyl glycolate, and then hydrolyze the methyl glycolate to produce glycolic acid.
  • the oxalate partial hydrogenation catalyst is immature, with low conversion efficiency and poor stability; on the other hand, the oxalate production process is long and the cost is high; these problems seriously restrict the application of the oxalate hydrogenation/hydrolysis method. develop.
  • methyl methoxyacetate a product of methylal carbonylation
  • the methoxyacetic acid after the hydrolysis of the ester bond of methyl methoxyacetate has relatively few uses, resulting in waste of raw materials.
  • a method for preparing glycolic acid and methyl glycolate by hydrolysis of methyl methoxyacetate and methoxyacetic acid is provided, and the method of the present invention is particularly suitable for the methylal produced by coal chemical industry.
  • the carbonylation reaction produces methyl methoxyacetate, which is then hydrolyzed to produce glycolic acid and methyl glycolate. Through this reaction process, it can be combined with the carbonylation of methylal to produce methyl methoxyacetate, and the methylal in the coal chemical platform can be converted into glycolic acid and methyl glycolate efficiently, greenly and economically.
  • the use of methoxyacetate and methoxyacetic acid has been achieved, and beneficial effects have been achieved.
  • the catalyst is selected from any of a solid acid catalyst, a liquid acid catalyst, a solid base catalyst, and a liquid base catalyst.
  • glycolic acid, methyl glycolate and methoxyacetic acid can be obtained by hydrolysis of ether bond and ester bond of methyl methoxyacetate. Because methoxyacetic acid has relatively few uses, it can be returned to the reactor for co-hydrolysis with methyl methoxyacetate, which becomes a green and economical production route for glycolic acid and methyl glycolate.
  • the solid acid catalyst is selected from at least one of an acidic molecular sieve catalyst, an acidic resin catalyst, and an acidic alumina catalyst;
  • the acidic molecular sieve catalyst contains acidic molecular sieve.
  • the acidic molecular sieve is selected from at least one of acidic MFI structural molecular sieves, acidic FAU structural molecular sieves, acidic FER structural molecular sieves, acidic BEA structural molecular sieves, acidic MOR structural molecular sieves, and acidic MWW structural molecular sieves.
  • the acidic molecular sieve is selected from any one of acidic MFI molecular sieves and acidic FER structural molecular sieves.
  • the acidic molecular sieve is selected from at least one of acidic ZSM-5 molecular sieves, acidic Y molecular sieves, acidic ZSM-35 molecular sieves, acidic beta molecular sieves, acidic mordenite molecular sieves, and acidic MCM-22 molecular sieves.
  • the acidic molecular sieve is at least one of acidic ZSM-5 molecular sieve and acidic ZSM-35 molecular sieve.
  • the acidic molecular sieve is selected from at least one of hydrogen-type ZSM-5 molecular sieve, hydrogen-type Y molecular sieve, hydrogen-type ZSM-35 molecular sieve, hydrogen-type beta molecular sieve, hydrogen-type mordenite molecular sieve, and hydrogen-type MCM-22 molecular sieve. kind.
  • the acidic molecular sieve is at least one of hydrogen type ZSM-5 molecular sieve and hydrogen type ZSM-35 molecular sieve.
  • the Si/Al atomic ratio Si/Al in the acidic molecular sieve is 3-500.
  • the upper limit of the silicon-aluminum atomic ratio in the acidic molecular sieve is selected from 20, 10, 50, 100, 500; the lower limit of the silicon-aluminum atomic ratio in the acidic molecular sieve is selected from 3, 10, 20, 50, 100 .
  • the Si/Al atomic ratio Si/Al in the acidic molecular sieve is 20-500.
  • the content of the acidic molecular sieve in the acidic molecular sieve catalyst is 50-100 wt %.
  • the acidic molecular sieve catalyst further contains a forming agent; the forming agent is an oxide; the oxide is selected from one of alumina and silicon oxide.
  • the content of the forming agent in the acidic molecular sieve catalyst is m, and the value range of m is 0 ⁇ m ⁇ 50wt%.
  • the acidic molecular sieve catalyst is a fresh acidic molecular sieve catalyst and/or a regenerated acidic molecular sieve catalyst; the fresh acidic molecular sieve catalyst is an unused acidic molecular sieve catalyst.
  • the method for regenerating the acidic molecular sieve catalyst comprises: treating the deactivated acidic molecular sieve catalyst with a regeneration gas containing oxygen at 400-800° C. for 0.5-24 hours, so as to obtain the regenerated acidic molecular sieve catalyst;
  • the volume fraction of oxygen is 0.5-50%.
  • the acidic resin catalyst is selected from any one of strongly acidic cation exchange resins.
  • the skeleton structure in the strongly acidic cation exchange resin is a copolymer of styrene and divinylbenzene;
  • the acidic group in the strongly acidic cation exchange resin is a sulfonic acid group.
  • the acidic alumina catalyst is ⁇ -structure alumina.
  • the liquid acid catalyst is selected from any of acidic liquids.
  • the liquid acid catalyst is selected from at least one of sulfuric acid, hydrochloric acid, nitric acid, and phosphoric acid.
  • the concentration of hydrogen ions H + contained in the liquid acid catalyst is 0.01-10 mol/L.
  • the solid base catalyst is selected from at least one selected from hydrotalcite, anion exchange resin, and hydroxyapatite.
  • the liquid base catalyst is selected from any one of liquids with basicity.
  • the liquid alkali catalyst is selected from any one of sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, calcium hydroxide aqueous solution, and magnesium hydroxide aqueous solution.
  • the concentration of hydroxide ions OH - contained in the liquid alkali catalyst is 0.01-10 mol/L.
  • the conditions of the reaction are:
  • the reaction pressure is 0.1 ⁇ 10MPa
  • methyl methoxyacetate and methoxyacetic acid are not limited.
  • the upper limit of the reaction temperature is selected from 130°C, 160°C, 200°C, and 260°C; the lower limit of the reaction temperature is selected from 60°C, 130°C, 160°C, and 200°C.
  • the upper limit of the reaction pressure is selected from 0.3 MPa, 1 MPa, 5 MPa, and 10 MPa; the lower limit of the reaction pressure is selected from 0.1 MPa, 0.3 MPa, 1 MPa, and 5 MPa.
  • the upper limit of the ratio of the total moles of methyl methoxyacetate and methoxyacetic acid to the moles of water is selected from 1:3, 1:6, 1:8, 1:10, 1:15, 1:20;
  • the lower limit of the ratio of the total moles of methyl methoxyacetate and methoxyacetic acid to the moles of water is selected from 1:2, 1:3, 1:6, 1:8, 1:10, 1:15.
  • the conditions of the reaction are:
  • the reaction pressure is 0.1 ⁇ 0.3MPa
  • the molar ratio of the methyl methoxyacetate to the methoxyacetic acid is 4:1 to 9:1.
  • the upper limit of the molar ratio of methyl methoxyacetate to methoxyacetic acid is selected from 5:1 and 9:1; the lower limit of the molar ratio of methyl methoxyacetate to methoxyacetic acid is selected from 4:1 , 5:1.
  • the reaction is carried out in a reactor
  • the reactor is selected from any one of a fixed bed reactor, a tank reactor, and a catalytic rectification reactor.
  • the reactor comprises a fixed bed reactor, or a plurality of fixed bed reactors connected in series and/or parallel; or,
  • the reactor comprises one tank reactor, or a plurality of tank reactors connected in series and/or in parallel; or,
  • the reactor includes one catalytic rectification reactor, or a plurality of catalytic rectification reactors connected in series and/or in parallel.
  • the mass space velocity of methyl methoxyacetate and methoxyacetic acid in the raw material is 0.1-3 h -1 .
  • the upper limit of the mass space velocity of methyl methoxyacetate and methoxyacetic acid is 0.6h -1 , 1h -1 , 3h -1 ; the upper limit of the mass space velocity of methyl methoxyacetate and methoxyacetic acid is The lower limit is 0.1h -1 , 0.6h -1 , 1h -1 .
  • the stirring rate is 250-350 rpm; the reaction time is 1-3 days.
  • the reaction time is 8-15 h; the stirring speed is 350-650 rpm; and the reflux ratio is 1-3.
  • the methyl methoxyacetate in the raw material is newly added raw material and/or unreacted methyl methoxyacetate after product separation; and/or,
  • the methoxyacetic acid in the described raw material is the newly added raw material and/or the unreacted methoxyacetic acid after product separation; and/or,
  • the water in the raw material is newly added raw material and/or unreacted water after product separation.
  • methyl methoxyacetate, methoxyacetic acid and water in the raw materials are newly added raw materials and/or unreacted materials after product separation.
  • reaction is carried out in an inert atmosphere
  • the inert atmosphere includes any one of nitrogen gas and inert gas.
  • the method for producing glycolic acid and methyl glycolate in the present invention can be realized by using a traditional fixed bed reactor, a kettle type reactor or a catalytic rectification reactor under normal pressure, and is very suitable for continuous production.
  • the method in the present invention is combined with methanol and formaldehyde condensation to prepare methylal reaction, and methylal carbonylation to prepare methyl methoxyacetate reaction, so that methanol, which is a coal chemical industry platform, can be efficiently, greenly and economically converted into Glycolic acid and methyl glycolate.
  • FIG. 1 is a mass spectrum diagram of glycolic acid anion in the reaction product analyzed by liquid chromatography-mass spectrometry in Example 1 of the application.
  • the present invention develops a method for preparing glycolic acid and methyl glycolate by hydrolysis of methoxyacetate and methoxyacetic acid. Moreover, the method of the invention is especially suitable for methylal produced by coal chemical industry, and methyl methoxyacetate is generated through carbonylation reaction, and then glycolic acid and methyl glycolate are prepared by hydrolysis.
  • the present invention provides a method for preparing glycolic acid and methyl glycolate by hydrolysis of methoxyacetate and methoxyacetic acid.
  • the raw materials methoxyacetate, methoxyacetic acid and water are passed through
  • the reaction zone carrying the catalyst is reacted to produce glycolic acid and methyl glycolate under certain reaction conditions;
  • the catalyst is any one or a mixture of a solid acid catalyst, a liquid acid catalyst, a solid base catalyst and a liquid base catalyst;
  • the reaction zone contains one fixed bed reactor, or multiple fixed bed reactors connected in series and/or parallel, or one tank reactor, or multiple tank reactors connected in series and/or parallel
  • a reactor either containing one catalytic rectification reactor, or a plurality of catalytic rectification reactors connected in series and/or in parallel;
  • reaction conditions are as follows: the reaction temperature is 60-260° C., the molar ratio (methyl methoxyacetate+methoxyacetic acid) in the raw material: water is 1:20 ⁇ 1:2, and the molar ratio in the raw material is methyl methoxyacetic acid.
  • Ester:Methoxyacetic acid is in any ratio, and the reaction pressure is 0.1-10MPa.
  • the methoxyacetic acid in the reaction (3) continues to be hydrolyzed to generate glycolic acid under the same catalyst and reaction conditions:
  • the solid acid catalyst is one or a mixture of an acidic molecular sieve catalyst, an acidic resin catalyst or an acidic alumina catalyst.
  • the acidic molecular sieve-containing catalyst also contains 0-50% by weight of a catalyst shaping agent, and the catalyst shaping agent is one of alumina and silicon oxide.
  • the acidic molecular sieve-containing catalyst is a freshly prepared acidic molecular sieve catalyst and/or a regenerated acidic molecular sieve catalyst.
  • the preparation method of the regenerated acidic molecular sieve catalyst is as follows: the acidic molecular sieve catalyst after the deactivation of the hydrolysis reaction of methoxyacetate and methoxyacetic acid is used, and the gas containing 0.5-50% volume fraction of oxygen is used at 400 ⁇ 800°C for 0.5 ⁇ 24h.
  • the acidic resin catalyst is a strongly acidic cation exchange resin.
  • the skeleton structure of the strongly acidic cation exchange resin is a copolymer of styrene and divinylbenzene, and the acidic group is a sulfonic acid group.
  • the acidic alumina catalyst is ⁇ -structure alumina.
  • the ⁇ -structure alumina is prepared by calcining SB powder at 400-800°C.
  • the liquid acid catalyst is an acidic liquid.
  • the liquid acid catalyst is one or more of sulfuric acid, hydrochloric acid, nitric acid and phosphoric acid.
  • the concentration of hydrogen ions H + contained in the liquid acid catalyst is 0.01-10 mol/L.
  • the solid base catalyst is one or more of hydrotalcite, anion exchange resin and hydroxyapatite.
  • composition of the hydrotalcite can be expressed as [Mg 1-x Al x (OH) 2 ] x+ [CO 3 2- ] x/2 ⁇ n H 2 O, the value of x is 0.1-0.34, and the value of n is 0- An integer of 4.
  • Mg can be isomorphically substituted by Zn, Fe, Co, Ni and Cu, while Al can be substituted by Cr, Fe, In.
  • the hydroxyapatite composition can be represented as Ca 10-x (HPO 4 ) x (PO 4 ) 6-x (OH) 2-x , and the value of x is 0-1.
  • the liquid alkali catalyst is an alkaline liquid.
  • the liquid alkali catalyst is one or more of sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, calcium hydroxide aqueous solution and magnesium hydroxide aqueous solution.
  • the concentration of hydroxide ions OH - contained in the liquid alkali catalyst is 0.01-10 mol/L.
  • the reaction conditions are as follows: the reaction temperature is 130-200° C., the molar ratio (methyl methoxyacetate+methoxyacetic acid) in the raw material: water is 1:8 to 1:3, and the molar ratio in the raw material is methyl methoxyacetic acid.
  • the ratio of ester:methoxyacetic acid is 4:1 ⁇ 9:1, and the reaction pressure is 0.1 ⁇ 0.3MPa.
  • the mass space velocity of methyl methoxyacetate and methoxyacetic acid in the raw material is 0.1-3h ⁇ 1 .
  • the raw materials methoxyacetate, methoxyacetic acid and water are newly added raw materials and/or unreacted raw materials after product separation.
  • the raw material contains one of nitrogen and argon inert carrier gases in the process of passing through the reaction zone carrying the acidic molecular sieve catalyst.
  • Agilent7890B gas chromatograph to analyze products other than glycolic acid and unreacted raw materials. Its FID detector is connected to DB-FFAP capillary column, and its TCD detector is connected to Porapak Q packed column. Glycolic acid was analyzed by liquid chromatography, the separation column was a C 18 column, and the detector was an ultraviolet detector.
  • conversion and selectivity are calculated based on the number of moles of carbon:
  • Conversion rate of methoxyacetic acid [(carbon moles of methoxyacetic acid in feed)-(carbon moles of methoxyacetic acid in discharge)] ⁇ (carbon moles of methoxyacetic acid in feed) ⁇ 100%
  • the acidic molecular sieve catalyst especially the H-ZSM-5 molecular sieve catalyst, has high raw material conversion rate and long life in the hydrolysis reaction.
  • Example 1 The catalyst in Example 1 was replaced with a DB757 strongly acidic sulfonic acid-based exchange resin commercially purchased by Dandong Pearl Company with an exchange degree of 3.2 mmol/g, and activated with 50 mL/min nitrogen at 100 ° C for 4 h. Other conditions were the same as the operation.
  • the reaction results are shown in Table 3.
  • Example 10 The catalyst in Example 10 was replaced with ⁇ -alumina whose ammonia adsorption capacity was 0.29 mmol/g purchased by Beijing Yanxin Technology Company, and other operating conditions were the same as those in Example 10, and the reaction results were shown in Table 3.
  • Example 10 The catalyst in Example 10 was replaced with a 202FC type strongly basic quaternary ammonium-based exchange resin with an exchange degree of 3.5 mmol/g purchased from Dandong Pearl Company, and other operating conditions were the same as in Example 10, and the reaction results were shown in Table 3.
  • Example 10 The catalyst in Example 10 was replaced with a composition of [Mg 0.8 Al 0.2 (OH) 2 ] 0.2+ [CO 3 2- ] 0.1 2H 2 O hydrotalcite, other operating conditions were the same as those in Example 10, and the reaction results were shown in the table 3.
  • Example 10 The catalyst in Example 10 was replaced with a composition of Ca 10 (PO 4 ) 6 (OH) 2 hydroxyapatite, and other operating conditions were the same as those in Example 10. The reaction results are shown in Table 3.
  • solid acids such as strongly acidic resin, ⁇ -alumina, basic resin, hydrotalcite, hydroxyapatite, etc., can also catalyze the hydrolysis of methyl methoxyacetate and methoxyacetic acid to produce ethanol.
  • the acid reacts with methyl glycolate.
  • the liquid acid can also catalyze the reaction of methyl methoxyacetate and methoxyacetic acid to hydrolyze glycolic acid and methyl glycolate.
  • the hydrolysis reaction of methyl methoxyacetate and methoxyacetic acid was tested by batch catalytic distillation.
  • the column body of the rectification tower is a glass column with a diameter of 30mm, and an inert annular packing with a size of 3.0mm ⁇ 3.0mm is installed inside, and the height of the packing is 2.0m.
  • the distillation still is heated by a heating jacket, and the temperature of the top condenser is -15°C.
  • the reaction temperature was 150° C.
  • the reaction pressure was 0.1 MPa
  • the magnetic stirring speed was 500 rpm
  • the reflux ratio was 2.
  • the conversion rates of methyl methoxyacetate and methoxyacetic acid were both about 100%
  • the selectivity of glycolic acid was 43.5%
  • the selectivity of methyl glycolate was 13.0%.
  • the reacted catalyst can be basically restored to the reaction performance of the fresh catalyst after being calcined and regenerated in a mixed atmosphere of oxygen/nitrogen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

本申请公开了一种甲氧基乙酸甲酯和甲氧基乙酸水解制取乙醇酸和乙醇酸甲酯的方法。该方法包括将含有甲氧基乙酸甲酯、甲氧基乙酸和水的原料,与催化剂接触、反应,即可得到乙醇酸和乙醇酸甲酯;所述催化剂选自固体酸催化剂、液体酸催化剂、固体碱催化剂、液体碱催化剂中的至少一种。本申请中的乙醇酸和乙醇酸甲酯生产方法,可以在常压下,利用传统固定床反应器,釜式反应器或催化精馏反应器实现,非常适合连续生产。本申请中的方法,与甲醇和甲醛缩合制甲缩醛反应,甲缩醛羰化制甲氧基乙酸甲酯反应联合,可以将煤化工平台物甲醇,高效、绿色、经济地转化为乙醇酸和乙醇酸甲酯。

Description

甲氧基乙酸甲酯和甲氧基乙酸水解制取乙醇酸和乙醇酸甲酯的方法 技术领域
本申请涉及一种甲氧基乙酸甲酯和甲氧基乙酸水解制取乙醇酸和乙醇酸甲酯的方法,属于化工产品制备技术领域。
背景技术
乙醇酸(glycolicacid),又名羟基乙酸(hydroxyacetic acid),是最简单的α-羟基羧酸化合物。乙醇酸甲酯(Methyl glycolate),不仅可以加氢制取乙二醇,还易在温和条件下水解制乙醇酸。乙醇酸的分子结构中因为同时含有羟基和羧基,能够自身聚合生成聚羟基乙酸(PGA)。聚羟基乙酸不仅具有良好的生物相容性,还具有安全的生物降解性。因此,它不仅广泛应用于医用的手术缝合线、药物缓释材料、可降解人体组织支架等,还可以生产常用的塑料制品。如今,常规不可降解的塑料制品已经造成了严重的环境污染,故可生物降解的聚乙醇酸类塑料有望解决此问题。乙醇酸还能与乳酸,羟基丙酸等单体共聚成性能优异、用途广泛的高分子材料。另外,乙醇酸还是优良的化学清洗剂和化妆品原料。
乙醇酸的生产制备方法主要包括氯乙酸水解法、甲醛羰化法、草酸酯加氢/水解法等。氯乙酸水解法,不仅原料氯乙酸制备过程中污染大,而且水解过程会产生大量的废盐,污染严重,产品质量较差,目前基本被淘汰。甲醛羰化法,尽管原料便宜易得,但需要在高温、高压、强液体酸、有机溶剂条件下进行;设备容易腐蚀,产品提纯难度大,导致工业生产成本高。草酸酯加氢/水解法是将草酸酯部分加氢成乙醇酸甲酯,然后乙醇酸甲酯水解制取乙醇酸。然而,一方面草酸酯部分加氢催化剂还不成熟、转化效率低、稳定性差;另一方面草酸酯生产流程长、成本较高;这些问题严重制约了草酸酯加氢/水解法的发展。
近年来,甲缩醛羰化制甲氧基乙酸甲酯反应受到了广泛的关注。此反应基于分子筛催化剂,在较低反应温度下就可实现,原子经济性高。原料甲缩醛生产效率高,工业化技术非常成熟,价格便宜。
然而,现有技术中,甲缩醛羰化产物甲氧基乙酸甲酯并没有应用于乙醇酸、乙醇酸甲酯的制备过程中。并且甲氧基乙酸甲酯的酯键水解后的甲氧基乙酸用途相对较少,造成了原料的浪费。
发明内容
根据本申请的一个方面,提供了一种甲氧基乙酸甲酯和甲氧基乙酸水解制取乙醇酸和乙醇酸甲酯的方法,本发明的方法特别适用煤化工生产的甲缩醛,通过羰化反应生成甲氧基乙酸甲酯,然后水解制取乙醇酸和乙醇酸甲酯。通过该反应过程,可以与甲缩醛羰化制甲氧基乙酸甲酯反应联合,将煤化工平台物中的甲缩醛,高效、绿色、经济地转化为乙醇酸和乙醇酸甲酯,扩展了甲氧基乙酸酯、甲氧基乙酸的用途,取得了有益效果。
一种甲氧基乙酸甲酯和甲氧基乙酸水解制取乙醇酸和乙醇酸甲酯的方法,将含有甲氧基乙酸甲酯、甲氧基乙酸和水的原料,与催化剂接触、反应,即可得到乙醇酸和乙醇酸甲酯;
所述催化剂选自固体酸催化剂、液体酸催化剂、固体碱催化剂、液体碱催化剂中的任一种。
近年来,甲缩醛羰化制甲氧基乙酸甲酯反应受到了广泛的关注。此反应基于分子筛催化剂,在较低反应温度下就可实现,原子经济性高。原料甲缩醛生产效率高,工业化技术非常成熟,价格便宜。本申请中,利用甲氧基乙酸甲酯的醚键和酯键水解,可以得到乙醇酸、乙醇酸甲酯和甲氧基乙酸等。因甲氧基乙酸用途相对较少,可以返回到反应器中与甲氧基乙酸甲酯共同水解,这成为一条绿色、经济的乙醇酸和乙醇酸甲酯生产路径。
可选地,所述固体酸催化剂选自酸性分子筛催化剂、酸性树脂催化剂、酸性氧化铝催化剂中的至少一种;
其中,所述酸性分子筛催化剂中含有酸性分子筛。
可选地,所述酸性分子筛选自酸性MFI结构分子筛、酸性FAU结构分子筛、酸性FER结构分子筛、酸性BEA结构分子筛、酸性MOR结构分子筛、酸性MWW结构分子筛中的至少一种。
优选地,所述酸性分子筛选自酸性MFI结构分子筛、酸性FER结构分子筛中的任一种。
可选地,所述酸性分子筛选自酸性ZSM-5分子筛、酸性Y分子筛、酸性ZSM-35分子筛、酸性β分子筛、酸性丝光沸石分子筛、酸性MCM-22分子筛中的至少一种。
优选地,所述酸性分子筛酸性ZSM-5分子筛、酸性ZSM-35分子筛中的至少一种。
可选地,所述酸性分子筛选自氢型ZSM-5分子筛、氢型Y分子筛、氢型ZSM-35分子筛、氢型β分子筛、氢型丝光沸石分子筛、氢型MCM-22分子筛中的至少一种。
优选地,所述酸性分子筛氢型ZSM-5分子筛、氢型ZSM-35分子筛中的至少一种。
可选地,所述酸性分子筛中的硅铝原子比Si/Al为3~500。
具体地,所述酸性分子筛中的硅铝原子比的上限选自20、10、50、100、500;所述酸性分子筛中的硅铝原子比的下限选自3、10、20、50、100。
优选地,所述酸性分子筛中的硅铝原子比Si/Al为20~500。
可选地,所述酸性分子筛在所述酸性分子筛催化剂中的含量为50~100wt%。
可选地,所述酸性分子筛催化剂中还含有成型剂;所述成型剂为氧化物;所述氧化物选自氧化铝、氧化硅中的一种。
可选地,所述成型剂在所述酸性分子筛催化剂中的含量为m,m的取值范围为0<m≤50wt%。
可选地,所述酸性分子筛催化剂为新鲜的酸性分子筛催化剂和/或再生后的酸性分子筛催化剂;所述新鲜的酸性分子筛催化剂为未使用过的酸性分子筛催化剂。
可选地,所述酸性分子筛催化剂的再生方法包括:将失活的酸性分子筛催化剂,利用含有氧气的再生气,在400~800℃下处理0.5~24h,即可得到再生后的酸性分子筛催化剂;
其中,在所述再生气中,氧气的体积分数为0.5~50%。
可选地,酸性树脂催化剂选自强酸性阳离子交换树脂中的任一种。
可选地,所述强酸性阳离子交换树脂中的骨架结构为苯乙烯与二乙烯苯的共聚物;
所述强酸性阳离子交换树脂中的酸性基团为磺酸基。
可选地,所述酸性氧化铝催化剂为γ结构氧化铝。
可选地,所述液体酸催化剂选自具有酸性的液体中的任一种。
可选地,所述液体酸催化剂选自硫酸、盐酸、硝酸、磷酸中的至少一种。
可选地,所述液体酸催化剂中含有氢离子H +的浓度为0.01~10mol/L。
可选地,所述固体碱催化剂选自选自水滑石、阴离子交换树脂、羟基磷灰石中的至少一种。
可选地,所述液体碱催化剂选自具有碱性的液体中的任一种。
可选地,所述液体碱催化剂选自氢氧化钠水溶液、氢氧化钾水溶液、氢氧化钙水溶液、氢氧化镁水溶液中的任一种。
可选地,所述液体碱催化剂中含有氢氧根离子OH -的浓度为0.01~10mol/L。
可选地,所述反应的条件为:
反应温度60~260℃;
反应压力为0.1~10MPa;
在所述原料中,甲氧基乙酸甲酯和甲氧基乙酸的总摩尔数与水的摩尔数之比为:(甲氧基乙酸甲酯+甲氧基乙酸):水=1:2~1:20;
甲氧基乙酸甲酯和甲氧基乙酸之间的比例关系不限定。
具体地,反应温度的上限选自130℃、160℃、200℃、260℃;反应温度的下限选自60℃、130℃、160℃、200℃。
反应压力的上限选自0.3MPa、1MPa、5MPa、10MPa;反应压力的下限选自0.1MPa、0.3MPa、1MPa、5MPa。
甲氧基乙酸甲酯和甲氧基乙酸的总摩尔数与水的摩尔数之比的上限选自1:3、1:6、1:8、1:10、1:15、1:20;甲氧基乙酸甲酯和甲氧基乙酸的总摩尔数与水的摩尔数之比的下限选自1:2、1:3、1:6、1:8、1:10、1:15。
优选地,所述反应的条件为:
反应温度130~200℃;
反应压力为0.1~0.3MPa;
在所述原料中,甲氧基乙酸甲酯和甲氧基乙酸的总摩尔数与水的摩尔数之比为:(甲氧基乙酸甲酯+甲氧基乙酸):水=1:3~1:8;
所述甲氧基乙酸甲酯与甲氧基乙酸的摩尔比为4:1~9:1。
具体地,甲氧基乙酸甲酯与甲氧基乙酸的摩尔比的上限选自5:1、9:1;甲氧基乙酸甲酯与甲氧基乙酸的摩尔比的下限选自4:1、5:1。
可选地,所述反应在反应器中进行;
所述反应器选自固定床反应器、釜式反应器、催化精馏反应器中的任一种。
可选地,所述反应器包括一个固定床反应器,或通过串联和/或并联方式连接的多个固定床反应器;或者,
所述反应器包括一个釜式反应器,或通过串联和/或并联方式连接的多个釜式反应器;或者,
所述反应器包括一个催化精馏反应器,或通过串联和/或并联方式连接的多个催化精馏反应器。
可选地,采用固定床反应器时,原料中甲氧基乙酸甲酯和甲氧基乙酸的质量空速为0.1~3h -1
具体地,甲氧基乙酸甲酯和甲氧基乙酸的质量空速的上限为0.6h -1、1h -1、3h -1;甲氧基乙酸甲酯和甲氧基乙酸的质量空速的下限为0.1h -1、0.6h -1、1h -1
可选地,采用釜式反应器时,采用釜式反应器时,搅拌速率为250~350转/分;反应时间为1~3天。
可选地,采用催化精馏反应器时;反应时间为8~15h;搅拌转速为350~650转/分;回流比为1~3。
可选地,所述原料中的甲氧基乙酸甲酯为新加入的原料和/或经过产物分离后未反应完的甲氧基乙酸甲酯;和/或,
所述原料中的甲氧基乙酸为新加入的原料和/或经过产物分离后未反应完的甲氧基乙酸;和/或,
所述原料中的水为新加入的原料和/或经过产物分离后未反应完的水。
具体地,在一个示例中,所述原料中的甲氧基乙酸甲酯、甲氧基乙酸和水为新加入的原料和/或经过产物分离后未反应完的物料。
可选地,所述反应在非活性气氛中进行;
所述非活性气氛包括氮气、惰性气体中的任一种。
本申请能产生的有益效果包括:
1)本发明中的乙醇酸和乙醇酸甲酯生产方法,可以在常压下,利用传统固定床反应器,釜式反应器或催化精馏反应器实现,非常适合连续生产。
2)本发明中的方法,与甲醇和甲醛缩合制甲缩醛反应,甲缩醛羰化制甲氧基乙酸甲酯反应联合,可以将煤化工平台物甲醇,高效、绿色、经济地转化为乙醇酸和乙醇酸甲酯。
附图说明
图1为本申请实施例1中液相色谱-质谱联用分析反应产物中乙醇酸负离子质谱图。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
下面介绍可能的实施方式:
根据现有乙醇酸和乙醇酸甲酯生产技术中存在的问题,本发明开发出了一种甲氧基乙酸酯和甲氧基乙酸水解制取乙醇酸和乙醇酸甲酯的方法。而且本发明的方法特别适用煤化工生产的甲缩醛,通过羰化反应生成甲氧基乙酸甲酯,然后水解制取乙醇酸和乙醇酸甲酯。
具体来讲,本发明提供了一种甲氧基乙酸酯和甲氧基乙酸水解制取乙醇酸和乙醇酸甲酯的方法,将原料甲氧基乙酸酯、甲氧基乙酸和水通过载有催化剂的反应区,在一定的反应条件下反应制取乙醇酸和乙醇酸甲酯;
所述催化剂为固体酸催化剂、液体酸催化剂、固体碱催化剂和液体碱催化剂中的任意一种或几种混合;
所述反应区含有一个固定床反应器,或通过串联和/或并联方式连接的多个固定床反应器,或含有一个釜式反应器,或通过串联和/或并联方式连接的多个釜式反应器,或含有一个催化精馏反应器,或通过串联和/或并联方式连接的多个催化精馏反应器;
所述反应条件为:反应温度60~260℃,原料中摩尔比(甲氧基乙酸甲酯+甲氧基乙酸):水为1:20~1:2,原料中摩尔比甲氧基乙酸甲酯:甲氧基乙酸为任意比例,反应压力0.1~10MPa。
所述甲氧基乙酸甲酯水解反应方程式为:
CH 3OCH 2COOCH 3+2H 2O=2CH 3OH+HOCH 2COOH      (1)
同时还存在两个部分水解反应,分别为:
CH 3OCH 2COOCH 3+H 2O=CH 3OH+HOCH 2COOCH 3        (2)
CH 3OCH 2COOCH 3+H 2O=CH 3OH+CH 3OCH 2COOH       (3)
反应(3)中的甲氧基乙酸在同样的催化剂和反应条件下继续水解生成乙醇酸:
CH 3OCH 2COOH+H 2O=CH 3OH+HOCH 2COOH            (4)
上述的反应(1)~(4)都为可逆反应。同时,水解产生的甲醇还能部分脱水生成二甲醚。
所述固体酸催化剂为酸性分子筛催化剂、酸性树脂催化剂或酸性氧化铝催化剂中的一种或几种混合。
所述含有酸性分子筛催化剂中还含有重量百分数为0~50%的催化剂成型剂,所述催化剂成型剂为氧化铝和氧化硅中的一种。
所述含有酸性分子筛催化剂为新鲜制备酸性分子筛催化剂和/或再生后的酸性分子筛催化剂。
所述再生后的酸性分子筛催化剂的制备方法为:将甲氧基乙酸酯和甲氧基乙酸水解反应失活后的酸性分子筛催化剂,利用含0.5~50%体积分数的氧气的气体,在400~800℃下处理0.5~24h。
所述酸性树脂催化剂为强酸性阳离子交换树脂。
所述强酸性阳离子交换树脂的骨架结构为苯乙烯与二乙烯苯的共聚物,酸性基团 为磺酸基。
所述酸性氧化铝催化剂为γ结构氧化铝。
所述γ结构氧化铝为400~800℃下煅烧SB粉制备。
所述液体酸催化剂为具有酸性的液体。
所述液体酸催化剂为硫酸、盐酸、硝酸、磷酸中的一种或几种。
所述液体酸催化剂中含有氢离子H +的浓度为0.01~10mol/L。
所述固体碱催化剂为水滑石、阴离子交换树脂、羟基磷灰石中的一种或几种。
所述水滑石组成可以表示为[Mg 1-xAl x(OH) 2] x+[CO 3 2-] x/2·n H 2O,x的值为0.1~0.34,n的值为0~4的整数。其中,Mg可以被Zn,Fe,Co,Ni和Cu同晶取代,而Al可以被Cr,Fe,In所取代。
所述羟基磷灰石组成可以表示为Ca 10-x(HPO 4) x(PO 4) 6-x(OH) 2-x,x的值为0~1。
所述液体碱催化剂为具有碱性的液体。
所述液体碱催化剂为氢氧化钠水溶液、氢氧化钾水溶液、氢氧化钙水溶液、氢氧化镁水溶液中的一种或几种。
所述液体碱催化剂中含有氢氧根离子OH -的浓度为0.01~10mol/L。
所述反应条件为:反应温度130~200℃,原料中摩尔比(甲氧基乙酸甲酯+甲氧基乙酸):水为1:8~1:3,原料中摩尔比甲氧基乙酸甲酯:甲氧基乙酸为4:1~9:1,反应压力0.1~0.3MPa。
所述反应区含有一个固定床反应器,或通过串联和/或并联方式连接的多个固定床反应器时,原料中甲氧基乙酸甲酯和甲氧基乙酸质量空速为0.1~3h -1
所述的原料甲氧基乙酸酯、甲氧基乙酸和水为新加入的原料和/或经过产物分离后未反应完的原料。
所述的原料通过载有酸性分子筛催化剂的反应区的过程中含有氮气、氩气惰性载气中的一种。
如无特别说明,本发明的实施例中的原料均通过商业途径购买。
实施例中分析方法以及转化率、选择性计算如下:
利用Agilent7890B气相色谱仪进行分析除乙醇酸以外的产物和未反应完的原料,它的FID检测器连接DB-FFAP毛细管柱,它的TCD检测器连接Porapak Q填充柱。利用液相色谱仪分析乙醇酸,分离柱为C 18柱,检测器为紫外检测器。
在本发明的实施例中,转化率和选择性均基于碳摩尔数进行计算:
甲氧基乙酸甲酯转化率=[(进料中甲氧基乙酸甲酯碳摩尔数)-(出料中甲氧基乙酸甲酯碳摩尔数)]÷(进料中甲氧基乙酸甲酯碳摩尔数)×100%
甲氧基乙酸转化率=[(进料中甲氧基乙酸碳摩尔数)-(出料中甲氧基乙酸碳摩尔数)]÷(进料中甲氧基乙酸碳摩尔数)×100%
某产物选择性=(出料中某产物的碳摩尔数)÷(出料中所有含碳产物的碳摩尔数总和)×100%
下面通过实施例详述本发明,但本发明并不局限于这些实施例。
催化剂性能测试
实施例1
选择购买自中科催化新技术(大连)股份有限公司催化剂厂生产的硅铝比为Si/Al=20的酸性H-ZSM-5分子筛,将其破碎筛分成0.4~0.8mm颗粒,取2g装入内径为8mm的不锈钢反应管内,用50mL/min氮气在500℃下活化4h,以下条件反应:反应温度(T)=160℃,反应压力(P)=0.1MPa,原料摩尔比(甲氧基乙酸甲酯+甲氧基乙酸)/水=1:6;摩尔比(甲氧基乙酸甲酯/甲氧基乙酸)=5:1;原料甲氧基乙酸甲酯和甲氧基乙酸的质量空速(WHSV)=0.6h -1。反应24h后,用气相色谱和液相色谱分析产物,基于碳数的反应结果见表1。其中液相色谱-质谱分析产物中乙醇酸的负离子质谱结果如图1所示。
实施例2-8
催化剂、反应条件和反应结果见表1。其他操作同实施例1。
表1实施例1-8中的催化反应结果
Figure PCTCN2021075023-appb-000001
Figure PCTCN2021075023-appb-000002
Figure PCTCN2021075023-appb-000003
由表1可以看出,酸性分子筛在甲氧基乙酸甲酯和甲氧基乙酸水解制乙醇酸和乙醇酸甲酯反应中表现出良好的催化性能,目标产物选择性高。
实施例9
实施例1中不同反应时间的反应结果见表2。
表2实施例9中的催化反应结果
Figure PCTCN2021075023-appb-000004
由表2可以看出,酸性分子筛催化剂尤其是H-ZSM-5分子筛催化剂在水解反应中原料转化率高,寿命长。
实施例10
将实施例1中的催化剂换为丹东明珠公司商业购买交换度为3.2mmol/g的DB757型强酸性磺酸基交换树脂,用50mL/min氮气在100℃下活化4h,其他条件和操作一样,反应结果见表3。
实施例11
将实施例10中的催化剂换为北京燕鑫科技公司商业购买氨气吸附量为0.29 mmol/g的γ-氧化铝,其他操作条件与实施例10一样,反应结果见表3。
实施例12
将实施例10中的催化剂换为丹东明珠公司商业购买交换度为3.5mmol/g的202FC型强碱性季铵基交换树脂,其他操作条件与实施例10一样,反应结果见表3。
实施例13
将实施例10中的催化剂换为组成为[Mg 0.8Al 0.2(OH) 2] 0.2+[CO 3 2-] 0.1·2H 2O水滑石,其他操作条件与实施例10一样,反应结果见表3。
实施例14
将实施例10中的催化剂换为组成为Ca 10(PO 4) 6(OH) 2羟基磷灰石,其他操作条件与实施例10一样,反应结果见表3。
表3实施例10-14中的催化反应结果
Figure PCTCN2021075023-appb-000005
由表3可以看出,强酸性树脂、γ-氧化铝、碱性树脂、水滑石、羟基磷灰石等固体酸、碱催化剂同样能催化甲氧基乙酸甲酯和甲氧基乙酸水解制乙醇酸和乙醇酸甲酯反应。
实施例15
在反应釜中加入甲氧基乙酸甲酯86.7g,甲氧基乙酸15g和水108g,同时加入0.1mol/L的硫酸水溶液10mL作为催化剂。反应温度160℃,反应压力0.2MPa,搅拌转速为300转/分。反应24h后,反应结果见表4。
表4实施例15中的催化反应结果
Figure PCTCN2021075023-appb-000006
由表4可以看出,液体酸也能催化甲氧基乙酸甲酯和甲氧基乙酸水解制乙醇酸和乙醇酸甲酯反应。
实施例16
利用间歇催化精馏方式测试甲氧基乙酸甲酯和甲氧基乙酸的水解反应。精馏塔塔体为30mm直径玻璃柱,内装3.0mm×3.0mm规格的惰性环形填料,填料高度为2.0m。精馏釜利用加热套加热,塔顶冷凝器温度为-15℃。
在反应釜中加入甲氧基乙酸甲酯86.7g,甲氧基乙酸15g和水108g,同时加入10g实施例1中硅铝比为Si/Al=20的酸性H-ZSM-5分子筛做催化剂。反应温度150℃,反应压力0.1MPa,磁子搅拌转速为500转/分,回流比为2。反应10h后,甲氧基乙酸甲酯与甲氧基乙酸转化率都约100%,乙醇酸选择性43.5%,乙醇酸甲酯选择性13.0%。
实施例17
将实施例1中的硅铝比为Si/Al=20的酸性H-ZSM-5分子筛分别用氧化铝或氧化硅挤条成型,氧化铝或氧化硅在成型后的催化剂中的含量为20wt%,其他条件和操作不变,反应结果见表5。
表5实施例1,17中的催化反应结果
Figure PCTCN2021075023-appb-000007
由表5可以看出酸性分子筛催化剂利用氧化铝或氧化硅成型后催化活性基本保持。
实施例18
将实施例9中反应8000小时后的催化剂,利用氧气/氮气(摩尔比)=5/95的混合气体500mL min -1,在600℃下处理4小时,然后再用实施例9中条件反应,反应结果 见表6。
表6实施例18中的催化反应结果
Figure PCTCN2021075023-appb-000008
从表6可以看出,反应后的催化剂经过氧气/氮气混合气氛煅烧再生,可以基本恢复到新鲜催化剂的反应性能。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (30)

  1. 一种甲氧基乙酸甲酯和甲氧基乙酸水解制取乙醇酸和乙醇酸甲酯的方法,其特征在于,包括将含有甲氧基乙酸甲酯、甲氧基乙酸和水的原料,与催化剂接触、反应,即可得到乙醇酸和乙醇酸甲酯;
    所述催化剂选自固体酸催化剂、液体酸催化剂、固体碱催化剂、液体碱催化剂中的任一种。
  2. 根据权利要求1所述的方法,其特征在于,所述固体酸催化剂选自酸性分子筛催化剂、酸性树脂催化剂、酸性氧化铝催化剂中的至少一种;
    其中,所述酸性分子筛催化剂中含有酸性分子筛。
  3. 根据权利要求2所述的方法,其特征在于,所述酸性分子筛选自酸性MFI结构分子筛、酸性FAU结构分子筛、酸性FER结构分子筛、酸性BEA结构分子筛、酸性MOR结构分子筛、酸性MWW结构分子筛中的至少一种。
  4. 根据权利要求2所述的方法,其特征在于,所述酸性分子筛选自酸性ZSM-5分子筛、酸性Y分子筛、酸性ZSM-35分子筛、酸性β分子筛、酸性丝光沸石分子筛、酸性MCM-22分子筛中的至少一种。
  5. 根据权利要求2所述的方法,其特征在于,所述酸性分子筛选自氢型ZSM-5分子筛、氢型Y分子筛、氢型ZSM-35分子筛、氢型β分子筛、氢型丝光沸石分子筛、氢型MCM-22分子筛中的至少一种。
  6. 根据权利要求2所述的方法,其特征在于,所述酸性分子筛中的硅铝原子比Si/Al为3~500。
  7. 根据权利要求2所述的方法,其特征在于,所述酸性分子筛在所述酸性分子筛催化剂中的含量为50~100wt%。
  8. 根据权利要求2所述的方法,其特征在于,所述酸性分子筛催化剂中还含有成型剂;
    所述成型剂为氧化物;
    所述氧化物选自氧化铝、氧化硅中的一种。
  9. 根据权利要求8所述的方法,其特征在于,所述成型剂在所述酸性分子筛催化剂中的含量为m,m的取值范围为0<m≤50wt%。
  10. 根据权利要求2所述的方法,其特征在于,所述酸性分子筛催化剂为新鲜的酸性分子筛催化剂和/或再生后的酸性分子筛催化剂;
    所述新鲜的酸性分子筛催化剂为未使用过的酸性分子筛催化剂。
  11. 根据权利要求10所述的方法,其特征在于,所述酸性分子筛催化剂的再生方法包括:
    将失活的酸性分子筛催化剂,利用含氧气的再生气,在400~800℃下处理0.5~24h,即可得到再生后的酸性分子筛催化剂;
    其中,在所述再生气中,氧气的体积分数为0.5~50%。
  12. 根据权利要求2所述的方法,其特征在于,酸性树脂催化剂选自强酸性阳离子交换树脂中的任一种。
  13. 根据权利要求12所述的方法,其特征在于,所述强酸性阳离子交换树脂中的骨架结构为苯乙烯与二乙烯苯的共聚物;
    所述强酸性阳离子交换树脂中的酸性基团为磺酸基。
  14. 根据权利要求2所述的方法,其特征在于,所述酸性氧化铝催化剂为γ结构氧化铝。
  15. 根据权利要求1所述的方法,其特征在于,所述液体酸催化剂选自具有酸性的液体中的任一种。
  16. 根据权利要求15所述的方法,其特征在于,所述液体酸催化剂选自硫酸、盐酸、硝酸、磷酸中的至少一种。
  17. 根据权利要求15所述的方法,其特征在于,所述液体酸催化剂中含有氢离子H +的浓度为0.01~10mol/L。
  18. 根据权利要求1所述的方法,其特征在于,所述固体碱催化剂选自选自水滑石、阴离子交换树脂、羟基磷灰石中的至少一种。
  19. 根据权利要求1所述的方法,其特征在于,所述液体碱催化剂选自具有碱性的液体中的任一种。
  20. 根据权利要求19所述的方法,其特征在于,所述液体碱催化剂选自氢氧化钠水溶液、氢氧化钾水溶液、氢氧化钙水溶液、氢氧化镁水溶液中的任一种。
  21. 根据权利要求19所述的方法,其特征在于,所述液体碱催化剂中含有氢氧根离子OH -的浓度为0.01~10mol/L。
  22. 根据权利要求1所述的方法,其特征在于,所述反应的条件为:
    反应温度60~260℃;
    反应压力为0.1~10MPa;
    在所述原料中,甲氧基乙酸甲酯和甲氧基乙酸的总摩尔数与水的摩尔数之比为:
    (甲氧基乙酸甲酯+甲氧基乙酸):水=1:2~1:20。
  23. 根据权利要求22所述的方法,其特征在于,所述反应的条件为:
    反应温度130~200℃;
    反应压力为0.1~0.3MPa;
    在所述原料中,甲氧基乙酸甲酯和甲氧基乙酸的总摩尔数与水的摩尔数之比为:
    (甲氧基乙酸甲酯+甲氧基乙酸):水=1:3~1:8;
    所述甲氧基乙酸甲酯与甲氧基乙酸的摩尔比为4:1~9:1。
  24. 根据权利要求1所述的方法,其特征在于,所述反应在反应器中进行;
    所述反应器选自固定床反应器、釜式反应器、催化精馏反应器中的任一种。
  25. 根据权利要求24所述的方法,其特征在于,所述反应器包括一个固定床反应器,或通过串联和/或并联方式连接的多个固定床反应器;或者,
    所述反应器包括一个釜式反应器,或通过串联和/或并联方式连接的多个釜式反应器;或者,
    所述反应器包括一个催化精馏反应器,或通过串联和/或并联方式连接的多个催化精馏反应器。
  26. 根据权利要求24所述的方法,其特征在于,采用固定床反应器时,
    原料中甲氧基乙酸甲酯和甲氧基乙酸的质量空速为0.1~3h -1
  27. 根据权利要求24所述的方法,其特征在于,采用釜式反应器时,搅拌速率为250~350转/分;
    反应时间为1~3天。
  28. 根据权利要求24所述的方法,其特征在于,采用催化精馏反应器时;
    反应时间为8~15h;
    搅拌转速为350~650转/分;
    回流比为1~3。
  29. 根据权利要求1所述的方法,其特征在于,所述原料中的甲氧基乙酸甲酯为新加入的原料和/或经过产物分离后未反应完的甲氧基乙酸甲酯;和/或,
    所述原料中的甲氧基乙酸为新加入的原料和/或经过产物分离后未反应完的甲氧基乙酸;和/或,
    所述原料中的水为新加入的原料和/或经过产物分离后未反应完的水。
  30. 根据权利要求1所述的方法,其特征在于,所述反应在非活性气氛中进行;
    所述非活性气氛包括氮气、惰性气体中的任一种。
PCT/CN2021/075023 2021-02-03 2021-02-03 甲氧基乙酸甲酯和甲氧基乙酸水解制取乙醇酸和乙醇酸甲酯的方法 WO2022165662A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21923690.8A EP4279477A4 (en) 2021-02-03 2021-02-03 PROCESS FOR PRODUCING GLYCOLIC ACID AND METHYL GLYCOLATE BY HYDROLYSIS OF METHYL METHOXYACETATE AND METHOXYACETIC ACID
PCT/CN2021/075023 WO2022165662A1 (zh) 2021-02-03 2021-02-03 甲氧基乙酸甲酯和甲氧基乙酸水解制取乙醇酸和乙醇酸甲酯的方法
JP2023546202A JP2024504821A (ja) 2021-02-03 2021-02-03 メトキシ酢酸メチル及びメトキシ酢酸の加水分解によるグリコール酸及びグリコール酸メチルの製造方法
US18/275,444 US20240109833A1 (en) 2021-02-03 2021-02-03 Method for preparing glycolic acid and methyl glycolate through hydrolysis of methyl methoxyacetate and methoxyacetic acid
ZA2023/07576A ZA202307576B (en) 2021-02-03 2023-07-31 Method for preparing glycolic acid and methyl glycolate through hydrolysis of methyl methoxyacetate and methoxyacetic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/075023 WO2022165662A1 (zh) 2021-02-03 2021-02-03 甲氧基乙酸甲酯和甲氧基乙酸水解制取乙醇酸和乙醇酸甲酯的方法

Publications (1)

Publication Number Publication Date
WO2022165662A1 true WO2022165662A1 (zh) 2022-08-11

Family

ID=82740671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075023 WO2022165662A1 (zh) 2021-02-03 2021-02-03 甲氧基乙酸甲酯和甲氧基乙酸水解制取乙醇酸和乙醇酸甲酯的方法

Country Status (5)

Country Link
US (1) US20240109833A1 (zh)
EP (1) EP4279477A4 (zh)
JP (1) JP2024504821A (zh)
WO (1) WO2022165662A1 (zh)
ZA (1) ZA202307576B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116239472A (zh) * 2022-11-22 2023-06-09 中国科学院青岛生物能源与过程研究所 由乙醛和乙酸甲酯制备3-羟基丁酸甲酯的方法及该方法中采用的催化剂
CN116328825A (zh) * 2023-02-22 2023-06-27 中国科学院青岛生物能源与过程研究所 一种催化剂,其制备方法以及采用其催化甲醇和乙酸甲酯制备3-甲氧基丙酸甲酯的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1130431B (de) * 1958-08-27 1962-05-30 Degussa Verfahren zur Herstellung von wasserfreien kristallisierten ª‡-Oxycarbonsaeuren aus ihren Estern
CN1180067A (zh) * 1997-07-11 1998-04-29 清华大学 同时合成羟基乙酸甲酯和甲氧基乙酸甲酯的方法
JP2003300926A (ja) * 2002-04-08 2003-10-21 Nippon Shokubai Co Ltd α−ヒドロキシカルボン酸又はα−オキソカルボン酸の製造方法
WO2013148482A1 (en) * 2012-03-27 2013-10-03 Eastman Chemical Company Hydrocarboxylation of formaldehyde in the presence of a higher order carboxylic acid and a heterogeneous catalyst
CN106554250A (zh) * 2015-09-30 2017-04-05 中国科学院大连化学物理研究所 一种乙二醇单甲醚水解制备乙二醇的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107602388B (zh) * 2017-09-12 2020-10-30 沈阳化工大学 一种制备乙醇酸甲酯并副产卤代烷烃的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1130431B (de) * 1958-08-27 1962-05-30 Degussa Verfahren zur Herstellung von wasserfreien kristallisierten ª‡-Oxycarbonsaeuren aus ihren Estern
CN1180067A (zh) * 1997-07-11 1998-04-29 清华大学 同时合成羟基乙酸甲酯和甲氧基乙酸甲酯的方法
JP2003300926A (ja) * 2002-04-08 2003-10-21 Nippon Shokubai Co Ltd α−ヒドロキシカルボン酸又はα−オキソカルボン酸の製造方法
WO2013148482A1 (en) * 2012-03-27 2013-10-03 Eastman Chemical Company Hydrocarboxylation of formaldehyde in the presence of a higher order carboxylic acid and a heterogeneous catalyst
CN106554250A (zh) * 2015-09-30 2017-04-05 中国科学院大连化学物理研究所 一种乙二醇单甲醚水解制备乙二醇的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4279477A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116239472A (zh) * 2022-11-22 2023-06-09 中国科学院青岛生物能源与过程研究所 由乙醛和乙酸甲酯制备3-羟基丁酸甲酯的方法及该方法中采用的催化剂
CN116239472B (zh) * 2022-11-22 2024-04-26 中国科学院青岛生物能源与过程研究所 由乙醛和乙酸甲酯制备3-羟基丁酸甲酯的方法及该方法中采用的催化剂
CN116328825A (zh) * 2023-02-22 2023-06-27 中国科学院青岛生物能源与过程研究所 一种催化剂,其制备方法以及采用其催化甲醇和乙酸甲酯制备3-甲氧基丙酸甲酯的方法

Also Published As

Publication number Publication date
US20240109833A1 (en) 2024-04-04
EP4279477A4 (en) 2024-04-03
EP4279477A1 (en) 2023-11-22
ZA202307576B (en) 2023-12-20
JP2024504821A (ja) 2024-02-01

Similar Documents

Publication Publication Date Title
CN108236955B (zh) 一种草酸二甲酯加氢合成乙醇用催化剂的制备方法以及由此得到的催化剂和其应用
EP1740525B1 (en) Process for preparing acetic acid and derivatives thereof
JP5530437B2 (ja) 二重反応区域プロセスを用いる酢酸からのエチレンの製造
WO2022165662A1 (zh) 甲氧基乙酸甲酯和甲氧基乙酸水解制取乙醇酸和乙醇酸甲酯的方法
TWI402253B (zh) 製備羰基化產物的方法
EP2138478A1 (en) Process for producing hydrogenolysis products of polyhydric alcohols
TW201113250A (en) Process for the production of acetic acid and dimethyl ether
WO2010014152A1 (en) Process for catalytically producing ethylene directly from acetic acid in a single reaction zone
CN104245651A (zh) 用于生产乙酸和二甲醚的方法
CN100503534C (zh) 一种异丙醇的合成方法
TW201012781A (en) Two-stage, gas phase process for the manufacture of alkylene glycol
CN112479841A (zh) 一种丙烯氢甲酰化合成丁醛的工艺
CN114853592B (zh) 一种烷氧基乙酸酯水解制取乙醇酸的方法
US8574522B2 (en) Process for selective oxidative dehydrogenation of a hydrogen-containing CO mixed gas
CN114853605B (zh) 甲氧基乙酸甲酯和甲氧基乙酸水解制取乙醇酸和乙醇酸甲酯的方法
CN115745751A (zh) 在固定床反应器上用苯酚和甲醇原料连续生产苯甲醚的液固相反应方法
CN103842322A (zh) 用于制备一种醇类混合物的方法
WO2022165663A1 (zh) 一种烷氧基乙酸酯水解制取乙醇酸的方法
RU2422203C1 (ru) Катализатор, способ его приготовления и способ получения метилацетата
CN114425318A (zh) 复合氧化物及其制备方法和应用
Jérôme et al. Selective conversion of glycerol into functional monomers via catalytic processes
JPS63225335A (ja) α−(3−ベンゾイルフエニル)プロピオン酸またはそのエステルの製造方法
CN114380659B (zh) 一种由异丁烯-甲醇制备异戊二烯的方法
JP2014043415A (ja) ジベンジルアミンの製造方法
JPH0136448B2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923690

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023546202

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18275444

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023015333

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 202392058

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2021923690

Country of ref document: EP

Effective date: 20230817

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023015333

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230731