WO2022165663A1 - 一种烷氧基乙酸酯水解制取乙醇酸的方法 - Google Patents

一种烷氧基乙酸酯水解制取乙醇酸的方法 Download PDF

Info

Publication number
WO2022165663A1
WO2022165663A1 PCT/CN2021/075027 CN2021075027W WO2022165663A1 WO 2022165663 A1 WO2022165663 A1 WO 2022165663A1 CN 2021075027 W CN2021075027 W CN 2021075027W WO 2022165663 A1 WO2022165663 A1 WO 2022165663A1
Authority
WO
WIPO (PCT)
Prior art keywords
acidic
molecular sieve
molecular sieves
reaction
glycolic acid
Prior art date
Application number
PCT/CN2021/075027
Other languages
English (en)
French (fr)
Inventor
倪友明
朱文良
刘中民
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to CA3206944A priority Critical patent/CA3206944A1/en
Priority to EP21923691.6A priority patent/EP4279478B1/en
Priority to PCT/CN2021/075027 priority patent/WO2022165663A1/zh
Priority to AU2021425469A priority patent/AU2021425469B2/en
Priority to US18/275,447 priority patent/US20240116844A1/en
Publication of WO2022165663A1 publication Critical patent/WO2022165663A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/09Preparation of carboxylic acids or their salts, halides or anhydrides from carboxylic acid esters or lactones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/01Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups
    • C07C59/06Glycolic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11

Definitions

  • the application relates to a method for preparing glycolic acid by hydrolysis of alkoxy acetate, and belongs to the field of chemical product preparation.
  • Glycolic acid also known as hydroxyacetic acid, is the simplest ⁇ -hydroxycarboxylic acid compound. Because the molecular structure of glycolic acid contains both hydroxyl and carboxyl groups, it can polymerize itself to form polyglycolic acid (PGA). Polyglycolic acid not only has good biocompatibility, but also has safe biodegradability. Therefore, it is not only widely used in medical surgical sutures, drug release materials, degradable human tissue scaffolds, etc., but also can produce commonly used plastic products.
  • conventional non-degradable plastic products have caused serious environmental pollution, so biodegradable polyglycolic acid plastics are expected to solve this problem.
  • Glycolic acid can also be copolymerized with lactic acid, hydroxypropionic acid and other monomers to form polymer materials with excellent performance and wide application.
  • glycolic acid is also an excellent chemical cleaning agent and cosmetic raw material.
  • the production and preparation methods of glycolic acid mainly include chloroacetic acid hydrolysis method, formaldehyde carbonylation method, oxalate ester hydrogenation/hydrolysis method, etc.
  • Chloroacetic acid hydrolysis method is not only polluted in the preparation process of raw material chloroacetic acid, but also produces a large amount of waste salt in the hydrolysis process, causing serious pollution and poor product quality, which is basically eliminated at present.
  • the formaldehyde carbonylation method although the raw materials are cheap and easy to obtain, needs to be carried out under the conditions of high temperature, high pressure, strong liquid acid, and organic solvent; the equipment is easy to corrode, and the product purification is difficult, resulting in high industrial production costs.
  • the oxalate hydrogenation/hydrolysis method is to partially hydrogenate the oxalate to methyl glycolate, and then hydrolyze the methyl glycolate to produce glycolic acid.
  • the oxalate partial hydrogenation catalyst is immature, with low conversion efficiency and poor stability; on the other hand, the oxalate production process is long and the cost is high; these problems seriously restrict the application of the oxalate hydrogenation/hydrolysis method. develop.
  • the present invention develops a method for preparing glycolic acid by hydrolysis of alkoxy acetate. Moreover, the method of the invention is particularly suitable for methylal produced by coal chemical industry, and generates methyl methoxyacetate through carbonylation reaction, and then hydrolyzes to prepare glycolic acid.
  • the alkoxy acetate is at least one selected from the substances having the structural formula shown in formula I;
  • R 1 and R 2 are independently selected from any one of C 1 -C 5 alkyl groups.
  • the present application discloses a method for preparing glycolic acid by hydrolysis of alkoxyacetate.
  • Glycolic acid The hydrolysis catalyst used in this application is a molecular sieve catalyst, which has a long life and high hydrolysis efficiency.
  • the method for producing glycolic acid in the present application can be realized by using a traditional fixed-bed reactor under normal pressure, which is very suitable for continuous production.
  • the raw material alkoxy acetate in this application can be prepared by a green and economical acetal carbonylation method.
  • the reaction of preparing methylal by condensation of methanol and formaldehyde the reaction of preparing methyl methoxyacetate by the carbonylation of methylal, and the reaction of preparing glycolic acid by hydrolysis of methyl methoxyacetate
  • the three-step reaction combination can convert coal chemical platform methanol into glycolic acid in an efficient, green and economical way.
  • the R 1 is selected from any one of methyl, ethyl, propyl, and butyl;
  • the R 2 is selected from any one of methyl, ethyl, propyl, and butyl.
  • the alkoxyacetate is selected from any of methyl methoxyacetate, ethyl methoxyacetate, n-propyl methoxyacetate, n-butyl methoxyacetate, and ethyl ethoxyacetate. A sort of.
  • the alkoxyacetate is methyl methoxyacetate.
  • the acidic molecular sieve catalyst contains acidic molecular sieve.
  • the acidic molecular sieve is selected from at least one of acidic MFI structural molecular sieves, acidic FAU structural molecular sieves, acidic FER structural molecular sieves, acidic BEA structural molecular sieves, acidic MOR structural molecular sieves, and acidic MWW structural molecular sieves.
  • the acidic molecular sieve is selected from any one of acidic MFI molecular sieves and acidic FER structural molecular sieves.
  • the acidic molecular sieve is selected from at least one of acidic ZSM-5 molecular sieve, acidic Y molecular sieve, acidic ZSM-35 molecular sieve, acidic beta molecular sieve, acidic mordenite, and acidic MCM-22 molecular sieve.
  • the acidic molecular sieve is selected from at least one of hydrogen-type ZSM-5 molecular sieve, hydrogen-type Y molecular sieve, hydrogen-type ZSM-35 molecular sieve, hydrogen-type beta molecular sieve, hydrogen-type mordenite, and hydrogen-type MCM-22 molecular sieve.
  • the acidic molecular sieve is selected from any one of hydrogen-type ZSM-5 molecular sieves and hydrogen-type ZSM-35 molecular sieves.
  • the atomic ratio of silicon to aluminum in the acidic molecular sieve is 3-500.
  • the upper limit of the silicon-aluminum atomic ratio in the acidic molecular sieve is selected from 10, 20, 50, 100, and 500; the lower limit of the silicon-aluminum atomic ratio in the acidic molecular sieve is selected from 3, 10, 20, 50, and 100.
  • the acidic molecular sieve catalyst also contains a forming agent
  • the forming agent is an oxide.
  • the oxide is selected from at least one of aluminum oxide and silicon oxide.
  • the content of the forming agent is m, and the value range of m is 0 ⁇ m ⁇ 50wt%.
  • the upper limit of the content of the shaping agent in the acidic molecular sieve catalyst is selected from 10wt%, 20wt%, 40wt%, 50wt%; the lower limit of the content of the shaping agent in the acidic molecular sieve catalyst is selected from 5wt%, 10wt%, 20wt%, 40wt% .
  • the content of the forming agent in the acidic molecular sieve catalyst is 15-25 wt %.
  • the conditions of the reaction are:
  • the reaction pressure is 0.1 ⁇ 10MPa
  • the molar ratio of alkoxy acetate to water is 1:20 ⁇ 20:1;
  • the mass space velocity of the alkoxy acetate is 0.1 to 3 h -1 .
  • the upper limit of the reaction temperature is selected from 100°C, 150°C, and 260°C; the lower limit of the reaction temperature is selected from 60°C, 100°C, and 150°C.
  • the upper limit of the reaction pressure is selected from 0.3MPa, 0.5MPa, 1MPa, 4MPa, 10MPa; the lower limit of the reaction pressure is selected from 0.1MPa, 0.3MPa, 0.5MPa, 1MPa, 4MPa.
  • the upper limit of the molar ratio of alkoxyacetate to water is selected from 1:10, 1:8, 1:4, 1:2, 1:1, 10:1, 20:1;
  • the lower limit of the molar ratio of water is selected from 1:20, 1:10, 1:8, 1:4, 1:2, 1:1, 10:1.
  • the upper limit of the mass space velocity of alkoxyacetate is selected from 0.3h -1 , 1.0h -1 , 3.0h -1 ; the lower limit of the mass space velocity of alkoxyacetate is selected from 0.1h -1 , 0.3h -1 , 1.0h -1 .
  • the conditions of the reaction are:
  • the reaction pressure is 0.1 ⁇ 0.3MPa
  • the molar ratio of alkoxy acetate to water is 1:2 to 1:8;
  • the mass space velocity of the alkoxyacetate is 0.3 to 1 h -1 .
  • the reaction is carried out in at least one fixed bed reactor;
  • a plurality of said fixed bed reactors are connected in series and/or in parallel.
  • reaction is carried out in an inert atmosphere
  • the inert atmosphere includes any one of nitrogen gas and inert gas.
  • the inert gas may be argon.
  • alkyl refers to a group formed by the loss of any hydrogen atom on the molecule of an alkane compound, and the alkane compound includes cycloalkane, straight-chain alkane, and branched-chain alkane;
  • C 1 -C 5 indicates the number of carbon atoms contained in the group.
  • the hydrolysis catalyst used in the present invention is a molecular sieve catalyst with long service life and high hydrolysis efficiency.
  • the glycolic acid production method of the present invention can be realized by using a traditional fixed-bed reactor under normal pressure, and is very suitable for continuous production.
  • the raw material alkoxy acetate in the present invention can be prepared by a green and economical acetal carbonylation method.
  • methylal reaction is prepared by condensation of methanol and formaldehyde
  • methyl methoxyacetate is prepared by carbonylation of methylal
  • ethanol is prepared by hydrolysis of methyl methoxyacetate
  • the three-step reaction combination of the acid reaction can convert methanol, which is a coal chemical platform, into glycolic acid in an efficient, green and economical way.
  • the present invention provides a method for preparing glycolic acid by hydrolysis of alkoxyacetate.
  • the alkoxyacetate and water are passed through a reaction zone containing an acidic molecular sieve catalyst under certain reaction conditions.
  • the reaction produces glycolic acid;
  • R 1 is any one of methyl (CH 3 ), ethyl (C 2 H 5 ), propyl (C 3 H 7 ) and butyl (C 4 H 9 ), and R 2 is methyl (CH 3 ) any one of ethyl (C 2 H 5 ), propyl (C 3 H 7 ), and butyl (C 4 H 9 ), R 1 and R 2 may be the same or different;
  • the acidic molecular sieve is an acidic molecular sieve
  • the reaction zone contains one fixed bed reactor, or a plurality of fixed bed reactors connected in series and/or in parallel;
  • the reaction conditions are as follows: the reaction temperature is 60 to 260° C., the molar ratio of the alkoxy acetate to water in the raw material is 1:20 to 20:1, the reaction pressure is 0.1 to 10 MPa, and the quality of the alkoxy acetate in the raw material is 1:20 to 20:1.
  • the airspeed is 0.1 ⁇ 3h -1 .
  • the alcohols R 1 OH and R 2 OH produced by hydrolysis can also be partially dehydrated to form the corresponding ethers.
  • the acidic molecular sieve is one or more of acidic MFI molecular sieves, acidic FAU structural molecular sieves, acidic FER structural molecular sieves, acidic BEA structural molecular sieves, acidic MOR structural molecular sieves or/and acidic MWW structural molecular sieves.
  • the acidic molecular sieve is a mixture of one or more of acidic ZSM-5 molecular sieve, acidic Y molecular sieve, acidic ZSM-35 molecular sieve, acidic beta molecular sieve, acidic mordenite or/and acidic MCM-22 molecular sieve.
  • Described acidic molecular sieve is hydrogen type ZSM-5 molecular sieve, hydrogen type Y molecular sieve, hydrogen type ZSM-35 molecular sieve, hydrogen type beta molecular sieve, hydrogen type mordenite or/and hydrogen type MCM-22 molecular sieve one or more mixtures .
  • the Si/Al ratio of the acidic molecular sieve is 3-500.
  • the acidic molecular sieve-containing catalyst also contains a catalyst shaping agent; the shaping agent is one of alumina and silicon oxide, and the weight percentage is 0-50%.
  • the acidic molecular sieve-containing catalyst is prepared by mixing a catalyst forming agent with an acidic molecular sieve and then extrusion molding.
  • both R 1 and R 2 are methyl groups, that is, the alkoxy acetate is methyl methoxyacetate (CH 3 OCH 2 COOCH 3 ).
  • the methyl methoxyacetate is prepared by the method of formal carbonylation.
  • the hydrolysis products include glycolic acid, methoxyacetic acid (CH 3 OCH 2 COOH), ethanol acid methyl ester (HOCH 2 COOCH 3 ), methanol and dimethyl ether.
  • methoxyacetic acid and methyl glycolate can continue to be hydrolyzed into glycolic acid, and methanol and dimethyl ether can be returned to the methylal synthesis reactor to synthesize methylal.
  • the reaction conditions are preferably as follows: the reaction temperature is 130-200° C., the molar ratio of alkoxyacetic acid ester to water in the raw material is 1:8-1:2, the reaction pressure is 0.1-0.3 MPa, and the alkoxyacetic acid in the raw material is 0.1-0.3 MPa.
  • the mass space velocity of the ester is 0.3 to 1 h -1 .
  • the raw material contains one of nitrogen and argon inert carrier gas in the process of passing through the reaction zone carrying the acidic molecular sieve catalyst.
  • Agilent7890B gas chromatograph to analyze products other than glycolic acid and unreacted raw materials. Its FID detector is connected to DB-FFAP capillary column, and its TCD detector is connected to Porapak Q packed column. Glycolic acid was analyzed by liquid chromatography, the separation column was a C 18 column, and the detector was an ultraviolet detector.
  • conversion and selectivity are calculated based on the number of moles of carbon:
  • the hydrogen-type molecular sieve catalyst in the hydrolysis of methyl methoxyacetate to glycolic acid has high conversion rate of methyl methoxyacetate, high selectivity to glycolic acid, and excellent catalytic performance.
  • Example 2 The raw material methyl methoxyacetate in Example 1 was replaced with other alkoxyacetates, other conditions and operations were unchanged, and the reaction results were shown in Table 2.
  • the hydrogen-type molecular sieve catalyst can hydrolyze various alkoxy acetates into glycolic acid.
  • the acidic molecular sieve catalyst has good stability in the reaction of methyl methoxyacetate hydrolysis to glycolic acid, which can meet the requirements of industrial use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本申请公开了一种烷氧基乙酸酯水解制取乙醇酸的方法。该方法包括将含有烷氧基乙酸酯和水的原料,在酸性分子筛催化剂存在的条件下,反应,得到乙醇酸;所述烷氧基乙酸酯选自具有式Ⅰ所示结构式的物质中的至少一种;在式(Ⅰ)中,R1、R2独立选自C1~C5烷基中的任一种。本发明中的乙醇酸生产方法,可以在常压下,利用传统固定床反应器实现,非常适合连续生产。

Description

一种烷氧基乙酸酯水解制取乙醇酸的方法 技术领域
本申请涉及一种烷氧基乙酸酯水解制取乙醇酸的方法,属于化工产品制备领域。
背景技术
乙醇酸(glycolicacid),又名羟基乙酸(hydroxyacetic acid),是最简单的α-羟基羧酸化合物。乙醇酸的分子结构中因为同时含有羟基和羧基,能够自身聚合生成聚羟基乙酸(PGA)。聚羟基乙酸不仅具有良好的生物相容性,还具有安全的生物降解性。因此,它不仅广泛应用于医用的手术缝合线、药物缓释材料、可降解人体组织支架等,还可以生产常用的塑料制品。如今,常规不可降解的塑料制品已经造成了严重的环境污染,故可生物降解的聚乙醇酸类塑料有望解决此问题。乙醇酸还能与乳酸,羟基丙酸等单体共聚成性能优异、用途广泛的高分子材料。另外,乙醇酸还是优良的化学清洗剂和化妆品原料。
乙醇酸的生产制备方法主要包括氯乙酸水解法、甲醛羰化法、草酸酯加氢/水解法等。氯乙酸水解法,不仅原料氯乙酸制备过程中污染大,而且水解过程会产生大量的废盐,污染严重,产品质量较差,目前基本被淘汰。甲醛羰化法,尽管原料便宜易得,但需要在高温、高压、强液体酸、有机溶剂条件下进行;设备容易腐蚀,产品提纯难度大,导致工业生产成本高。草酸酯加氢/水解法是将草酸酯部分加氢成乙醇酸甲酯,然后乙醇酸甲酯水解制取乙醇酸。然而,一方面草酸酯部分加氢催化剂还不成熟、转化效率低、稳定性差;另一方面草酸酯生产流程长、成本较高;这些问题严重制约了草酸酯加氢/水解法的发展。
发明内容
根据现有乙醇酸(HOCH 2COOH)生产技术中存在的问题,本发明开发出了一种烷氧基乙酸酯水解制取乙醇酸的方法。而且本发明的方法特别 适用煤化工生产的甲缩醛,通过羰化反应生成甲氧基乙酸甲酯,然后水解制取乙醇酸。
一种烷氧基乙酸酯水解制取乙醇酸的方法,将含有烷氧基乙酸酯和水的原料,在酸性分子筛催化剂存在的条件下,反应,得到乙醇酸;
所述烷氧基乙酸酯选自具有式Ⅰ所示结构式的物质中的至少一种;
Figure PCTCN2021075027-appb-000001
在式Ⅰ中,R 1、R 2独立选自C 1~C 5烷基中的任一种。
本申请公开了一种烷氧基乙酸酯水解制取乙醇酸的方法,将原料烷氧基乙酸酯和水通过载有含有酸性分子筛催化剂的反应区,在一定的反应条件下反应制取乙醇酸。本申请中使用的水解催化剂为分子筛催化剂,寿命长、水解效率高。本申请中的乙醇酸生产方法,可以在常压下,利用传统固定床反应器实现,非常适合连续生产。本申请中的原料烷氧基乙酸酯,可以通过绿色经济的缩醛羰化方法制取。本申请中的原料为甲氧基乙酸甲酯时,通过甲醇与甲醛缩合制甲缩醛反应,甲缩醛羰化制甲氧基乙酸甲酯反应和甲氧基乙酸甲酯水解制乙醇酸反应的三步反应联合,可以将煤化工平台物甲醇,高效、绿色、经济地转化为乙醇酸。
优选地,所述R 1选自甲基、乙基、丙基、丁基中的任一种;
所述R 2选自甲基、乙基、丙基、丁基中的任一种。
具体地,烷氧基乙酸酯选自甲氧基乙酸甲酯、甲氧基乙酸乙酯、甲氧基乙酸正丙酯、甲氧基乙酸正丁酯、乙氧基乙酸乙酯中的任一种。
进一步优选地,烷氧基乙酸酯为甲氧基乙酸甲酯。
近年来,甲缩醛羰化制甲氧基乙酸甲酯反应受到了广泛的关注。此反应基于分子筛催化剂,在较低反应温度下就可实现,原子经济性高。原料甲缩醛生产效率高,工业化技术非常成熟,价格便宜。本申请中,将甲氧基乙酸甲酯的醚键和酯键水解,制取乙醇酸,成为一条绿色、经济的乙醇酸生产路径。
可选地,所述酸性分子筛催化剂中含有酸性分子筛。
可选地,所述酸性分子筛选自酸性MFI结构分子筛、酸性FAU结构分子筛、酸性FER结构分子筛、酸性BEA结构分子筛、酸性MOR结构分子筛、酸性MWW结构分子筛中的至少一种。
优选地,所述酸性分子筛选自酸性MFI结构分子筛、酸性FER结构分子筛中的任一种。
可选地,所述酸性分子筛选自酸性ZSM-5分子筛、酸性Y分子筛、酸性ZSM-35分子筛、酸性β分子筛、酸性丝光沸石、酸性MCM-22分子筛中的至少一种。
优选地,所述酸性分子筛选自氢型ZSM-5分子筛、氢型Y分子筛、氢型ZSM-35分子筛、氢型β分子筛、氢型丝光沸石、氢型MCM-22分子筛中的至少一种。
进一步优选地,酸性分子筛选自氢型ZSM-5分子筛、氢型ZSM-35分子筛中的任一种。
可选地,所述酸性分子筛中的硅铝原子比为3~500。
具体地,酸性分子筛中的硅铝原子比的上限选自10、20、50、100、500;酸性分子筛中的硅铝原子比的下限选自3、10、20、50、100。
可选地,所述酸性分子筛催化剂中还含有成型剂;
所述成型剂为氧化物。
可选地,所述氧化物选自氧化铝、氧化硅中的至少一种。
可选地,在所述酸性分子筛催化剂中,所述成型剂含量为m,m的取值范围为0<m≤50wt%。
具体地,成型剂在酸性分子筛催化剂中含量的上限选自10wt%、20wt%、40wt%、50wt%;成型剂在酸性分子筛催化剂中含量的下限选自5wt%、10wt%、20wt%、40wt%。
优选地,成型剂在酸性分子筛催化剂中含量为15~25wt%。
可选地,所述反应的条件为:
反应温度60~260℃;
反应压力0.1~10MPa;
烷氧基乙酸酯与水的摩尔比为1:20~20:1;
烷氧基乙酸酯的质量空速为0.1~3h -1
具体地,反应温度的上限选自100℃、150℃、260℃;反应温度的下限选自60℃、100℃、150℃。
反应压力的上限选自0.3MPa、0.5MPa、1MPa、4MPa、10MPa;反应压力的下限选自0.1MPa、0.3MPa、0.5MPa、1MPa、4Mpa。
烷氧基乙酸酯与水的摩尔比的上限选自1:10、1:8、1:4、1:2、1:1、10:1、20:1;烷氧基乙酸酯与水的摩尔比的下限选自1:20、1:10、1:8、1:4、1:2、1:1、10:1。
烷氧基乙酸酯的质量空速的上限选自0.3h -1、1.0h -1、3.0h -1;烷氧基乙酸酯的质量空速的下限选自0.1h -1、0.3h -1、1.0h -1
优选地,所述反应的条件为:
反应温度130~260℃;
反应压力0.1~0.3MPa;
烷氧基乙酸酯与水的摩尔比为1:2~1:8;
烷氧基乙酸酯的质量空速为0.3~1h -1
可选地,所述反应在至少一个固定床反应器中进行;
多个所述固定床反应器通过串联和/或并联方式连接。
可选地,所述反应在非活性气氛中进行;
所述非活性气氛包括氮气、惰性气体中的任一种。
具体地,惰性气体可以是氩气。
本申请中,“烷基”是指由烷烃化合物分子上失去任意一个氢原子形成的基团,烷烃化合物包括环烷烃、直链烷烃、支链烷烃;
“C 1~C 5”下标表示基团所包含的碳原子数。
本申请能产生的有益效果包括:
1)本发明中使用的水解催化剂为分子筛催化剂,寿命长、水解效率高。本发明中的乙醇酸生产方法,可以在常压下,利用传统固定床反应器 实现,非常适合连续生产。本发明中的原料烷氧基乙酸酯,可以通过绿色经济的缩醛羰化方法制取。
2)本发明中的原料为甲氧基乙酸甲酯时,通过甲醇与甲醛缩合制甲缩醛反应,甲缩醛羰化制甲氧基乙酸甲酯反应和甲氧基乙酸甲酯水解制乙醇酸反应的三步反应联合,可以将煤化工平台物甲醇,高效、绿色、经济地转化为乙醇酸。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
如无特别说明,本申请的实施例中的原料通过商业途径购买。
下面介绍可能的实施方式
具体来讲,本发明提供了一种烷氧基乙酸酯水解制取乙醇酸的方法,将烷氧基乙酸酯和水通过载有含有酸性分子筛催化剂的反应区,在一定的反应条件下反应制取乙醇酸;
所述烷氧基乙酸酯的结构式为:
Figure PCTCN2021075027-appb-000002
其中R 1为甲基(CH 3)、乙基(C 2H 5)、丙基(C 3H 7)、丁基(C 4H 9)中的任意一种,R 2为甲基(CH 3)、乙基(C 2H 5)、丙基(C 3H 7)、丁基(C 4H 9)中的任意一种,R 1和R 2可以相同或不同;
所述酸性分子筛为具有酸性的分子筛;
所述反应区含有一个固定床反应器,或通过串联和/或并联方式连接的多个固定床反应器;
所述反应条件为:反应温度60~260℃,原料中烷氧基乙酸酯与水的摩尔比为1:20~20:1,反应压力0.1~10MPa,原料中烷氧基乙酸酯质量空速为0.1~3h -1
所述烷氧基乙酸酯水解反应方程式为:
R 1OCH 2COOR 2+2H 2O=R 1OH+R 2OH+HOCH 2COOH    (1)
同时还存在两个烷氧基乙酸酯部分水解反应,分别为:
R 1OCH 2COOR 2+H 2O=R 2OH+R 1OCH 2COOH     (2)
R 1OCH 2COOR 2+H 2O=R 1OH+HOCH 2COOR 2       (3)
这两个部分水解产物还能在同样的催化剂和反应条件下继续水解生成乙醇酸,分别为:
R 1OCH 2COOH+H 2O=R 1OH+HOCH 2COOH       (4)
HOCH 2COOR 2+H 2O=R 2OH+HOCH 2COOH     (5)
同时,水解产生的醇R 1OH和R 2OH还能部分脱水生成相应的醚。
所述的酸性分子筛为酸性MFI结构分子筛,酸性FAU结构分子筛,酸性FER结构分子筛,酸性BEA结构分子筛,酸性MOR结构分子筛或/和酸性MWW结构分子筛中的一种或多种混合。
所述酸性分子筛为酸性ZSM-5分子筛,酸性Y分子筛,酸性ZSM-35分子筛,酸性β分子筛,酸性丝光沸石或/和酸性MCM-22分子筛中的一种或多种混合。
所述酸性分子筛为氢型ZSM-5分子筛,氢型Y分子筛,氢型ZSM-35分子筛,氢型β分子筛,氢型丝光沸石或/和氢型MCM-22分子筛中的一种或多种混合。
所述酸性分子筛的硅铝比Si/Al为3~500。
所述含有酸性分子筛催化剂中还含有催化剂成型剂;所述成型剂为氧化铝和氧化硅中的一种,重量百分含量为0~50%。
所述含有酸性分子筛催化剂为催化剂成型剂与酸性分子筛混合后挤条成型制备。
所述烷氧基乙酸酯中R 1与R 2都为甲基,即所述的烷氧基乙酸酯为甲氧基乙酸甲酯(CH 3OCH 2COOCH 3)。
所述甲氧基乙酸甲酯通过甲缩醛羰化方法制取。
所述烷氧基乙酸酯为甲氧基乙酸甲酯时,根据上述反应(1)~(5)的原理可知,水解产物包括乙醇酸、甲氧基乙酸(CH 3OCH 2COOH)、乙醇酸甲酯(HOCH 2COOCH 3)、甲醇和二甲醚。其中,甲氧基乙酸和乙醇酸甲酯能继续水解成乙醇酸,甲醇和二甲醚能返回到甲缩醛合成反应器中 合成甲缩醛。
所述烷氧基乙酸酯为甲氧基乙酸甲酯时,根据上述反应(1)~(5)的原理可知,水解产物乙醇酸选择性按照碳数计算理论最高可达50%。
所述反应条件优选为:反应温度130~200℃,原料中烷氧基乙酸酯与水的摩尔比为1:8~1:2,反应压力0.1~0.3MPa,原料中烷氧基乙酸酯质量空速为0.3~1h -1
所述的原料通过载有酸性分子筛催化剂的反应区的过程中含有氮气和氩气惰性载气中的一种。
实施例中分析方法以及转化率、选择性计算如下:
利用Agilent7890B气相色谱仪进行分析除乙醇酸以外的产物和未反应完的原料,它的FID检测器连接DB-FFAP毛细管柱,它的TCD检测器连接Porapak Q填充柱。利用液相色谱仪分析乙醇酸,分离柱为C 18柱,检测器为紫外检测器。
在本发明的实施例中,转化率和选择性均基于碳摩尔数进行计算:
烷氧基乙酸酯转化率=[(进料中烷氧基乙酸酯碳摩尔数)-(出料中烷氧基乙酸酯碳摩尔数)]÷(进料中烷氧基乙酸酯碳摩尔数)×100%
某产物选择性=(出料中某产物的碳摩尔数)÷(出料中所有含碳产物的碳摩尔数总和)×100%;
下面通过实施例详述本发明,但本发明并不局限于这些实施例。
催化剂性能测试
实施例1
选择购买自中科催化新技术(大连)股份有限公司催化剂厂生产的硅铝比为Si/Al=20的酸性H-ZSM-5分子筛,将其破碎筛分成0.4~0.8mm颗粒,取2g装入内径为8mm的不锈钢反应管内,用50mL/min氮气在500℃下活化4h,以下条件反应:反应温度(T)=150℃,反应压力(P)=0.1MPa,原料中甲氧基乙酸甲酯与水的摩尔比为(甲氧基乙酸甲酯:水)=1:4;原料甲氧基乙酸甲酯的质量空速(WHSV)=1.0h -1。反应24h后,用气 相色谱和液相色谱分析产物,基于碳数的反应结果见表1。
实施例2-9
催化剂、反应条件和反应结果见表1。其他操作同实施例1。
表1实施例1-9中的催化反应结果
Figure PCTCN2021075027-appb-000003
Figure PCTCN2021075027-appb-000004
由表1可以看出,氢型分子筛催化剂在甲氧基乙酸甲酯水解制乙醇酸反应中,甲氧基乙酸甲酯转化率高、乙醇酸选择性高,具有优良的催化性能。
实施例10-13
将实施例1中的原料甲氧基乙酸甲酯换成其他烷氧基乙酸酯,其他条件和操作不变,反应结果见表2。
表2实施例1和10-13中的催化反应结果
Figure PCTCN2021075027-appb-000005
Figure PCTCN2021075027-appb-000006
由表2可以看出氢型分子筛催化剂能将多种烷氧基乙酸酯水解为乙醇酸。
实施例14-15
将实施例1中的硅铝比为Si/Al=20的酸性H-ZSM-5分子筛分别用氧化铝或氧化硅挤条成型,氧化铝或氧化硅在成型后的催化剂中的含量为20wt%,其他条件和操作不变,反应结果见表3。
表3实施例1,14和15中的催化反应结果
Figure PCTCN2021075027-appb-000007
由表3可以看出酸性分子筛催化剂利用氧化铝或氧化硅成型后催化活性基本保持。
实施例16
选择购买自中科催化新技术(大连)股份有限公司催化剂厂生产的硅铝比为Si/Al=20的酸性H-ZSM-5分子筛,将其破碎筛分成0.4~0.8mm颗粒,取2g装入内径为8mm的不锈钢反应管内,用50mL/min氮气在500℃下活化4h,以下条件反应:反应温度(T)=150℃,反应压力(P)=0.1 MPa,原料中甲氧基乙酸甲酯与水的摩尔比为(甲氧基乙酸甲酯:水)=1:4;原料甲氧基乙酸甲酯的质量空速(WHSV)=1.0h -1。用气相色谱和液相色谱分析不同时间的产物,基于碳数的反应结果见表4。
表4实施例16中的催化反应结果
反应时间(h) 甲氧基乙酸甲酯转化率(%) 乙醇酸选择性(%)
24 81.2 36.4
100 81.1 36.3
500 81.0 36.5
1000 80.6 36.1
2000 79.9 35.7
4000 76.6 35.2
8000 73.2 34.8
由表4可以看出酸性分子筛催化剂在甲氧基乙酸甲酯水解制乙醇酸反应中具有良好的稳定性,可以达到工业使用要求。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (13)

  1. 一种烷氧基乙酸酯水解制取乙醇酸的方法,其特征在于,将含有烷氧基乙酸酯和水的原料,在酸性分子筛催化剂存在的条件下,反应,得到乙醇酸;
    所述烷氧基乙酸酯选自具有式Ⅰ所示结构式的物质中的至少一种;
    Figure PCTCN2021075027-appb-100001
    在式Ⅰ中,R 1、R 2独立选自C 1~C 5烷基中的任一种。
  2. 根据权利要求1所述的方法,其特征在于,所述R 1选自甲基、乙基、丙基、丁基中的任一种;
    所述R 2选自甲基、乙基、丙基、丁基中的任一种。
  3. 根据权利要求1所述的方法,其特征在于,所述酸性分子筛催化剂中含有酸性分子筛。
  4. 根据权利要求3所述的方法,其特征在于,所述酸性分子筛选自酸性MFI结构分子筛、酸性FAU结构分子筛、酸性FER结构分子筛、酸性BEA结构分子筛、酸性MOR结构分子筛、酸性MWW结构分子筛中的至少一种。
  5. 根据权利要求4所述的方法,其特征在于,所述酸性分子筛选自酸性ZSM-5分子筛、酸性Y分子筛、酸性ZSM-35分子筛、酸性β分子筛、酸性丝光沸石、酸性MCM-22分子筛中的至少一种。
  6. 根据权利要求5所述的方法,其特征在于,所述酸性分子筛选自氢型ZSM-5分子筛、氢型Y分子筛、氢型ZSM-35分子筛、氢型β分子 筛、氢型丝光沸石、氢型MCM-22分子筛中的至少一种。
  7. 根据权利要求3所述的方法,其特征在于,所述酸性分子筛中的硅铝原子比为3~500。
  8. 根据权利要求3所述的方法,其特征在于,所述酸性分子筛催化剂中还含有成型剂;
    所述成型剂为氧化物;
    所述氧化物选自氧化铝、氧化硅中的至少一种;
    在所述酸性分子筛催化剂中,所述成型剂含量为m,m的取值范围为0<m≤50wt%。
  9. 根据权利要求1所述的方法,其特征在于,所述反应的条件为:
    反应温度60~260℃;
    反应压力0.1~10MPa;
    烷氧基乙酸酯与水的摩尔比为1:20~20:1;
    烷氧基乙酸酯的质量空速为0.1~3h -1
  10. 根据权利要求9所述的方法,其特征在于,所述反应的条件为:
    反应温度130~260℃;
    反应压力0.1~0.3MPa;
    烷氧基乙酸酯与水的摩尔比为1:2~1:8;
    烷氧基乙酸酯的质量空速为0.3~1h -1
  11. 根据权利要求1所述的方法,其特征在于,所述反应在至少一个固定床反应器中进行。
  12. 根据权利要求11所述的方法,其特征在于,多个所述固定床反应器通过串联和/或并联方式连接。
  13. 根据权利要求1所述的方法,其特征在于,所述反应在非活性气氛中进行;
    所述非活性气氛包括氮气、惰性气体中的任一种。
PCT/CN2021/075027 2021-02-03 2021-02-03 一种烷氧基乙酸酯水解制取乙醇酸的方法 WO2022165663A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3206944A CA3206944A1 (en) 2021-02-03 2021-02-03 Method for preparing glycolic acid through hydrolysis of alkoxyacetate
EP21923691.6A EP4279478B1 (en) 2021-02-03 2021-02-03 Method for preparing glycolic acid through hydrolysis of alkoxyacetate
PCT/CN2021/075027 WO2022165663A1 (zh) 2021-02-03 2021-02-03 一种烷氧基乙酸酯水解制取乙醇酸的方法
AU2021425469A AU2021425469B2 (en) 2021-02-03 2021-02-03 Method for preparing glycolic acid by hydrolysis of alkoxyacetate
US18/275,447 US20240116844A1 (en) 2021-02-03 2021-02-03 Method for preparing glycolic acid through hydrolysis of alkoxyacetate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/075027 WO2022165663A1 (zh) 2021-02-03 2021-02-03 一种烷氧基乙酸酯水解制取乙醇酸的方法

Publications (1)

Publication Number Publication Date
WO2022165663A1 true WO2022165663A1 (zh) 2022-08-11

Family

ID=82740734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075027 WO2022165663A1 (zh) 2021-02-03 2021-02-03 一种烷氧基乙酸酯水解制取乙醇酸的方法

Country Status (5)

Country Link
US (1) US20240116844A1 (zh)
EP (1) EP4279478B1 (zh)
AU (1) AU2021425469B2 (zh)
CA (1) CA3206944A1 (zh)
WO (1) WO2022165663A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1180067A (zh) * 1997-07-11 1998-04-29 清华大学 同时合成羟基乙酸甲酯和甲氧基乙酸甲酯的方法
JP2003300926A (ja) * 2002-04-08 2003-10-21 Nippon Shokubai Co Ltd α−ヒドロキシカルボン酸又はα−オキソカルボン酸の製造方法
CN106554250A (zh) * 2015-09-30 2017-04-05 中国科学院大连化学物理研究所 一种乙二醇单甲醚水解制备乙二醇的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107445825B (zh) * 2017-07-20 2019-10-01 沈阳化工大学 一种分子筛催化剂制备乙醇酸甲酯并副产甲氧基乙酸甲酯的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1180067A (zh) * 1997-07-11 1998-04-29 清华大学 同时合成羟基乙酸甲酯和甲氧基乙酸甲酯的方法
JP2003300926A (ja) * 2002-04-08 2003-10-21 Nippon Shokubai Co Ltd α−ヒドロキシカルボン酸又はα−オキソカルボン酸の製造方法
CN106554250A (zh) * 2015-09-30 2017-04-05 中国科学院大连化学物理研究所 一种乙二醇单甲醚水解制备乙二醇的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4279478A4 *

Also Published As

Publication number Publication date
EP4279478A4 (en) 2024-03-27
AU2021425469A1 (en) 2023-08-17
AU2021425469B2 (en) 2024-05-02
EP4279478B1 (en) 2024-10-09
US20240116844A1 (en) 2024-04-11
EP4279478A1 (en) 2023-11-22
CA3206944A1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
EP1877361B1 (en) Process for carbonylation of alkyl ethers
JP6161725B2 (ja) 合成ガスおよびジメチルエーテルから酢酸メチルおよびメタノールを生産するための統合方法
TW201113250A (en) Process for the production of acetic acid and dimethyl ether
EP2310345A1 (en) Process for catalytically producing ethylene directly from acetic acid in a single reaction zone
WO2022165662A1 (zh) 甲氧基乙酸甲酯和甲氧基乙酸水解制取乙醇酸和乙醇酸甲酯的方法
KR20060132860A (ko) 1,3-부틸렌 글라이콜의 제조 방법
CN114853592B (zh) 一种烷氧基乙酸酯水解制取乙醇酸的方法
KR101862042B1 (ko) 폴리옥시메틸렌 디메틸 에테르 카보닐 화합물 및 메틸 메톡시아세테이트의 제조방법
CN1379750A (zh) 肉桂醛和二氢化肉桂醛衍生物的连续制备方法
CN108017510B (zh) 一种羟基特戊醛的制备方法,及其在新戊二醇制备方面的应用
WO2022165663A1 (zh) 一种烷氧基乙酸酯水解制取乙醇酸的方法
US5053556A (en) Process for producing alkenyl ethers
US9180430B2 (en) Catalytic composition for production of olefins with decreased oxygenate byproducts
US8933279B2 (en) Method for preparing a mixture of alcohols
CN114853605B (zh) 甲氧基乙酸甲酯和甲氧基乙酸水解制取乙醇酸和乙醇酸甲酯的方法
EP4438587A1 (en) Method for preparing methyl ester compound
EP1071649B1 (en) Tertiary alkyl ester preparation
WO2015095999A1 (zh) 制备聚甲氧基二甲醚羰化物及甲氧基乙酸甲酯的方法
CN109970635B (zh) 一种氨基吡啶衍生物制备方法及其应用
CN116253634A (zh) 甲氧基乙酸甲酯水解制乙醇酸甲酯和乙醇酸的方法
CN118056618A (zh) 一种酸性分子筛催化剂的再生方法
JPH1135510A (ja) イソブチルアルデヒドの製造法
CN111517936A (zh) 一种制备酮类有机物的方法
JP2001031610A (ja) ヒドロキシエーテルの製造法
JPS5826832A (ja) エチレングリコ−ルの製法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923691

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3206944

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 18275447

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021425469

Country of ref document: AU

Date of ref document: 20210203

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202392055

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2021923691

Country of ref document: EP

Effective date: 20230814

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 523450135

Country of ref document: SA