WO2022165663A1 - 一种烷氧基乙酸酯水解制取乙醇酸的方法 - Google Patents
一种烷氧基乙酸酯水解制取乙醇酸的方法 Download PDFInfo
- Publication number
- WO2022165663A1 WO2022165663A1 PCT/CN2021/075027 CN2021075027W WO2022165663A1 WO 2022165663 A1 WO2022165663 A1 WO 2022165663A1 CN 2021075027 W CN2021075027 W CN 2021075027W WO 2022165663 A1 WO2022165663 A1 WO 2022165663A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acidic
- molecular sieve
- molecular sieves
- reaction
- glycolic acid
- Prior art date
Links
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 title claims abstract description 82
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000006460 hydrolysis reaction Methods 0.000 title claims abstract description 25
- 230000007062 hydrolysis Effects 0.000 title claims abstract description 23
- 239000002808 molecular sieve Substances 0.000 claims abstract description 100
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims abstract description 100
- 230000002378 acidificating effect Effects 0.000 claims abstract description 79
- 239000003054 catalyst Substances 0.000 claims abstract description 34
- 239000002994 raw material Substances 0.000 claims abstract description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000000126 substance Substances 0.000 claims abstract description 8
- 125000006527 (C1-C5) alkyl group Chemical group 0.000 claims abstract description 3
- 238000006243 chemical reaction Methods 0.000 claims description 63
- -1 alkoxy acetate Chemical compound 0.000 claims description 25
- 239000003795 chemical substances by application Substances 0.000 claims description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 7
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 6
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 6
- 229910052680 mordenite Inorganic materials 0.000 claims description 6
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 6
- 239000011261 inert gas Substances 0.000 claims description 3
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 8
- 238000010924 continuous production Methods 0.000 abstract description 3
- 229960004275 glycolic acid Drugs 0.000 description 35
- ICPWFHKNYYRBSZ-UHFFFAOYSA-M 2-methoxypropanoate Chemical compound COC(C)C([O-])=O ICPWFHKNYYRBSZ-UHFFFAOYSA-M 0.000 description 26
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- 229910052799 carbon Inorganic materials 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 238000005810 carbonylation reaction Methods 0.000 description 9
- NKDDWNXOKDWJAK-UHFFFAOYSA-N dimethoxymethane Chemical compound COCOC NKDDWNXOKDWJAK-UHFFFAOYSA-N 0.000 description 9
- 230000006315 carbonylation Effects 0.000 description 8
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 8
- 239000002253 acid Substances 0.000 description 7
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical group [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 238000006555 catalytic reaction Methods 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 229920000954 Polyglycolide Polymers 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000005984 hydrogenation reaction Methods 0.000 description 4
- 239000004633 polyglycolic acid Substances 0.000 description 4
- 238000007493 shaping process Methods 0.000 description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 3
- FOCAUTSVDIKZOP-UHFFFAOYSA-N chloroacetic acid Chemical compound OC(=O)CCl FOCAUTSVDIKZOP-UHFFFAOYSA-N 0.000 description 3
- 229940106681 chloroacetic acid Drugs 0.000 description 3
- 239000003245 coal Substances 0.000 description 3
- 238000004811 liquid chromatography Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 2
- 150000001241 acetals Chemical class 0.000 description 2
- 238000005903 acid hydrolysis reaction Methods 0.000 description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 description 2
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 2
- RMIODHQZRUFFFF-UHFFFAOYSA-N methoxyacetic acid Chemical compound COCC(O)=O RMIODHQZRUFFFF-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- ALRHLSYJTWAHJZ-UHFFFAOYSA-N 3-hydroxypropionic acid Chemical compound OCCC(O)=O ALRHLSYJTWAHJZ-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- IWPATTDMSUYMJV-UHFFFAOYSA-N butyl 2-methoxyacetate Chemical compound CCCCOC(=O)COC IWPATTDMSUYMJV-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 150000001924 cycloalkanes Chemical class 0.000 description 1
- 229920006238 degradable plastic Polymers 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- CKSRFHWWBKRUKA-UHFFFAOYSA-N ethyl 2-ethoxyacetate Chemical compound CCOCC(=O)OCC CKSRFHWWBKRUKA-UHFFFAOYSA-N 0.000 description 1
- JLEKJZUYWFJPMB-UHFFFAOYSA-N ethyl 2-methoxyacetate Chemical compound CCOC(=O)COC JLEKJZUYWFJPMB-UHFFFAOYSA-N 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- FIABMSNMLZUWQH-UHFFFAOYSA-N propyl 2-methoxyacetate Chemical compound CCCOC(=O)COC FIABMSNMLZUWQH-UHFFFAOYSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000002407 tissue scaffold Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/09—Preparation of carboxylic acids or their salts, halides or anhydrides from carboxylic acid esters or lactones
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C59/00—Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
- C07C59/01—Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups
- C07C59/06—Glycolic acid
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2529/00—Catalysts comprising molecular sieves
- C07C2529/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
- C07C2529/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- C07C2529/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
Definitions
- the application relates to a method for preparing glycolic acid by hydrolysis of alkoxy acetate, and belongs to the field of chemical product preparation.
- Glycolic acid also known as hydroxyacetic acid, is the simplest ⁇ -hydroxycarboxylic acid compound. Because the molecular structure of glycolic acid contains both hydroxyl and carboxyl groups, it can polymerize itself to form polyglycolic acid (PGA). Polyglycolic acid not only has good biocompatibility, but also has safe biodegradability. Therefore, it is not only widely used in medical surgical sutures, drug release materials, degradable human tissue scaffolds, etc., but also can produce commonly used plastic products.
- conventional non-degradable plastic products have caused serious environmental pollution, so biodegradable polyglycolic acid plastics are expected to solve this problem.
- Glycolic acid can also be copolymerized with lactic acid, hydroxypropionic acid and other monomers to form polymer materials with excellent performance and wide application.
- glycolic acid is also an excellent chemical cleaning agent and cosmetic raw material.
- the production and preparation methods of glycolic acid mainly include chloroacetic acid hydrolysis method, formaldehyde carbonylation method, oxalate ester hydrogenation/hydrolysis method, etc.
- Chloroacetic acid hydrolysis method is not only polluted in the preparation process of raw material chloroacetic acid, but also produces a large amount of waste salt in the hydrolysis process, causing serious pollution and poor product quality, which is basically eliminated at present.
- the formaldehyde carbonylation method although the raw materials are cheap and easy to obtain, needs to be carried out under the conditions of high temperature, high pressure, strong liquid acid, and organic solvent; the equipment is easy to corrode, and the product purification is difficult, resulting in high industrial production costs.
- the oxalate hydrogenation/hydrolysis method is to partially hydrogenate the oxalate to methyl glycolate, and then hydrolyze the methyl glycolate to produce glycolic acid.
- the oxalate partial hydrogenation catalyst is immature, with low conversion efficiency and poor stability; on the other hand, the oxalate production process is long and the cost is high; these problems seriously restrict the application of the oxalate hydrogenation/hydrolysis method. develop.
- the present invention develops a method for preparing glycolic acid by hydrolysis of alkoxy acetate. Moreover, the method of the invention is particularly suitable for methylal produced by coal chemical industry, and generates methyl methoxyacetate through carbonylation reaction, and then hydrolyzes to prepare glycolic acid.
- the alkoxy acetate is at least one selected from the substances having the structural formula shown in formula I;
- R 1 and R 2 are independently selected from any one of C 1 -C 5 alkyl groups.
- the present application discloses a method for preparing glycolic acid by hydrolysis of alkoxyacetate.
- Glycolic acid The hydrolysis catalyst used in this application is a molecular sieve catalyst, which has a long life and high hydrolysis efficiency.
- the method for producing glycolic acid in the present application can be realized by using a traditional fixed-bed reactor under normal pressure, which is very suitable for continuous production.
- the raw material alkoxy acetate in this application can be prepared by a green and economical acetal carbonylation method.
- the reaction of preparing methylal by condensation of methanol and formaldehyde the reaction of preparing methyl methoxyacetate by the carbonylation of methylal, and the reaction of preparing glycolic acid by hydrolysis of methyl methoxyacetate
- the three-step reaction combination can convert coal chemical platform methanol into glycolic acid in an efficient, green and economical way.
- the R 1 is selected from any one of methyl, ethyl, propyl, and butyl;
- the R 2 is selected from any one of methyl, ethyl, propyl, and butyl.
- the alkoxyacetate is selected from any of methyl methoxyacetate, ethyl methoxyacetate, n-propyl methoxyacetate, n-butyl methoxyacetate, and ethyl ethoxyacetate. A sort of.
- the alkoxyacetate is methyl methoxyacetate.
- the acidic molecular sieve catalyst contains acidic molecular sieve.
- the acidic molecular sieve is selected from at least one of acidic MFI structural molecular sieves, acidic FAU structural molecular sieves, acidic FER structural molecular sieves, acidic BEA structural molecular sieves, acidic MOR structural molecular sieves, and acidic MWW structural molecular sieves.
- the acidic molecular sieve is selected from any one of acidic MFI molecular sieves and acidic FER structural molecular sieves.
- the acidic molecular sieve is selected from at least one of acidic ZSM-5 molecular sieve, acidic Y molecular sieve, acidic ZSM-35 molecular sieve, acidic beta molecular sieve, acidic mordenite, and acidic MCM-22 molecular sieve.
- the acidic molecular sieve is selected from at least one of hydrogen-type ZSM-5 molecular sieve, hydrogen-type Y molecular sieve, hydrogen-type ZSM-35 molecular sieve, hydrogen-type beta molecular sieve, hydrogen-type mordenite, and hydrogen-type MCM-22 molecular sieve.
- the acidic molecular sieve is selected from any one of hydrogen-type ZSM-5 molecular sieves and hydrogen-type ZSM-35 molecular sieves.
- the atomic ratio of silicon to aluminum in the acidic molecular sieve is 3-500.
- the upper limit of the silicon-aluminum atomic ratio in the acidic molecular sieve is selected from 10, 20, 50, 100, and 500; the lower limit of the silicon-aluminum atomic ratio in the acidic molecular sieve is selected from 3, 10, 20, 50, and 100.
- the acidic molecular sieve catalyst also contains a forming agent
- the forming agent is an oxide.
- the oxide is selected from at least one of aluminum oxide and silicon oxide.
- the content of the forming agent is m, and the value range of m is 0 ⁇ m ⁇ 50wt%.
- the upper limit of the content of the shaping agent in the acidic molecular sieve catalyst is selected from 10wt%, 20wt%, 40wt%, 50wt%; the lower limit of the content of the shaping agent in the acidic molecular sieve catalyst is selected from 5wt%, 10wt%, 20wt%, 40wt% .
- the content of the forming agent in the acidic molecular sieve catalyst is 15-25 wt %.
- the conditions of the reaction are:
- the reaction pressure is 0.1 ⁇ 10MPa
- the molar ratio of alkoxy acetate to water is 1:20 ⁇ 20:1;
- the mass space velocity of the alkoxy acetate is 0.1 to 3 h -1 .
- the upper limit of the reaction temperature is selected from 100°C, 150°C, and 260°C; the lower limit of the reaction temperature is selected from 60°C, 100°C, and 150°C.
- the upper limit of the reaction pressure is selected from 0.3MPa, 0.5MPa, 1MPa, 4MPa, 10MPa; the lower limit of the reaction pressure is selected from 0.1MPa, 0.3MPa, 0.5MPa, 1MPa, 4MPa.
- the upper limit of the molar ratio of alkoxyacetate to water is selected from 1:10, 1:8, 1:4, 1:2, 1:1, 10:1, 20:1;
- the lower limit of the molar ratio of water is selected from 1:20, 1:10, 1:8, 1:4, 1:2, 1:1, 10:1.
- the upper limit of the mass space velocity of alkoxyacetate is selected from 0.3h -1 , 1.0h -1 , 3.0h -1 ; the lower limit of the mass space velocity of alkoxyacetate is selected from 0.1h -1 , 0.3h -1 , 1.0h -1 .
- the conditions of the reaction are:
- the reaction pressure is 0.1 ⁇ 0.3MPa
- the molar ratio of alkoxy acetate to water is 1:2 to 1:8;
- the mass space velocity of the alkoxyacetate is 0.3 to 1 h -1 .
- the reaction is carried out in at least one fixed bed reactor;
- a plurality of said fixed bed reactors are connected in series and/or in parallel.
- reaction is carried out in an inert atmosphere
- the inert atmosphere includes any one of nitrogen gas and inert gas.
- the inert gas may be argon.
- alkyl refers to a group formed by the loss of any hydrogen atom on the molecule of an alkane compound, and the alkane compound includes cycloalkane, straight-chain alkane, and branched-chain alkane;
- C 1 -C 5 indicates the number of carbon atoms contained in the group.
- the hydrolysis catalyst used in the present invention is a molecular sieve catalyst with long service life and high hydrolysis efficiency.
- the glycolic acid production method of the present invention can be realized by using a traditional fixed-bed reactor under normal pressure, and is very suitable for continuous production.
- the raw material alkoxy acetate in the present invention can be prepared by a green and economical acetal carbonylation method.
- methylal reaction is prepared by condensation of methanol and formaldehyde
- methyl methoxyacetate is prepared by carbonylation of methylal
- ethanol is prepared by hydrolysis of methyl methoxyacetate
- the three-step reaction combination of the acid reaction can convert methanol, which is a coal chemical platform, into glycolic acid in an efficient, green and economical way.
- the present invention provides a method for preparing glycolic acid by hydrolysis of alkoxyacetate.
- the alkoxyacetate and water are passed through a reaction zone containing an acidic molecular sieve catalyst under certain reaction conditions.
- the reaction produces glycolic acid;
- R 1 is any one of methyl (CH 3 ), ethyl (C 2 H 5 ), propyl (C 3 H 7 ) and butyl (C 4 H 9 ), and R 2 is methyl (CH 3 ) any one of ethyl (C 2 H 5 ), propyl (C 3 H 7 ), and butyl (C 4 H 9 ), R 1 and R 2 may be the same or different;
- the acidic molecular sieve is an acidic molecular sieve
- the reaction zone contains one fixed bed reactor, or a plurality of fixed bed reactors connected in series and/or in parallel;
- the reaction conditions are as follows: the reaction temperature is 60 to 260° C., the molar ratio of the alkoxy acetate to water in the raw material is 1:20 to 20:1, the reaction pressure is 0.1 to 10 MPa, and the quality of the alkoxy acetate in the raw material is 1:20 to 20:1.
- the airspeed is 0.1 ⁇ 3h -1 .
- the alcohols R 1 OH and R 2 OH produced by hydrolysis can also be partially dehydrated to form the corresponding ethers.
- the acidic molecular sieve is one or more of acidic MFI molecular sieves, acidic FAU structural molecular sieves, acidic FER structural molecular sieves, acidic BEA structural molecular sieves, acidic MOR structural molecular sieves or/and acidic MWW structural molecular sieves.
- the acidic molecular sieve is a mixture of one or more of acidic ZSM-5 molecular sieve, acidic Y molecular sieve, acidic ZSM-35 molecular sieve, acidic beta molecular sieve, acidic mordenite or/and acidic MCM-22 molecular sieve.
- Described acidic molecular sieve is hydrogen type ZSM-5 molecular sieve, hydrogen type Y molecular sieve, hydrogen type ZSM-35 molecular sieve, hydrogen type beta molecular sieve, hydrogen type mordenite or/and hydrogen type MCM-22 molecular sieve one or more mixtures .
- the Si/Al ratio of the acidic molecular sieve is 3-500.
- the acidic molecular sieve-containing catalyst also contains a catalyst shaping agent; the shaping agent is one of alumina and silicon oxide, and the weight percentage is 0-50%.
- the acidic molecular sieve-containing catalyst is prepared by mixing a catalyst forming agent with an acidic molecular sieve and then extrusion molding.
- both R 1 and R 2 are methyl groups, that is, the alkoxy acetate is methyl methoxyacetate (CH 3 OCH 2 COOCH 3 ).
- the methyl methoxyacetate is prepared by the method of formal carbonylation.
- the hydrolysis products include glycolic acid, methoxyacetic acid (CH 3 OCH 2 COOH), ethanol acid methyl ester (HOCH 2 COOCH 3 ), methanol and dimethyl ether.
- methoxyacetic acid and methyl glycolate can continue to be hydrolyzed into glycolic acid, and methanol and dimethyl ether can be returned to the methylal synthesis reactor to synthesize methylal.
- the reaction conditions are preferably as follows: the reaction temperature is 130-200° C., the molar ratio of alkoxyacetic acid ester to water in the raw material is 1:8-1:2, the reaction pressure is 0.1-0.3 MPa, and the alkoxyacetic acid in the raw material is 0.1-0.3 MPa.
- the mass space velocity of the ester is 0.3 to 1 h -1 .
- the raw material contains one of nitrogen and argon inert carrier gas in the process of passing through the reaction zone carrying the acidic molecular sieve catalyst.
- Agilent7890B gas chromatograph to analyze products other than glycolic acid and unreacted raw materials. Its FID detector is connected to DB-FFAP capillary column, and its TCD detector is connected to Porapak Q packed column. Glycolic acid was analyzed by liquid chromatography, the separation column was a C 18 column, and the detector was an ultraviolet detector.
- conversion and selectivity are calculated based on the number of moles of carbon:
- the hydrogen-type molecular sieve catalyst in the hydrolysis of methyl methoxyacetate to glycolic acid has high conversion rate of methyl methoxyacetate, high selectivity to glycolic acid, and excellent catalytic performance.
- Example 2 The raw material methyl methoxyacetate in Example 1 was replaced with other alkoxyacetates, other conditions and operations were unchanged, and the reaction results were shown in Table 2.
- the hydrogen-type molecular sieve catalyst can hydrolyze various alkoxy acetates into glycolic acid.
- the acidic molecular sieve catalyst has good stability in the reaction of methyl methoxyacetate hydrolysis to glycolic acid, which can meet the requirements of industrial use.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
Abstract
Description
反应时间(h) | 甲氧基乙酸甲酯转化率(%) | 乙醇酸选择性(%) |
24 | 81.2 | 36.4 |
100 | 81.1 | 36.3 |
500 | 81.0 | 36.5 |
1000 | 80.6 | 36.1 |
2000 | 79.9 | 35.7 |
4000 | 76.6 | 35.2 |
8000 | 73.2 | 34.8 |
Claims (13)
- 根据权利要求1所述的方法,其特征在于,所述R 1选自甲基、乙基、丙基、丁基中的任一种;所述R 2选自甲基、乙基、丙基、丁基中的任一种。
- 根据权利要求1所述的方法,其特征在于,所述酸性分子筛催化剂中含有酸性分子筛。
- 根据权利要求3所述的方法,其特征在于,所述酸性分子筛选自酸性MFI结构分子筛、酸性FAU结构分子筛、酸性FER结构分子筛、酸性BEA结构分子筛、酸性MOR结构分子筛、酸性MWW结构分子筛中的至少一种。
- 根据权利要求4所述的方法,其特征在于,所述酸性分子筛选自酸性ZSM-5分子筛、酸性Y分子筛、酸性ZSM-35分子筛、酸性β分子筛、酸性丝光沸石、酸性MCM-22分子筛中的至少一种。
- 根据权利要求5所述的方法,其特征在于,所述酸性分子筛选自氢型ZSM-5分子筛、氢型Y分子筛、氢型ZSM-35分子筛、氢型β分子 筛、氢型丝光沸石、氢型MCM-22分子筛中的至少一种。
- 根据权利要求3所述的方法,其特征在于,所述酸性分子筛中的硅铝原子比为3~500。
- 根据权利要求3所述的方法,其特征在于,所述酸性分子筛催化剂中还含有成型剂;所述成型剂为氧化物;所述氧化物选自氧化铝、氧化硅中的至少一种;在所述酸性分子筛催化剂中,所述成型剂含量为m,m的取值范围为0<m≤50wt%。
- 根据权利要求1所述的方法,其特征在于,所述反应的条件为:反应温度60~260℃;反应压力0.1~10MPa;烷氧基乙酸酯与水的摩尔比为1:20~20:1;烷氧基乙酸酯的质量空速为0.1~3h -1。
- 根据权利要求9所述的方法,其特征在于,所述反应的条件为:反应温度130~260℃;反应压力0.1~0.3MPa;烷氧基乙酸酯与水的摩尔比为1:2~1:8;烷氧基乙酸酯的质量空速为0.3~1h -1。
- 根据权利要求1所述的方法,其特征在于,所述反应在至少一个固定床反应器中进行。
- 根据权利要求11所述的方法,其特征在于,多个所述固定床反应器通过串联和/或并联方式连接。
- 根据权利要求1所述的方法,其特征在于,所述反应在非活性气氛中进行;所述非活性气氛包括氮气、惰性气体中的任一种。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3206944A CA3206944A1 (en) | 2021-02-03 | 2021-02-03 | Method for preparing glycolic acid through hydrolysis of alkoxyacetate |
EP21923691.6A EP4279478B1 (en) | 2021-02-03 | 2021-02-03 | Method for preparing glycolic acid through hydrolysis of alkoxyacetate |
PCT/CN2021/075027 WO2022165663A1 (zh) | 2021-02-03 | 2021-02-03 | 一种烷氧基乙酸酯水解制取乙醇酸的方法 |
AU2021425469A AU2021425469B2 (en) | 2021-02-03 | 2021-02-03 | Method for preparing glycolic acid by hydrolysis of alkoxyacetate |
US18/275,447 US20240116844A1 (en) | 2021-02-03 | 2021-02-03 | Method for preparing glycolic acid through hydrolysis of alkoxyacetate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/075027 WO2022165663A1 (zh) | 2021-02-03 | 2021-02-03 | 一种烷氧基乙酸酯水解制取乙醇酸的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022165663A1 true WO2022165663A1 (zh) | 2022-08-11 |
Family
ID=82740734
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/075027 WO2022165663A1 (zh) | 2021-02-03 | 2021-02-03 | 一种烷氧基乙酸酯水解制取乙醇酸的方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240116844A1 (zh) |
EP (1) | EP4279478B1 (zh) |
AU (1) | AU2021425469B2 (zh) |
CA (1) | CA3206944A1 (zh) |
WO (1) | WO2022165663A1 (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1180067A (zh) * | 1997-07-11 | 1998-04-29 | 清华大学 | 同时合成羟基乙酸甲酯和甲氧基乙酸甲酯的方法 |
JP2003300926A (ja) * | 2002-04-08 | 2003-10-21 | Nippon Shokubai Co Ltd | α−ヒドロキシカルボン酸又はα−オキソカルボン酸の製造方法 |
CN106554250A (zh) * | 2015-09-30 | 2017-04-05 | 中国科学院大连化学物理研究所 | 一种乙二醇单甲醚水解制备乙二醇的方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107445825B (zh) * | 2017-07-20 | 2019-10-01 | 沈阳化工大学 | 一种分子筛催化剂制备乙醇酸甲酯并副产甲氧基乙酸甲酯的方法 |
-
2021
- 2021-02-03 CA CA3206944A patent/CA3206944A1/en active Pending
- 2021-02-03 US US18/275,447 patent/US20240116844A1/en active Pending
- 2021-02-03 AU AU2021425469A patent/AU2021425469B2/en active Active
- 2021-02-03 EP EP21923691.6A patent/EP4279478B1/en active Active
- 2021-02-03 WO PCT/CN2021/075027 patent/WO2022165663A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1180067A (zh) * | 1997-07-11 | 1998-04-29 | 清华大学 | 同时合成羟基乙酸甲酯和甲氧基乙酸甲酯的方法 |
JP2003300926A (ja) * | 2002-04-08 | 2003-10-21 | Nippon Shokubai Co Ltd | α−ヒドロキシカルボン酸又はα−オキソカルボン酸の製造方法 |
CN106554250A (zh) * | 2015-09-30 | 2017-04-05 | 中国科学院大连化学物理研究所 | 一种乙二醇单甲醚水解制备乙二醇的方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4279478A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP4279478A4 (en) | 2024-03-27 |
AU2021425469A1 (en) | 2023-08-17 |
AU2021425469B2 (en) | 2024-05-02 |
EP4279478B1 (en) | 2024-10-09 |
US20240116844A1 (en) | 2024-04-11 |
EP4279478A1 (en) | 2023-11-22 |
CA3206944A1 (en) | 2022-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1877361B1 (en) | Process for carbonylation of alkyl ethers | |
JP6161725B2 (ja) | 合成ガスおよびジメチルエーテルから酢酸メチルおよびメタノールを生産するための統合方法 | |
TW201113250A (en) | Process for the production of acetic acid and dimethyl ether | |
EP2310345A1 (en) | Process for catalytically producing ethylene directly from acetic acid in a single reaction zone | |
WO2022165662A1 (zh) | 甲氧基乙酸甲酯和甲氧基乙酸水解制取乙醇酸和乙醇酸甲酯的方法 | |
KR20060132860A (ko) | 1,3-부틸렌 글라이콜의 제조 방법 | |
CN114853592B (zh) | 一种烷氧基乙酸酯水解制取乙醇酸的方法 | |
KR101862042B1 (ko) | 폴리옥시메틸렌 디메틸 에테르 카보닐 화합물 및 메틸 메톡시아세테이트의 제조방법 | |
CN1379750A (zh) | 肉桂醛和二氢化肉桂醛衍生物的连续制备方法 | |
CN108017510B (zh) | 一种羟基特戊醛的制备方法,及其在新戊二醇制备方面的应用 | |
WO2022165663A1 (zh) | 一种烷氧基乙酸酯水解制取乙醇酸的方法 | |
US5053556A (en) | Process for producing alkenyl ethers | |
US9180430B2 (en) | Catalytic composition for production of olefins with decreased oxygenate byproducts | |
US8933279B2 (en) | Method for preparing a mixture of alcohols | |
CN114853605B (zh) | 甲氧基乙酸甲酯和甲氧基乙酸水解制取乙醇酸和乙醇酸甲酯的方法 | |
EP4438587A1 (en) | Method for preparing methyl ester compound | |
EP1071649B1 (en) | Tertiary alkyl ester preparation | |
WO2015095999A1 (zh) | 制备聚甲氧基二甲醚羰化物及甲氧基乙酸甲酯的方法 | |
CN109970635B (zh) | 一种氨基吡啶衍生物制备方法及其应用 | |
CN116253634A (zh) | 甲氧基乙酸甲酯水解制乙醇酸甲酯和乙醇酸的方法 | |
CN118056618A (zh) | 一种酸性分子筛催化剂的再生方法 | |
JPH1135510A (ja) | イソブチルアルデヒドの製造法 | |
CN111517936A (zh) | 一种制备酮类有机物的方法 | |
JP2001031610A (ja) | ヒドロキシエーテルの製造法 | |
JPS5826832A (ja) | エチレングリコ−ルの製法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21923691 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3206944 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18275447 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2021425469 Country of ref document: AU Date of ref document: 20210203 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202392055 Country of ref document: EA |
|
ENP | Entry into the national phase |
Ref document number: 2021923691 Country of ref document: EP Effective date: 20230814 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 523450135 Country of ref document: SA |