WO2023109526A1 - 一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器及其制备方法 - Google Patents

一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器及其制备方法 Download PDF

Info

Publication number
WO2023109526A1
WO2023109526A1 PCT/CN2022/136072 CN2022136072W WO2023109526A1 WO 2023109526 A1 WO2023109526 A1 WO 2023109526A1 CN 2022136072 W CN2022136072 W CN 2022136072W WO 2023109526 A1 WO2023109526 A1 WO 2023109526A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
pdc
insulating
additive manufacturing
composite
Prior art date
Application number
PCT/CN2022/136072
Other languages
English (en)
French (fr)
Inventor
孙道恒
海振银
徐礼达
李兰兰
崔在甫
武超
陈国淳
李鑫
陈沁楠
何功汉
Original Assignee
厦门大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门大学 filed Critical 厦门大学
Publication of WO2023109526A1 publication Critical patent/WO2023109526A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/524Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from polymer precursors, e.g. glass-like carbon material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
    • G01L1/2293Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges of the semi-conductor type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6267Pyrolysis, carbonisation or auto-combustion reactions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0036Laser treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4535Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied as a solution, emulsion, dispersion or suspension
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/455Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application the coating or impregnating process including a chemical conversion or reaction
    • C04B41/4554Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application the coating or impregnating process including a chemical conversion or reaction the coating or impregnating material being an organic or organo-metallic precursor of an inorganic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4572Partial coating or impregnation of the surface of the substrate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/005Measuring force or stress, in general by electrical means and not provided for in G01L1/06 - G01L1/22
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/665Local sintering, e.g. laser sintering

Definitions

  • the invention belongs to the technical field of sensors, and in particular relates to an integrated precursor ceramic (PDC) film sensor manufactured by laser pyrolysis composite additive and a preparation method thereof.
  • PDC integrated precursor ceramic
  • Precursor ceramics (PDC) materials are a new type of high-temperature ceramics. Due to their excellent high-temperature thermal stability, Oxidation resistance and creep resistance, and maintains an amorphous state below 1700 °C, has semiconductor characteristics, and is considered to be a good high-temperature sensing material. Many researchers use it to monitor physical quantities such as temperature, strain, and heat flow in high-temperature fields.
  • thin-film sensors Compared with traditional sensors, thin-film sensors have the advantages of small size (thickness is on the order of ⁇ m), in-situ manufacturing and processing, and less impact on the test environment. have a broad vision of application.
  • the published invention patents under examination are mainly (a polymer precursor ceramic thin film RTD and its preparation method, application number 201911309009.X) uses polymer precursors to make sensors.
  • the main process is that the polymer precursors are cross-linked, cured, and high-temperature pyrolysis (above 800°C) ceramics, so as to realize the production of conductive sensitive elements.
  • the present invention proposes a laser pyrolysis composite additive manufacturing integrated precursor ceramic (PDC) thin film sensor and its preparation method.
  • PDC laser pyrolysis composite additive manufacturing integrated precursor ceramic
  • a laser pyrolysis composite additive manufacturing integrated precursor ceramic (PDC) thin film sensor which includes a substrate and a sensitive grid, the sensitive grid is melted on the substrate after laser pyrolysis; the sensitive grid is doped by PDC Conductive filler composition;
  • the thickness of the sensitive gate is 10-20 ⁇ m.
  • the substrate is made of an insulating material;
  • the insulating material is aluminum oxide;
  • the preparation method of the sensor comprises the following steps:
  • Step 2) Preparation of the sensitive gate: Configure a mixed solution of conductive filler and PDC solution, and write it directly on the alumina insulating substrate in step 1) through the Weissenberg direct writing process. After heating and curing, perform laser at the same temperature Pyrolysis treatment, through photothermal action, promotes the conversion of PDC organic matter into ceramics, and at the same time enhances the degree of graphitization of carbon, forming a sensitive grid with good conductivity, so the precursor ceramic insulation-based strain sensor is prepared.
  • the base layer is composed of a base, a transition layer and a composite insulation layer arranged in sequence; the sensor is sequentially composed of a base, a transition layer, a composite insulation layer and a sensitive gate from bottom to top, and the thickness of the composite insulation layer is 50 ⁇ 200 ⁇ m, the substrate is a metal material.
  • both the composite insulating layer and the sensitive gate of the sensor are based on PDC material
  • the composite insulating layer is composed of PDC-doped inert insulating powder and PDC-doped inert insulating powder
  • the sensitive gate is made of PDC-doped conductive powder. Powder composition.
  • the substrate is made of Ni-based alloy material
  • the composite insulating layer includes an insulating layer and an insulating infiltration layer; the preparation method of the sensor includes the following steps:
  • Pretreatment ultrasonically clean the nickel-based alloy sheet, dry it, and then deposit a transition layer on the nickel-based alloy sheet by a magnetron sputtering machine (the application temperature is higher than 600°C);
  • the thickness of the transition layer is 3-10 ⁇ m.
  • Step 2) Preparation of the insulating layer: Prepare a mixed solution of PDC solution and inert insulating powder, and write it directly on the transition layer in step 1) through the Weissenberg direct writing process. After heating and curing, perform laser treatment at the same temperature , due to the photothermal effect to realize the transformation of organic substances into inorganic ceramics, which is the process of laser pyrolysis. After cooling down to room temperature, the second layer of mixed solution is coated on the insulating layer by screen printing process, and then the second layer of insulating layer is formed by heating and curing and laser treatment through the same steps, which realizes laser in-situ additive manufacturing;
  • the above-mentioned mixed solution of PDC and insulating powder needs to consider the expansion coefficient and good insulating performance of the insulating powder and the transition layer.
  • the main reason for doping a small amount of insulating infiltrating powder is that its melting point is relatively low to achieve the purpose of melt infiltration.
  • insulating wetting layer configure a mixture of micron powder and PDC solution with insulating wetting effect, apply the mixed solution on the insulating layer obtained in step 2) by screen printing, heat and cure, and then undergo multiple laser scanning heat treatments , so that the powder is melted many times, the surface of the film layer is readjusted, the surface roughness is reduced, the effect of its infiltration and filling is enhanced, and a denser insulating infiltration layer is obtained.
  • the second insulating infiltration layer is prepared in the same way, thus forming The dense melt-wetting layer is used to fill the cracks, pores and other defects that may exist in the film to achieve high insulation performance and obtain a composite insulation film layer;
  • Preparation of the sensitive gate configure the mixed solution of conductive powder and PDC, realize the thin film and patterning process through the Weissenberg direct writing platform, and write it directly on the composite insulating layer. After heating and curing, laser treatment is performed at the same temperature to obtain a precursor ceramic integrated thin film strain sensor.
  • the above-mentioned laser pyrolysis composite additive manufacturing integrated precursor ceramic (PDC) thin film sensor and its preparation method can be applied to metal material strain sensing.
  • the conductive sensitive layer is doped with conductive powder by PDC.
  • PDC the conductive sensitive layer
  • it can increase its electrical conductivity, and on the other hand, it can reduce cracking caused by excessive temperature gradient during heat treatment.
  • the heat treatment process is relatively simple. After laser scanning treatment, the transformation of ceramic and graphitization of PDC organic matter is enhanced. This is due to the high absorption rate of carbon dioxide laser of non-metallic materials, which can instantly generate high temperatures above 2000 °C near the surface of the material absorbed. The absorption rate for the metal substrate is low, thereby reducing the impact on the substrate.
  • the electrical conductivity can be adjusted by adjusting the laser parameters, so the conductive sensitive layer film with high efficiency, flexibility and less thermal damage to the substrate material can be obtained. Preparation Process.
  • the composite insulating layer in the present invention is mainly composed of a multi-layer film structure.
  • the main function of PDC here is to play the role of a binder, and form with micron powders with insulating properties or micron powders with infiltration and insulation
  • the mixed solution is then subjected to a direct writing process or a screen printing process to produce an insulating layer of the required size. Finally, after cross-linking and curing, laser treatment obtains the required insulating layer.
  • the laser enhances the graphitization transformation of PDC, due to the dominance of insulating powder in the mixed solution and the need for multiple laser treatments in the air environment, not only better cladding and infiltration is achieved, but also many Sub-laser heat treatment produces a decarburization effect, so it is difficult for the film layer to form conductive networks and channels.
  • the multi-layer structure of the composite film layer also plays the role of "layer-by-layer fortification", so that a composite insulating film layer with high insulation performance can be manufactured through laser pyrolysis composite additive.
  • the metal component is directly used as the substrate, and on the metal component deposited with the transition layer, the combination of Weissenberg direct writing and screen printing technology combined with laser pyrolysis and material addition is deposited layer by layer to form a composite material with high insulation, high density and high temperature resistance. Insulating film layer.
  • the sensitive gate is directly written on the composite insulating film layer, and the PDC graphitization is enhanced by laser pyrolysis to form a conductive channel in the sensitive gate.
  • the in-situ integrated manufacturing technology of the sensitive gate and the metal substrate with high insulating film layer and excellent conductivity can be realized, and it plays a key role in realizing the in-situ sensing function and monitoring of high temperature and other environments in the field of parameter testing of special-shaped precision structural components.
  • Fig. 1 is a schematic diagram of the manufacturing process of laser pyrolysis composite additive manufacturing integrated precursor ceramic strain film sensor in Example 1.
  • Fig. 2 is a schematic diagram of the manufacturing process of laser pyrolysis composite additive manufacturing integrated precursor ceramic strain film sensor in Example 2.
  • FIG. 3 is a schematic diagram of the layer structure of the composite insulating layer in Example 2.
  • FIG. 3 is a schematic diagram of the layer structure of the composite insulating layer in Example 2.
  • Figure 4 It is a structural diagram of the integrated thin-film strain sensor in Example 2.
  • Figure 5 It is the AFM image of the sensitive grid after laser processing.
  • Figure 6 It is the strain signal test chart of the integrated film strain sensor in Example 2.
  • 1 is a nickel-based alloy substrate
  • 2 is a PDC composite insulating film layer
  • 3 is a PDC sensitive gate
  • 4 is a sensitive gate electrode.
  • This example provides a precursor ceramic insulation-based strain sensor manufactured by laser pyrolysis composite additives. From bottom to top, it is an insulating substrate and a strain-sensitive gate. The thickness of the sensitive gate is between 10 and 20 ⁇ m.
  • Pretreatment First, the alumina substrate is ultrasonically cleaned for 20-60 minutes, dried in a drying oven, and then taken out.
  • step 2) Preparation of the sensitive grid: Configure the mixed solution of conductive powder and PDC, and write it directly on the insulating substrate in step 1) using the Weissenberg direct writing process. After curing for 20 minutes, perform laser treatment, and use laser heat Solution enhancement realizes the transformation of graphitization of organic materials, and it can be seen from AFM that graphite is produced, as shown in Figure 5.
  • the precursor ceramic insulation-based strain sensor is prepared.
  • a laser pyrolysis composite additive manufacturing integrated precursor ceramic strain film sensor is provided. From bottom to top, it is a nickel-based alloy substrate, a composite insulating layer, and a strain-sensitive grid.
  • the thickness of the composite insulating layer is 50-200 ⁇ m
  • the thickness of the sensitive gate is between 10 and 20 ⁇ m.
  • the nickel-based alloy sheet is ultrasonically cleaned for 20-60 minutes, dried in a drying oven, and a transition layer of 3-10 ⁇ m is sputtered and deposited on the nickel-based alloy sheet by a magnetron sputtering machine.
  • Preparation of the insulating layer Prepare a mixed solution of PDC solution, insulating powder and infiltrating insulating powder, stir in a magnetic stirring table for 1 hour and take it out for later use; use the Weissenberg direct writing process to precisely control the size of the insulating layer, after After curing for 20 to 60 minutes, perform laser treatment, wait for it to cool down to room temperature naturally, and use screen printing technology to coat the second layer of the same mixed solution on the insulating layer, which is also treated with the same laser parameters after curing and crosslinking.
  • insulating wetting layer configure the mixture of insulating wetting powder and PDC solution, take it out after magnetic stirring for 1 ⁇ 2 hours, and apply the mixed solution on the insulating layer obtained in step 2) by screen printing, and after curing After laser scanning heat treatment, a relatively dense wetting layer was obtained, and the second insulating wetting layer was fabricated with the same method and parameters, and finally a composite insulating film layer as shown in Figure 3 was obtained.
  • the precursor ceramic integrated thin-film strain sensor is prepared, as shown in FIG. 4 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Optics & Photonics (AREA)
  • Dispersion Chemistry (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

本发明公开了一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器及其制备方法,以金属构件或绝缘材料作为基底,针对金属构件表面通过逐层激光热解增材技术形成高致密性、高绝缘性以及抗高温的PDC掺杂的复合绝缘膜层,并在复合绝缘膜层上通过维森堡直写PDC掺杂填料的敏感栅,经激光热解增强PDC石墨化的方法获得优良导电性能的应变敏感层,从而开创以PDC材料为基础的高绝缘膜层和优良导电性能的敏感栅与金属基底的激光原位增材一体化制造,实现了PDC复合材料从"液-固-功能"转变的激光工艺流程,并成功将其应用于金属材料应变传感。

Description

一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器及其制备方法 技术领域
本发明属于传感器技术领域,特别涉及一种激光热解复合增材制造一体化前驱体陶瓷(PDC)薄膜传感器及其制备方法。
背景技术
随着航空、航天技术的发展,对高温服役环境的智能化监测提出了越来越高的要求,前驱体陶瓷(PDC)材料是一类新型的高温陶瓷,由于具有优异的高温热稳定性、抗氧化性和抗蠕变性能,且在1700 ℃以下保持无定形态,具有半导体特性,被认为是良好的高温传感材料。很多研究人员将其用于高温领域的温度、应变以及热流等物理量的监测。
与传统的传感器相比,薄膜传感器具有尺寸小(厚度为μm量级)、可以原位制造加工,对测试环境影响较小等优点,在航空、航天等领域的异型精密结构部件参量测试技术领域具有广阔的应用前景。目前,制作前驱体陶瓷薄膜传感器的相关文献较少。公开的在审的发明专利主要是(一种聚合物前驱体陶瓷薄膜RTD及其制备方法,申请号 201911309009.X)应用聚合物前驱体制作传感器,主要流程是聚合前驱体经过交联、固化、高温热解(800℃以上)陶瓷化,从而实现导电敏感元件的制作。
技术问题
要实现PDC薄膜传感器更为高效、便捷、广泛的实际应用需求,开发高效、灵活、以及对基底材料热损伤小的制备工艺,实现高绝缘膜层和优良导电性能的敏感栅与基底一体化制造技术是其在异型精密结构部件参量测试技术领域实现原位传感功能的关键问题。
技术解决方案
为解决上述问题,本发明提出了一种激光热解复合增材制造一体化前驱体陶瓷(PDC)薄膜传感器及其制备方法。
为了实现上述目的,本发明采用了如下技术方案:
一种激光热解复合增材制造一体化前驱体陶瓷(PDC)薄膜传感器,其包括基底和敏感栅,所述敏感栅经过激光热解并熔融于基底上;所述敏感栅是由PDC掺杂导电填料构成;
所述敏感栅厚度为10~20μm。
优选的,所述基底由绝缘材料组成;绝缘材料选用氧化铝;传感器的制备方法包括如下步骤:
1)预处理:将氧化铝绝缘基底超声清洗后,烘干;
2)敏感栅的制备:配置导电填料与PDC溶液的混合溶液,通过维森堡直写工艺,将其直写于步骤1)的氧化铝绝缘基底上,加热固化后,在相同温度下进行激光热解处理,经过光热作用,促使PDC有机物转化为陶瓷,同时增强了碳的石墨化的程度,形成导电良好的敏感栅,因此制备出前驱体陶瓷绝缘基应变传感器。
优选的,所述基层由依次设置的基底、过渡层及复合绝缘层组成;所述传感器由下而上依次为基底、过渡层、复合绝缘层以及敏感栅,所述复合绝缘层的厚度为50~200μm,所述基底为金属材料。
所述传感器的复合绝缘层和敏感栅均基于PDC材料,所述复合绝缘层是由PDC掺杂惰性绝缘粉末和PDC掺杂惰性绝缘浸润作用的粉末构成,所述敏感栅是由PDC掺杂导电粉末构成。
进一步的,所述基底选用Ni基合金材料,所述复合绝缘层包括绝缘层及绝缘浸润层;传感器的制备方法包括如下步骤:
1)预处理:将镍基合金片超声清洗后,烘干,接着通过磁控溅射机在镍基合金片上沉积一层过渡层(应用温度高于600℃);
其中,过渡层的厚度为3~10μm。
2)绝缘层的制备:配置PDC溶液、惰性绝缘粉末的混合溶液,通过维森堡直写工艺,将其直写于步骤1)的过渡层上,加热固化后,在相同温度下进行激光处理,由于光热作用实现有机物质到无机陶瓷的转变,为激光热解的过程。待降至室温后,通过丝网印刷工艺在绝缘层上涂覆第二层混合溶液,再通过相同步骤加热固化及激光处理形成第二层绝缘层,也即实现了激光原位增材制造;
上述PDC与绝缘粉末的混合溶液,需要考虑绝缘粉末和过渡层相接近的膨胀系数以及良好的绝缘性能,掺杂少量绝缘浸润粉末主要是由于其熔点相对较低能够实现熔融浸润的目的。
3)绝缘浸润层的制备:配置具有绝缘浸润作用的微米粉末与PDC溶液的混合液,通过丝网印刷涂覆混合液于步骤2)得到的绝缘层上,加热固化后经过多次激光扫描热处理,使得粉末多次产生熔融,膜层表面重新调整,减少了表面粗糙度,增强了其浸润填充的效果,得到较为致密的绝缘浸润层,以同样的方法制备第二层绝缘浸润层,从而形成致密的熔融浸润层,用于填充薄膜可能存在的裂纹、孔隙等缺陷,实现较高的绝缘性能,得到复合绝缘膜层;
4)敏感栅的制备:配置导电粉末与PDC的混合溶液,通过维森堡直写平台实现薄膜化以及图案化工艺,将其直写于复合绝缘层上。加热固化后,在相同温度下进行激光处理,得到前驱体陶瓷一体化薄膜应变传感器。
上述制得的一种激光热解复合增材制造一体化前驱体陶瓷(PDC)薄膜传感器及其制备方法可应用于金属材料应变传感。
有益效果
本发明的有益效果在于:
1、本发明中导电敏感层通过PDC掺杂导电粉末,一方面可以增加其导电性能,另一方面减少热处理过程中产生过大的温度梯度造成开裂等现象。热处理过程相对简单,经过激光扫描处理,增强了PDC有机物陶瓷化以及石墨化的转变,这是由于非金属材料二氧化碳激光吸收率较高,能够在材料吸收的近表面瞬间产生2000℃以上的高温,而对于金属基底的吸收率较低,从而减少了对基底的影响,同时还可通过调整激光参数对其导电性能进行调控,因此得到高效、灵活以及对基底材料热损伤小的导电敏感层薄膜的制备工艺。
2、本发明中复合绝缘层主要是通过多层膜结构组成,PDC在这里的主要作用是起到粘结剂的作用,与具有绝缘性能的微米粉末或是起到浸润绝缘作用的微米粉末形成混合的溶液,然后经过直写工艺或是丝网印刷工艺,制作需求尺寸的绝缘层。最后经过交联固化,激光处理获得所需要的绝缘层。虽然激光增强了PDC发生石墨化转变,但是由于混合溶液中绝缘性质的粉末占据主导地位,且需要经过多次的激光处理在空气环境下,不仅仅实现了更好的熔覆浸润作用,且多次激光热处理产生了脱碳的效果,因此膜层难以形成导电网络和通道。复合膜层的多层结构也起到“层层设防”的作用,从而通过激光热解复合增材制造出绝缘性能较高的复合绝缘膜层。
3. 本发明中将金属构件直接作为基底,在沉积了过渡层的金属构件上通过维森堡直写和丝网印刷工艺结合激光热解增材,逐层沉积形成高绝缘,高致密性、耐高温的复合绝缘膜层。在此基础上通过直写图案化工艺,将敏感栅直写在复合绝缘膜层上,经过激光热解增强PDC石墨化,在敏感栅中形成导电通道。从而实现高绝缘膜层和优良导电性能的敏感栅与金属基底原位一体化制造技术,在异型精密结构部件参量测试技术领域实现原位传感功能以及高温等环境的监测起到关键作用。
附图说明
图1为实施例1中激光热解复合增材制造一体化前驱体陶瓷应变薄膜传感器的制作流程示意图。
图2为实施例2中激光热解复合增材制造一体化前驱体陶瓷应变薄膜传感器的制作流程示意图。
图3为实施例2中复合绝缘层的膜层结构示意图。
图4 为实施例2中一体化薄膜应变传感器的结构图。
图5 为敏感栅经过激光处理后的AFM图。
图6 为实施例2中一体化薄膜应变传感器的应变信号测试图。
图中:1为镍基合金基底、2 PDC复合绝缘膜层、3为PDC敏感栅、4 敏感栅电极。
本发明的最佳实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的实施方式
实施例1
本实例中提供一种以激光热解复合增材制造前驱体陶瓷绝缘基应变传感器,由下而上依次为绝缘基底、应变敏感栅,敏感栅厚度介于10~20μm。
上述激光诱导复合熔覆前驱体陶瓷绝缘基应变传感器的具体制备过程如图1所示,具体包括如下步骤:
1)预处理:首先将氧化铝基底经过超声清洗20~60min,并在干燥箱中干燥后,取出。
2)敏感栅的制备:配置导电粉末以及PDC的混合溶液,利用维森堡直写工艺,将其直写于步骤1)的绝缘基底上,经过固化20分钟后,进行激光处理,通过激光热解增强实现了有机物材料石墨化的转变,从AFM可以看出产生了石墨这种物质,如图5所示。
从而制备得所述的前驱体陶瓷绝缘基应变传感器。
实施例2
本实例中提供一种激光热解复合增材制造一体化前驱体陶瓷应变薄膜传感器,由下而上依次为镍基合金基底、复合绝缘层、应变敏感栅,其中复合绝缘层厚度为50~200μm,敏感栅厚度介于10~20μm。
上述前驱体陶瓷一体化应变传感器的具体制备过程如图2所示,具体如下所述:
1)预处理:将镍基合金片经过超声清洗20~60min,并在干燥箱中干燥后,通过磁控溅射机在镍基合金片上溅射沉积一层3~10μm的过渡层。
2)绝缘层的制备:配置PDC溶液、绝缘粉末与浸润作用的绝缘粉末混合溶液,在磁力搅拌台中搅拌1个小时后取出备用;利用维森堡直写工艺,精确控制绝缘层的大小,经过固化20~60min后,进行激光处理,等待其自然降至室温,利用丝网印刷技术在绝缘层上涂覆第二层同样的混合溶液,同样经过固化交联后经过相同的激光参数进行处理。
3)绝缘浸润层的制备:配置绝缘浸润粉末与PDC溶液的混合液,经过磁力搅拌1~2小时后取出,同样用丝网印刷涂覆混合液于步骤2)得到的绝缘层上,固化后经过激光扫描热处理,得到较为致密的浸润层,以同样的方法和参数制作第二层绝缘浸润层,最终得到如图3所示的复合绝缘膜层。
4)敏感栅的制备:配置导电粉末以及PDC的混合溶液,利用维森堡直写工艺,将其直写于步骤2)和3)制备的复合绝缘层上,经过固化20分钟后,进行激光处理,通过激光热解增强了有机物到石墨化的转变,从AFM可以看出产生了石墨这种物质,如图5所示。
5)薄膜应变传感器的焊点和引线制作:通过商业化的石墨烯导电胶水将铂丝导线粘连在敏感栅的两个焊点上,静置5~12小时后,经过2小时120~150℃的加热处理,得到较为牢固的引线与焊点的接触。
从而制备得所述的前驱体陶瓷一体化薄膜应变传感器,如图4所示。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (9)

  1. 一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器,其特征在于,传感器包括基层和敏感栅,所述敏感栅经过激光热解原位制备于基底上;所述敏感栅是由PDC掺杂导电填料构成;
    所述敏感栅厚度为10~20μm。
  2. 根据权利要求1所述的一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器,其特征在于,所述基层由依次设置的基底、过渡层及复合绝缘层组成。
  3. 根据权利要求1所述的一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器,其特征在于,所述基层由绝缘材料组成。
  4. 根据权利要求2所述的一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器,其特征在于,所述传感器由下而上依次为基底、过渡层、复合绝缘层以及敏感栅,所述复合绝缘层的厚度为50um~200um,所述基底为金属材料。
  5. 根据权利要求4所述的一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器,其特征在于,所述传感器的复合绝缘层和敏感栅均基于PDC材料,所述复合绝缘层是由PDC掺杂惰性绝缘填料构成,所述敏感栅是由PDC掺杂导电填料构成。
  6. 根据权利要求3所述的一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器,传感器的制备方法包括如下步骤:
    1)预处理:将氧化铝绝缘基底超声清洗后,烘干;
    2)敏感栅的制备:配置导电填料与PDC溶液的混合溶液,通过维森堡直写工艺,将其直写于步骤1)的氧化铝绝缘基底上,加热固化后,在相同温度下进行激光处理,制备得前驱体陶瓷绝缘基应变传感器。
  7. 根据权利要求6所述的一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器,其特征在于,混合溶液中为导电填料、PDC组成。
  8. 根据权利要求5所述的一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器,其特征在于,所述基底选用Ni基合金材料,所述复合绝缘层包括绝缘层及绝缘浸润层;传感器的制备方法包括如下步骤:
    1)预处理:将镍基合金片超声清洗后,烘干,通过磁控溅射机在镍基合金片上沉积一层过渡层;
    2)绝缘层的制备:配置PDC溶液、惰性绝缘粉末的混合溶液,通过维森堡直写工艺,将其直写于步骤1)的过渡层上,加热固化后,在相同温度下进行激光处理,待降至室温后,通过丝网印刷工艺在绝缘层上涂覆第二层混合溶液,再通过加热固化及激光处理形成第二层绝缘层;
    3)绝缘浸润层的制备:配置具有浸润作用的惰性绝缘粉末与PDC溶液的混合液,通过丝网印刷涂覆混合液于步骤2)得到的绝缘层上,加热固化后经过激光热处理,得到绝缘浸润层,以同样的方法制备第二层绝缘浸润层,得到复合绝缘膜层;
    4)敏感栅的制备:配置导电粉末与PDC的混合溶液,通过维森堡直写工艺,将其直写于复合绝缘层上,加热固化后,在相同温度下进行激光处理,得到前驱体陶瓷一体化薄膜应变传感器。
  9. 根据权利要求8所述的一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器,其特征在于,步骤1)中过渡层的厚度为3~10μm。
PCT/CN2022/136072 2021-12-14 2022-12-02 一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器及其制备方法 WO2023109526A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111524535.5A CN114322741A (zh) 2021-12-14 2021-12-14 一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器及其制备方法
CN202111524535.5 2021-12-14

Publications (1)

Publication Number Publication Date
WO2023109526A1 true WO2023109526A1 (zh) 2023-06-22

Family

ID=81050146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136072 WO2023109526A1 (zh) 2021-12-14 2022-12-02 一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器及其制备方法

Country Status (3)

Country Link
US (1) US20230183138A1 (zh)
CN (1) CN114322741A (zh)
WO (1) WO2023109526A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114322741A (zh) * 2021-12-14 2022-04-12 厦门大学 一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器及其制备方法
DE102022110873A1 (de) 2022-05-03 2023-11-09 Tdk Electronics Ag Additives Fertigungsverfahren mit Modifizierung von Teilschichten
CN114974762A (zh) * 2022-05-26 2022-08-30 厦门大学 一种具有线性电阻-温度关系的耐高温陶瓷薄膜热敏电阻
CN117798369B (zh) * 2024-02-29 2024-05-07 中北大学 一种金属基陶瓷传感器及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226860A (ja) * 2005-02-18 2006-08-31 Hitachi Ltd セラミックスセンサおよびその製造方法
JP2012193047A (ja) * 2011-03-14 2012-10-11 Tdk Corp セラミックス前駆体薄膜の製造方法および前駆体溶液
CN110518256A (zh) * 2019-08-06 2019-11-29 大连理工大学 一种利用激光热解快速大量制造优质金属/碳多孔复合材料的方法
CN110954234A (zh) * 2019-12-18 2020-04-03 厦门大学 一种聚合物前驱体陶瓷薄膜rtd及其制备方法
CN114322741A (zh) * 2021-12-14 2022-04-12 厦门大学 一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10153208A1 (de) * 2001-10-27 2003-05-15 Bosch Gmbh Robert Verfahren zur Herstellung eines Sensorelementes und dessen Verwendung
GB0511132D0 (en) * 2005-06-01 2005-07-06 Plastic Logic Ltd Layer-selective laser ablation patterning
CN100580965C (zh) * 2007-12-12 2010-01-13 厦门市三安光电科技有限公司 一种基于复合式低阻缓冲结构的薄膜led芯片器件及其制造方法
CN101593631B (zh) * 2009-06-29 2011-06-15 彩虹集团公司 一种染料敏化太阳能电池模块的制备方法
JP2014192465A (ja) * 2013-03-28 2014-10-06 Fujifilm Corp 電気回路配線基板の製造方法
CN110957294B (zh) * 2019-12-11 2021-11-16 厦门大学 一种薄膜传感器的连接结构及其加工方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226860A (ja) * 2005-02-18 2006-08-31 Hitachi Ltd セラミックスセンサおよびその製造方法
JP2012193047A (ja) * 2011-03-14 2012-10-11 Tdk Corp セラミックス前駆体薄膜の製造方法および前駆体溶液
CN110518256A (zh) * 2019-08-06 2019-11-29 大连理工大学 一种利用激光热解快速大量制造优质金属/碳多孔复合材料的方法
CN110954234A (zh) * 2019-12-18 2020-04-03 厦门大学 一种聚合物前驱体陶瓷薄膜rtd及其制备方法
CN114322741A (zh) * 2021-12-14 2022-04-12 厦门大学 一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI, YALI ET AL.: "High Temperature Thin-Film Temperature Sensor Based on SiBCN", MICRONANOELECTRONIC TECHNOLOGY, vol. 58, no. 9, 15 September 2021 (2021-09-15), pages 789 - 795, XP009547185, ISSN: 1671-4776 *
WANG, GUANGHOU: "Laser Evaporation and Laser Pyrolysis", CLUSTER PHYSICS, 30 November 2003 (2003-11-30), pages 26 - 28, XP009547324 *
ZHOU YINGFENG, CUI ZAIFU, LI XIN, ZHOU PAIDI, LI YALI, CHEN QINNAN, SUN DAOHENG: "Review on High Temperature Thin Film Thermocouple for Aero-Engine", AERONAUTICAL MANUFACTURING TECHNOLOGY, vol. 63, no. 6, 1 January 2020 (2020-01-01), pages 82 - 89, XP093073218, ISSN: 1671-833X, DOI: 10.16080/j.issn1671-833x.2020.06.082 *

Also Published As

Publication number Publication date
US20230183138A1 (en) 2023-06-15
CN114322741A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
WO2023109526A1 (zh) 一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器及其制备方法
JP7034177B2 (ja) 電子パワーモジュールを付加製造によって製作する方法並びに関連する基板及びモジュール
CN105819882B (zh) 一种陶瓷金属复合基板及其制备工艺
CN108790368B (zh) 一种高速列车igbt封装用石墨烯/金属复合材料的制备方法
CN107090275A (zh) 一种高导热的石墨烯/聚酰亚胺复合碳膜及其制备方法
US20110272027A1 (en) Solar photovoltaic devices and methods of making them
TWI375347B (en) Manufacture method of bi-polar plates of fuel cell and bi-polar plates thereof
CN103171207A (zh) 一种热沉材料及其制备方法
JP5934711B2 (ja) 光電池及び光電池の製造方法
CN110769527B (zh) 一种有机高温电热复合膜及制备方法
WO2020199640A1 (zh) 一种多层金属膜及其制备方法
CN110421918A (zh) 一种热管理用石墨膜-Ti层状块体复合材料及其制备方法
TWI715995B (zh) 氟系基板、銅箔基板及印刷電路板
JP2010098035A (ja) 熱電変換素子
WO2020224258A1 (zh) 一种高导热碳膜及其制备方法
KR20120078270A (ko) 저열팽창 복합소재를 이용한 서셉터 및 esc 부품 제조 방법
JP3850956B2 (ja) 放熱性炭素複合板
US9320155B2 (en) Ceramic substrate composite and method for manufacturing ceramic substrate composite
CN113811086B (zh) 一种陶瓷混压电路板的制作方法
CN110718316A (zh) 一种柔性金属铜薄膜的制备方法
CN112724445B (zh) 一种pi/氧化石墨烯/石墨烯复合膜及其制备方法和应用
Ji et al. Investigation of interfacial properties of Cu/AlN composite ceramic substrates derived from copper paste containing TeO2–V2O5–CuO glass frit
CN115831861A (zh) 液态分散剂辅助大面积低压烧结银互连工艺及烧结基板
TWM528253U (zh) 金屬散熱板結構
CN106637110A (zh) 锇膜电阻型原子氧密度传感器芯片的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906276

Country of ref document: EP

Kind code of ref document: A1