WO2020224258A1 - 一种高导热碳膜及其制备方法 - Google Patents

一种高导热碳膜及其制备方法 Download PDF

Info

Publication number
WO2020224258A1
WO2020224258A1 PCT/CN2019/123820 CN2019123820W WO2020224258A1 WO 2020224258 A1 WO2020224258 A1 WO 2020224258A1 CN 2019123820 W CN2019123820 W CN 2019123820W WO 2020224258 A1 WO2020224258 A1 WO 2020224258A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparation
wafer
thermal conductivity
carbon film
film
Prior art date
Application number
PCT/CN2019/123820
Other languages
English (en)
French (fr)
Inventor
张卫红
刘旭
叶怀宇
张国旗
Original Assignee
深圳第三代半导体研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳第三代半导体研究院 filed Critical 深圳第三代半导体研究院
Publication of WO2020224258A1 publication Critical patent/WO2020224258A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene

Definitions

  • the invention relates to the field of thermally conductive materials, in particular to a composite carbon film with high thermal conductivity.
  • the interface material with high thermal conductivity is a very important factor.
  • the high thermal conductivity composite material is an important element for advanced packaging and package cooling of LEDs and power electronics, as described in prior art 1.
  • the polymer matrix composite material is the most common composite material. For example, many conductive silver glues, thermal conductive silica gel pads, etc. are used, and the fillers are mostly high thermal conductivity metal and ceramic particles.
  • graphene has attracted attention for its ultra-high in-plane thermal conductivity, high in-plane electrical conductivity and excellent mechanical properties due to its ballistic transport characteristics.
  • Graphene is a hexagonal honeycomb structure composed of carbon atoms in accordance with the SP2 hybrid orbital, and the thickness is only the diameter of a single carbon atom. Due to its unique two-dimensional structure and excellent crystal quality, graphene has a huge specific surface area (2630m2g-1), electrical conductivity (electron mobility 20000cm2V-1S-1), thermal conductivity (thermal conductivity up to a coefficient of nearly 5300W/ Km), mechanical strength (42N/m) and other aspects have shown very superior unidirectional performance. However, its ultra-high unidirectional properties have always been unable to be effectively used because the graphene monomers are difficult to unify the direction when synthesizing composite materials.
  • a more effective method is to synthesize graphene polymer composites through a series of surface modifications, and then slice them horizontally to form flakes containing vertical graphene (existing technology 5); some are applied when casting colloids
  • a vertical magnetic field is used to obtain a composite thermally conductive adhesive containing vertical graphene thermally conductive filler (Prior Art 6).
  • these synthetic methods are still relatively complicated and expensive, and they are polymer-based composite materials. This patent is purely aimed at the manufacture of composite carbon films.
  • the present invention If the graphene nanosheets made by simple and low-cost methods, such as the method of ball milling graphite (prior art 8), etc., can be used as fillers, the present invention
  • the simple method of synthesizing high thermal conductivity composite carbon film material containing vertically arranged graphene nanosheets is extremely valuable for promotion.
  • the present invention provides a method for preparing a high thermal conductivity carbon film and the prepared carbon film.
  • the method vertically orients graphene nanosheets by a simple method to synthesize high thermal conductivity.
  • Thermally conductive carbon material composite film forming a single carbon composite film.
  • the production process of this method is simple, and because the interface between the substrate and the filler is good, and the low thermal conductivity of the polymer substrate is avoided at the same time, the thermal conductivity of the prepared composite carbon film can be as high as 2000W/km, which is higher than that of most graphites.
  • Thermal conductivity of olefin polymer composite and carbon film are adjustable, the cost is low, and the semiconductor manufacturing process can be matched.
  • the method for preparing a high thermal conductivity carbon film includes the following steps:
  • Step 1 Mix the graphene suspension with a short-chain polymer containing benzene rings to obtain a mixture A;
  • Step 2 Spread the obtained mixture A on the wafer so that the thickness of the mixture A at different positions on the wafer surface is as consistent as possible, thereby forming the film B;
  • Step 3 Dry the wafer covered with film B
  • Step 4 Obtain a high thermal conductivity carbon film C made of graphene with vertical morphology directly grown on the surface of the wafer by means of high temperature cracking.
  • the step one further includes a surface treatment step of performing a surface treatment combined with carbon nanotubes on the graphene suspension.
  • the short-chain polymer in the first step has strong hydrophilicity.
  • the short-chain polymer in the first step is a novolac resin.
  • the mixing in the step one adopts a physical stirring method.
  • the wafer in the second step is a substrate with high temperature resistance and a smooth surface.
  • the mixture A is spread on the wafer by spin coating, and the excess mixture is thrown out of the wafer surface by rotating the wafer, so that the wafer surface is at different positions
  • the thickness of the mixture is as consistent as possible.
  • the high-temperature cracking method in the step 4 is a vacuum conduction heating cracking method; other special high-temperature cracking methods can also be used, but the heating atmosphere needs to be vacuum or oxygen-free.
  • the thickness of the film B formed in the second step is less than 10um.
  • the present invention also provides a high thermal conductivity carbon film prepared by the above preparation method.
  • the present invention uses a simple material production method, adopts a simple and low-cost preparation method, realizes large-scale production, can match the semiconductor manufacturing process, and can manufacture battery electrodes with high reversible capacity (according to prior art 9 and prior art 10, it is estimated that reversible The capacity is much higher than 700mAh/g), and it can also provide wafers for the production of carbon-based biosensors.
  • the back wafer can be cut thin to make a supported high thermal conductivity film, or an independent high thermal conductivity carbon film, such as If required, a thicker carbon film can be superimposed by a hot pressing method, and a polymer-based composite film containing a thermally conductive carbon film can also be derived, and a thermally conductive carbon film with protective properties for the substrate can also be obtained instead of other precious materials.
  • the invention utilizes vacuum oxygen-free high-temperature cracking technology to form a carbon film on the back of the wafer.
  • the carbon film produced by the method of the present invention has adjustable mechanical properties and characteristics such as density. For example, parameters such as hardness, elastic modulus, and stiffness can be adjusted according to the parameters of the high temperature cracking process.
  • the interface between the substrate and the filler of the same carbon element is good, which improves the mechanical and thermal conductivity of the composite film, and at the same time separates the relatively low thermal conductivity of the substrate in the polymer composite material.
  • Figure 1 is a flow chart of the preparation method of the present invention.
  • Figure 2(a) is a schematic diagram of step one of the preparation method of the present invention.
  • Figure 2(b) is a schematic diagram of step 2 of the preparation method of the present invention.
  • Figure 2(c) is a schematic diagram of steps three and four of the preparation method of the present invention.
  • Figures 3(a) and 3(b) are schematic diagrams of carbon films prepared by the method of the present invention.
  • Figure 4(a) is a schematic diagram of the carbon film growth method.
  • Figure 4(b) is a schematic diagram of the grown carbon film.
  • the preparation method of the high thermal conductivity carbon film of the present invention includes the following steps:
  • the graphene suspension is mixed with a short-chain polymer containing a benzene ring with strong hydrophilicity (such as a linear phenolic resin such as AZ positive photoresist) through physical stirring to obtain a mixture A.
  • a short-chain polymer containing a benzene ring with strong hydrophilicity such as a linear phenolic resin such as AZ positive photoresist
  • the mixing method is shown in Figure 2(a).
  • the graphene suspension may also be subjected to surface treatment combined with carbon nanotubes, or without surface treatment.
  • step S102 Spread the mixture A obtained in step S101 on the wafer by spin coating, similar to the coating form of semiconductor photoresist, and spin the wafer to spin the excess mixture A out of the wafer surface, and make The thickness of the mixture at different positions on the wafer surface is as consistent as possible to form film B, such as a film with a thickness of less than 10um.
  • the spin coating method is shown in Figure 2(b).
  • the wafer can also be replaced with other high-temperature resistant and smooth surface substrates instead of silicon (Si), such as ceramic substrates, but ordinary glass substrates are not suitable for use because they are not resistant to high temperatures of 800°C.
  • step S103 drying the wafer coated with film B obtained in step S102.
  • the cracking temperature of vacuum high-temperature cracking is generally controlled at about 1000°C, the time is one hour, and the vacuum degree is about 10 -5 torr.
  • the temperature and time can also be adjusted up and down according to the requirements of carbon film material performance; during cracking, the vacuum atmosphere is guaranteed Cracking quality and reducing the mixing of impurities, while obtaining a dense carbon film; can also use inert gas (for example, Ar, N2, N2/H2 synthesis gas, etc.) according to the needs of low density.
  • Pyrolysis is not limited to traditional conductive heating technology. Before the high temperature, one hour of low temperature dehydration treatment can be added as needed, and the temperature is about 250 °C.
  • the structure of the carbon film formed by the above steps is as follows:
  • the carbon film has a vertical morphology section as shown by the scanning electron microscope SEM, in which most of the benzene ring molecular chains are perpendicular or close to the surface, as shown in Figure 3(b).
  • SEM scanning electron microscope
  • the ene surface will grow along the gap slits of the benzene ring molecular chain, as shown in Figure 4(a), which is a new growth method.
  • the finally grown carbon film is shown in Figure 4(b).
  • the carbon film can be used in various forms:
  • the film can be peeled off to form a thin carbon film through special treatment of the substrate, for example, a carbon film with a thickness of less than 5um;
  • the carbon film can also be combined with a high polymer to form a preform or cured film containing a single-layer or multi-layer carbon film;
  • the substrate can also be directly thinned to form a composite film supported by the substrate;
  • the thermal conductivity of the carbon film is greatly improved, thereby solving the problem of thermal management during chip operation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种高导热碳膜及其制备方法,包括如下步骤:步骤一,将石墨烯悬浮液与具有强亲水性的含有苯环的短链聚合物通过物理搅拌方式混合;步骤二,将步骤一得到的混合物通过旋涂方式铺在晶圆上而形成薄膜;步骤三,将步骤二中得到的薄膜烘干后在真空环境中通过高温裂解的方式获得含有垂直晶圆方向排列的石墨烯的高导热碳膜,该制备方法简单且成本低,提升了碳膜的导热率。

Description

一种高导热碳膜及其制备方法 技术领域
本发明涉及导热材料领域,尤其涉及一种具有高导热性能的复合碳膜。
背景技术
散热是现今的热门话题,是决定现代电子器件是否能满足可靠性和高性能的关键因素。而高导热能力的界面材料是个很重要的因素,高导热复合材料是先进封装和LED及功率电子等的封装冷却的重要元素,如现有技术1所述。高聚物基体的复合材料是最为普遍的一种复合材料,比如很多导电银胶、导热硅胶垫等的使用,其中的填料多为高导热金属和陶瓷颗粒。最近10年,石墨烯以其超高的面内导热、及因弹道输运特性而具有的很高面内导电力和优秀的机械性能引人注目。石墨烯(graphene)是由碳原子按照SP2杂化轨道组成的六角型呈蜂窝状的结构,厚度仅为单层碳原子直径。由于其独特的二维结构以及优异的晶体品质,石墨烯拥有巨大的比表面积(2630m2g-1)、导电性(电子迁移率20000cm2V-1S-1)、导热性(导热系数可达系数近5300W/Km)、机械力学强度(42N/m)等方面均表现出非常优越的单方向性能。然而,它的超高单向特性一直因为无法在合成复合材料时其各石墨烯单体难以统一方向而不能有效地发挥出来,尤其是在垂直于平面的导热率的提升技术是个难点,人们在此投入了大量精力来寻找有效的解决方案。有的是在生产特别垂直生长的石墨烯后,仅能直接做一些个别器件的制造,如现有技术2,也有快速制作大范围垂直取向的石墨烯放电还原装置及方法,如现有技术3和现有技术4,相比于其他垂直生产方法来的快速和省钱。但如何有效地利用这些垂直生长的石墨烯又是个很艰难的任务。那么,能够有效地将生产好的石墨烯纳米片垂直整向再合成复合材料是近年来人们研发的方向(现有技术1)。比较有效的方法是通过一系列表面改性合成出石墨烯高聚物复合材料,然后横向切片形成含竖直石墨烯 的一个个薄片(现有技术5);也有在做流延胶体时候施以垂直磁场来获得含垂直石墨烯导热填料的复合导热胶(现有技术6)。但是,这些合成的方法仍比较复杂和破费,而且是高聚物基复合材料。本专利是单纯针对复合碳膜的制造,有人利用设计孔洞模板,结合多层生长纳米碳基材料方法形成相互穿插的多层纳米碳材料的导热碳复合膜,但此碳膜至少不具有统一的导热方向,导热集中在大致垂直和平行于热流的两个方向或者多个方向,比较分散(现有技术7);由本专利制造的复合碳膜中的石墨烯会获得垂直膜的统一方向,其垂直向导热率会很高(>500~2000W/mK)。目前生产石墨烯的方法和厂家很多,如果能够将以简易低廉方式,例如球磨石墨的方法制作的方式(现有技术8)等,做出的石墨烯纳米片拿来作为填料,以本发明中的简易方法合成含垂直排列石墨烯纳米片的高导热复合碳膜材料就是极有推广前景的价值。
现有技术1:“Microstructure engineering of graphene towards highly thermal conductive composites”Haoming Fang,Shu-lin Bai,Ching Ping Wong,Composites Part A 112(2018)216-238;
现有技术2:WO2012/163130A1;
现有技术3:CN102560437A;
现有技术4:CN101966987B
现有技术5:CN108504016A
现有技术6:CN106928886B
现有技术7:CN105803242B
现有技术8:CN103570004A。
发明内容
为了解决上述问题,充分发挥石墨烯的超高导热性,本发明提供一种高导热碳膜的制备方法及其制备的碳膜,该方法将石墨烯纳米片通过简易方法垂直 取向,合成了高导热碳材料复合膜,形成单一碳元素的复合膜。该方法生产过程简易,并由于基材与填料界面结合性好,同时避免了高聚物基材的低导热率,制备出的复合碳膜导热率可以高达2000W/km以上,高于大多数石墨烯高聚物复合材料和碳膜的导热率。并且由该方法制备出的碳膜机械性能和致密度可调,成本低,可以匹配半导体制程工艺。
为实现上述目的,本发明提供的高导热碳膜的制备方法包括如下步骤:
步骤一,将石墨烯悬浮液与含有苯环的短链聚合物混合,得到混合物A;
步骤二,将得到的混合物A铺在晶圆上,使得晶圆表面不同位置的混合物A厚度尽可能一致,从而形成薄膜B;
步骤三,将覆盖有薄膜B的晶圆烘干;
步骤四,通过高温裂解的方式获得直接生长在晶圆表面的具有垂直形貌的石墨烯构成的高导热碳膜C。
优选地,在所述步骤一之前,还包括表面处理步骤,对所述石墨烯悬浮液进行与碳纳米管联合的表面处理。
优选地,所述步骤一中的所述短链聚合物具有强亲水性。
优选地,所述步骤一中的所述短链聚合物为线性酚醛树脂。
优选地,所述步骤一中的所述混合采用物理搅拌方式。
优选地,所述步骤二中的所述晶圆为耐高温而且表面光滑的基材。
优选地,所述步骤二中,通过旋涂方式将所述混合物A铺在晶圆上,并通过旋转晶圆将多余的混合物甩出所述晶圆表面,从而使得所述晶圆表面不同位置的混合物厚度尽可能一致。
优选地,所述步骤四中的所述高温裂解方式为真空传导加热裂解方式;也可以使用其他特殊高温裂解方式,但加热氛围需要保证真空或者无氧。
优选地,所述步骤二中形成的所述薄膜B厚度小于10um。
另一方面,本发明还提供一种由上述制备方法制备得到的高导热碳膜。
本发明运用简易的材料生产方法,采用简单低成本制备方法,实现了规模 化生产,并可以匹配半导体制程,可制造具有高可逆容量的电池电极(根据现有技术9和现有技术10估计可逆容量远高于700mAh/g),也可为制作碳基的生物传感器等提供晶圆,将背面晶圆剪薄可做成有支撑的高导热膜,也可获得独立的高导热碳膜,如有需求可通过热压方法叠加成较厚的碳膜,还可衍生出含导热碳膜的高聚物基的复合膜,也可获得对基体具有保护性能的导热碳膜,代替其他贵重材料的保护膜。本发明利用真空无氧高温裂解技术在晶圆背面形成碳膜。通过本发明的方法制成的碳膜,机械性能和致密度等特性具有可调性,例如硬度、弹性模量、刚度等参数可根据高温裂解工艺参数进行调整。并且同为碳元素的基材与填料界面结合性好,提升了复合膜的机械和导热性能,同时又脱离了高聚物复合材料中相对低导热率的基材。
现有技术9:T Zheng,Q.Zhang,and J.R.Dahn,J.Electrochem.Soc.142(1995),L211
现有技术10:J.S.Xue and J.R.Dahn,J.Electrochem.Soc.142(1995)3668
附图说明
图1为本发明的制备方法流程图。
图2(a)为本发明的制备方法的步骤一的示意图。
图2(b)为本发明的制备方法的步骤二的示意图。
图2(c)为本发明的制备方法的步骤三和四的示意图。
图3(a)和3(b)为采用本发明的方法制备出的碳膜的示意图。
图4(a)为碳膜生长方式示意图。
图4(b)为生长出的碳膜的示意图。
具体实施方式
为了使本发明的目的、特征和优点更加的清晰,以下结合附图,对本发明的具体实施方式做出更为详细的说明,在下面的描述中,阐述了很多具体的细节以便于充分的理解本发明,但是本发明能够以很多不同于描述的其他方式来实施。因此,本发明不受以下公开的具体实施的限制。
在一优选的实施方式中,如图1所示,本发明的高导热碳膜的制备方法包括以下步骤:
S101,将石墨烯悬浮液与具有强亲水性的含有苯环的短链聚合物(比如AZ正性光刻胶等线性酚醛树脂)通过物理搅拌方式混合,得到混合物A。混合方式如图2(a)所示。在该混合步骤之前,还可以对石墨烯悬浮液进行与碳纳米管联合的表面处理,或者不经过表面处理。
S102,将步骤S101得到的混合物A通过旋涂方式铺在晶圆上,类似于半导体光刻胶的涂覆形式,并通过旋转晶圆将多余的混合物A甩出所述晶圆表面,并使得晶圆表面不同位置的混合物厚度尽可能一致,从而形成薄膜B,比如厚度小于10um厚度的薄膜,旋涂方式如图2(b)所示。其中,晶圆也可以用其他耐高温而且表面光滑的基材替代硅(Si),比如陶瓷基材,但普通玻璃基材由于不耐800℃高温,不宜使用。
S103,将步骤S102中得到的涂覆有薄膜B的晶圆烘干。
S104,烘干后,在真空环境中通过真空高温裂解的方式获得直接生长在晶圆表面的具有含垂直方向的石墨烯高导热碳膜C,如图2(c)所示。
其中,真空高温裂解的裂解温度一般控制在1000℃左右,时间为一个小时,真空度大约为10 -5torr,温度和时间还可以根据碳膜材料性能的需求上下调整;裂解时,真空气氛保证裂解质量和减少杂质混入,同时可获得致密碳膜;也可以根据低密度等需求使用惰性气体(比如,Ar,N2,N2/H2合成气体等)。高温裂解不局限于传统传导加热技术。高温前,可以根据需要加上一个小时的低温脱水处理,温度大约在250℃。
通过上述步骤形成的碳膜结构如下:
如图3(a)所示,该碳膜具有扫描电子显微镜SEM所显示的垂直形貌的断面,其中大部分苯环分子链垂直或者接近垂直于表面,如图3(b)所示,石墨烯面会沿着苯环分子链的间隙狭缝生长出来,如图4(a)所示,这是一种全新的生长方式。最后生长出的碳膜如图4(b)所示。
通过上述步骤形成碳膜后,该碳膜可以有多种使用形式:
1)通过基材特殊处理可以将所述薄膜剥离出来形成薄层碳膜,例如碳膜厚度小于5um的碳膜;
2)根据厚度需求,多个薄层碳膜可以高温压接形成较厚的碳膜;
3)该碳膜也可以与高聚物一起形成含单层或者多层碳膜的预制品或者固化膜;
4)也可以将基材直接减薄,从而形成有基材支撑的复合膜;
5)也可以作为生长在某种基材上作为保护基材的高导热碳膜;
6)还可以在未碳化前用光刻工艺形成图案,碳化后做成碳基传感器;
7)还可用此制备具有高可逆容量的锂电池的活性电极。
通过上述制备方法,极大地提升了该碳膜的导热率,从而解决了芯片工作时的热管理问题。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种高导热碳膜的制备方法,包括如下步骤:
    步骤一,将石墨烯悬浮液与含有苯环的短链聚合物混合,得到混合物A;
    步骤二,将得到的混合物A铺在晶圆上,使得晶圆表面不同位置的混合物A厚度尽可能一致,从而形成薄膜B;
    步骤三,将覆盖有薄膜B的晶圆烘干;
    步骤四,通过高温裂解的方式获得直接生长在晶圆表面的具有垂直形貌的石墨烯构成的高导热碳膜C。
  2. 如权利要求1所述的制备方法,其特征在于,在所述步骤一之前,还包括表面处理步骤,对所述石墨烯悬浮液进行与碳纳米管联合的表面处理。
  3. 如权利要求1所述的制备方法,其特征在于,所述步骤一中的所述短链聚合物具有强亲水性。
  4. 如权利要求3所述的制备方法,其特征在于,所述步骤一中的所述短链聚合物为线性酚醛树脂。
  5. 如权利要求1所述的制备方法,其特征在于,所述步骤一中的所述混合采用物理搅拌方式。
  6. 如权利要求1所述的制备方法,其特征在于,所述步骤二中的所述晶圆为耐高温而且表面光滑的基材。
  7. 如权利要求1所述的制备方法,其特征在于,所述步骤二中,通过旋涂方式将所述混合物A铺在晶圆上,并通过旋转晶圆将多余的混合物甩出所述晶圆表面,从而使得所述晶圆表面不同位置的混合物厚度尽可能一致。
  8. 如权利要求1所述的制备方法,其特征在于,所述步骤四中的所述高温裂解方式为传导加热裂解方式。
  9. 如权利要求1-8任一项所述的制备方法,其特征在于,所述步骤二中形成的所述薄膜B厚度小于10um。
  10. 一种高导热碳膜,由权利要求1-9中任一项所述的制备方法制备得到。
PCT/CN2019/123820 2019-05-05 2019-12-06 一种高导热碳膜及其制备方法 WO2020224258A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910366457.7 2019-05-05
CN201910366457.7A CN110002427B (zh) 2019-05-05 2019-05-05 一种高导热碳膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2020224258A1 true WO2020224258A1 (zh) 2020-11-12

Family

ID=67175607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123820 WO2020224258A1 (zh) 2019-05-05 2019-12-06 一种高导热碳膜及其制备方法

Country Status (2)

Country Link
CN (1) CN110002427B (zh)
WO (1) WO2020224258A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110002427B (zh) * 2019-05-05 2020-11-17 深圳第三代半导体研究院 一种高导热碳膜及其制备方法
CN110511029A (zh) * 2019-09-10 2019-11-29 北京中石伟业科技无锡有限公司 一种无粘结剂氧化石墨烯制备高取向性石墨块体的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101474898A (zh) * 2009-01-16 2009-07-08 南开大学 基于石墨烯的导电碳膜及制备方法和应用
CN103021503A (zh) * 2011-09-26 2013-04-03 国家纳米科学中心 一种石墨烯-炭纳米复合透明导电薄膜及其制备方法
CN104592950A (zh) * 2014-12-26 2015-05-06 苏州格瑞丰纳米科技有限公司 高导热石墨烯基聚合物导热膜及其制备方法
CN104900883A (zh) * 2015-06-19 2015-09-09 中国第一汽车股份有限公司 一种电极用导电剂的制备方法
US20150266739A1 (en) * 2014-03-20 2015-09-24 Aruna Zhamu Production process for highly conductive graphitic films
KR101691594B1 (ko) * 2016-03-30 2016-12-30 짱신 금속-그래핀 카본 열전도막 및 이의 제조방법
CN106378984A (zh) * 2016-08-29 2017-02-08 上海复合材料科技有限公司 轻质柔性高导热纳米碳复合膜及其制备方法
CN106928784A (zh) * 2015-12-31 2017-07-07 安炬科技股份有限公司 透明抗静电膜
CN110002427A (zh) * 2019-05-05 2019-07-12 深圳第三代半导体研究院 一种高导热碳膜及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8535553B2 (en) * 2008-04-14 2013-09-17 Massachusetts Institute Of Technology Large-area single- and few-layer graphene on arbitrary substrates
CN104477889A (zh) * 2014-12-03 2015-04-01 连丽君 一种于硅基片上直接生长石墨烯膜的方法
CN104609405B (zh) * 2015-01-09 2017-03-15 上海大学 一种竖直阵列石墨烯薄膜的制备方法
CN108504016A (zh) * 2016-06-14 2018-09-07 络派模切(北京)有限公司 一种导热垫片及其制备方法
CN108666381B (zh) * 2018-05-09 2020-08-25 深圳大学 一种异质结光电传感器及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101474898A (zh) * 2009-01-16 2009-07-08 南开大学 基于石墨烯的导电碳膜及制备方法和应用
CN103021503A (zh) * 2011-09-26 2013-04-03 国家纳米科学中心 一种石墨烯-炭纳米复合透明导电薄膜及其制备方法
US20150266739A1 (en) * 2014-03-20 2015-09-24 Aruna Zhamu Production process for highly conductive graphitic films
CN104592950A (zh) * 2014-12-26 2015-05-06 苏州格瑞丰纳米科技有限公司 高导热石墨烯基聚合物导热膜及其制备方法
CN104900883A (zh) * 2015-06-19 2015-09-09 中国第一汽车股份有限公司 一种电极用导电剂的制备方法
CN106928784A (zh) * 2015-12-31 2017-07-07 安炬科技股份有限公司 透明抗静电膜
KR101691594B1 (ko) * 2016-03-30 2016-12-30 짱신 금속-그래핀 카본 열전도막 및 이의 제조방법
CN106378984A (zh) * 2016-08-29 2017-02-08 上海复合材料科技有限公司 轻质柔性高导热纳米碳复合膜及其制备方法
CN110002427A (zh) * 2019-05-05 2019-07-12 深圳第三代半导体研究院 一种高导热碳膜及其制备方法

Also Published As

Publication number Publication date
CN110002427B (zh) 2020-11-17
CN110002427A (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
JP3535564B2 (ja) ダイヤモンド/炭素/炭素複合体
CN109956466B (zh) 一种兼具面内方向和厚度方向高热导率的石墨烯基复合膜及其制备方法
JP6814267B2 (ja) グラファイトシート、高熱伝導性放熱基板、及びグラファイトシートの製造方法
WO2020224258A1 (zh) 一种高导热碳膜及其制备方法
CN104029461A (zh) 一种石墨烯/碳纳米管/石墨膜复合材料及其制备方法
CN1891780A (zh) 热界面材料及其制备方法
CN109874344A (zh) 离子束用的电荷转换膜
CN110626030B (zh) 一种高导热聚酰亚胺多层复合薄膜及其制备方法
JP2020502032A (ja) 大口径炭化ケイ素単結晶インゴットの成長方法
US9327981B2 (en) Method for producing thin graphene nanoplatelets and precusor thereof
CN104692364B (zh) 一种液氮冷淬制备超分散石墨烯的方法
CN111017920A (zh) 一种高导热石墨膜及其制备方法和应用
CN106083046A (zh) 一种石墨烯/聚酰亚胺共聚导热膜的制备方法
CN106883828B (zh) 基于图形化碳纳米管阵列的复合型界面散热材料的制备方法
US11535567B2 (en) Polyimide-based composite carbon film with high thermal conductivity and preparation method therefor
JP5905766B2 (ja) 黒鉛薄膜およびその製造方法
Ping et al. Surface-restrained growth of vertically aligned carbon nanotube arrays with excellent thermal transport performance
CN108486568B (zh) 一种用于导热的大鳞片石墨烯/金属异质结复合薄膜及其制备方法
CN110527190B (zh) 一种聚合物基导热界面材料及其制备方法
TWI331132B (en) Method of fabricating thermal interface material
CN104637898B (zh) 集成电路器件的导热复合材料层及电子器件导热结构封装方法
JPH11317228A (ja) リチウムイオン二次電池用負極材およびその製造方法
Jiang et al. Bending TIPS-pentacene single crystals: from morphology to transistor performance
KR20140075845A (ko) 그래핀을 이용한 수퍼커패시터 전극 및 이의 제조방법
CN106191781B (zh) 一种高导热高散热柔性石墨材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928045

Country of ref document: EP

Kind code of ref document: A1