CN114322741A - 一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器及其制备方法 - Google Patents

一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器及其制备方法 Download PDF

Info

Publication number
CN114322741A
CN114322741A CN202111524535.5A CN202111524535A CN114322741A CN 114322741 A CN114322741 A CN 114322741A CN 202111524535 A CN202111524535 A CN 202111524535A CN 114322741 A CN114322741 A CN 114322741A
Authority
CN
China
Prior art keywords
layer
insulating
pdc
composite
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111524535.5A
Other languages
English (en)
Inventor
孙道恒
海振银
徐礼达
李兰兰
崔在甫
武超
陈国淳
李鑫
陈沁楠
何功汉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN202111524535.5A priority Critical patent/CN114322741A/zh
Publication of CN114322741A publication Critical patent/CN114322741A/zh
Priority to PCT/CN2022/136072 priority patent/WO2023109526A1/zh
Priority to US18/063,662 priority patent/US20230183138A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/524Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from polymer precursors, e.g. glass-like carbon material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
    • G01L1/2293Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges of the semi-conductor type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6267Pyrolysis, carbonisation or auto-combustion reactions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0036Laser treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4535Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied as a solution, emulsion, dispersion or suspension
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/455Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application the coating or impregnating process including a chemical conversion or reaction
    • C04B41/4554Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application the coating or impregnating process including a chemical conversion or reaction the coating or impregnating material being an organic or organo-metallic precursor of an inorganic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4572Partial coating or impregnation of the surface of the substrate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/005Measuring force or stress, in general by electrical means and not provided for in G01L1/06 - G01L1/22
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/665Local sintering, e.g. laser sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Optics & Photonics (AREA)
  • Dispersion Chemistry (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

本发明公开了一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器及其制备方法,以金属构件或绝缘材料作为基底,针对金属构件表面通过逐层激光热解增材技术形成高致密性、高绝缘性以及抗高温的PDC掺杂的复合绝缘膜层,并在复合绝缘膜层上通过维森堡直写PDC掺杂填料的敏感栅,经激光热解增强PDC石墨化的方法获得优良导电性能的应变敏感层,从而开创以PDC材料为基础的高绝缘膜层和优良导电性能的敏感栅与金属基底的激光原位增材一体化制造,实现了PDC复合材料从“液‑固‑功能”转变的激光工艺流程,并成功将其应用于金属材料应变传感。

Description

一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器及 其制备方法
技术领域
本发明属于传感器技术领域,特别涉及一种激光热解复合增材制造一体化前驱体陶瓷(PDC)薄膜传感器及其制备方法。
背景技术
随着航空、航天技术的发展,对高温服役环境的智能化监测提出了越来越高的要求,前驱体陶瓷(PDC)材料是一类新型的高温陶瓷,由于具有优异的高温热稳定性、抗氧化性和抗蠕变性能,且在1700℃以下保持无定形态,具有半导体特性,被认为是良好的高温传感材料。很多研究人员将其用于高温领域的温度、应变以及热流等物理量的监测。
与传统的传感器相比,薄膜传感器具有尺寸小(厚度为μm量级)、可以原位制造加工,对测试环境影响较小等优点,在航空、航天等领域的异型精密结构部件参量测试技术领域具有广阔的应用前景。目前,制作前驱体陶瓷薄膜传感器的相关文献较少。公开的在审的发明专利主要是(一种聚合物前驱体陶瓷薄膜RTD及其制备方法,申请号201911309009.X)应用聚合物前驱体制作传感器,主要流程是聚合前驱体经过交联、固化、高温热解(800℃以上)陶瓷化,从而实现导电敏感元件的制作。
要实现PDC薄膜传感器更为高效、便捷、广泛的实际应用需求,开发高效、灵活、以及对基底材料热损伤小的制备工艺,实现高绝缘膜层和优良导电性能的敏感栅与基底一体化制造技术是其在异型精密结构部件参量测试技术领域实现原位传感功能的关键问题。
发明内容
为解决上述问题,本发明提出了一种激光热解复合增材制造一体化前驱体陶瓷(PDC)薄膜传感器及其制备方法。
为了实现上述目的,本发明采用了如下技术方案:
一种激光热解复合增材制造一体化前驱体陶瓷(PDC)薄膜传感器,其包括基底和敏感栅,所述敏感栅经过激光热解并熔融于基底上;
所述敏感栅厚度为10~20μm。
优选的,所述基底由绝缘材料组成;绝缘材料选用氧化铝;传感器的制备方法包括如下步骤:
1)预处理:将氧化铝绝缘基底超声清洗后,烘干;
2)敏感栅的制备:配置导电填料与PDC溶液的混合溶液,通过维森堡直写工艺,将其直写于步骤1)的氧化铝绝缘基底上,加热固化后,在相同温度下进行激光热解处理,经过光热作用,促使PDC有机物转化为陶瓷,同时增强了碳的石墨化的程度,形成导电良好的敏感栅,因此制备出前驱体陶瓷绝缘基应变传感器。
优选的,所述基层由依次设置的基底、过渡层及复合绝缘层组成;所述传感器由下而上依次为基底、过渡层、复合绝缘层以及敏感栅,所述复合绝缘层的厚度为50~200μm,所述基底为金属材料。
所述传感器的复合绝缘层和敏感栅均基于PDC材料,所述复合绝缘层是由PDC掺杂惰性绝缘粉末和PDC掺杂惰性绝缘浸润作用的粉末构成,所述敏感栅是由PDC掺杂导电粉末构成。
进一步的,所述基底选用Ni基合金材料,所述复合绝缘层包括绝缘层及绝缘浸润层;传感器的制备方法包括如下步骤:
1)预处理:将镍基合金片超声清洗后,烘干,接着通过磁控溅射机在镍基合金片上沉积一层过渡层(应用温度高于600℃);
其中,过渡层的厚度为3~10μm。
2)绝缘层的制备:配置PDC溶液、惰性绝缘粉末的混合溶液,通过维森堡直写工艺,将其直写于步骤1)的过渡层上,加热固化后,在相同温度下进行激光处理,由于光热作用实现有机物质到无机陶瓷的转变,为激光热解的过程。待降至室温后,通过丝网印刷工艺在绝缘层上涂覆第二层混合溶液,再通过相同步骤加热固化及激光处理形成第二层绝缘层,也即实现了激光原位增材制造;
上述PDC与绝缘粉末的混合溶液,需要考虑绝缘粉末和过渡层相接近的膨胀系数以及良好的绝缘性能,掺杂少量绝缘浸润粉末主要是由于其熔点相对较低能够实现熔融浸润的目的。
3)绝缘浸润层的制备:配置具有绝缘浸润作用的微米粉末与PDC溶液的混合液,通过丝网印刷涂覆混合液于步骤2)得到的绝缘层上,加热固化后经过多次激光扫描热处理,使得粉末多次产生熔融,膜层表面重新调整,减少了表面粗糙度,增强了其浸润填充的效果,得到较为致密的绝缘浸润层,以同样的方法制备第二层绝缘浸润层,从而形成致密的熔融浸润层,用于填充薄膜可能存在的裂纹、孔隙等缺陷,实现较高的绝缘性能,得到复合绝缘膜层;
4)敏感栅的制备:配置导电粉末与PDC的混合溶液,通过维森堡直写平台实现薄膜化以及图案化工艺,将其直写于复合绝缘层上。加热固化后,在相同温度下进行激光处理,得到前驱体陶瓷一体化薄膜应变传感器。
上述制得的一种激光热解复合增材制造一体化前驱体陶瓷(PDC)薄膜传感器及其制备方法可应用于金属材料应变传感。
本发明的有益效果在于:
1、本发明中导电敏感层通过PDC掺杂导电粉末,一方面可以增加其导电性能,另一方面减少热处理过程中产生过大的温度梯度造成开裂等现象。热处理过程相对简单,经过激光扫描处理,增强了PDC有机物陶瓷化以及石墨化的转变,这是由于非金属材料二氧化碳激光吸收率较高,能够在材料吸收的近表面瞬间产生2000℃以上的高温,而对于金属基底的吸收率较低,从而减少了对基底的影响,同时还可通过调整激光参数对其导电性能进行调控,因此得到高效、灵活以及对基底材料热损伤小的导电敏感层薄膜的制备工艺。
2、本发明中复合绝缘层主要是通过多层膜结构组成,PDC在这里的主要作用是起到粘结剂的作用,与具有绝缘性能的微米粉末或是起到浸润绝缘作用的微米粉末形成混合的溶液,然后经过直写工艺或是丝网印刷工艺,制作需求尺寸的绝缘层。最后经过交联固化,激光处理获得所需要的绝缘层。虽然激光增强了PDC发生石墨化转变,但是由于混合溶液中绝缘性质的粉末占据主导地位,且需要经过多次的激光处理在空气环境下,不仅仅实现了更好的熔覆浸润作用,且多次激光热处理产生了脱碳的效果,因此膜层难以形成导电网络和通道。复合膜层的多层结构也起到“层层设防”的作用,从而通过激光热解复合增材制造出绝缘性能较高的复合绝缘膜层。
3.本发明中将金属构件直接作为基底,在沉积了过渡层的金属构件上通过维森堡直写和丝网印刷工艺结合激光热解增材,逐层沉积形成高绝缘,高致密性、耐高温的复合绝缘膜层。在此基础上通过直写图案化工艺,将敏感栅直写在复合绝缘膜层上,经过激光热解增强PDC石墨化,在敏感栅中形成导电通道。从而实现高绝缘膜层和优良导电性能的敏感栅与金属基底原位一体化制造技术,在异型精密结构部件参量测试技术领域实现原位传感功能以及高温等环境的监测起到关键作用。
附图说明
图1为实施例1中激光热解复合增材制造一体化前驱体陶瓷应变薄膜传感器的制作流程示意图。
图2为实施例2中激光热解复合增材制造一体化前驱体陶瓷应变薄膜传感器的制作流程示意图。
图3为实施例2中复合绝缘层的膜层结构示意图。
图4为实施例2中一体化薄膜应变传感器的结构图。
图5为敏感栅经过激光处理后的AFM图。
图6为实施例2中一体化薄膜应变传感器的应变信号测试图。
图中:1为镍基合金基底、2PDC复合绝缘膜层、3为PDC敏感栅、4敏感栅电极。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本实例中提供一种以激光热解复合增材制造前驱体陶瓷绝缘基应变传感器,由下而上依次为绝缘基底、应变敏感栅,敏感栅厚度介于10~20μm。
上述激光诱导复合熔覆前驱体陶瓷绝缘基应变传感器的具体制备过程如图1所示,具体包括如下步骤:
1)预处理:首先将氧化铝基底经过超声清洗20~60min,并在干燥箱中干燥后,取出。
2)敏感栅的制备:配置导电粉末以及PDC的混合溶液,利用维森堡直写工艺,将其直写于步骤1)的绝缘基底上,经过固化20分钟后,进行激光处理,通过激光热解增强实现了有机物材料石墨化的转变,从AFM可以看出产生了石墨这种物质,如图5所示。
从而制备得所述的前驱体陶瓷绝缘基应变传感器。
实施例2
本实例中提供一种激光热解复合增材制造一体化前驱体陶瓷应变薄膜传感器,由下而上依次为镍基合金基底、复合绝缘层、应变敏感栅,其中复合绝缘层厚度为50~200μm,敏感栅厚度介于10~20μm。
上述前驱体陶瓷一体化应变传感器的具体制备过程如图2所示,具体如下所述:
1)预处理:将镍基合金片经过超声清洗20~60min,并在干燥箱中干燥后,通过磁控溅射机在镍基合金片上溅射沉积一层3~10μm的过渡层。
2)绝缘层的制备:配置PDC溶液、绝缘粉末与浸润作用的绝缘粉末混合溶液,在磁力搅拌台中搅拌1个小时后取出备用;利用维森堡直写工艺,精确控制绝缘层的大小,经过固化20~60min后,进行激光处理,等待其自然降至室温,利用丝网印刷技术在绝缘层上涂覆第二层同样的混合溶液,同样经过固化交联后经过相同的激光参数进行处理。
3)绝缘浸润层的制备:配置绝缘浸润粉末与PDC溶液的混合液,经过磁力搅拌1~2小时后取出,同样用丝网印刷涂覆混合液于步骤2)得到的绝缘层上,固化后经过激光扫描热处理,得到较为致密的浸润层,以同样的方法和参数制作第二层绝缘浸润层,最终得到如图3所示的复合绝缘膜层。
4)敏感栅的制备:配置导电粉末以及PDC的混合溶液,利用维森堡直写工艺,将其直写于步骤2)和3)制备的复合绝缘层上,经过固化20分钟后,进行激光处理,通过激光热解增强了有机物到石墨化的转变,从AFM可以看出产生了石墨这种物质,如图5所示。
5)薄膜应变传感器的焊点和引线制作:通过商业化的石墨烯导电胶水将铂丝导线粘连在敏感栅的两个焊点上,静置5~12小时后,经过2小时120~150℃的加热处理,得到较为牢固的引线与焊点的接触。
从而制备得所述的前驱体陶瓷一体化薄膜应变传感器,如图4所示。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (9)

1.一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器,其特征在于,传感器包括基层和敏感栅,所述敏感栅经过激光热解原位制备于基底上;
所述敏感栅厚度为10~20μm。
2.根据权利要求1所述的一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器,其特征在于,所述基层由依次设置的基底、过渡层及复合绝缘层组成。
3.根据权利要求1所述的一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器,其特征在于,所述基层由绝缘材料组成。
4.根据权利要求2所述的一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器,其特征在于,所述传感器由下而上依次为基底、过渡层、复合绝缘层以及敏感栅,所述复合绝缘层的厚度为50um~200um,所述基底为金属材料。
5.根据权利要求4所述的一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器,其特征在于,所述传感器的复合绝缘层和敏感栅均基于PDC材料,所述复合绝缘层是由PDC掺杂惰性绝缘填料构成,所述敏感栅是由PDC掺杂导电填料构成。
6.根据权利要求3所述的一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器,传感器的制备方法包括如下步骤:
1)预处理:将氧化铝绝缘基底超声清洗后,烘干;
2)敏感栅的制备:配置导电填料与PDC溶液的混合溶液,通过维森堡直写工艺,将其直写于步骤1)的氧化铝绝缘基底上,加热固化后,在相同温度下进行激光处理,制备得前驱体陶瓷绝缘基应变传感器。
7.根据权利要求6所述的一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器,其特征在于,混合溶液中为导电填料、PDC组成。
8.根据权利要求5所述的一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器,其特征在于,所述基底选用Ni基合金材料,所述复合绝缘层包括绝缘层及绝缘浸润层;传感器的制备方法包括如下步骤:
1)预处理:将镍基合金片超声清洗后,烘干,通过磁控溅射机在镍基合金片上沉积一层过渡层;
2)绝缘层的制备:配置PDC溶液、惰性绝缘粉末的混合溶液,通过维森堡直写工艺,将其直写于步骤1)的过渡层上,加热固化后,在相同温度下进行激光处理,待降至室温后,通过丝网印刷工艺在绝缘层上涂覆第二层混合溶液,再通过加热固化及激光处理形成第二层绝缘层;
3)绝缘浸润层的制备:配置具有浸润作用的惰性绝缘粉末与PDC溶液的混合液,通过丝网印刷涂覆混合液于步骤2)得到的绝缘层上,加热固化后经过激光热处理,得到绝缘浸润层,以同样的方法制备第二层绝缘浸润层,得到复合绝缘膜层;
4)敏感栅的制备:配置导电粉末与PDC的混合溶液,通过维森堡直写工艺,将其直写于复合绝缘层上,加热固化后,在相同温度下进行激光处理,得到前驱体陶瓷一体化薄膜应变传感器。
9.根据权利要求8所述的一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器,其特征在于,步骤1)中过渡层的厚度为3~10μm。
CN202111524535.5A 2021-12-14 2021-12-14 一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器及其制备方法 Pending CN114322741A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202111524535.5A CN114322741A (zh) 2021-12-14 2021-12-14 一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器及其制备方法
PCT/CN2022/136072 WO2023109526A1 (zh) 2021-12-14 2022-12-02 一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器及其制备方法
US18/063,662 US20230183138A1 (en) 2021-12-14 2022-12-08 Integrated polymer-derived ceramic thin-film sensor produced by layser pyrolysis and additive manufacturing and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111524535.5A CN114322741A (zh) 2021-12-14 2021-12-14 一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器及其制备方法

Publications (1)

Publication Number Publication Date
CN114322741A true CN114322741A (zh) 2022-04-12

Family

ID=81050146

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111524535.5A Pending CN114322741A (zh) 2021-12-14 2021-12-14 一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器及其制备方法

Country Status (3)

Country Link
US (1) US20230183138A1 (zh)
CN (1) CN114322741A (zh)
WO (1) WO2023109526A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114974762A (zh) * 2022-05-26 2022-08-30 厦门大学 一种具有线性电阻-温度关系的耐高温陶瓷薄膜热敏电阻
WO2023109526A1 (zh) * 2021-12-14 2023-06-22 厦门大学 一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器及其制备方法
WO2023213625A1 (de) 2022-05-03 2023-11-09 Tdk Electronics Ag Additives fertigungsverfahren mit modifizierung von teilschichten

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117798369B (zh) * 2024-02-29 2024-05-07 中北大学 一种金属基陶瓷传感器及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1308705A1 (de) * 2001-10-27 2003-05-07 Robert Bosch Gmbh Verfahren zur Herstellung eines Sensorelementes und dessen Verwendung
CN101241963A (zh) * 2007-12-12 2008-08-13 厦门三安电子有限公司 一种基于复合式低阻缓冲结构的薄膜led芯片器件及其制造方法
CN101593631A (zh) * 2009-06-29 2009-12-02 彩虹集团公司 一种染料敏化太阳能电池模块的制备方法
CN101669224A (zh) * 2005-06-01 2010-03-10 造型逻辑有限公司 层选择性激光切除构图
JP2014192465A (ja) * 2013-03-28 2014-10-06 Fujifilm Corp 電気回路配線基板の製造方法
CN110957294A (zh) * 2019-12-11 2020-04-03 厦门大学 一种薄膜传感器的连接结构及其加工方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226860A (ja) * 2005-02-18 2006-08-31 Hitachi Ltd セラミックスセンサおよびその製造方法
JP2012193047A (ja) * 2011-03-14 2012-10-11 Tdk Corp セラミックス前駆体薄膜の製造方法および前駆体溶液
CN110518256A (zh) * 2019-08-06 2019-11-29 大连理工大学 一种利用激光热解快速大量制造优质金属/碳多孔复合材料的方法
CN110954234A (zh) * 2019-12-18 2020-04-03 厦门大学 一种聚合物前驱体陶瓷薄膜rtd及其制备方法
CN114322741A (zh) * 2021-12-14 2022-04-12 厦门大学 一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1308705A1 (de) * 2001-10-27 2003-05-07 Robert Bosch Gmbh Verfahren zur Herstellung eines Sensorelementes und dessen Verwendung
CN101669224A (zh) * 2005-06-01 2010-03-10 造型逻辑有限公司 层选择性激光切除构图
CN101241963A (zh) * 2007-12-12 2008-08-13 厦门三安电子有限公司 一种基于复合式低阻缓冲结构的薄膜led芯片器件及其制造方法
CN101593631A (zh) * 2009-06-29 2009-12-02 彩虹集团公司 一种染料敏化太阳能电池模块的制备方法
JP2014192465A (ja) * 2013-03-28 2014-10-06 Fujifilm Corp 電気回路配線基板の製造方法
CN110957294A (zh) * 2019-12-11 2020-04-03 厦门大学 一种薄膜传感器的连接结构及其加工方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
周颖锋 等: "航空发动机高温薄膜热电偶研究概况", 《航空制造技术》 *
李雅莉 等: "SiBCN高温薄膜温度传感器", 《微纳电子技术》 *
王广厚 等: "《团簇物理学》", 30 November 2003, 上海科学技术出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023109526A1 (zh) * 2021-12-14 2023-06-22 厦门大学 一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器及其制备方法
WO2023213625A1 (de) 2022-05-03 2023-11-09 Tdk Electronics Ag Additives fertigungsverfahren mit modifizierung von teilschichten
CN114974762A (zh) * 2022-05-26 2022-08-30 厦门大学 一种具有线性电阻-温度关系的耐高温陶瓷薄膜热敏电阻

Also Published As

Publication number Publication date
WO2023109526A1 (zh) 2023-06-22
US20230183138A1 (en) 2023-06-15

Similar Documents

Publication Publication Date Title
CN114322741A (zh) 一种激光热解复合增材制造一体化前驱体陶瓷薄膜传感器及其制备方法
JP4704899B2 (ja) 熱伝導材料の製造方法
JP4653029B2 (ja) 熱伝導材料及びその製造方法
Chung Performance of thermal interface materials
CN105819882B (zh) 一种陶瓷金属复合基板及其制备工艺
Li et al. Highly stable copper wire/alumina/polyimide composite films for stretchable and transparent heaters
Sakamoto et al. Thermal fatigue of Ag flake sintering die-attachment for Si/SiC power devices
US8715536B2 (en) Conductive material formed using light or thermal energy, method for forming the same and nano-scale composition
CN108790368B (zh) 一种高速列车igbt封装用石墨烯/金属复合材料的制备方法
Wu et al. High-temperature electrical properties of polymer-derived ceramic SiBCN thin films fabricated by direct writing
JP2012146961A (ja) 印刷による熱電材料の堆積
CN108156678B (zh) 可挠热电结构与其形成方法
CN103171207A (zh) 一种热沉材料及其制备方法
JP2019512561A (ja) 導電性組成物および前記組成物の用途
CN106631161B (zh) 一种在碳基材料表面制备抗高温氧化复合涂层的方法
CN102208377B (zh) 具抗氧化纳米薄膜的散热单元及抗氧化纳米薄膜沉积方法
CN108200716A (zh) 一种基于石墨烯材质的陶瓷pcb制造工艺
Huang et al. Multi-scale GO/CNT/AlN nanocomposites for high-performance flexible electrothermal film heaters
CN107473774A (zh) 铜‑陶瓷基板的制备方法
Yang et al. High‐Performance Electrothermal Film Based on Laser‐Induced Graphene
JP2021012949A (ja) 透明電極基板及び太陽電池
US20140378313A1 (en) Coating of Technical Substrates for Manufacturing Super-Conducting Layers with High Transition Temperature
Xiaoqiang et al. Effect of glass powder on performance of copper conductor film prepared via sintering Cu-glass paste
CN114434894A (zh) 铜箔石墨膜及其制备方法
WO2017133067A1 (zh) 一种涂覆基质具有高导热能力的厚膜元件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination