WO2023109161A1 - 一种镍铁合金制备电池级磷酸铁的方法 - Google Patents

一种镍铁合金制备电池级磷酸铁的方法 Download PDF

Info

Publication number
WO2023109161A1
WO2023109161A1 PCT/CN2022/113433 CN2022113433W WO2023109161A1 WO 2023109161 A1 WO2023109161 A1 WO 2023109161A1 CN 2022113433 W CN2022113433 W CN 2022113433W WO 2023109161 A1 WO2023109161 A1 WO 2023109161A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
iron
solution
iron alloy
leaching solution
Prior art date
Application number
PCT/CN2022/113433
Other languages
English (en)
French (fr)
Inventor
许开华
张坤
杨幸
李琴香
王文杰
袁文芳
Original Assignee
格林美股份有限公司
荆门市格林美新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 格林美股份有限公司, 荆门市格林美新材料有限公司 filed Critical 格林美股份有限公司
Publication of WO2023109161A1 publication Critical patent/WO2023109161A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • C01B25/375Phosphates of heavy metals of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Definitions

  • the invention relates to the field of preparation of lithium-ion battery precursors, in particular to a method for preparing battery-grade iron phosphate from a nickel-iron alloy.
  • Lithium-ion batteries have been widely used in new energy industries and electronic products due to their high operating voltage, high energy density, and long cycle life.
  • the positive electrode material is one of the key materials that determine the performance of lithium-ion batteries, and is also the main source of lithium ions in commercial lithium-ion batteries. Its performance and price have the greatest impact on lithium-ion batteries.
  • Lithium iron phosphate cathode with olivine structure and LiNi x Co y Mn z O 2 cathode with layered structure are the mainstream cathode materials for automotive lithium-ion batteries.
  • Nickel sulfate is one of the indispensable raw materials for ternary precursors. With the maturity of high-nickel ternary cathode material technology, the production capacity of nickel is gradually in short supply. In order to solve the problem of insufficient nickel raw materials in battery materials, it has become an urgent problem to develop new nickel raw materials to prepare battery-grade nickel sulfate.
  • Nickel-iron alloy contains nickel and iron, the two main raw materials of positive electrode materials. Using nickel-iron alloy to prepare battery-grade iron phosphate and nickel sulfate can not only increase the added value of the product, but also alleviate the shortage of nickel sulfate to a certain extent.
  • Patent CN113044821A discloses a method for preparing nickel sulfate solution and battery-grade iron phosphate from a nickel-iron alloy, wherein the method involved is to pickle the nickel-iron alloy with one or more mixed acids of sulfuric acid or nitric acid/hydrochloric acid. Then add phosphorus source, oxidizing agent and precipitant respectively, heat to a constant temperature and react for several hours, and then filter to obtain ferric phosphate dihydrate and nickel-containing solution.
  • the invention provides a method for preparing battery-grade iron phosphate from a nickel-iron alloy, which specifically includes the following contents:
  • a method for preparing battery-grade iron phosphate from a nickel-iron alloy comprising the steps of:
  • ferronickel alloy powder is leached with acid solution, and after heating and stirring, the ferronickel leaching solution is obtained;
  • step (3) Heat and stir the nickel-iron leaching solution, control the temperature of the leaching solution to be 70-100° C., add the mixed solution of phosphorus source and hydrogen peroxide and ammonia solution in step (2) to the nickel-iron leaching solution in parallel, and continuously add 0.5-1.5 h, and controlling the molar ratio of the iron element to the added phosphorus element is 0.97-1.02, and controlling the pH at the end of the reaction between 1.2-1.6;
  • step (3) Control the temperature of the solid-liquid mixture system after the reaction in step (3) between 90-100°C, age for 2-3h, and then filter to obtain iron phosphate dihydrate and nickel solution;
  • the nickel content of the ferronickel alloy in step (1) is 10-30wt%, and the content of iron is 70-90wt%; -60g/L.
  • the acid in step (1) is one or more of sulfuric acid, hydrochloric acid or nitric acid.
  • the phosphorus source in step (2) is one of phosphoric acid, ammonium dihydrogen phosphate, and ammonium monohydrogen phosphate.
  • the volume ratio of the ferronickel leaching solution to the mixed solution of phosphorus source and hydrogen peroxide in step (3) is 1.0-2.0.
  • the present invention uses nickel-iron alloy leaching solution as raw material, and at high temperature, the mixed solution of phosphorus source and oxidant, and precipitant are added to the nickel-iron alloy leaching solution at a certain speed in parallel, and the temperature in the reaction process is combined.
  • the control of parameters such as pH and pH can not only accelerate the nucleation rate of the crystallization process, but also reduce the growth rate of the crystal, and can obtain less impurity entrainment, controllable physical and chemical parameters (specific surface area, particle size, etc.), and dense grains. of ferric phosphate dihydrate.
  • the amount of washing water can be reduced, the production cost can be reduced, and the quality of battery-grade ferric phosphate dihydrate prepared from the nickel-iron alloy extract can be improved.
  • Fig. 1 is the SEM figure of the ferric phosphate dihydrate prepared in embodiment 1;
  • Fig. 2 is the XRD figure of the ferric phosphate dihydrate prepared in embodiment 1;
  • Fig. 3 is the SEM figure of the ferric phosphate dihydrate prepared in comparative example 1;
  • FIG. 4 is a SEM image of ferric phosphate dihydrate prepared in Comparative Example 2.
  • a method for preparing battery-grade iron phosphate from nickel-iron alloy the preparation steps are as follows:
  • Comparative Example 1 The difference between Comparative Example 1 and Example 1 is that in step 2, 68.2 mL of hydrogen peroxide was first added, followed by 800 mL of ammonium dihydrogen phosphate solution with a concentration of 1 mol/L, and finally an appropriate amount of ammonia water was added to adjust the pH to 1.56.
  • the feed liquid addition time and the reaction time of the whole process are consistent with Example 1.
  • the ferronickel alloy powder with a nickel content of 10wt% and an iron content of 90wt% is leached with a sulfuric acid solution, heated to 60°C and stirred to obtain a ferronickel leaching solution, the content of the nickel element in the leaching solution is 10g/L, and the content of the iron element 60g/L;
  • the mass concentration of the mixed solution of preparing phosphoric acid and hydrogen peroxide and ammonia is the aqueous ammonia solution of 10%
  • step (3) Heating and stirring the ferronickel leaching solution, controlling the temperature of the leaching solution to be 70°C, adding the mixed solution of phosphorus source and hydrogen peroxide and aqueous ammonia solution in parallel to the ferronickel leaching solution in step (2), the time of adding is 0.5h, Controlling the molar ratio of the iron element to the added phosphorus element is 0.97, and controlling the pH at the end of the reaction to be 1.2;
  • step (3) Control the temperature of the solid-liquid mixture system after the reaction in step (3) at 90° C., age for 2.5 hours, and then filter to obtain ferric phosphate dihydrate and nickel solutions;
  • the ferronickel alloy powder with a nickel content of 30wt% and an iron content of 70wt% is leached with a hydrochloric acid solution, heated to 60°C and stirred to obtain a ferronickel leaching solution, the content of the nickel element in the leaching solution is 30g/L, and the content of the iron element 50g/L;
  • step (3) Control the temperature of the solid-liquid mixture system after the reaction in step (3) at 100° C., age for 3 hours, and then filter to obtain ferric phosphate dihydrate and nickel solutions;
  • the ferronickel alloy powder that nickel content is 20wt%, iron content is 80wt% is leached with nitric acid solution, after being heated to 70 °C of stirring, obtain ferronickel leaching solution, the content of nickel element in the leaching solution is 20g/L, and the content of iron element 55g/L;
  • step (3) Control the temperature of the solid-liquid mixture system after the reaction in step (3) at 95° C., age for 2.5 hours, and then filter to obtain iron phosphate dihydrate and nickel solutions;
  • Table 1 embodiment 1, comparative example 1, comparative example 2 obtain the physical parameter of ferric phosphate dihydrate
  • Embodiment one 0.99 0.0020 0.0300 36 Comparative example one 1.01 0.0120 0.0605 45 Comparative example two 1.015 0.0205 0.1008 47
  • the ferric phosphate particles prepared by the method disclosed in the present invention have a smaller particle size, a better order of the surface morphology, and the obtained crystal grains are denser.
  • the preparation method of iron phosphate disclosed in the present invention can effectively reduce the amount of entrainment of impurities in iron phosphate particles, make the physical and chemical parameters (specific surface area, particle size, etc.) of iron phosphate particles controllable, and obtain The grains are denser.
  • the amount of washing water can be reduced, the production cost can be reduced, and the quality of battery-grade ferric phosphate dihydrate prepared from the nickel-iron alloy extract can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明公开了一种镍铁合金制备电池级磷酸铁的方法,以镍铁合金浸出液为原料,在高温下,将磷源和氧化剂的混合溶液、沉淀剂以一定的速度并流加入到镍铁合金浸出液中,此外,还对反应过程中的温度和pH等参数进行了调控。采用本发明公开的方法制备磷酸铁,既能加快结晶过程的成核速度,又能减小晶体的生长速度,可以得到杂质夹带少、理化参数(比表面积、粒径大小等)可控、且晶粒致密的二水磷酸铁,还能减少洗水量,降低生产成本,提高镍铁合金萃取液制备电池级二水磷酸铁的品质。

Description

一种镍铁合金制备电池级磷酸铁的方法 技术领域
本发明涉及锂离子电池前驱体的制备领域,具体涉及一种镍铁合金制备电池级磷酸铁的方法。
背景技术
锂离子电池由于具有工作电压高、能量密度高、循环寿命长等特点,已被广泛应用到新能源行业和电子产品等领域。正极材料是决定锂离子电池性能的关键材料之一,也是目前商业化锂离子电池中主要的锂离子来源,其性能和价格对锂离子电池的影响最大。橄榄石结构的磷酸铁锂正极和层状结构的LiNi xCo yMn zO 2正极是车用锂离子电池的主流正极材料,随着近几年新能源行业的快速发展以及政府“3060”双碳目标政策的落地,两种正极材料的需求量不断增加,镍、磷、钴等产能逐渐出现供应不足的现象。
硫酸镍作为三元前驱体不可缺少的原料之一,随着高镍三元正极材料技术的成熟,镍的产能逐渐出现供应不足的现象。为了解决电池材料中镍原料不足的问题,开发新的镍原料来制备电池级硫酸镍,成为亟待解决的问题。
镍铁合金中含有镍和铁这两种主流正极材料的原材料,利用镍铁合金制备电池级磷酸铁和硫酸镍,不仅能提高产品的附加值,而且能一定程度上缓解硫酸镍供应不足的情况。
专利CN113044821A公开了一种镍铁合金制备硫酸镍溶液和电池级磷酸铁的方法,其中涉及的方法是将镍铁合金与硫酸或硝酸/盐酸的一种或多种混合酸进行酸浸,在过滤的浸出液中再分别加入磷源、氧化剂、沉淀剂,加热到恒定温度反应若干小时后,过滤后得到二水磷酸铁以及含镍溶液。此工艺可行,但是先加磷源再加氧化剂、沉淀剂的方式会很难得到特定形貌或物理参数的二水磷酸铁,且按照该制备方法,二水磷酸铁生长速度会大于成核速度,导致二水磷酸铁中会夹杂大量的镍和硫元素,增加了二水磷酸铁材料的洗水量。
发明内容
针对现有技术存在的问题,本发明提供了一种镍铁合金制备电池级磷酸铁的方法,具体包括以下内容:
一种镍铁合金制备电池级磷酸铁的方法,包括如下步骤:
(1)将镍铁合金粉末用酸液浸出,加热搅拌后,得到镍铁浸出液;
(2)配制磷源和双氧水的混合溶液、以及氨的质量浓度为10-30%的氨水溶液;
(3)将镍铁浸出液加热搅拌,控制浸出液温度为70-100℃,将步骤(2)中的磷源和双氧水的混合溶液、氨水溶液并流加入到镍铁浸出液中,持续加入0.5-1.5h,并控制铁元素与加入的磷元素的摩尔量的比为0.97-1.02,并控制反应终点的pH在1.2-1.6之间;
(4)将步骤(3)反应后的固液混合物体系温度控制在90-100℃之间,陈化2-3h,然后过滤得到二水磷酸铁和镍溶液;
(5)将过滤得到的二水磷酸铁进行洗涤、过滤、烘干,得到二水磷酸铁产品。
具体地,步骤(1)中镍铁合金的镍含量为10-30wt%,铁的含量为70-90wt%;所述镍铁浸出液中镍元素的含量为10-30g/L,铁元素含量为50-60g/L。
具体地,步骤(1)中的酸为硫酸、盐酸或硝酸中的一种或多种。
具体地,步骤(2)中的磷源为磷酸、磷酸二氢铵、磷酸一氢铵中的一种。
具体地,步骤(3)中的镍铁浸出液与磷源和双氧水的混合溶液的体积比为1.0-2.0。
本发明的有益效果:本发明以镍铁合金浸出液为原料,在高温下,将磷源和氧化剂的混合溶液、沉淀剂以一定的速度并流加入到镍铁合金浸出液中,结合对反应过程中的温度和pH等参数的控制,既能加快结晶过程的成核速度,又能减小晶体的生长速度,可以得到杂质夹带少、理化参数(比表面积、粒径大小等)可控、且晶粒致密的二水磷酸铁。此外,采用本发明公开的方法,还能减少洗水量,降低生产成本,提高镍铁合金萃取液制备电池级二水磷酸铁的品质。
附图说明
图1为实施例1中制备的二水磷酸铁的SEM图;
图2为实施例1中制备的二水磷酸铁的XRD图;
图3为对比例1中制备的二水磷酸铁的SEM图;
图4为对比例2中制备的二水磷酸铁的SEM图。
具体实施方式
下面结合附图1-4、表1和具体实施方式对本发明进行详细说明。下面所示的实施例不对权利要求所记载的发明内容起任何限定作用。另外,下面实施例所表示的构成的全部内容不限于作为权利要求所记载的发明的解决方案所必需的。
实施例1
一种镍铁合金制备电池级磷酸铁的方法,其制备步骤如下:
(1)将镍含量为20.18%、铁含量为79.62%的镍铁合金粉末加入到硫酸溶液中,在搅拌条件下升温至60℃,浸出后得到800ml镍元素含量为18.01g/L,铁元素含量为56.2g/L的镍铁浸出液。
(2)配制800ml浓度为1mol/L的磷酸二氢铵溶液,并加入68.2mL的双氧水,得到混合溶液。配制质量浓度为为16%的氨水溶液。
(3)将氨水溶液、磷酸二氢铵和双氧水的混合溶液并流加入到90℃镍铁浸出液中,加入的时间为1h。滴加适量氨水,控制溶液的pH在1.56;
(4)将反应后的固液混合物体系温度控制在95℃,陈化2h,过滤后得到白色的二水磷酸铁和镍溶液;
(5)将过滤得到的二水磷酸铁进行洗涤、过滤、烘干,得到二水磷酸铁产品。
对比例1
对比例1与实施例1的区别在于步骤2中,先加入68.2mL的双氧水,再加800ml浓度为1mol/L的磷酸二氢铵溶液,最后加入适量氨水调节pH至1.56。整个过程料液加入时间以及反应时间与实施例1保持一致。
对比例2
对比例2与实施例1的区别在于步骤2中反应温度为40℃。
实施例2
(1)将镍含量为10wt%、铁含量为90wt%的镍铁合金粉末用硫酸溶液浸出, 加热到60℃搅拌后,得到镍铁浸出液,浸出液中镍元素的含量为10g/L,铁元素含量为60g/L;
(2)配制磷酸和双氧水的混合溶液以及氨的质量浓度为10%的氨水溶液;
(3)将镍铁浸出液加热搅拌,控制浸出液温度为70℃,将步骤(2)中的磷源和双氧水的混合溶液、氨水溶液并流加入到镍铁浸出液中,加入的时间为0.5h,控制铁元素与加入的磷元素的摩尔量的比为0.97,并控制反应终点的pH为1.2;
(4)将步骤(3)反应后的固液混合物体系温度控制在90℃,陈化2.5h,然后过滤得到二水磷酸铁和镍溶液;
(5)将过滤得到的二水磷酸铁进行洗涤、过滤、烘干,得到二水磷酸铁产品。
实施例3
(1)将镍含量为30wt%、铁含量为70wt%的镍铁合金粉末用盐酸溶液浸出,加热到60℃搅拌后,得到镍铁浸出液,浸出液中镍元素的含量为30g/L,铁元素含量为50g/L;
(2)配制磷酸和双氧水的混合溶液以及氨的质量浓度为30%的氨水溶液;
(3)将镍铁浸出液加热搅拌,控制浸出液温度为100℃,将步骤(2)中的磷源和双氧水的混合溶液、氨水溶液并流加入到镍铁浸出液中,加入的时间为1.5h,控制铁元素与加入的磷元素的摩尔量的比为1.02,并控制反应终点的pH为1.6;
(4)将步骤(3)反应后的固液混合物体系温度控制在100℃,陈化3h,然后过滤得到二水磷酸铁和镍溶液;
(5)将过滤得到的二水磷酸铁进行洗涤、过滤、烘干,得到二水磷酸铁产品
实施例4
(1)将镍含量为20wt%、铁含量为80wt%的镍铁合金粉末用硝酸溶液浸出,加热到70℃搅拌后,得到镍铁浸出液,浸出液中镍元素的含量为20g/L,铁元素含量为55g/L;
(2)配制磷酸和双氧水的混合溶液以及氨的质量浓度为26%的氨水溶液;
(3)将镍铁浸出液加热搅拌,控制浸出液温度为80℃,将步骤(2)中的磷源和双氧水的混合溶液、氨水溶液并流加入到镍铁浸出液中,加入的时间为1h,控制铁元素与加入的磷元素的摩尔量的比为1,并控制反应终点的pH为1.5;
(4)将步骤(3)反应后的固液混合物体系温度控制在95℃,陈化2.5h,然后过滤得到二水磷酸铁和镍溶液;
(5)将过滤得到的二水磷酸铁进行洗涤、过滤、烘干,得到二水磷酸铁产品。
对采用本发明制备的磷酸铁颗粒和对比例1、2制备的磷酸铁物理参数检测和SEM观察,所得的结果如表1和图1-4所示。
表1实施例1、对比例1、对比例2得到二水磷酸铁的物理参数
  铁磷比 镍含量(%) 硫含量(%) 洗水用量(一吨二水磷酸铁/吨水)
实施例一 0.99 0.0020 0.0300 36
对比例一 1.01 0.0120 0.0605 45
对比例二 1.015 0.0205 0.1008 47
从表1中可以看出,采用本发明公开的方法制备的磷酸铁颗粒中所含有的杂质量大大减少,且洗水量也有较大幅度的减少。
从附图1-4可以看出,采用本发明公开的方法制备的磷酸铁颗粒的粒径更小,表面形貌的有序性更好,且得到的晶粒更加致密。
由此可以得出结论,本发明公开的磷酸铁的制备方法可以有效减少磷酸铁颗粒中杂质的夹带量、使磷酸铁颗粒的理化参数(比表面积、粒径大小等)可控、且得到的晶粒更加致密。此外,采用本发明公开的方法,还能减少洗水量,降低生产成本,提高镍铁合金萃取液制备电池级二水磷酸铁的品质。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (5)

  1. 一种镍铁合金制备电池级磷酸铁的方法,其特征在于,包括如下步骤:
    (1)将镍铁合金粉末用酸液浸出,加热搅拌后,得到镍铁浸出液;
    (2)配制磷源和双氧水的混合溶液、以及氨的质量浓度为10-30%的氨水溶液;
    (3)将镍铁浸出液加热搅拌,控制浸出液温度为70-100℃,将步骤(2)中的磷源和双氧水的混合溶液、氨水溶液并流加入到镍铁浸出液中,持续加入0.5-1.5h,并控制铁元素与加入的磷元素的摩尔量的比为0.97-1.02,并控制反应终点的pH在1.2-1.6之间;
    (4)将步骤(3)反应后的固液混合物体系温度控制在90-100℃之间,陈化2-3h,然后过滤得到二水磷酸铁和镍溶液;
    (5)将过滤得到的二水磷酸铁进行洗涤、过滤、烘干,得到二水磷酸铁产品。
  2. 根据权利要求1所述的一种镍铁合金制备电池级磷酸铁的方法,其特征在于,步骤(1)中镍铁合金的镍含量为10-30wt%,铁的含量为70-90wt%;所述镍铁浸出液中镍元素的含量为10-30g/L,铁元素含量为50-60g/L。
  3. 根据权利要求1所述的一种镍铁合金制备电池级磷酸铁的方法,其特征在于,步骤(1)中的酸为硫酸、盐酸或硝酸中的一种或多种。
  4. 根据权利要求1所述的一种镍铁合金制备电池级磷酸铁的方法,其特征在于,步骤(2)中的磷源为磷酸、磷酸二氢铵、磷酸一氢铵中的一种。
  5. 根据权利要求1所述的一种镍铁合金制备电池级磷酸铁的方法,其特征在于,步骤(3)中的镍铁浸出液与磷源和双氧水的混合溶液的体积比为1.0-2.0。
PCT/CN2022/113433 2021-12-15 2022-08-18 一种镍铁合金制备电池级磷酸铁的方法 WO2023109161A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111533293.6 2021-12-15
CN202111533293.6A CN114105116A (zh) 2021-12-15 2021-12-15 一种镍铁合金制备电池级磷酸铁的方法

Publications (1)

Publication Number Publication Date
WO2023109161A1 true WO2023109161A1 (zh) 2023-06-22

Family

ID=80365454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113433 WO2023109161A1 (zh) 2021-12-15 2022-08-18 一种镍铁合金制备电池级磷酸铁的方法

Country Status (2)

Country Link
CN (1) CN114105116A (zh)
WO (1) WO2023109161A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114105116A (zh) * 2021-12-15 2022-03-01 格林美股份有限公司 一种镍铁合金制备电池级磷酸铁的方法
CN114702079A (zh) * 2022-03-28 2022-07-05 广东邦普循环科技有限公司 从镍铁合金中分离提取镍和铁的方法
CN115448282B (zh) * 2022-09-15 2024-01-05 广东邦普循环科技有限公司 一种镍铁合金制备磷酸铁锂的方法及应用
CN115676789B (zh) * 2022-09-28 2024-01-23 成都盛威兴科新材料研究院合伙企业(有限合伙) 一种采用铁基含镍合金生产电池级磷酸铁的制备方法
CN115849307A (zh) * 2022-11-05 2023-03-28 广东邦普循环科技有限公司 镍铁合金提取铁并制备双氧水的方法
CN116062723B (zh) * 2023-02-06 2024-04-09 广东邦普循环科技有限公司 一种利用镍铁合金制备电池级磷酸铁的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4302246A (en) * 1980-01-03 1981-11-24 Enthone, Incorporated Solution and method for selectively stripping alloys containing nickel with gold, phosphorous or chromium from stainless steel and related nickel base alloys
CN106829907A (zh) * 2017-03-31 2017-06-13 广东佳纳能源科技有限公司 一种含镍生铁制备硫酸镍溶液和电池级磷酸铁的方法
CN109809382A (zh) * 2019-03-28 2019-05-28 衢州华友钴新材料有限公司 一种利用沉淀微量重金属产生的废磷酸盐合成磷酸铁的方法
CN110615420A (zh) * 2019-09-17 2019-12-27 北京科技大学 一种红土镍矿浸出渣制备磷酸铁的方法
CN110872107A (zh) * 2018-08-30 2020-03-10 衢州华友钴新材料有限公司 一种从钴镍行业合金浸出液中回收铁的方法
CN113044821A (zh) * 2021-02-04 2021-06-29 湖南邦普循环科技有限公司 一种镍铁合金资源化回收的方法和应用
CN114105116A (zh) * 2021-12-15 2022-03-01 格林美股份有限公司 一种镍铁合金制备电池级磷酸铁的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108183276A (zh) * 2017-12-19 2018-06-19 天齐锂业股份有限公司 磷酸铁的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4302246A (en) * 1980-01-03 1981-11-24 Enthone, Incorporated Solution and method for selectively stripping alloys containing nickel with gold, phosphorous or chromium from stainless steel and related nickel base alloys
CN106829907A (zh) * 2017-03-31 2017-06-13 广东佳纳能源科技有限公司 一种含镍生铁制备硫酸镍溶液和电池级磷酸铁的方法
CN110872107A (zh) * 2018-08-30 2020-03-10 衢州华友钴新材料有限公司 一种从钴镍行业合金浸出液中回收铁的方法
CN109809382A (zh) * 2019-03-28 2019-05-28 衢州华友钴新材料有限公司 一种利用沉淀微量重金属产生的废磷酸盐合成磷酸铁的方法
CN110615420A (zh) * 2019-09-17 2019-12-27 北京科技大学 一种红土镍矿浸出渣制备磷酸铁的方法
CN113044821A (zh) * 2021-02-04 2021-06-29 湖南邦普循环科技有限公司 一种镍铁合金资源化回收的方法和应用
CN114105116A (zh) * 2021-12-15 2022-03-01 格林美股份有限公司 一种镍铁合金制备电池级磷酸铁的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHOU, YUXIN ET AL.: "Preparation of Battery Grade Superfine Iron Phosphate by an Impinging Stream Reactor", CHEMICAL ENGINEERING & EQUIPMENT, no. 3, 31 March 2019 (2019-03-31), XP009546944, ISSN: 1003-0735 *

Also Published As

Publication number Publication date
CN114105116A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2023109161A1 (zh) 一种镍铁合金制备电池级磷酸铁的方法
WO2022267420A1 (zh) 一种磷酸铁前驱体及其制备方法和应用
CN109052492B (zh) 一种由红土镍矿硝酸浸出液制备三元正极材料的方法
WO2022227669A1 (zh) 一种磷酸铁前驱体及其制备方法和应用
WO2022179291A1 (zh) 从红土镍矿浸出液中分离镍铁并制备磷酸铁的方法和应用
CN111153391B (zh) 一种低硫含量电池级磷酸铁的制备方法
CN108123185A (zh) 废旧锰酸锂电池中有价金属回收方法
CN115448278B (zh) 一种连续化制备磷酸铁的方法和应用
WO2022242184A1 (zh) 一种掺杂磷酸铁及其制备方法和应用
CN105375078B (zh) 一种由锂离子电池正极片循环制备球形镍钴锰酸锂的方法
CN113353909A (zh) 利用回收锂制备磷酸铁锂正极材料的方法
WO2023142677A1 (zh) 掺杂型磷酸铁及其制备方法和应用
CN107565124A (zh) 一种镍钴锰酸锂前驱体及其制备方法
CN113772650A (zh) 一种磷酸铁锂的制备方法和用途
CN113072048A (zh) 一种钠法生产磷酸铁的污水处理及渣料回收利用工艺
CN108565455A (zh) 一种非含氮络合剂辅助制备球形镍钴锰三元前驱体的方法
CN112342383B (zh) 三元废料中镍钴锰与锂的分离回收方法
CN114204021A (zh) 一种低成本磷酸铁锰锂的制备方法
CN115709979B (zh) 一种以高铁锰矿为原料制备电池级磷酸锰铁的方法
CN112582597A (zh) 一种三元无钴正极材料的制备方法及改性方法
CN115448285B (zh) 一种以循环再利用的磷酸锂为原料制备磷酸铁锂方法
WO2023123622A1 (zh) 一种镍铁合金资源化综合利用方法
CN112259820B (zh) 一种利用废旧锂电池制备核壳型三元正极材料的方法
CN110311114B (zh) 一种循环电解制备锂电池三元前驱体的方法
WO2022205534A1 (zh) 一种无汞碱性锌锰电池用的电解二氧化锰的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22905921

Country of ref document: EP

Kind code of ref document: A1