WO2023106274A1 - リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 - Google Patents

リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 Download PDF

Info

Publication number
WO2023106274A1
WO2023106274A1 PCT/JP2022/044815 JP2022044815W WO2023106274A1 WO 2023106274 A1 WO2023106274 A1 WO 2023106274A1 JP 2022044815 W JP2022044815 W JP 2022044815W WO 2023106274 A1 WO2023106274 A1 WO 2023106274A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium secondary
positive electrode
secondary battery
active material
particles
Prior art date
Application number
PCT/JP2022/044815
Other languages
English (en)
French (fr)
Inventor
雅巳 牧寺
奈々 荒井
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2023106274A1 publication Critical patent/WO2023106274A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for lithium secondary batteries, a positive electrode for lithium secondary batteries, and a lithium secondary battery.
  • the positive electrode active material for lithium secondary batteries consists of multiple particles containing lithium metal composite oxide.
  • lithium metal composite oxides composite metal oxides containing metal elements such as Ni, Co and Al and Li are widely used.
  • lithium ions are desorbed and inserted on the particle surface of the positive electrode active material for lithium secondary batteries.
  • Patent Document 1 describes lithium metal composite oxide particles containing lithium, nickel, cobalt, and aluminum and mainly composed of secondary particles having a porosity of less than 20%, and lithium metal composite oxide particles.
  • a positive electrode active material for a lithium secondary battery is described, which has a coating layer formed on its surface and which consists of an ion-conducting polymer containing electronically-conducting particles.
  • the positive electrode active material for lithium secondary batteries of Patent Document 1 has excellent weather resistance and long-term storage stability. However, positive electrode active materials for lithium secondary batteries have room for further improvement in terms of initial discharge capacity and repeated charge/discharge performance of lithium secondary batteries.
  • the present invention has been made in view of the above circumstances, and a positive electrode for a lithium secondary battery that can obtain a lithium secondary battery that has a high initial discharge capacity and does not easily decrease in discharge capacity even after repeated charging and discharging.
  • An object of the present invention is to provide an active material, a positive electrode for a lithium secondary battery and a lithium secondary battery using the same.
  • the lithium metal composite oxide has a layered structure and contains at least Li, Ni, and Al,
  • the area of the region surrounded by the outer periphery of the light-colored portion A ratio of the total area of the dark color portions existing in the region surrounded by the outer periphery of the light color portion to the total sum is more than 0.05% and 0.4% or less.
  • the ratio of the number of particles Y whose circularity represented by formula (i) is 0.33 or less to the total number of particles X is greater than 0%. 0% or less.
  • Circularity 4 ⁇ S/L 2 (i)
  • S is the area of the region surrounded by the perimeter of the light-colored portion
  • L is the perimeter length of the light-colored portion.
  • M is selected from the group consisting of Co, Mn, Fe, Cu, Ti, Mg, W, Mo, Nb, Zn, Sn, Zr, Ga, V, B, Si, S and P It is one or more elements and satisfies ⁇ 0.1 ⁇ m ⁇ 0.2, 0 ⁇ x ⁇ 0.5 and 0 ⁇ y ⁇ 0.5.)
  • 2 ⁇ 18.
  • Positive electrode active material for secondary batteries [7] A positive electrode for lithium secondary batteries containing the positive electrode active material for lithium secondary batteries according to any one of [1] to [6]. [8] A lithium secondary battery having the positive electrode for a lithium secondary battery according to [7].
  • a positive electrode active material for a lithium secondary battery and a lithium secondary battery using the same can obtain a lithium secondary battery that has a high initial discharge capacity and does not easily decrease in discharge capacity even after repeated charging and discharging.
  • a positive electrode for a secondary battery and a lithium secondary battery can be provided.
  • FIG. 3 is a diagram showing the results of SEM analysis of a positive electrode active material for a lithium secondary battery in one embodiment of the present invention
  • FIG. 3 is a diagram showing the results of SEM analysis of a positive electrode active material for a lithium secondary battery in one embodiment of the present invention
  • FIG. 3 is a diagram showing the results of SEM analysis of a positive electrode active material for a lithium secondary battery in one embodiment of the present invention
  • 1 is a schematic configuration diagram showing an example of a lithium secondary battery
  • FIG. 1 is a schematic diagram showing the overall configuration of an all-solid lithium secondary battery of the present embodiment
  • a positive electrode active material for a lithium secondary battery will be described below. Preferred examples and conditions may be shared among the following embodiments. Moreover, in this specification, each term is defined below.
  • a metal composite compound is hereinafter referred to as "MCC”
  • a lithium metal composite oxide is hereinafter referred to as “LiMO”
  • a positive electrode active material for a lithium secondary battery is hereinafter referred to as "CAM”.
  • Ni refers to nickel atoms, not nickel metal.
  • Li and Al similarly refer to lithium atoms and aluminum atoms and the like, respectively.
  • “Cumulative volume particle size” is a value measured by a laser diffraction scattering method. Specifically, 0.1 g of CAM powder is added to 50 ml of a 0.2% by mass sodium hexametaphosphate aqueous solution to obtain a dispersion in which the powder is dispersed. Next, the particle size distribution of the resulting dispersion is measured using a laser diffraction/scattering particle size distribution analyzer (eg Mastersizer 2000 manufactured by Malvern) to obtain a volume-based cumulative particle size distribution curve.
  • a laser diffraction/scattering particle size distribution analyzer eg Mastersizer 2000 manufactured by Malvern
  • the value of the particle diameter when 10% is accumulated from the fine particle side is the 10% cumulative volume particle size (hereinafter sometimes referred to as D 10 ) ( ⁇ m), and from the fine particle side
  • the value of the particle size at 50% accumulation is the 50% cumulative volume particle size (hereinafter sometimes referred to as D 50 ) ( ⁇ m)
  • the value of the particle size at 90% accumulation from the microparticle side is 90% accumulation.
  • CAM composition analysis is analyzed by the following method. For example, after dissolving CAM powder in hydrochloric acid, it is measured using an ICP emission spectrometer.
  • an ICP emission spectrometer for example, Optima7300 manufactured by PerkinElmer Co., Ltd. can be used.
  • a scanning electron microscope is referred to as "SEM".
  • SEM scanning electron microscope
  • a Schottky field emission scanning electron microscope manufactured by JEOL Ltd., product name JSM-7900F
  • JSM-7900F Schottky field emission scanning electron microscope
  • the crystal structure of LiMO can be calculated by performing CAM powder X-ray diffraction measurement using CuK ⁇ as a radiation source and measuring the diffraction angle 2 ⁇ in the range of 10 to 90°. Specifically, it can be confirmed by observation using a powder X-ray diffraction measurement device (for example, Ultima IV manufactured by Rigaku Corporation).
  • a powder X-ray diffraction measurement device for example, Ultima IV manufactured by Rigaku Corporation.
  • analysis software for example, integrated powder X-ray analysis software JADE
  • a conductive material acetylene black
  • PVdF binder
  • NMP is used as an organic solvent when preparing the positive electrode mixture.
  • the obtained positive electrode mixture is applied to an Al foil having a thickness of 40 ⁇ m as a current collector and vacuum-dried at 150° C. for 8 hours to obtain a positive electrode for a lithium secondary battery.
  • the electrode area of this positive electrode for a lithium secondary battery is 1.65 cm 2 .
  • ⁇ Production of lithium secondary battery (coin-type half cell)> The following operations are performed in an argon atmosphere glove box.
  • ⁇ Preparation of positive electrode for lithium secondary battery> Place the positive electrode for lithium secondary battery prepared in the part for coin battery R2032 (manufactured by Hosen Co., Ltd.) with the aluminum foil side facing down on the lower cover.
  • a laminated film separator (16 ⁇ m-thick laminated body obtained by laminating a heat-resistant porous layer on a polyethylene porous film) is placed thereon. 300 ⁇ l of electrolytic solution is injected here.
  • the electrolytic solution used is obtained by dissolving LiPF 6 in a mixture of ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate at a volume ratio of 30:35:35 (volume ratio) to 1 mol/l.
  • metallic lithium is used as the negative electrode, the negative electrode is placed on the upper side of the laminated film separator, the upper lid is placed via a gasket, and the lid is crimped with a crimping machine to produce a lithium secondary battery (coin type half cell R2032).
  • “Initial discharge capacity” means a value measured by charging and discharging under the following conditions.
  • the prepared lithium secondary battery was subjected to constant current charging at 0.2 CA up to 4.3 V at 25 ° C. and then constant voltage charging at 4.3 V for 5 hours.
  • a constant current discharge at 2 CA is performed.
  • the discharge capacity is measured, and the obtained value is defined as “initial discharge capacity” (mAh/g).
  • the 50th discharge capacity retention rate means a value measured by conducting a test in which charge-discharge cycles are repeated 50 times under the conditions shown below.
  • the lithium secondary battery produced is initially charged and discharged under the above conditions. After the initial charge/discharge, the charge/discharge is repeated at 1 CA under the same temperature and voltage conditions as the initial charge/discharge. After that, the discharge capacity (mAh/g) at the 50th cycle is measured. The ratio of the discharge capacity at the 50th cycle to the initial discharge capacity is defined as the 50th discharge capacity retention rate (%), that is, the cycle efficiency.
  • a lithium secondary battery with a high 50th discharge capacity retention rate is sometimes described as having good cycle characteristics, meaning that the discharge capacity is less likely to decrease even after repeated charging and discharging.
  • the CAM of the present embodiment includes a plurality of particles X containing LiMO and Al segregation parts, the particles X have voids, and the LiMO has a layered structure and contains at least Li, Ni and Al. , the cross-sectional image of the particle X obtained by SEM satisfies the conditions (1) and (2).
  • the CAM in this embodiment includes a plurality of particles X.
  • the CAM in this embodiment is powdery.
  • the CAM may contain only secondary particles, or may contain a mixture of primary particles and secondary particles.
  • primary particles are particles that do not appear to have grain boundaries when observed in a field of view of 10,000 times using a scanning electron microscope or the like.
  • Secondary particles are particles in which the primary particles are agglomerated. That is, secondary particles are aggregates of primary particles.
  • Al segregation portion refers to a portion of the particles X where Al is segregated.
  • the CAM of this embodiment satisfies (1) and (2) above.
  • CAM satisfies (1) and (2) can be confirmed by the following method.
  • the cured product is fixed on a sample table and set in a cross-sectional sample preparation device (also called a cross-section polisher, for example, IB-19520CCP manufactured by JEOL).
  • a cross-sectional sample preparation device also called a cross-section polisher, for example, IB-19520CCP manufactured by JEOL.
  • Argon ion beam processing is performed at an ion acceleration voltage of 6.0 kV to fabricate a cross section of the CAM.
  • the cross section of the CAM is observed with an SEM at an acceleration voltage of 15 kV.
  • the number of particles X which are particles to be analyzed, should be 200 or more, for example, 200.
  • the obtained image (backscattered electron image) is binarized and analyzed using quantitative analysis software TRI/3D-BON-FCS (manufactured by Ratoc System Engineering).
  • Auto-LW which is a function of the quantitative analysis software, converts the image into two gradations, and distinguishes the LiMO displayed in bright colors and the voids and Al segregation parts displayed in dark colors.
  • the amount of backscattered electrons generated varies depending on the elements that make up the sample, and the larger the atomic number, the greater the amount of generated backscattered electrons. Therefore, in the image (also referred to as a backscattered electron image), LiMO containing transition metal elements, which are heavy elements, is bright, and Al segregation parts containing voids and C and Al, which are light elements, are dark.
  • the obtained image some of the voids and Al segregated parts present on the surface of the particles contained in the CAM show intermediate contrast, so only the intermediate contrast parts are extracted using the image calculation function and displayed in dark color.
  • a process to overlap with the gap or the Al segregation part is performed.
  • This treatment it is possible to more accurately identify the shape of the particles from which the voids or Al segregated portions on the particle surface are removed, and the voids and Al segregated portions in the particles, and perform binary gradation, that is, binarization.
  • the inclusion of the Al segregation part in the particle X is confirmed by performing SEM-energy dispersive X-ray spectroscopy (EDX) analysis on the part showing the intermediate contrast and detecting Al. can be done.
  • EDX SEM-energy dispersive X-ray spectroscopy
  • FIG. 1 to 3 are diagrams showing the analysis results of CAM by SEM, and are binarized images obtained by the above method.
  • FIG. 2 is an enlarged view of a region P surrounded by dashed lines in FIG.
  • FIG. 3 is an enlarged view of a region Q surrounded by broken lines in FIG.
  • the voids and Al segregation parts in the particles X are defined as parts with an equivalent circle diameter of 0.5 ⁇ m or more existing in the area surrounded by the outer periphery of the light-colored part, among the dark-colored parts in the binarized image. .
  • the area of the CAM in the binarized image is the area surrounded by the perimeter of the bright color portion 41 . That is, the area of the CAM is the total area of the plurality of particles X, and the LiMO that constitutes the plurality of particles X, the voids that exist within the plurality of particles X, and the Al segregation portions that exist within the plurality of particles X. is the combined area of As shown in FIG. 3, when the voids and the Al segregation portion 43 are exposed on the surface portion of the CAM, in other words, when the voids and the Al segregation portion exist outside the region surrounded by the outer periphery of the light-colored portion, The area of the CAM does not include the voids and the Al segregation part 43 . That is, the area surrounded by the perimeter L of the light-colored portion is calculated as the area of the CAM.
  • the ratio of the total area of the dark-colored portions existing in the regions surrounded by the outer circumferences of the light-colored portions to the total area of the regions surrounded by the outer circumferences of the light-colored portions of the plurality of particles X (hereinafter, may be referred to as the ratio a) ) is calculated.
  • the ratio a is greater than 0.05% and not more than 0.4%, preferably 0.1-0.35%, more preferably 0.15-0.3%, 0.15- 0.27% is particularly preferred.
  • the ratio a is within the above range, it means that there are voids and Al segregation parts inside the particles, and the expansion and contraction of LiMO caused by repeated charging and discharging of the lithium secondary battery are caused by the voids and Al segregation parts.
  • S is the area of the region surrounded by the perimeter of the bright portion.
  • L is the perimeter length of the light-colored portion.
  • ratio b The ratio of the number of particles Y having a circularity of 0.33 or less to the total number of the plurality of particles X (hereinafter sometimes referred to as ratio b) is greater than 0% and 5.0% or less, and 0 .5-4.5%, more preferably 1.5-4.0%, even more preferably 2.0-3.5%, 2.5-3.5% % is particularly preferred.
  • the ratio b is greater than 0%, it means that the CAM contains particles Y with a circularity of 0.33 or less.
  • an Al segregation portion is likely to occur during the manufacturing process, specifically during main firing, which will be described later.
  • the Al segregation portion tends to move to the particle surface during main firing, and is likely to flow out by washing performed subsequent to main firing.
  • the Al segregation portion flows out, voids are formed in that portion. If the CAM is manufactured so that it contains voids and Al segregations, the proportion b will be greater than 0%.
  • the ratio of particles having a large amount of voids and Al segregation parts 43 on the surface as shown in FIG. can sufficiently secure a reaction field for desorption and insertion of .
  • ratio c The ratio of the number of particles Z having a circularity of 0.45 or more to the total number of the plurality of particles X (hereinafter sometimes referred to as ratio c) is preferably 70% or more, and 70 to 95%. is more preferably 70 to 90%, particularly preferably 70 to 85%. When the ratio c is within the above range, the initial discharge capacity is likely to be improved.
  • the D 50 of CAM is preferably 5-20 ⁇ m, more preferably 5.0-20 ⁇ m, even more preferably 5.0-17 ⁇ m, particularly preferably 5.0-15 ⁇ m.
  • the cycle characteristics are likely to be improved.
  • the D90 / D10 of CAM is preferably 3 or less, more preferably 2.98 or less, and even more preferably 2.96 or less. When the D 90 /D 10 of the CAM is 3 or less, the cycle characteristics are likely to be improved.
  • the lower limit of D90 / D10 of CAM is, for example, 2.56.
  • the D 90 /D 10 of CAM is preferably 2.56-3, more preferably 2.56-2.98, even more preferably 2.56-2.96. When the D 90 /D 10 of CAM is within the above range, the initial discharge capacity and cycle characteristics are likely to be improved.
  • LiMO contained in the CAM contains at least Li, Ni and Al.
  • CAM is preferably represented by formula (A).
  • M is selected from the group consisting of Co, Mn, Fe, Cu, Ti, Mg, W, Mo, Nb, Zn, Sn, Zr, Ga, V, B, Si, S and P It is one or more elements and satisfies ⁇ 0.1 ⁇ m ⁇ 0.2, 0 ⁇ x ⁇ 0.5 and 0 ⁇ y ⁇ 0.5.)
  • m in the formula (A) is more preferably -0.05 or more, and more preferably more than 0. From the viewpoint of obtaining a lithium secondary battery with a higher initial coulombic efficiency, m in the formula (A) is preferably 0.08 or less, more preferably 0.06 or less.
  • the upper limit and lower limit of m can be arbitrarily combined. Combinations include, for example, m greater than 0 and 0.2 or less, -0.05 to 0.08, greater than 0 and 0.06 or less, and the like.
  • x in the formula (A) is preferably 0.01 or more, more preferably 0.02 or more.
  • x in the formula (A) is preferably 0.3 or less, more preferably 0.1 or less.
  • the upper and lower limits of x can be arbitrarily combined. Examples of combinations include 0.01 to 0.5, 0.02 to 0.3, and 0.02 to 0.1.
  • y in the formula (A) is preferably 0.03 or more, more preferably 0.05 or more.
  • y in the formula (A) is preferably 0.3 or less, more preferably 0.1 or less.
  • the upper limit and lower limit of y can be combined arbitrarily. Combinations include, for example, 0.03 to less than 0.5, 0.03 to 0.3, 0.05 to 0.1, and the like.
  • x + y in the formula (A) is preferably more than 0 and 0.50 or less, more preferably more than 0 and 0.48 or less. It is preferably more than 0 and more preferably 0.46 or less.
  • M is preferably one or more elements selected from the group consisting of Co, Mn, W, B, Nb, and Zr.
  • M is at least one element M1 selected from the group consisting of Co and Mn, and Fe, Cu, Ti, Mg, W, Mo, Nb, Zn, Sn, Zr, Ga, V, B, Si, and one or more elements M2 selected from the group consisting of S and P.
  • the CAM ratio H1/H2 is preferably 1.5-1.6, more preferably 1.51-1.59. When the ratio H1/H2 is within the above range, the initial discharge capacity tends to be high.
  • the crystal structure of LiMO is a layered structure, and more preferably a hexagonal crystal structure or a monoclinic crystal structure.
  • the hexagonal crystal structure is composed of P3, P3 1 , P3 2 , R3, P-3, R-3, P312, P321, P3 1 12, P3 1 21, P3 2 12, P3 2 21, R32, P3m1, P31m, P3c1, P31c, R3m, R3c, P-31m, P-31c, P-3m1, P-3c1, R-3m, R-3c, P6, P6 1 , P6 5 , P6 2 , P6 4 , P6 3 , P-6, P6/m, P6 3 /m, P622, P6 1 22, P6 5 22, P6 2 22, P6 4 22, P6 3 22, P6mm, P6cc, P6 3 cm, P6 3 mc, P- It belongs to any one space group selected from the group consisting of 6m2, P-6c2, P-62m, P-62c, P6/mmm, P6/mcc, P6 3 /mcm, and P6 3 /mmc.
  • the monoclinic crystal structures are P2, P2 1 , C2, Pm, Pc, Cm, Cc, P2/m, P2 1 /m, C2/m, P2/c, P2 1 /c, and C2 It belongs to any one space group selected from the group consisting of /c.
  • the crystal structure is a hexagonal crystal structure assigned to the space group R-3m, or a monoclinic crystal structure assigned to C2/m.
  • a crystalline structure is particularly preferred.
  • the CAM production method includes at least production of MCC, mixing of MCC and a lithium compound, calcination of the mixture of MCC and the lithium compound, main calcination of the reactant obtained by the calcination, and washing.
  • MCC MCC may be either a metal composite oxide or a mixture of a metal composite oxide and a metal composite hydroxide.
  • the metal composite oxide and the mixture of the metal composite oxide and the metal composite hydroxide include, for example, Ni, Al and element M in a molar ratio represented by the following formula (A'), and the following formula (A'').
  • the preferred ranges of x and y in formula (A') or (A'') are the same as the preferred ranges of x and y in formula (A) above.
  • Ni:Al:M (1-xy):x:y (A') Ni ( 1-xy) AlxMyO ⁇ ( OH) 2- ⁇ (A'') (In formula (A′) and formula (A′′), M is Co, Mn, Fe, Cu, Ti, Mg, W, Mo, Nb, Zn, Sn, Zr, Ga, V, B, Si, One or more elements selected from the group consisting of S and P, satisfying 0 ⁇ x ⁇ 0.5 and 0 ⁇ y ⁇ 0.5. ⁇ 0.5 ⁇ 2 and ⁇ - ⁇ 2.
  • a method for producing MCC containing Ni, Al and Co will be described below as an example.
  • a metal composite hydroxide containing Ni, Al and Co is prepared.
  • a metal composite hydroxide can be produced by a generally known batch coprecipitation method or continuous coprecipitation method.
  • the nickel salt that is the solute of the nickel salt solution is not particularly limited, but at least one of nickel sulfate, nickel nitrate, nickel chloride and nickel acetate can be used.
  • the aluminum salt that is the solute of the aluminum salt solution for example, at least one of aluminum sulfate, aluminum nitrate, aluminum chloride and aluminum acetate can be used.
  • At least one of cobalt sulfate, cobalt nitrate, cobalt chloride, and cobalt acetate can be used as the cobalt salt that is the solute of the cobalt salt solution.
  • the above metal salts are used in proportions corresponding to the composition ratio of Ni (1-xy) Al x M y (OH) 2 . That is, the amount of each metal salt is defined so that the molar ratio of Ni, Al and Co in the mixed solution containing the metal salt corresponds to (1-xy):x:y in formula (A'). do. Also, water is used as a solvent.
  • the complexing agent is one capable of forming complexes with nickel ions, aluminum ions and cobalt ions in an aqueous solution. etc.), hydrazine, ethylenediaminetetraacetic acid, nitrilotriacetic acid and uracil diacetic acid and glycine.
  • a complexing agent may or may not be used in the manufacturing process of the metal composite hydroxide.
  • the amount of the complexing agent contained in the mixture containing the nickel salt solution, aluminum salt solution, cobalt salt solution and complexing agent is, for example, metal salts (nickel salts, aluminum salts and cobalt salts). is greater than 0 and 2.0 or less.
  • Alkali metal hydroxides are, for example, sodium hydroxide or potassium hydroxide.
  • the pH value in this specification is defined as the value measured when the temperature of the mixed liquid is 40°C.
  • the temperature of the mixed liquid sampled from the reaction tank is not 40°C, the mixed liquid is heated or cooled to 40°C and the pH of the mixed liquid is measured.
  • Ni, Co and Al react to form Ni (1-xy) Al x Co y (OH) 2 is produced.
  • the temperature of the reaction vessel is controlled, for example, within the range of 20-80°C, preferably 30-70°C.
  • the pH value in the reaction tank is set within the range of, for example, 9-13, preferably 10-12.5, and the pH is controlled within ⁇ 0.5.
  • an overflow type reaction tank can be used to separate the formed reaction precipitate.
  • the reaction tank When producing a metal composite hydroxide by a batch coprecipitation method, the reaction tank includes a reaction tank without an overflow pipe and a thickening tank connected to the overflow pipe, and the overflowed reaction precipitate is removed in the thickening tank.
  • Apparatus having a mechanism for concentrating and recirculating to the reaction vessel, etc., may be mentioned.
  • gases for example, inert gases such as nitrogen, argon or carbon dioxide, oxidizing gases such as air or oxygen, or mixed gases thereof may be supplied into the reaction vessel.
  • inert gases such as nitrogen, argon or carbon dioxide
  • oxidizing gases such as air or oxygen, or mixed gases thereof
  • the D50 and D90 / D10 of CAM can be controlled within the range of the present embodiment by appropriately controlling the concentration of the metal salt supplied to the reaction tank, the reaction temperature, the reaction pH, and the like.
  • the isolated reaction precipitate is washed, dehydrated, dried and sieved to obtain a metal composite hydroxide containing Ni, Al and Co.
  • reaction precipitate is preferably washed with an alkaline washing liquid, more preferably washed with an aqueous sodium hydroxide solution.
  • reaction precipitate may be washed with a washing liquid containing elemental sulfur.
  • cleaning solution containing elemental sulfur include an aqueous potassium or sodium sulfate solution.
  • the metal composite hydroxide is heated to produce MCC. Multiple heating steps may be performed if desired.
  • the heating temperature in this specification means the set temperature of the heating device. When a plurality of heating steps are performed, the heating temperature means the temperature of the step heated at the highest temperature among the respective heating steps.
  • the heating temperature is preferably 400-700°C, more preferably 450-680°C.
  • the heating temperature is 400-700° C.
  • the metal composite hydroxide is sufficiently oxidized, and MCC having a BET specific surface area within an appropriate range is obtained.
  • the time for holding at the heating temperature is 0.1 to 20 hours, preferably 0.5 to 10 hours.
  • the heating rate to the heating temperature is, for example, 50-400° C./hour. Air, oxygen, nitrogen, argon, or a mixed gas thereof can be used as the heating atmosphere.
  • the atmosphere in the heating device may be an atmosphere containing moderate oxygen.
  • the oxygen-containing atmosphere may be a mixed gas atmosphere of an inert gas and an oxidizing gas, or a state in which an oxidant is present in an inert gas atmosphere.
  • the atmosphere in the heating device is an oxygen-containing atmosphere, the transition metal contained in the metal composite hydroxide is moderately oxidized, making it easier to control the form of MCC.
  • the oxygen or oxidizing agent in the oxygen-containing atmosphere should contain sufficient oxygen atoms to oxidize the transition metal.
  • the atmosphere in the heating device is changed by a method such as passing an oxidizing gas into the heating device or bubbling the oxidizing gas into the mixed liquid. can be controlled by
  • a peroxide such as hydrogen peroxide, a peroxide salt such as permanganate, a perchlorate, a hypochlorite, nitric acid, a halogen, ozone, or the like can be used.
  • This step is a step of mixing a lithium compound and MCC to obtain a mixture.
  • the MCC After drying the MCC as necessary, it is mixed with a lithium compound. After drying the MCC, it may be appropriately classified.
  • At least one of lithium carbonate, lithium nitrate, lithium acetate, lithium hydroxide, lithium oxide, lithium chloride, and lithium fluoride can be used as the lithium compound.
  • lithium hydroxide and lithium carbonate or a mixture thereof is preferred.
  • a mixture is obtained by mixing the lithium compound and MCC in consideration of the composition ratio of the final object. Specifically, the lithium compound and MCC are mixed at a ratio corresponding to the composition ratio of formula (A) above.
  • the amount (molar ratio) of Li to the total amount of 1 of metal atoms contained in MCC is preferably 1.00 or more, more preferably 1.02 or more, and even more preferably 1.05 or more.
  • a fired product is obtained by firing a mixture of a lithium compound and MCC as described later.
  • calcination means firing at a temperature lower than the firing temperature in the main firing described later (when the firing process described later has a plurality of firing stages, the firing temperature in the firing stage performed at the lowest temperature). It is to be. The calcination may be performed multiple times.
  • the calcination temperature is, for example, preferably 400°C or higher and lower than 700°C, more preferably 500-695°C, and even more preferably 600-690°C.
  • the firing temperature is 400° C. or higher, the reaction between MCC and the lithium compound is promoted.
  • the firing temperature is less than 700° C., even when using MCC with a large Ni content, a lithium secondary battery with excellent cycle characteristics can be achieved.
  • the firing temperature in this specification means the temperature of the atmosphere in the firing furnace, and is the maximum temperature held in the firing process (hereinafter sometimes referred to as the maximum held temperature).
  • the sintering temperature means the temperature of the highest sintering step among the sintering steps.
  • the retention time in calcination is preferably 1-8 hours, more preferably 1.0-6 hours, and particularly preferably 1.2-5 hours.
  • the holding time in the calcination is 1 hour or longer, the reaction between MCC and the lithium compound can be sufficiently enhanced.
  • the retention time in the firing is 8 hours or less, volatilization of lithium ions is less likely to occur, resulting in improved battery performance.
  • the atmosphere during preliminary firing and main firing described later is preferably an oxygen-containing atmosphere, more preferably an oxygen atmosphere.
  • an oxygen atmosphere oxygen defects are reduced and the structure is stabilized, thereby improving the battery performance.
  • the mixture of MCC and lithium compound may be fired in the presence of an inert melting agent.
  • the inert melting agent may remain in the fired product, or may be removed after firing by washing with a cleaning liquid as described later.
  • an inert melting agent for example, those described in WO2019/177032A1 can be used.
  • the main calcination of the reaction product may have a plurality of calcination stages with different calcination temperatures. For example, a first firing step and a second firing step in which firing is performed at a higher temperature than the first firing step may be performed independently. Furthermore, it may have firing stages with different firing temperatures and firing times.
  • Al contained in LiMO tends to segregate during main firing. Also, the Al segregation part may move to the particle surface during the main firing. Al segregation that has migrated to the surface tends to flow out during subsequent cleaning. Due to the existence of appropriate voids and Al segregation parts in the particles X, expansion and contraction of LiMO caused by charging and discharging of the lithium secondary battery can be alleviated.
  • the firing temperature of the main firing is preferably 700°C or higher, more preferably 700-1100°C, even more preferably 700-750°C.
  • the firing temperature is 700° C. or higher, a CAM having a strong crystal structure can be obtained.
  • the firing temperature is 1100° C. or less, volatilization of lithium ions on the particle surface can be reduced.
  • the firing temperature is 750° C. or lower, the particles X can have an appropriate amount of voids and Al segregation portions, and a CAM having the ratios a, b, and c within the above ranges can be produced. .
  • the holding time in main firing is preferably 1 to 50 hours.
  • the holding time in the main firing is 1 hour or longer, the reaction between unreacted MCC and the lithium compound in the reactants can be sufficiently enhanced.
  • the retention time in the main firing is 50 hours or less, volatilization of lithium ions is less likely to occur, and battery performance is improved.
  • the fired product is washed to remove the remaining unreacted lithium compound and inert melting agent, thereby obtaining a CAM.
  • Pure water or an alkaline cleaning liquid can be used for cleaning.
  • the alkaline cleaning solution include aqueous solutions of one or more anhydrides selected from the group consisting of lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate and ammonium carbonate, and hydrates thereof. can be mentioned.
  • Ammonia water can also be used as the alkaline cleaning liquid.
  • the temperature of the cleaning liquid is preferably 15°C or lower, more preferably 10°C or lower, and even more preferably 8°C or lower.
  • the lower limit of the temperature of the cleaning liquid is, for example, 5°C.
  • a method of bringing the cleaning solution and the fired product into contact there is a method in which the fired product is put into each cleaning solution and stirred. Moreover, the method of pouring each washing
  • the cleaning it is preferable to bring the cleaning liquid and the fired product into contact within the appropriate time range.
  • the "appropriate time” in washing refers to a time sufficient to disperse the particles of the fired product while removing the unreacted lithium compound and inert melting agent remaining on the surface of the fired product. It is preferable to adjust the washing time according to the aggregation state of the baked product. Washing times in the range of, for example, 5 minutes to 1 hour are particularly preferred.
  • the ratio of the fired product to the mixture of the cleaning liquid and the fired product is preferably 5-60% by mass, more preferably 20-50% by mass, and 30% by mass. % and 50% by mass or less is more preferable.
  • the ratio of the fired product is 5 to 60% by mass, the unreacted lithium compound and any inert melting agent can be removed, and the amount of voids and Al segregation parts in the particles X is controlled within a preferable range. easier.
  • the fired product is preferably heat-treated.
  • the temperature and method for heat-treating the baked product are not particularly limited, but from the viewpoint of preventing a decrease in charge capacity, the temperature is preferably 100 ° C. or higher, more preferably 130 ° C. or higher, and 150 ° C. or higher. More preferred.
  • the upper limit temperature is not particularly limited, but it is preferably 700° C. or lower, more preferably 600° C. or lower, and 400° C. or lower as long as it does not affect the crystallite size distribution of the fired product. is more preferred.
  • the volatilization amount of lithium ions can be controlled by the heat treatment temperature.
  • the upper limit and lower limit of the heat treatment temperature can be combined arbitrarily.
  • the heat treatment temperature is preferably 100-700°C, more preferably 130-600°C, even more preferably 150-400°C.
  • the atmosphere during the heat treatment includes an oxygen atmosphere, an inert atmosphere (nitrogen atmosphere, etc.), a reduced pressure atmosphere, or a vacuum atmosphere.
  • the method of sieving the baked product is not particularly limited, it is preferable to carry out the sieving treatment while continuously supplying air whose moisture concentration is controlled.
  • the concentration of moisture contained in air is preferably 3000 ppm or less, more preferably 2600 ppm or less, relative to the total mass of air and moisture.
  • the lower limit of the water concentration is not particularly limited, for example, 2.55 ppm can be mentioned with respect to the total mass of air and water.
  • the CAM ratio a, ratio b, ratio c, D 50 , D 90 /D 10 , H1/ H2 can be adjusted to the range described above.
  • Lithium secondary battery A configuration of a lithium secondary battery suitable for using the CAM of the present embodiment will be described. Also, a positive electrode for a lithium secondary battery (hereinafter sometimes referred to as a positive electrode) suitable for using the CAM of the present embodiment will be described.
  • An example of a lithium secondary battery suitable for using the CAM of the present embodiment has a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution placed between the positive electrode and the negative electrode.
  • An example of a lithium secondary battery has a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution placed between the positive electrode and the negative electrode.
  • FIG. 4 is a schematic diagram showing an example of a lithium secondary battery.
  • a cylindrical lithium secondary battery 10 is manufactured as follows.
  • a pair of strip-shaped separators 1, a strip-shaped positive electrode 2 having a positive electrode lead 21 at one end, and a strip-shaped negative electrode 3 having a negative electrode lead 31 at one end are arranged as follows: 1 and the negative electrode 3 are stacked in this order and wound to form an electrode group 4 .
  • the positive electrode 2 has, for example, a positive electrode active material layer containing CAM, and a positive electrode current collector having the positive electrode active material layer formed on one surface.
  • a positive electrode 2 can be manufactured by first preparing a positive electrode mixture containing CAM, a conductive material, and a binder, and supporting the positive electrode mixture on one surface of a positive electrode current collector to form a positive electrode active material layer.
  • Examples of the negative electrode 3 include an electrode in which a negative electrode mixture containing a negative electrode active material (not shown) is supported on a negative electrode current collector, and an electrode composed solely of a negative electrode active material. can be manufactured in
  • the can bottom is sealed, the electrode group 4 is impregnated with the electrolytic solution 6, and the electrolyte is arranged between the positive electrode 2 and the negative electrode 3. . Further, by sealing the upper portion of the battery can 5 with the top insulator 7 and the sealing member 8, the lithium secondary battery 10 can be manufactured.
  • the shape of the electrode group 4 is, for example, a columnar shape such that the cross-sectional shape of the electrode group 4 cut in the direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, or a rectangle with rounded corners. can be mentioned.
  • a shape defined by IEC60086 which is a standard for batteries defined by the International Electrotechnical Commission (IEC), or JIS C 8500 can be adopted.
  • IEC60086 which is a standard for batteries defined by the International Electrotechnical Commission (IEC), or JIS C 8500
  • a shape such as a cylindrical shape or a rectangular shape can be mentioned.
  • the lithium secondary battery is not limited to the wound type configuration described above, and may have a layered configuration in which a layered structure of a positive electrode, a separator, a negative electrode, and a separator is repeatedly stacked.
  • laminated lithium secondary batteries include so-called coin-type batteries, button-type batteries, and paper-type (or sheet-type) batteries.
  • the positive electrode, separator, negative electrode and electrolyte that constitute the lithium secondary battery for example, the configurations, materials and manufacturing methods described in [0113] to [0140] of WO2022/113904A1 can be used.
  • FIG. 5 is a schematic diagram showing an example of the all-solid lithium secondary battery of this embodiment.
  • the all-solid lithium secondary battery 1000 shown in FIG. 5 has a laminate 100 having a positive electrode 110, a negative electrode 120, and a solid electrolyte layer 130, and an outer package 200 that accommodates the laminate 100.
  • the all-solid lithium secondary battery 1000 may have a bipolar structure in which a CAM and a negative electrode active material are arranged on both sides of a current collector.
  • bipolar structures include structures described in JP-A-2004-95400. The material forming each member will be described later.
  • the positive electrode 110 has a positive electrode active material layer 111 and a positive electrode current collector 112 .
  • the positive electrode active material layer 111 contains the above-described CAM and solid electrolyte. Moreover, the positive electrode active material layer 111 may contain a conductive material and a binder.
  • the negative electrode 120 has a negative electrode active material layer 121 and a negative electrode current collector 122 .
  • the negative electrode active material layer 121 contains a negative electrode active material. Further, the negative electrode active material layer 121 may contain a solid electrolyte and a conductive material.
  • the laminate 100 may have an external terminal 113 connected to the positive electrode current collector 112 and an external terminal 123 connected to the negative electrode current collector 122 .
  • all-solid lithium secondary battery 1000 may have a separator between positive electrode 110 and negative electrode 120 .
  • the all-solid lithium secondary battery 1000 further has an insulator (not shown) for insulating the laminate 100 and the exterior body 200 and a sealing body (not shown) for sealing the opening 200 a of the exterior body 200 .
  • a container molded from a highly corrosion-resistant metal material such as aluminum, stainless steel, or nickel-plated steel can be used.
  • a container in which a laminated film having at least one surface subjected to corrosion-resistant processing is processed into a bag shape can also be used.
  • Examples of the shape of the all-solid lithium secondary battery 1000 include coin-shaped, button-shaped, paper-shaped (or sheet-shaped), cylindrical, rectangular, and laminated (pouch-shaped).
  • the all-solid-state lithium secondary battery 1000 is illustrated as having one laminate 100 as an example, but the present embodiment is not limited to this.
  • the all-solid-state lithium secondary battery 1000 may have a configuration in which the laminate 100 is used as a unit cell and a plurality of unit cells (laminate 100 ) are sealed inside the exterior body 200 .
  • the positive electrode having the above configuration has the CAM described above, it is possible to provide a lithium secondary battery with high initial discharge capacity and good cycle characteristics.
  • the lithium secondary battery with the above configuration has the positive electrode described above, it has a high initial discharge capacity and good cycle characteristics.
  • the LiMO has a layered structure and contains at least Li, Ni, and Al,
  • composition analysis of the CAM produced by the below-described method was performed by the above-described "CAM composition analysis" method.
  • ⁇ Cumulative volume particle size> The D 10 , D 50 and D 90 of the CAM produced by the method described below were measured by the "cumulative volume particle size" measurement method described above.
  • ⁇ Cross-sectional SEM image analysis> Exists in the region surrounded by the outer perimeter of the light-colored portion with respect to the total area of the region surrounded by the outer periphery of the light-colored portion of 217 to 367 particles by the method described in ⁇ Cross-Sectional SEM Image Analysis> above.
  • the number ratio (ratio c) was calculated.
  • Example 1 After water was put into a reactor equipped with a stirrer and an overflow pipe, an aqueous sodium hydroxide solution was added and the liquid temperature was maintained at 50°C.
  • a nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, and an aluminum sulfate aqueous solution were mixed so that the molar ratio of Ni, Co, and Al was 0.88:0.09:0.03 to prepare a mixed raw material solution.
  • this mixed raw material solution and an aqueous solution of ammonium sulfate as a complexing agent were continuously added into the reaction tank while stirring.
  • a sodium hydroxide aqueous solution was added dropwise at appropriate times so that the pH of the mixed liquid in the reaction tank was 11.6 (measurement temperature: 40° C.), and a reaction precipitate 1 was obtained.
  • the metal composite hydroxide 1 was held at 650°C in an air atmosphere for 5 hours, heated, and cooled to room temperature to obtain MCC1, which is a metal composite oxide.
  • Lithium hydroxide was weighed so that the amount (molar ratio) of Li to the total amount of Ni, Co and Al contained in MCC1 was 1.10. Mixture 1 was obtained by mixing MCC1 and lithium hydroxide.
  • This mixture 1 was calcined at 650°C for 5 hours in an oxygen atmosphere to obtain a reactant 1.
  • the reactant 1 was calcined at 720° C. for 6 hours in an oxygen atmosphere to obtain a calcined product 1 .
  • the fired product 1 and pure water are mixed so that the mass ratio of the fired product 1 to the total amount is 30% by mass, and the slurry is stirred for 20 minutes and washed. C. for 10 hours, and the remaining moisture after dehydration was dried to obtain dried product 1.
  • the dried product 1 was fed to a turbo screener at a feed rate of 50 kg/hour and sieved to obtain CAM-1. During sieving by the turbo screener, air having a moisture concentration of 2566 ppm or less was continuously supplied to the inside of the turbo screener.
  • LiMO contained in CAM-1 had a layered structure.
  • Example 2 CAM-2 was obtained in the same manner as in Example 1, except that the temperature during the main calcination of the reactant 1 was changed to 700°C.
  • LiMO contained in CAM-2 had a layered structure.
  • Example 3 CAM-3 was obtained in the same manner as in Example 2, except that in the washing step, the mass ratio of the baked product 1 to the total mass was 40% by mass.
  • LiMO contained in CAM-3 had a layered structure.
  • CAM-C1 was obtained in the same manner as in Example 1, except that the fired product 1 was used as the CAM without being washed.
  • LiMO contained in CAM-C1 had a layered structure.
  • Dried product 2 was prepared in the same manner as in Example 1, except that the heating step of metal composite hydroxide 1 was omitted, and the mass ratio of fired product 1 to the total amount was set to 40% by mass in the washing step. got
  • the dried product 2 was sieved with an ultrasonic vibrator to obtain CAM-C2. Before sieving with the ultrasonic vibrator, the atmosphere inside the ultrasonic vibrator was filled with air having a moisture concentration of 2566 ppm or less.
  • LiMO contained in CAM-C2 had a layered structure.
  • Example 3 A fired product 2 was obtained in the same manner as in Example 1, except that the firing conditions for the reactant 1 were 790° C. for 5 hours. The obtained fired product 2 and pure water are mixed so that the mass ratio of the fired product 2 to the total amount is 5% by mass, and the prepared slurry is stirred for 5 minutes, washed, dehydrated, and vacuumed. It was heat-treated at 120° C. for 10 hours in an atmosphere, dried to remove water remaining after dehydration, and then pulverized in an agate mortar in an air atmosphere to obtain CAM-C3.
  • LiMO contained in CAM-C3 had a layered structure.
  • CAM-1 to CAM-3 of Examples 1 to 3 and CAM-C1 to CAM-C3 of Comparative Examples 1 to 3 with or without washing process D 50 , D 90 /D 10 , ratio a, ratio b, ratio c , the diffraction peak intensity height ratio H1/H2, and the initial discharge capacity and cycle efficiency of lithium secondary batteries using each CAM are shown in Table 1.
  • the ratio a was 0.22-0.28% and the ratio b was 1.6-3.2%. Furthermore, the initial discharge capacity of lithium secondary batteries using CAM-1 to 3 was 197-202 mAh/g, and the cycle efficiency was 83.8-90.4%.
  • Comparative Example 1 in which the baked product was not washed, the ratio b was 5.8%. This is probably because the segregated Al did not sufficiently flow out due to the lack of washing.
  • the ratio a was 0.01%, the ratio b was 0.9%, and the cycle efficiency was 80.1%. It is believed that CAM-C2 did not contain enough Al segregation parts and voids, and could not buffer the expansion and contraction of LiMO due to charging and discharging.
  • Comparative Example 3 the ratio a was 0.49% and the ratio b was 14.7%. As a result, the initial discharge capacity was 184 mAh/g. This is probably because CAM-C3 contained an excessive amount of Al segregation and voids.
  • a CAM capable of obtaining a lithium secondary battery that has a high initial discharge capacity and whose discharge capacity does not easily decrease even after repeated charging and discharging, and a positive electrode for a lithium secondary battery and a lithium secondary battery using the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

このリチウム二次電池用正極活物質は、リチウム金属複合酸化物及びAl偏析部を含有する複数の粒子Xを含み、粒子Xが空隙を有しており、リチウム金属複合酸化物は、少なくともLi、Ni及びAlを含有し、SEMにより得られる粒子)の断面画像が(1)及び(2)の条件を満たす。 (1)二値化処理した画像において、明色部分の外周で囲まれる領域の面積の総和に対する明色部分の外周で囲まれる領域内に存在する暗色部分の面積の総和の割合が、0.05%より大きく0.4%以下である。 (2)二値化処理した画像において、粒子Xの総数に対する式(i)で表される円形度が0.33以下である粒子Yの個数の割合が、0%より大きく5.0%以下である。

Description

リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
 本発明は、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池に関する。
 本願は、2021年12月8日に日本に出願された特願2021-199659号について優先権を主張し、その内容をここに援用する。
 リチウム二次電池用正極活物質は、リチウム金属複合酸化物を含んだ複数の粒子からなる。リチウム金属複合酸化物としては、Ni、Co及びAl等の金属元素とLiとを含む複合金属酸化物が広く使用されている。リチウム二次電池の充放電に伴い、リチウム二次電池用正極活物質の粒子表面でリチウムイオンの脱離及び挿入が行われる。
 例えば特許文献1には、リチウム、ニッケル、コバルト、及びアルミニウムを含み、空隙率20%未満の二次粒子から主に構成されるリチウム金属複合酸化物の粒子と、リチウム金属複合酸化物の粒子の表面に形成された、電子導電性粒子を含むイオン伝導性ポリマーからなる被覆層とを有するリチウム二次電池用正極活物質が記載されている。
JP-A-2019-140093
 特許文献1のリチウム二次電池用正極活物質は、耐候性及び長期保管性に優れている。しかしながら、リチウム二次電池用正極活物質は、リチウム二次電池の初期放電容量及び繰り返し充放電性能の観点から更なる改善の余地がある。
 本発明は、上記事情に鑑みてなされたものであって、初期放電容量が高く、繰り返し充放電を行っても放電容量が低下し難いリチウム二次電池を得ることができるリチウム二次電池用正極活物質、及びこれを用いたリチウム二次電池用正極及びリチウム二次電池を提供することを目的とする。
 本発明は、以下の態様を有する。
[1]リチウム金属複合酸化物及びAl偏析部を含有する複数の粒子Xを含むリチウム二次電池用正極活物質であって、
 前記粒子Xが空隙を有しており、
 前記リチウム金属複合酸化物は、層状構造を有し、少なくともLi、Ni、及びAlを含有し、
 走査型電子顕微鏡により得られる前記粒子Xの断面画像が(1)及び(2)の条件を満たす、リチウム二次電池用正極活物質。
 (1)前記リチウム金属複合酸化物が明色、前記空隙及び前記Al偏析部が暗色となるように前記断面画像を二値化処理した画像において、明色部分の外周で囲まれる領域の面積の総和に対する前記明色部分の外周で囲まれる領域内に存在する暗色部分の面積の総和の割合が、0.05%より大きく0.4%以下である。
 (2)前記二値化処理した画像において、前記粒子Xの総数に対する、式(i)で表される円形度が0.33以下である粒子Yの個数の割合が、0%より大きく5.0%以下である。
 円形度=4πS/L  (i)
 式(i)において、Sは前記明色部分の外周で囲まれる領域の面積であり、Lは前記明色部分の外周長である。
[2]前記二値化処理した画像において、前記粒子Xの総数に対する前記円形度が0.45以上の粒子Zの個数の割合が、70%以上である、[1]に記載のリチウム二次電池用正極活物質。
[3]前記リチウム二次電池用正極活物質の50%累積体積粒度が5μm以上20μm以下である、[1]又は[2]に記載のリチウム二次電池用正極活物質。
[4]前記リチウム二次電池用正極活物質の10%累積体積粒度に対する90%累積体積粒度の比が3以下である、[1]~[3]の何れか1つに記載のリチウム二次電池用正極活物質。
[5]前記リチウム二次電池用正極活物質の組成式が、式(A)で表される、[1]~[4]の何れか1つに記載のリチウム二次電池用正極活物質。
 Li[Li(Ni(1-x-y)Al1-m]O  ・・・(A)
(式A中、Mは、Co,Mn,Fe,Cu,Ti,Mg,W,Mo,Nb,Zn,Sn,Zr,Ga,V,B,Si,S及びPからなる群より選択される1種以上の元素であり、-0.1≦m≦0.2、0<x≦0.5及び0≦y<0.5を満たす。)
[6]前記リチウム二次電池用正極活物質のCuKα線を使用した粉末X線回折測定において、2θ=44.1±1°の範囲内の回折ピーク強度高さであるH2に対する2θ=18.5±1°の範囲内の回折ピーク強度高さであるH1の比H1/H2が、1.5以上1.6以下である、[1]~[5]の何れか1つに記載のリチウム二次電池用正極活物質。
[7][1]~[6]の何れか1つに記載のリチウム二次電池用正極活物質を含有するリチウム二次電池用正極。
[8][7]に記載のリチウム二次電池用正極を有するリチウム二次電池。
 本発明によれば、初期放電容量が高く、繰り返し充放電を行っても放電容量が低下し難いリチウム二次電池を得ることができるリチウム二次電池用正極活物質、及びこれを用いたリチウム二次電池用正極及びリチウム二次電池を提供することができる。
本発明の一態様におけるリチウム二次電池用正極活物質のSEMによる解析結果を示す図である。 本発明の一態様におけるリチウム二次電池用正極活物質のSEMによる解析結果を示す図である。 本発明の一態様におけるリチウム二次電池用正極活物質のSEMによる解析結果を示す図である。 リチウム二次電池の一例を示す概略構成図である。 本実施形態の全固体リチウム二次電池の全体構成を示す模式図である。
 以下、本発明の一態様におけるリチウム二次電池用正極活物質について説明する。以下の複数の実施形態では、好ましい例や条件を共有してもよい。また、本明細書において、各用語を以下に定義する。
 本願明細書において、金属複合化合物(Metal Composite Compound)を以下「MCC」と称し、リチウム金属複合酸化物(Lithium Metal composite Oxide)を以下「LiMO」と称し、リチウム二次電池用正極活物質(Cathode Active Material for lithium secondary batteries)を以下「CAM」と称す。
 「Ni」とは、ニッケル金属ではなく、ニッケル原子を指す。「Li」及び「Al」等も同様に、それぞれリチウム原子及びアルミニウム原子等を指す。
 数値範囲を例えば「1-10μm」又は「1~10μm」と記載した場合、1μmから10μmまでの範囲を意味し、下限値である1μmと上限値である10μmを含む数値範囲を意味する。
 「累積体積粒度」は、レーザー回折散乱法によって測定される値である。具体的には、CAMの粉末0.1gを、0.2質量%ヘキサメタりん酸ナトリウム水溶液50mlに投入し、前記粉末を分散させた分散液を得る。次に、得られた分散液についてレーザー回折散乱粒度分布測定装置(例えば、マルバーン社製、マスターサイザー2000)を用いて、粒度分布を測定し、体積基準の累積粒度分布曲線を得る。得られた累積粒度分布曲線において、微小粒子側から10%累積時の粒子径の値が10%累積体積粒度(以下、D10と記載することがある)(μm)であり、微小粒子側から50%累積時の粒子径の値が50%累積体積粒度(以下、D50と記載することがある)(μm)であり、微小粒子側から90%累積時の粒子径の値が90%累積体積粒度(以下、D90と記載することがある)(μm)である。
 「CAMの組成分析」は、以下の方法で分析される。例えば、CAMの粉末を塩酸に溶解させた後、ICP発光分光分析装置を用いて測定する。ICP発光分光分析装置としては、例えば株式会社パーキンエルマー製、Optima7300を使用できる。
 本実施形態において、走査型電子顕微鏡を「SEM」と記載する。走査型電子顕微鏡としては、例えば、ショットキー電界放出形走査電子顕微鏡(日本電子株式会社製、製品名JSM-7900F)を使用できる。
[結晶構造]
 LiMOの結晶構造は、CuKαを線源とし、かつ回折角2θの測定範囲を10-90°とするCAMの粉末X線回折測定を行うことで算出できる。具体的には、粉末X線回折測定装置(例えば、株式会社リガク製UltimaIV)を用いて観察することにより確認できる。2θ=18.5±1°の範囲内の回折ピーク強度高さ(H1)と2θ=44.4±1°の範囲内の回折ピーク強度高さ(H2)の比H1/H2は、上記粉末X線回折測定装置を用いてCAMの粉末X線回折測定を行い、該当する回折ピークを解析ソフトウェア(例えば、統合粉末X線解析ソフトウェアJADE)により解析することで得ることができる。
 「初期放電容量及び50回目放電容量維持率」は、以下の方法でリチウム二次電池を作製し、以下の条件で測定した。
<リチウム二次電池用正極の作製>
 CAMと導電材(アセチレンブラック)とバインダー(PVdF)とを、CAM:導電材:バインダー=92:5:3(質量比)の組成となるように加えて混練することにより、ペースト状の正極合剤を調製する。正極合剤の調製時には、NMPを有機溶媒として用いる。
 得られた正極合剤を、集電体となる厚さ40μmのAl箔に塗布して150℃で8時間真空乾燥を行い、リチウム二次電池用正極を得る。このリチウム二次電池用正極の電極面積は1.65cmとする。
<リチウム二次電池(コイン型ハーフセル)の作製>
 以下の操作を、アルゴン雰囲気のグローブボックス内で行う。
 <リチウム二次電池用正極の作製>で作製したリチウム二次電池用正極を、コイン型電池R2032用のパーツ(宝泉株式会社製)の下蓋にアルミ箔面を下に向けて置き、その上に積層フィルムセパレータ(ポリエチレン製多孔質フィルムの上に、耐熱多孔層を積層した厚さが16μmの積層体)を置く。ここに電解液を300μl注入する。電解液は、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートの30:35:35(体積比)で混合した混合液にLiPFを1mol/lとなるように溶解させたものを用いる。
 次に、負極として金属リチウムを用いて、前記負極を積層フィルムセパレータの上側に置き、ガスケットを介して上蓋をし、かしめ機でかしめてリチウム二次電池(コイン型ハーフセルR2032)を作製する。
 「初期放電容量」とは、以下の条件で充放電を行って測定した値を意味する。作製したリチウム二次電池を、25℃において4.3Vまで0.2CAで定電流充電してから4.3Vで定電圧充電する定電流定電圧充電を5時間行った後、2.5Vまで0.2CAで放電する定電流放電を行う。放電容量を測定し、得られた値を「初期放電容量」(mAh/g)とする。
 「50回目放電容量維持率」とは、以下に示す条件で充放電サイクルを50回繰り返す試験を行って測定した値を意味する。
 作製したリチウム二次電池を、上述の条件で初期充放電を行う。初期充放電後、初期充放電と同じ温度と電圧の条件で、1CAで充放電を繰り返す。その後、50サイクル目の放電容量(mAh/g)を測定する。初期放電容量に対する50サイクル目の放電容量の割合を、50回目放電容量維持率(%)、すなわちサイクル効率とする。
 本明細書において、50回目放電容量維持率が大きいリチウム二次電池は、繰り返し充放電を行っても放電容量が低下し難いことを意味し、サイクル特性がよいと記載することがある。
<リチウム二次電池用正極活物質>
 本実施形態のCAMは、LiMO及びAl偏析部を含有する複数の粒子Xを含み、粒子Xが空隙を有しており、LiMOは、層状構造を有し、少なくともLi、Ni及びAlを含有し、SEMにより得られる前記粒子Xの断面画像が(1)及び(2)の条件を満たす。
 (1)LiMOが明色、粒子X内部の空隙及びAl偏析部が暗色となるように断面画像を二値化処理した画像において、明色部分の外周で囲まれる領域の面積の総和に対する明色部分の外周で囲まれる領域内に存在する暗色部分の面積の総和の割合が、0.05%より大きく0.4%以下である。
 (2)二値化処理した画像において、粒子Xの総数に対する式(i)で表される円形度が0.33以下である粒子Yの個数の割合が、0%より大きく5.0%以下である。
 円形度=4πS/L  (i)
 式(i)において、Sは、明色部分の外周で囲まれる領域の面積であり、Lは、明色部分の外周長である。
 本実施形態におけるCAMは、複数の粒子Xを含む。言い換えれば、本実施形態におけるCAMは、粉末状である。本実施形態において、CAMは、二次粒子のみを含んでいてもよく、一次粒子と二次粒子の混合物を含んでいてもよい。
 本実施形態において、「一次粒子」とは、走査型電子顕微鏡等を用いて10000倍の視野にて観察した際に、外観上に粒界が存在しない粒子である。「二次粒子」とは、前記一次粒子が凝集している粒子である。即ち、二次粒子は、一次粒子の凝集体である。
 「Al偏析部」とは、粒子XにおいてAlが偏析した部分を指す。
 本実施形態のCAMは、上記(1)及び(2)を満たす。
 <断面SEM画像解析>
 CAMが(1)及び(2)を満たしているかは、以下の方法で確認できる。まず、粒子固定用樹脂に、CAMを分散させる。その後、真空脱気し、得られた生成物をアルミニウム板に挟み、硬化させる。これにより、CAMを含む樹脂の硬化物が得られる。
 硬化物を試料台に固定し、断面試料作製装置(クロスセクションポリッシャともいう、例えば、JEOL社製、IB-19520CCP)にセットする。イオン加速電圧6.0kVでアルゴンイオンビーム加工し、CAMの断面を作製する。
 CAMの断面を加速電圧15kVで、SEMで観察する。解析対象粒子である複数の粒子Xは、200個以上、例えば200個あればよい。
 得られた画像(反射電子像)を定量解析ソフトTRI/3D-BON-FCS(ラトックシステムエンジニアリング製)を用いて二値化処理および解析を行う。画像分解能は、x,y=0.023μm、z=0.023μmとする。
 具体的には、定量解析ソフトの機能であるAuto-LWで画像の2階調化を行い、明色で表示されるLiMOと、暗色で表示される空隙及びAl偏析部を識別する。反射電子は、試料を構成する元素により発生量が異なり、原子番号が大きいほど発生量が多くなる性質を持つ。そのため画像(反射電子像ともいう)では、主に重元素である遷移金属元素を含むLiMOは明るく、空隙と主に軽元素であるC及びAlとを含むAl偏析部は暗くなる。
 得られた画像において空隙の一部、及びCAMに含まれる粒子表面に存在するAl偏析部等が中間コントラストを示すため、画像演算機能を用いて中間コントラスト部のみを抽出し、暗色で表示される空隙又はAl偏析部と重ね合わせる処理を行う。この処理により、粒子表面にある空隙又はAl偏析部を除去した粒子の形状と粒子内の空隙及びAl偏析部をより正確に識別して2階調化、つまり二値化を行うことができる。
 なお、粒子XにAl偏析部が含まれることは、上記中間コントラストを示す部分に対してSEM-エネルギー分散型X線分光法(EDX)分析を行い、Alが検出されることにより、確認することができる。
 二値化処理した画像から、画像演算機能を用いて円相当径6μm以下の粒子、解析画像端が欠如している粒子、解析の前処理時に割れている粒子、及び粒子形状が不明瞭な粒子(粒子の端部における断面と考えられる)を除去する。このようにして得られた二値化画像から、明色部分の外周で囲まれる領域の面積の総和に対する明色部分の外周で囲まれる領域内に存在する暗色部分の面積の総和の割合を、ソフトのオプション機能であるTRI/2D-PRTにてラベリングしたのちに算出する。また、粒子Xの総数に対する式(i)で表される円形度が0.33以下である粒子Yの個数の割合を算出する。
 図1~3は、CAMのSEMによる解析結果を示す図であり、上述の方法で得られた二値化画像である。図2は、図1の破線で囲まれる領域Pの拡大図である。図3は、図1の破線で囲まれる領域Qの拡大図である。粒子X内の空隙及びAl偏析部は、二値化画像において暗色で表示される部分のうち、明色部分の外周で囲まれる領域内に存在する円相当径0.5μm以上の部分と定義する。例えば、図2における符号42で囲まれる部分は、粒子X内の空隙及びAl偏析部である。
 二値化画像におけるCAMの面積は、明色部分41の外周で囲まれる領域面積である。つまり、CAMの面積は、複数の粒子Xの総面積であり、複数の粒子Xを構成するLiMOと、複数の粒子X内に存在する空隙と、複数の粒子X内に存在するAl偏析部とを合わせた面積である。図3で示すように、空隙及びAl偏析部43がCAMの表面部分に露出している場合、換言すれば、空隙及びAl偏析部が明色部分の外周で囲まれる領域外に存在する場合、CAMの面積に空隙及びAl偏析部43は含まれない。つまり、明色部分の外周Lで囲まれる領域をCAMの面積として算出する。
 複数の粒子Xの明色部分の外周で囲まれる領域の面積の総和に対する明色部分の外周で囲まれる領域内に存在する暗色部分の面積の総和の割合(以降、割合aと記載することがある。)を算出する。割合aは0.05%より大きく0.4%以下であり、0.1-0.35%であることが好ましく、0.15-0.3%であることがより好ましく、0.15-0.27%であることが特に好ましい。割合aが上述の範囲であると、粒子内部に空隙及びAl偏析部が存在することを意味し、リチウム二次電池の充放電を繰り返し行うことで生じるLiMOの膨張及び収縮を空隙及びAl偏析部で緩和することができる。その結果粒子Xの割れを抑制し、リチウム二次電池のサイクル特性が向上する。また、空隙が適度に存在する場合、リチウムイオンが脱離及び挿入するための反応場が増加するため、初期放電容量が向上する。
 粒子Xの円形度は、式(i)で表される。
 円形度=4πS/L  (i)
 式(i)において、Sは、明色部分の外周で囲まれる領域の面積である。Lは、明色部分の外周長である。
 複数の粒子Xの総数に対する円形度が0.33以下である粒子Yの個数の割合(以降、割合bと記載することがある。)は、0%より大きく5.0%以下であり、0.5-4.5%であることが好ましく、1.5-4.0%であることがより好ましく、2.0-3.5%であることがさらに好ましく、2.5-3.5%であることが特に好ましい。
 割合bが0%より大きいとき、CAMは、円形度が0.33以下の粒子Yを含むことを意味する。LiMOがAlを含むCAMでは、その製造工程、具体的には後述する本焼成時にAl偏析部が生じやすい。Al偏析部は、本焼成時に粒子表面に移動しやすく、本焼成に続いて行われる洗浄によって流出しやすい。Al偏析部が流出すると、その部分に空隙が形成される。CAMが空隙及びAl偏析部を含むようCAMを製造すると、割合bが0%より大きくなる。
 割合bが5.0%以下であると、CAMに含まれる粒子のうち、図3で示すような多量の空隙及びAl偏析部43が表面に存在する粒子の割合が多くなりすぎず、リチウムイオンが脱離及び挿入するための反応場を十分に確保することができる。
 複数の粒子Xの総数に対する円形度が0.45以上である粒子Zの個数の割合(以降、割合cと記載することがある。)は、70%以上であることが好ましく、70-95%であることがより好ましく、70-90%であることがさらに好ましく、70-85%であることが特に好ましい。割合cが上述の範囲であると、初期放電容量が向上しやすくなる。
 CAMのD50は、5-20μmであることが好ましく、5.0-20μmであることがより好ましく、5.0-17μmがさらに好ましく、5.0-15μmが特に好ましい。CAMのD50が上述の範囲であると、サイクル特性が向上しやすくなる。
 CAMのD90/D10は、3以下であることが好ましく、2.98以下がより好ましく、2.96以下がさらに好ましい。CAMのD90/D10が3以下であると、サイクル特性が向上しやすくなる。CAMのD90/D10の下限値は、例えば2.56が挙げられる。CAMのD90/D10は、2.56-3であることが好ましく、2.56-2.98がより好ましく、2.56-2.96がさらに好ましい。CAMのD90/D10が上述の範囲であると、初期放電容量及びサイクル特性が向上しやすい。
 CAMに含まれるLiMOは、少なくともLi、Ni及びAlを含む。CAMは、式(A)で表されることが好ましい。
 Li[Li(Ni(1-x-y)Al1-m]O  ・・・(A)
(式A中、Mは、Co,Mn,Fe,Cu,Ti,Mg,W,Mo,Nb,Zn,Sn,Zr,Ga,V,B,Si,S及びPからなる群より選択される1種以上の元素であり、-0.1≦m≦0.2、0<x≦0.5及び0≦y<0.5を満たす。)
 サイクル特性に優れるリチウム二次電池を得る観点から、前記式(A)におけるmは、-0.05以上であることがより好ましく、0を超えることがさらに好ましい。また、初回クーロン効率がより高いリチウム二次電池を得る観点から、前記式(A)におけるmは、0.08以下であることが好ましく、0.06以下であることがより好ましい。
 mの上限値と下限値は、任意に組み合わせることができる。組み合わせとしては、例えば、mが、0を超え0.2以下、-0.05~0.08、0を超え0.06以下等であることが挙げられる。
 電池の内部抵抗が低いリチウム二次電池を得る観点から、前記式(A)におけるxは、0.01以上が好ましく、0.02以上がより好ましい。前記式(A)におけるxは0.3以下であることが好ましく、0.1以下であることがより好ましい。
 xの上限値と下限値は、任意に組み合わせることができる。組み合わせとしては、例えば、0.01~0.5、0.02~0.3、0.02~0.1であることが挙げられる。
 電池の内部抵抗が低いリチウム二次電池を得る観点から、前記式(A)におけるyは、0.03以上が好ましく、0.05以上がより好ましい。前記式(A)におけるyは、0.3以下であることが好ましく、0.1以下であることがより好ましい。
 yの上限値と下限値は、任意に組み合わせることができる。組み合わせとしては、例えば、0.03以上0.5未満、0.03~0.3、0.05~0.1等であることが挙げられる。
 また、初期放電容量が大きいリチウム二次電池を得る観点から、本実施形態においては、前記式(A)におけるx+yは、0を超え0.50以下が好ましく、0を超え0.48以下がより好ましく、0を超え0.46以下がさらに好ましい。
 サイクル特性に優れるリチウム二次電池を得る観点から、Mは、Co、Mn、W、B、Nb、及びZrからなる群より選択される1種以上の元素であることが好ましい。またMは、Co及びMnからなる群より選択される1種以上の元素M1と、Fe,Cu,Ti,Mg,W,Mo,Nb,Zn,Sn,Zr,Ga,V,B,Si,S及びPからなる群より選択される1種以上の元素M2とからなっていてもよい。
 CAMの比H1/H2が、1.5-1.6であることが好ましく、1.51-1.59であることがより好ましい。比H1/H2が、上述の範囲であると、初期放電容量が高くなる傾向がある。
 LiMOの結晶構造は、層状構造であり、六方晶型の結晶構造又は単斜晶型の結晶構造であることがより好ましい。
 六方晶型の結晶構造は、P3、P3、P3、R3、P-3、R-3、P312、P321、P312、P321、P312、P321、R32、P3m1、P31m、P3c1、P31c、R3m、R3c、P-31m、P-31c、P-3m1、P-3c1、R-3m、R-3c、P6、P6、P6、P6、P6、P6、P-6、P6/m、P6/m、P622、P622、P622、P622、P622、P622、P6mm、P6cc、P6cm、P6mc、P-6m2、P-6c2、P-62m、P-62c、P6/mmm、P6/mcc、P6/mcm、及びP6/mmcからなる群より選択されるいずれか一つの空間群に帰属される。
 また、単斜晶型の結晶構造は、P2、P2、C2、Pm、Pc、Cm、Cc、P2/m、P2/m、C2/m、P2/c、P2/c、及びC2/cからなる群より選択されるいずれか一つの空間群に帰属される。
 これらのうち、初期放電容量が高いリチウム二次電池を得るため、結晶構造は、空間群R-3mに帰属される六方晶型の結晶構造、又はC2/mに帰属される単斜晶型の結晶構造であることが特に好ましい。
<CAMの製造方法>
 CAMの製造方法について説明する。CAMの製造方法は、MCCの製造、MCCとリチウム化合物との混合、MCCとリチウム化合物との混合物の仮焼成、仮焼成により得られた反応物の本焼成、及び洗浄を少なくとも含んでいる。
(1)MCCの製造
 MCCは、金属複合酸化物、及び金属複合酸化物と金属複合水酸化物の混合物のいずれであってもよい。金属複合酸化物、及び金属複合酸化物と金属複合水酸化物の混合物は、一例として下記式(A’)で表されるモル比率で、Ni、Al及び元素Mを含み、下記式(A’’)で表される。なお、式(A’)又は式(A’ ’)中のx及びyの好ましい範囲は、上記式(A)のx及びyの好ましい範囲と同様である。
 Ni:Al:M=(1-x-y):x:y   (A’)
 Ni(1-x-y)Alα(OH)2-β  (A’’)
 (式(A’)及び式(A’’)中、Mは、Co,Mn,Fe,Cu,Ti,Mg,W,Mo,Nb,Zn,Sn,Zr,Ga,V,B,Si,S及びPからなる群より選択される1種以上の元素であり、0<x≦0.5及び0≦y<0.5を満たす。式(A’’)は、0<α≦3、-0.5≦β≦2及びβ-α<2を満たす。)
 以下、Ni、Al及びCoを含むMCCの製造方法を一例として説明する。まず、Ni、Al及びCoを含む金属複合水酸化物を調製する。金属複合水酸化物は、通常公知のバッチ式共沈殿法又は連続式共沈殿法により製造することが可能である。
 具体的には、JP-A-2002-201028に記載された連続式共沈殿法により、ニッケル塩溶液、コバルト塩溶液、アルミニウム塩溶液及び錯化剤を反応させ、Ni(1-x-y)AlCo(OH)で表される金属複合水酸化物を製造する。
 ニッケル塩溶液の溶質であるニッケル塩としては、特に限定されないが、例えば硫酸ニッケル、硝酸ニッケル、塩化ニッケル及び酢酸ニッケルのうちの少なくとも1種を使用することができる。
 アルミニウム塩溶液の溶質であるアルミニウム塩としては、例えば硫酸アルミニウム、硝酸アルミニウム、塩化アルミニウム及び酢酸アルミニウムのうちの少なくとも1種を使用することができる。
 コバルト塩溶液の溶質であるコバルト塩としては、例えば硫酸コバルト、硝酸コバルト、塩化コバルト及び酢酸コバルトのうちの少なくとも1種を使用することができる。
 以上の金属塩は、上記Ni(1-x-y)Al(OH)の組成比に対応する割合で用いられる。すなわち、上記金属塩を含む混合溶液中におけるNi、Al及びCoのモル比が、式(A’)の(1-x-y):x:yと対応するように各金属塩の量を規定する。また、溶媒として水が使用される。
 錯化剤としては、水溶液中で、ニッケルイオン、アルミニウムイオン及びコバルトイオンと錯体を形成可能なものであり、例えばアンモニウムイオン供給体(水酸化アンモニウム、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、又は弗化アンモニウム等)、ヒドラジン、エチレンジアミン四酢酸、ニトリロ三酢酸及びウラシル二酢酸及びグリシンが挙げられる。
 金属複合水酸化物の製造工程において、錯化剤は、用いられてもよく、用いられなくてもよい。錯化剤が用いられる場合、ニッケル塩溶液、アルミニウム塩溶液、コバルト塩溶液及び錯化剤を含む混合液に含まれる錯化剤の量は、例えば金属塩(ニッケル塩、アルミニウム塩及びコバルト塩)のモル数の合計に対するモル比が0より大きく2.0以下である。
 共沈殿法に際しては、ニッケル塩溶液、アルミニウム塩溶液、コバルト塩溶液及び錯化剤を含む混合液のpH値を調整するため、混合液のpHがアルカリ性から中性になる前に、混合液にアルカリ金属水酸化物を添加する。アルカリ金属水酸化物とは、例えば水酸化ナトリウム又は水酸化カリウムである。
 なお、本明細書におけるpHの値は、混合液の温度が40℃の時に測定された値であると定義する。反応槽からサンプリングした混合液の温度が、40℃でない場合には、混合液を40℃まで加温又は冷却して混合液のpHを測定する。
 上記ニッケル塩溶液、アルミニウム塩溶液、及びコバルト塩溶液のほか、錯化剤を反応槽に連続して供給すると、Ni、Co及びAlが反応し、Ni(1-x-y)AlCo(OH)が生成する。
 反応に際しては、反応槽の温度を、例えば20-80℃、好ましくは30-70℃の範囲内で制御する。
 また、反応に際しては、反応槽内のpH値を、例えば、9-13、好ましくは10-12.5の範囲内で設定し、pHは±0.5以内で制御する。
 連続式共沈殿法で用いる反応槽は、形成された反応沈殿物を分離するためオーバーフローさせるタイプの反応槽を用いることができる。
 バッチ式共沈殿法により金属複合水酸化物を製造する場合、反応槽としては、オーバーフローパイプを備えない反応槽、及びオーバーフローパイプに連結された濃縮槽を備え、オーバーフローした反応沈殿物を濃縮槽で濃縮し、再び反応槽へ循環させる機構を有する装置等が挙げられる。
 各種気体、例えば、窒素、アルゴン若しくは二酸化炭素等の不活性ガス、空気若しくは酸素等の酸化性ガス、又はそれらの混合ガスを反応槽内に供給してもよい。
 反応槽に供給する金属塩の濃度、反応温度及び反応pH等を適宜制御することにより、CAMのD50及びD90/D10を本実施形態の範囲に制御することができる。
 以上の反応後、中和された反応沈殿物を単離する。単離には、例えば反応沈殿物を含むスラリー(つまり、共沈物スラリー)を遠心分離や吸引ろ過などで脱水する方法が用いられる。
 単離された反応沈殿物を洗浄、脱水、乾燥及び篩別し、Ni、Al及びCoを含む金属複合水酸化物が得られる。
 反応沈殿物の洗浄は、水又はアルカリ性洗浄液で行うことが好ましい。本実施形態においては、反応沈殿物は、アルカリ性洗浄液で洗浄されることが好ましく、水酸化ナトリウム水溶液で洗浄されることがより好ましい。また、反応沈殿物は、硫黄元素を含有する洗浄液を用いて洗浄されてもよい。硫黄元素を含有する洗浄液としては、カリウム又はナトリウムの硫酸塩水溶液等が挙げられる。
 金属複合水酸化物を加熱してMCCを製造する。必要ならば複数の加熱工程を実施してもよい。本明細書における加熱温度とは、加熱装置の設定温度を意味する。複数の加熱工程が実施される場合、加熱温度とは、各加熱工程のうち、最も高い温度で加熱した工程の温度を意味する。
 加熱温度は、400-700℃であることが好ましく、450-680℃であることがより好ましい。加熱温度が400-700℃であると、金属複合水酸化物が十分に酸化され、かつ適切な範囲のBET比表面積を有するMCCが得られる。
 前記加熱温度で保持する時間は、0.1-20時間が挙げられ、0.5-10時間が好ましい。前記加熱温度までの昇温速度は、例えば、50-400℃/時間である。また、加熱雰囲気としては、大気、酸素、窒素、アルゴン又はこれらの混合ガスを用いることができる。
 加熱装置内の雰囲気は、適度な酸素含有雰囲気であってもよい。酸素含有雰囲気は、不活性ガスと酸化性ガスとの混合ガス雰囲気であってもよく、不活性ガス雰囲気下で酸化剤が存在する状態であってもよい。加熱装置内の雰囲気が適度な酸素含有雰囲気であることにより、金属複合水酸化物に含まれる遷移金属が適度に酸化され、MCCの形態が制御されやすくなる。
 酸素含有雰囲気中の酸素又は酸化剤は、遷移金属を酸化させるために十分な酸素原子を含めばよい。
 酸素含有雰囲気が不活性ガスと酸化性ガスとの混合ガス雰囲気である場合、加熱装置内の雰囲気は、加熱装置内に酸化性ガスを通気させる又は混合液に酸化性ガスをバブリングするなどの方法で制御することができる。
 酸化剤として、過酸化水素などの過酸化物、過マンガン酸塩などの過酸化物塩、過塩素酸塩、次亜塩素酸塩、硝酸、ハロゲン又はオゾンなどを使用できる。
(2)MCCとリチウム化合物との混合
 本工程は、リチウム化合物とMCCとを混合し、混合物を得る工程である。
 前記MCCを必要に応じて乾燥させた後、リチウム化合物と混合する。MCCの乾燥後に、適宜分級を行ってもよい。
 本実施形態において、リチウム化合物は、炭酸リチウム、硝酸リチウム、酢酸リチウム、水酸化リチウム、酸化リチウム、塩化リチウム及びフッ化リチウムの少なくとも何れか一つを使用することができる。これらの中では、水酸化リチウム及び炭酸リチウムのいずれか一方又はその混合物が好ましい。
 リチウム化合物とMCCとを、最終目的物の組成比を勘案して混合し、混合物を得る。具体的には、リチウム化合物とMCCは、上記式(A)の組成比に対応する割合で混合する。MCCに含まれる金属原子の合計量1に対するLiの量(モル比)は、1.00以上が好ましく、1.02以上がより好ましく、1.05以上がさらに好ましい。リチウム化合物とMCCの混合物を、後に説明するように焼成することによって、焼成物が得られる。
(3)混合物の仮焼成
 MCCとリチウム化合物との混合物は、仮焼成され、MCCとリチウム化合物との反応物が形成される。本実施形態において仮焼成とは、後述の本焼成における焼成温度(後述の焼成工程が複数の焼成段階を有する場合は、最も低い温度で実施される焼成段階における焼成温度)よりも低い温度で焼成することである。仮焼成は、複数回行ってもよい。
 仮焼成の温度は、例えば400℃以上700℃未満であることが好ましく、500-695℃であることがより好ましく、600-690℃であることがさらに好ましい。焼成温度が400℃以上であると、MCCとリチウム化合物との反応が促進される。また、焼成温度が700℃未満であると、Ni含有量が多いMCCを用いる場合であっても、サイクル特性に優れるリチウム二次電池を達成できる。
 本明細書における焼成温度とは、焼成炉内雰囲気の温度を意味し、かつ焼成工程での保持温度の最高温度(以下、最高保持温度と呼ぶことがある)である。複数の焼成段階を有する焼成工程の場合、焼成温度とは、各焼成段階のうち、最も高い温度で焼成した段階の温度を意味する。
 仮焼成における保持時間は、1-8時間が好ましく、1.0-6時間がより好ましく、1.2-5時間が特に好ましい。仮焼成における保持時間が1時間以上であると、MCCとリチウム化合物との反応を十分に高められる。焼成における保持時間が8時間以下であると、リチウムイオンの揮発が生じ難く、電池性能が向上する。
 仮焼成及び後述の本焼成時の雰囲気は、酸素含有雰囲気であることが好ましく、酸素雰囲気であることがより好ましい。仮焼成及び後述の本焼成時の雰囲気が酸素含有雰囲気であると、酸素欠陥が低減され、構造的に安定化することによって電池性能が向上する。
 MCCとリチウム化合物との混合物は、不活性溶融剤の存在下で焼成されてもよい。不活性溶融剤は、焼成物に残留してもよいし、焼成後に後述するように洗浄液で洗浄すること等により除去されてもよい。不活性溶融剤としては、例えばWO2019/177032A1に記載のものを使用することができる。
 (4)反応物の本焼成
 反応物の本焼成は、焼成温度が異なる複数の焼成段階を有していてもよい。例えば、第1の焼成段階と、第1の焼成段階よりも高温で焼成する第2の焼成段階をそれぞれ独立に行ってもよい。さらに焼成温度及び焼成時間が異なる焼成段階を有していてもよい。
 LiMOに含まれるAlは、本焼成中に偏析しやすい。また、Al偏析部は、本焼成中に粒子表面に移動することがある。表面に移動したAl偏析部は、後に行われる洗浄によって流出しやすい。粒子Xに空隙及びAl偏析部が適度に存在することにより、リチウム二次電池の充放電により生じるLiMOの膨張及び収縮を緩和することができる。
 本焼成の焼成温度は、700℃以上であることが好ましく、700-1100℃であることがより好ましく、700-750℃であることがさらに好ましい。焼成温度が700℃以上であると、強固な結晶構造を有するCAMを得ることができる。また、焼成温度が1100℃以下であると、粒子表面のリチウムイオンの揮発を低減できる。また、焼成温度が750℃以下であると粒子Xに空隙及びAl偏析部を適度に存在させることができ、割合a、割合b、及び割合cが上述の範囲であるCAMを製造することができる。
 本焼成における保持時間は、1-50時間が好ましい。本焼成における保持時間が1時間以上であると、反応物中の未反応のMCCとリチウム化合物との反応を十分に高められる。本焼成における保持時間が50時間以下であると、リチウムイオンの揮発が生じ難く、電池性能が向上する。
 以上のようにMCCとリチウム化合物との反応物を本焼成することにより、焼成物が得られる。
 (5)焼成物の洗浄
 焼成工程後、焼成物を洗浄して残留する未反応のリチウム化合物及び不活性溶融剤を除去し、CAMが得られる。洗浄には、純水やアルカリ性洗浄液を用いることができる。アルカリ性洗浄液としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム及び炭酸アンモニウムからなる群より選ばれる1種以上の無水物並びにその水和物の水溶液を挙げることができる。また、アルカリ性洗浄液として、アンモニア水を使用することもできる。
 洗浄液の温度は、15℃以下が好ましく、10℃以下がより好ましく、8℃以下がさらに好ましい。洗浄液の温度の下限値は、例えば5℃である。洗浄液の温度を洗浄液が凍結しない範囲且つ上記範囲に制御することで、洗浄時にLiMOの結晶構造中から洗浄液中へのリチウムイオンの過度な溶出が抑制できる。
 洗浄液と焼成物とを接触させる方法としては、各洗浄液の中に、焼成物を投入して撹拌する方法が挙げられる。また、各洗浄液をシャワー水として、焼成物にかける方法でもよい。さらに、洗浄液中に、焼成物を投入して撹拌した後、各洗浄液から焼成物を分離し、次いで、各洗浄液をシャワー水として、分離後の焼成物にかける方法でもよい。
 洗浄において、洗浄液と焼成物を適正な時間の範囲で接触させることが好ましい。洗浄における「適正な時間」とは、焼成物の表面に残留する未反応のリチウム化合物及び不活性溶融剤を除去しつつ、焼成物の各粒子を分散させる程度の時間を指す。洗浄時間は、焼成物の凝集状態に応じて調整することが好ましい。洗浄時間は、例えば5分間-1時間の範囲が特に好ましい。
 洗浄液と焼成物との混合物(以下、スラリーと記載することがある)に対する焼成物の割合は、5-60質量%であることが好ましく、20-50質量%であることがより好ましく、30質量%を超え50質量%以下であることがさらに好ましい。焼成物の割合が5-60質量%であると、未反応のリチウム化合物及び任意の不活性溶融剤を除去することができ、粒子X中の空隙及びAl偏析部の量を好ましい範囲に制御しやすくなる。その結果、、割合a、割合b、及び割合cが上述の範囲であるCAMを製造することができる。
 焼成物の洗浄後、焼成物は、熱処理されることが好ましい。焼成物を熱処理する温度や方法は特に限定されないが、充電容量の低下を防止できる観点から、100℃以上であることが好ましく、130℃以上であることがより好ましく、150℃以上であることがさらに好ましい。また、上限温度に特に制限はないが、焼成物の結晶子径分布に影響を与えない範囲で、700℃以下とすることが好ましく、600℃以下であることがより好ましく、400℃以下であることがさらに好ましい。
 リチウムイオンの揮発量は、熱処理温度により制御することができる。
 熱処理温度の上限値と下限値は任意に組み合わせることができる。例えば、熱処理温度は、100-700℃であることが好ましく、130-600℃であることがより好ましく、150-400℃であることがさらに好ましい。
 熱処理中の雰囲気は、酸素雰囲気、不活性雰囲気(窒素雰囲気等)、減圧雰囲気又は真空雰囲気が挙げられる。洗浄後の熱処理を上記雰囲気で行うことで、熱処理中にCAMと雰囲気中の水分又は二酸化炭素との反応が抑制され、不純物の少ないCAMが得られる。
 焼成物の熱処理後、篩別処理することが好ましい。焼成物を篩別処理する方法は特に限定されないが、水分濃度を管理した空気を連続的に供給しながら篩別処理を実施することが好ましい。空気に含まれる水分濃度は、空気と水分の総質量に対し3000ppm以下が好ましく、2600ppm以下がより好ましい。水分濃度の下限値は特に限定されないが、例えば空気と水分の総質量に対し2.55ppmが挙げられる。水分濃度を管理した空気を連続的に供給しながら篩別処理することで、粒子Xに存在するAl偏析部と空隙の量を好ましい範囲に制御しやすくなる。その結果、割合a、割合b、及び割合cが上述の範囲であるCAMを製造することができる。このような篩別処理装置としては、ターボスクリーナー等が使用できる。
 上述の条件で焼成、篩別することにより、Al偏析部の少なくとも一部を除去することができる。その結果、リチウムイオンが脱離及び挿入するための反応場となる空隙が生じ、リチウム二次電池の初期放電容量を向上することができる。また、生じた空隙によりリチウム二次電池の充放電により生じるLiMOの膨張及び収縮を緩和することができる。
 金属複合水酸化物の加熱条件、焼成条件、洗浄条件、及び熱処理条件を上述の範囲で実施することにより、CAMの割合a、割合b、割合c、D50、D90/D10、H1/H2を上述の範囲に調整することができる。
<リチウム二次電池>
 本実施形態のCAMを用いる場合の好適なリチウム二次電池の構成を説明する。また、本実施形態のCAMを用いる場合に好適なリチウム二次電池用正極(以下、正極と称することがある。)について説明する。
 本実施形態のCAMを用いる場合の好適なリチウム二次電池の一例は、正極及び負極、正極と負極との間に挟持されるセパレータ、正極と負極との間に配置される電解液を有する。
 リチウム二次電池の一例は、正極及び負極、正極と負極との間に挟持されるセパレータ、正極と負極との間に配置される電解液を有する。
 図4は、リチウム二次電池の一例を示す模式図である。例えばの円筒型のリチウム二次電池10は、次のようにして製造する。
 まず、図4に示すように、帯状を呈する一対のセパレータ1、一端に正極リード21を有する帯状の正極2、及び一端に負極リード31を有する帯状の負極3を、セパレータ1、正極2、セパレータ1、負極3の順に積層し、巻回することにより電極群4とする。
 正極2は、一例として、CAMを含む正極活物質層と、正極活物質層が一面に形成された正極集電体とを有する。このような正極2は、まずCAM、導電材及びバインダーを含む正極合剤を調製し、正極合剤を正極集電体の一面に担持させて正極活物質層を形成することで製造できる。
 負極3は、一例として、不図示の負極活物質を含む負極合剤が負極集電体に担持されてなる電極、及び負極活物質単独からなる電極を挙げることができ、正極2と同様の方法で製造できる。
 次いで、電池缶5に電極群4及び不図示のインシュレーターを収容した後、缶底を封止し、電極群4に電解液6を含浸させ、正極2と負極3との間に電解質を配置する。さらに、電池缶5の上部をトップインシュレーター7及び封口体8で封止することで、リチウム二次電池10を製造することができる。
 電極群4の形状としては、例えば、電極群4を巻回の軸に対して垂直方向に切断したときの断面形状が、円、楕円、長方形又は角を丸めた長方形となるような柱状の形状を挙げることができる。
 また、このような電極群4を有するリチウム二次電池の形状としては、国際電気標準会議(IEC)が定めた電池に対する規格であるIEC60086、又はJIS C 8500で定められる形状を採用することができる。例えば、円筒型又は角型などの形状を挙げることができる。
 さらに、リチウム二次電池は、上記巻回型の構成に限らず、正極、セパレータ、負極、セパレータの積層構造を繰り返し重ねた積層型の構成であってもよい。積層型のリチウム二次電池としては、いわゆるコイン型電池、ボタン型電池、又はペーパー型(又はシート型)電池を例示することができる。
 リチウム二次電池を構成する正極、セパレータ、負極及び電解液については、例えば、WO2022/113904A1の[0113]~[0140]に記載の構成、材料及び製造方法を用いることが出来る。
 <全固体リチウム二次電池>
 次いで、全固体リチウム二次電池の構成を説明しながら、本発明の一態様に係るCAMを用いた正極、及びこの正極を有する全固体リチウム二次電池について説明する。
 図5は、本実施形態の全固体リチウム二次電池の一例を示す模式図である。図5に示す全固体リチウム二次電池1000は、正極110と、負極120と、固体電解質層130とを有する積層体100と、積層体100を収容する外装体200と、を有する。また、全固体リチウム二次電池1000は、集電体の両側にCAMと負極活物質とを配置したバイポーラ構造であってもよい。バイポーラ構造の具体例として、例えば、JP-A-2004-95400に記載される構造が挙げられる。各部材を構成する材料については、後述する。
 正極110は、正極活物質層111と正極集電体112とを有している。正極活物質層111は、上述したCAM及び固体電解質を含む。また、正極活物質層111は、導電材及びバインダーを含んでいてもよい。
 負極120は、負極活物質層121と負極集電体122とを有している。負極活物質層121は、負極活物質を含む。また、負極活物質層121は、固体電解質及び導電材を含んでいてもよい。
 積層体100は、正極集電体112に接続される外部端子113と、負極集電体122に接続される外部端子123と、を有していてもよい。その他、全固体リチウム二次電池1000は、正極110と負極120との間にセパレータを有していてもよい。
 全固体リチウム二次電池1000は、さらに積層体100と外装体200とを絶縁する不図示のインシュレーター及び外装体200の開口部200aを封止する不図示の封止体を有する。
 外装体200は、アルミニウム、ステンレス鋼又はニッケルメッキ鋼などの耐食性の高い金属材料を成形した容器を用いることができる。また、外装体200として、少なくとも一方の面に耐食加工を施したラミネートフィルムを袋状に加工した容器を用いることもできる。
 全固体リチウム二次電池1000の形状としては、例えば、コイン型、ボタン型、ペーパー型(またはシート型)、円筒型、角型、又はラミネート型(パウチ型)などの形状を挙げることができる。
 全固体リチウム二次電池1000は、一例として積層体100を1つ有する形態が図示されているが、本実施形態はこれに限らない。全固体リチウム二次電池1000は、積層体100を単位セルとし、外装体200の内部に複数の単位セル(積層体100)を封じた構成であってもよい。
 全固体リチウム二次電池については、例えば、WO2022/113904A1の[0151]~[0181]に記載の構成、材料及び製造方法を用いることができる。
 以上のような構成の正極は、上述したCAMを有するため、初期放電容量が高く、サイクル特性のよいリチウム二次電池を提供できる。
 さらに、以上のような構成のリチウム二次電池は、上述した正極を有するため、初期放電容量が高く、サイクル特性がよい。
 本発明のもう一つの側面は、以下の態様を包含する。
[11]LiMO及びAl偏析部を含有する複数の粒子Xを含むCAMであって、
 前記粒子Xが空隙を有しており、
 前記LiMOは、層状構造を有し、少なくともLi、Ni、及びAlを含有し、
 前記割合aが0.15-0.3%であり、前記割合bが0.5-4.5%である、CAM。
[12]前記割合cが、70-85%である、[11]に記載のCAM。
[13]前記CAMの前記D50が5.0-17μmである、[11]又は[12]に記載のCAM。
[14]前記CAMの前記D90/D10が2.98以下である、[11]~[13]の何れか1つに記載のCAM。
[15]前記CAMの組成式が、式(A)-1で表される、[1]~[4]の何れか1つに記載のCAM。
 Li[Li(Ni(1-x-y)Al1-m]O  ・・・(A)-1
(式A中、Mは、Co,Mn,Fe,Cu,Ti,Mg,W,Mo,Nb,Zn,Sn,Zr,Ga,V,B,Si,S及びPからなる群より選択される1種以上の元素であり、0<m≦0.2、0.02≦x≦0.1、及び0.05≦y≦0.1を満たす。)
[16]前記CAMの前記比H1/H2が、1.51-1.59である、[11]~[15]の何れか1つに記載のCAM。
[17]前記割合aが0.15-0.27%である、[11]~[16]の何れか1つに記載のCAM。
[18]前記割合bが2.5-3.5%である、[11]~[17]の何れか1つに記載のCAM。
[19][11]~[18]の何れか1つに記載のCAMを含有するリチウム二次電池用正極。
[20][19]に記載のリチウム二次電池用正極を有するリチウム二次電池。
 以下、実施例を示して本発明を詳細に説明するが、本発明は以下の記載によって限定されるものではない。
<組成分析>
 後述の方法で製造されるCAMの組成分析は、上述の「CAMの組成分析」の方法により行った。
<累積体積粒度>
 後述の方法で製造されるCAMのD10、D50及びD90は、上述の「累積体積粒度」の測定方法により測定した。
<断面SEM画像解析>
 上述の<断面SEM画像解析>に記載の方法で、217個から367個の粒子の明色部分の外周で囲まれる領域の面積の総和に対する前記明色部分の外周で囲まれる領域内に存在する暗色部分の面積の総和の割合(割合a)、円形度が0.33以下である粒子Yの個数の割合(割合b)及び粒子Xの総数に対する前記円形度が0.45以上の粒子Zの個数の割合(割合c)を算出した。
<結晶構造及び回折ピーク強度高さの測定>
 上述の[結晶構造]に記載の方法で、LiMOの結晶構造及びCAMの比H1/H2を測定及び算出した。
<初期放電容量及び50回目放電容量維持率(サイクル効率)>
 「初期放電容量及び50回目放電容量維持率」に記載の方法でリチウム二次電池を作製し、初期放電容量及び50回目放電容量(サイクル効率)を測定した。
 (実施例1)
 攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸アルミニウム水溶液とを、NiとCoとAlとのモル比が0.88:0.09:0.03となるように混合して、混合原料溶液を調製した。
 次に、反応槽内に、攪拌下、この混合原料溶液と錯化剤として硫酸アンモニウム水溶液を連続的に添加した。反応槽内の混合液のpHが11.6(測定温度:40℃)となるよう水酸化ナトリウム水溶液を適時滴下し、反応沈殿物1を得た。
 反応沈殿物1を洗浄した後、脱水、乾燥及び篩別し、Ni、Co及びAlを含む金属複合水酸化物1が得られた。
 金属複合水酸化物1を大気雰囲気中650℃で5時間保持して加熱し、室温まで冷却して金属複合酸化物であるMCC1を得た。
 MCC1に含まれるNi、Co及びAlの合計量1に対するLiの量(モル比)が1.10となるように水酸化リチウムを秤量した。MCC1と水酸化リチウムを混合して混合物1を得た。
 この混合物1を酸素雰囲気下650℃で5時間仮焼成し、反応物1を得た。反応物1を酸素雰囲気下720℃で6時間本焼成し、焼成物1を得た。
 焼成物1と純水とを、全体量に対して焼成物1の質量割合が30質量%になるように混合し作製したスラリーを20分間撹拌させて洗浄した後、脱水し、窒素雰囲気において250℃で10時間熱処理し、脱水後に残留する水分を乾燥することにより、乾燥物1を得た。
 乾燥物1を、50kg/時間の供給速度でターボスクリーナーに供給し、篩別してCAM-1を得た。尚、ターボスクリーナーでの篩別の際、ターボスクリーナー内部には、水分濃度が2566ppm以下の空気を連続で供給した。
 CAM-1の組成分析を行ったところ、式(A)においてm=0.03、x=0.03、y=0.09であり、MはCoであった。CAM-1に含まれるLiMOは、層状構造を有していた。
 (実施例2)
 反応物1の本焼成時の温度を700℃とした以外は、実施例1と同じ方法でCAM-2を得た。
 CAM-2の組成分析を行ったところ、式(A)においてm=0.04、x=0.03、y=0.09であり、Mは、Coであった。CAM-2に含まれるLiMOは、層状構造を有していた。
 (実施例3)
 洗浄工程で、全体量に対して焼成物1の質量割合を40質量%としたこと以外は、実施例2と同じ方法でCAM-3を得た。
 CAM-3の組成分析を行ったところ、式(A)においてm=0.04、x=0.03、y=0.09であり、Mは、Coであった。CAM-3に含まれるLiMOは、層状構造を有していた。
 (比較例1)
 焼成物1を洗浄せずにそのままCAMとした以外は、実施例1と同じ方法でCAM-C1を得た。
 CAM-C1の組成分析を行ったところ、式(A)においてm=0.1、x=0.03、y=0.09であり、Mは、Coであった。CAM-C1に含まれるLiMOは、層状構造を有していた。
 (比較例2)
 金属複合水酸化物1の加熱工程を省略したこと、および洗浄工程で、全体量に対して焼成物1の質量割合を40質量%としたこと以外は、実施例1と同じ方法で乾燥物2を得た。
 乾燥物2を、超音波振動機で篩別してCAM-C2を得た。尚、超音波振動機で篩別する前に、超音波振動機の内部の雰囲気を、水分濃度が2566ppm以下の空気で満たした。
 CAM-C2の組成分析を行ったところ、式(A)においてm=0.03、x=0.03、y=0.09であり、Mは、Coであった。CAM-C2に含まれるLiMOは、層状構造を有していた。
 (比較例3)
 反応物1の焼成条件を790℃で5時間としたこと以外は、実施例1と同じ方法で焼成物2を得た。得られた焼成物2と純水とを、全体量に対して焼成物2の質量割合が5質量%になるように混合し作製したスラリーを5分間撹拌させて洗浄した後、脱水し、真空雰囲気において120℃で10時間熱処理し、脱水後に残留する水分を乾燥した後、大気雰囲気下でメノウ製乳鉢で粉砕してCAM-C3を得た。
 CAM-C3の組成分析を行ったところ、式(A)においてm=-0.01、x=0.03、y=0.09であり、Mは、Coであった。CAM-C3に含まれるLiMOは、層状構造を有していた。
 実施例1~3のCAM-1~CAM-3及び比較例1~3のCAM-C1~CAM-C3の洗浄工程の有無、D50、D90/D10、割合a、割合b、割合c、回折ピーク強度高さ比H1/H2及び各CAMを使用したリチウム二次電池の初期放電容量及びサイクル効率を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~3のCAM-1~3では、割合aが0.22-0.28%であり、割合bが1.6-3.2%だった。さらに、CAM-1~3を用いたリチウム二次電池の初期放電容量は、197-202mAh/gであり、サイクル効率は、83.8-90.4%であった。
 一方で、焼成物の洗浄を行わなかった比較例1では、割合bが5.8%だった。洗浄を行わなかったことによって、偏析したAlが十分に流出しなかったためと考えられる。比較例2では、割合aが0.01%、割合bが0.9%であり、サイクル効率が80.1%であった。CAM-C2がAl偏析部及び空隙を十分に含んでおらず、充放電に伴うLiMOの膨張及び収縮を緩衝することができなかったと考えられる。比較例3では、割合aが0.49%、割合bが14.7%となった。その結果、初期放電容量が184mAh/gだった。CAM-C3がAl偏析部及び空隙を過剰に含んでいたためと考えられる。
 本発明によれば、初期放電容量が高く、繰り返し充放電を行っても放電容量が低下し難いリチウム二次電池を得ることができるCAM、及びこれを用いたリチウム二次電池用正極及びリチウム二次電池を提供できる。
 1…セパレータ、2…正極、3…負極、4…電極群、5…電池缶、6…電解液、7…トップインシュレーター、8…封口体、10…リチウム二次電池、21…正極リード、31…負極リード、41…LiMO、42…空隙及びAl偏析部、43…空隙及びAl偏析部、100…積層体、110…正極、111…正極活物質層、112…正極集電体、113…外部端子、120…負極、121…負極活物質層、122…負極集電体、123…外部端子、130…固体電解質層、200…外装体、200a…開口部、1000…全固体リチウム二次電池

Claims (8)

  1. リチウム金属複合酸化物及びAl偏析部を含有する複数の粒子Xを含むリチウム二次電池用正極活物質であって、
     前記粒子Xが空隙を有しており、
     前記リチウム金属複合酸化物は、層状構造を有し、少なくともLi、Ni及びAlを含有し、
     走査型電子顕微鏡により得られる前記粒子Xの断面画像が(1)及び(2)の条件を満たす、リチウム二次電池用正極活物質。
     (1)前記リチウム金属複合酸化物が明色、前記空隙及び前記Al偏析部が暗色となるように前記断面画像を二値化処理した画像において、明色部分の外周で囲まれる領域の面積の総和に対する前記明色部分の外周で囲まれる領域内に存在する暗色部分の面積の総和の割合が、0.05%より大きく0.4%以下である。
     (2)前記二値化処理した画像において、前記粒子Xの総数に対する式(i)で表される円形度が0.33以下である粒子Yの個数の割合が、0%より大きく5.0%以下である。
     円形度=4πS/L  (i)
     式(i)において、Sは前記明色部分の外周で囲まれる領域の面積であり、Lは前記明色部分の外周長である。
  2.  前記二値化処理した画像において、前記粒子Xの総数に対する前記円形度が0.45以上の粒子Zの個数の割合が、70%以上である、請求項1に記載のリチウム二次電池用正極活物質。
  3.  前記リチウム二次電池用正極活物質の50%累積体積粒度が5μm以上20μm以下である、請求項1又は2に記載のリチウム二次電池用正極活物質。
  4.  前記リチウム二次電池用正極活物質の10%累積体積粒度に対する90%累積体積粒度の比が3以下である、請求項1~3の何れか1つに記載のリチウム二次電池用正極活物質。
  5.  前記リチウム二次電池用正極活物質の組成式が、式(A)で表される、請求項1~4の何れか1つに記載のリチウム二次電池用正極活物質。
     Li[Li(Ni(1-x-y)Al1-m]O  ・・・(A)
    (式A中、Mは、Co,Mn,Fe,Cu,Ti,Mg,W,Mo,Nb,Zn,Sn,Zr,Ga,V,B,Si,S及びPからなる群より選択される1種以上の元素であり、-0.1≦m≦0.2、0<x≦0.5及び0≦y<0.5を満たす。)
  6.  前記リチウム二次電池用正極活物質のCuKα線を使用した粉末X線回折測定において、2θ=44.1±1°の範囲内の回折ピーク強度高さであるH2に対する2θ=18.5±1°の範囲内の回折ピーク強度高さであるH1の比H1/H2が、1.5以上1.6以下である、請求項1~5の何れか1つに記載のリチウム二次電池用正極活物質。
  7.  請求項1~6の何れか1つに記載のリチウム二次電池用正極活物質を含有するリチウム二次電池用正極。
  8.  請求項7に記載のリチウム二次電池用正極を有するリチウム二次電池。
PCT/JP2022/044815 2021-12-08 2022-12-06 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 WO2023106274A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-199659 2021-12-08
JP2021199659A JP7244615B1 (ja) 2021-12-08 2021-12-08 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Publications (1)

Publication Number Publication Date
WO2023106274A1 true WO2023106274A1 (ja) 2023-06-15

Family

ID=85684963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044815 WO2023106274A1 (ja) 2021-12-08 2022-12-06 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Country Status (2)

Country Link
JP (1) JP7244615B1 (ja)
WO (1) WO2023106274A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199127A (ja) * 1996-01-19 1997-07-31 Matsushita Electric Ind Co Ltd 非水電解液電池
JP2015135800A (ja) * 2013-12-16 2015-07-27 旭硝子株式会社 リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極、およびリチウムイオン二次電池
WO2016080320A1 (ja) * 2014-11-18 2016-05-26 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、その製造方法及びそれを用いた非水系電解質二次電池
WO2017204164A1 (ja) * 2016-05-24 2017-11-30 住友化学株式会社 正極活物質、その製造方法およびリチウムイオン二次電池用正極
WO2019107160A1 (ja) * 2017-11-30 2019-06-06 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池用正極活物質の製造方法
JP2020027700A (ja) * 2018-08-09 2020-02-20 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質とその製造方法およびリチウムイオン二次電池
JP2020087925A (ja) * 2018-11-14 2020-06-04 三星エスディアイ株式会社Samsung SDI Co., Ltd. リチウム二次電池用正極活物質、その製造方法およびこれを含むリチウム二次電池
JP2021018897A (ja) * 2019-07-18 2021-02-15 トヨタ自動車株式会社 非水電解質二次電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7049284B2 (ja) * 2019-03-07 2022-04-06 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199127A (ja) * 1996-01-19 1997-07-31 Matsushita Electric Ind Co Ltd 非水電解液電池
JP2015135800A (ja) * 2013-12-16 2015-07-27 旭硝子株式会社 リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極、およびリチウムイオン二次電池
WO2016080320A1 (ja) * 2014-11-18 2016-05-26 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、その製造方法及びそれを用いた非水系電解質二次電池
WO2017204164A1 (ja) * 2016-05-24 2017-11-30 住友化学株式会社 正極活物質、その製造方法およびリチウムイオン二次電池用正極
WO2019107160A1 (ja) * 2017-11-30 2019-06-06 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池用正極活物質の製造方法
JP2020027700A (ja) * 2018-08-09 2020-02-20 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質とその製造方法およびリチウムイオン二次電池
JP2020087925A (ja) * 2018-11-14 2020-06-04 三星エスディアイ株式会社Samsung SDI Co., Ltd. リチウム二次電池用正極活物質、その製造方法およびこれを含むリチウム二次電池
JP2021018897A (ja) * 2019-07-18 2021-02-15 トヨタ自動車株式会社 非水電解質二次電池

Also Published As

Publication number Publication date
JP2023085145A (ja) 2023-06-20
JP7244615B1 (ja) 2023-03-22

Similar Documents

Publication Publication Date Title
CN111741928B (zh) 金属复合氢氧化物及其制造方法、非水电解质二次电池用正极活性物质及其制造方法、以及非水电解质二次电池
US20240282954A1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
CN111770896A (zh) 金属复合氢氧化物及其制造方法、非水电解质二次电池用正极活性物质及其制造方法、以及非水电解质二次电池
WO2022050311A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
US20230327105A1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2021006129A1 (ja) リチウムイオン二次電池用正極活物質、およびリチウムイオン二次電池
WO2023013494A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2023106274A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2023106336A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2023106309A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP7416897B1 (ja) リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極、及びリチウム二次電池
WO2023181992A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池及びリチウム二次電池用正極活物質の製造方法
WO2022264992A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池及びリチウム二次電池用正極活物質の製造方法
WO2023106313A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP7454642B1 (ja) リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2023106311A1 (ja) リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP7441999B1 (ja) リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極、および、リチウム二次電池
JP7148685B1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP7441998B1 (ja) リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極、および、リチウム二次電池
JP7359911B1 (ja) 前駆体及びリチウム二次電池用正極活物質の製造方法
WO2023112876A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
US20230022902A1 (en) Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
US20230069426A1 (en) Lithium metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2023249013A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池、およびリチウム二次電池用正極活物質の製造方法
WO2024219129A1 (ja) リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE