WO2023106048A1 - ガラス繊維、ガラス繊維の製造方法及びガラス - Google Patents

ガラス繊維、ガラス繊維の製造方法及びガラス Download PDF

Info

Publication number
WO2023106048A1
WO2023106048A1 PCT/JP2022/042388 JP2022042388W WO2023106048A1 WO 2023106048 A1 WO2023106048 A1 WO 2023106048A1 JP 2022042388 W JP2022042388 W JP 2022042388W WO 2023106048 A1 WO2023106048 A1 WO 2023106048A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
glass
glass fiber
terms
fiber according
Prior art date
Application number
PCT/JP2022/042388
Other languages
English (en)
French (fr)
Inventor
恭平 瀬川
裕基 横田
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to EP22903979.7A priority Critical patent/EP4446291A1/en
Priority to CN202280081262.8A priority patent/CN118369298A/zh
Priority to JP2023566191A priority patent/JPWO2023106048A1/ja
Publication of WO2023106048A1 publication Critical patent/WO2023106048A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/001Alkali-resistant fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/08Bushings, e.g. construction, bushing reinforcement means; Spinnerettes; Nozzles; Nozzle plates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum

Definitions

  • the present invention relates to glass fibers with excellent corrosion resistance.
  • the present invention relates to a highly productive glass fiber that is suitable as a reinforcing material for calcium silicate plates, GRC (glass fiber reinforced concrete), etc., and as a material that requires corrosion resistance, such as battery separators and asbestos substitutes, and a method for producing the same.
  • SiO 2 —ZrO 2 —R 2 O (R is Li, Na, or K)-based alkali-resistant glass fiber containing ZrO 2 has been used as a reinforcing material for GRC, and this glass fiber is a calcium silicate plate. It is also used as a corrosion-resistant material such as a reinforcing material for batteries and battery separators.
  • GRC is molded into a plate by spraying a mixture of glass fiber cut into a predetermined length, cement, aggregate, admixture, water, etc., into a mold using a spray gun or the like.
  • Glass fibers used in GRC are required to retain strength sufficient for reliability even after a long period of time in concrete.
  • the glass fibers described above are obtained by continuously forming and spinning molten glass using, for example, a bushing device made of noble metal, to form fibers.
  • the structure of the bushing has the shape of a container for retaining the molten glass, and a large number of nozzles are arranged in the vertical direction at the bottom of the bushing. Then, the glass fibers are formed by pulling molten glass adjusted to a temperature near the spinning temperature (the temperature at which the viscosity of the glass is about 10 3 dPa s, also called the spinning temperature) through a nozzle at the bottom of the bushing. be done.
  • the spinning temperature of the glass is It gets expensive.
  • the bushing device made of precious metal is severely damaged, and the frequency of replacement is increased, resulting in high production cost.
  • the liquidus temperature rises, and the difference between the spinning temperature and the liquidus temperature becomes smaller. If the difference between the spinning temperature and the liquidus temperature becomes small, the glass tends to devitrify at the nozzle at the bottom of the bushing, making continuous production difficult.
  • Patent Document 2 discloses a glass fiber in which the spinning temperature is lowered while maintaining the difference between the liquidus temperature and the spinning temperature by reducing ZrO 2 and containing a certain amount of TiO 2 and K 2 O. It is however, there is a problem that the alkali resistance of this glass fiber is not sufficient.
  • An object of the present invention is to provide a glass fiber having a low spinning temperature and a low liquidus temperature, a large difference between the liquidus temperature and the spinning temperature, and excellent alkali resistance, and a method for producing the glass fiber.
  • the glass fiber of the present invention contains 50 to 70% SiO 2 , 10 to 20% Na 2 O, 0 to 5.5% TiO 2 , and 10 to 30% ZrO 2 as a glass composition in terms of oxide mass%. characterized by containing By doing so, a glass fiber having high alkali resistance and good productivity can be obtained.
  • the glass fiber of the present invention preferably contains 0.001 to 0.1% Y 2 O 3 as the glass composition in terms of oxide.
  • the glass fiber of the present invention preferably contains 0.001 to 1% HfO 2 in terms of mass % in terms of oxide as the glass composition.
  • the glass fiber of the present invention has, as a glass composition, SiO 2 57.1 to 64.8%, Al 2 O 3 0 to 0.3%, CaO 1.71 to 10%, Na 2 O 12-20%, K 2 O 0-6%, TiO 2 0-5%, ZrO 2 15.1-18.5%.
  • the glass composition preferably has a Y 2 O 3 /ZrO 2 mass ratio of 0.0005 or more in terms of oxide.
  • Y 2 O 3 /ZrO is a value obtained by dividing the content of Y 2 O 3 by the content of ZrO.
  • the glass fiber of the present invention preferably has a glass composition in which Na 2 O/ZrO 2 is 0.4 to 1.3 in terms of oxide mass ratio.
  • Na 2 O/ZrO 2 is a value obtained by dividing the content of Na 2 O by the content of ZrO 2 .
  • the glass fiber of the present invention preferably has a glass composition in which K 2 O/CaO is 15 or less in terms of oxide mass ratio.
  • K 2 O/CaO is a value obtained by dividing the content of K 2 O by the content of CaO.
  • the glass fiber of the present invention preferably has a glass composition in which K 2 O/ZrO 2 is 0.5 or less in terms of oxide mass ratio.
  • K 2 O/ZrO 2 is a value obtained by dividing the content of K 2 O by the content of ZrO 2 .
  • the glass fiber of the present invention preferably has a glass composition in which (Na 2 O+K 2 O)/(CaO+MgO) is 1.5 or more in terms of oxide mass ratio.
  • ( Na2O + K2O )/(CaO+MgO) is a value obtained by dividing the total content of Na2O and K2O by the total content of CaO and MgO.
  • the glass composition preferably has a mass ratio of (Na 2 O+K 2 O+CaO)/Al 2 O 3 of 80 or more in terms of oxide.
  • “( Na2O + K2O +CaO)/ Al2O3” is a value obtained by dividing the total content of Na2O , K2O and CaO by the content of Al2O3 .
  • the glass fiber of the present invention preferably has a spinning temperature Tx of 1350° C. or lower. By doing so, fiberization can be performed at a low temperature, so that the service life of fiberization equipment such as bushings can be extended, and the production cost can be reduced.
  • the spinning temperature Tx is the temperature at which the high-temperature viscosity of the molten glass corresponds to 10 3 dPa ⁇ s.
  • the glass fiber of the present invention preferably has a temperature difference ⁇ Txy between the spinning temperature Tx and the liquidus temperature Ty of 15°C or more.
  • the liquidus temperature Ty is measured by placing the glass powder that passes through a 30-mesh standard sieve (500 ⁇ m sieve opening) and remains on a 50-mesh sieve (300 ⁇ m sieve opening) in a platinum boat and held in a temperature gradient furnace for 16 hours. It is a value obtained by measuring the temperature at which crystals (primary phase) precipitate.
  • the glass fiber of the present invention preferably has a liquidus temperature Ty of 1250°C or less. By doing so, precipitation of crystals (primary phase) can be suppressed during glass fiber molding.
  • the glass fiber of the present invention has a mass reduction rate of 4 when the specific gravity glass pulverized and classified to a particle size of 300 to 500 ⁇ m is immersed in 100 ml of a 10% by mass NaOH aqueous solution at 80 ° C. for 168 hours. It is preferably less than 0.5%. By doing so, a glass fiber having high alkali resistance can be obtained.
  • the method for producing the glass fiber of the present invention comprises melting a prepared raw material batch in a glass melting furnace, continuously pulling out the obtained molten glass from a bushing, and forming it into fibers to obtain the above glass fiber. characterized by
  • the glass of the present invention contains 50 to 70% SiO 2 , 10 to 20% Na 2 O, 0 to 5.5% TiO 2 , and 10 to 30% ZrO 2 as the glass composition in terms of oxides. characterized by
  • the present invention it is possible to provide a glass fiber having a low spinning temperature and a low liquidus temperature, a large difference between the liquidus temperature and the spinning temperature, and excellent alkali resistance, and a method for producing the glass fiber.
  • the glass fiber of the present invention contains 50 to 70% SiO 2 , 10 to 20% Na 2 O, 0 to 5.5% TiO 2 , and 10 to 30% ZrO 2 as a glass composition in terms of oxide mass%. contains.
  • the reasons for limiting the glass composition as described above are as follows.
  • “%” means “% by mass” unless otherwise specified.
  • SiO2 is the main component that forms the glass framework structure. It is also a component that improves the mechanical strength of glass and the acid resistance of glass. If the SiO2 content is too low, the mechanical strength and elastic modulus will decrease, making it difficult to obtain sufficient strength. Also, the acid resistance of the glass is lowered.
  • the lower limit of the content of SiO2 is 50% or more, 51% or more, 52% or more, 53% or more, 54% or more, 55% or more, 56% or more, 57% or more, more than 57%, 57.1 % or more, 57.5% or more, 57.8% or more, 58% or more, 58.5% or more, 58.6% or more, 58.7% or more, 58.8% or more, 58.9% or more, 59 % or more, 59.1% or more, 59.2% or more, 59.3% or more, 59.4% or more, particularly 59.5% or more.
  • the SiO 2 content is too high, the viscosity of the molten glass becomes too high, making it difficult to achieve a homogeneous molten state, and as a result, it may be difficult to adjust the glass fiber diameter. Further, if the viscosity is high, the energy required for melting the glass increases, the spinning temperature Tx increases, and the precious metal bushings are severely damaged, resulting in increased replacement frequency and increased production costs.
  • the upper limit of the content of SiO2 is 70% or less, 69% or less, 68% or less, 67% or less, 66% or less, 65.5% or less, 65.3% or less, 65% or less, 64.9 % or less, 64.8% or less, 64.7% or less, 64.6% or less, 64.5% or less, 64% or less, 63.5% or less, 63.4% or less, 63.3% or less, 63 .2% or less, 63.1% or less, 63% or less, less than 63%, 62.9% or less, 62.8% or less, and particularly preferably 62.7% or less.
  • Na 2 O is a component that increases the meltability and formability of the glass by lowering the viscosity of the glass. If the content of Na 2 O is too low, the viscosity of the glass increases and the energy required for melting the glass increases. In addition, the noble metal bushing is severely damaged, requiring frequent replacement, resulting in high production costs.
  • the lower limit of the content of Na 2 O is 10% or more, 11% or more, 12% or more, 12.1% or more, 12.2% or more, 12.3% or more, 12.4% or more, 12.5% % or more, 12.6% or more, 12.7% or more, 12.8% or more, 12.9% or more, 13% or more, more than 13%, 13.1% or more, 13.2% or more, 13.3 % or more, 13.4% or more, 13.5% or more, particularly 13.6% or more.
  • the content of Na 2 O is too high, the primary phase in which CaO, Na 2 O, K 2 O, etc. are solid-dissolved in zircon (ZrSiO 4 ) tends to precipitate, and the liquidus temperature of the glass increases, resulting in spinning.
  • the upper limit of the content of Na 2 O is 20% or less, 19% or less, 18.5% or less, 18% or less, 17.5% or less, 17% or less, 16.9% or less, 16.8% or less , 16.7% or less, 16.5% or less, 16.4% or less, 16.3% or less, 16.2% or less, 16.1% or less, 16% or less, 15.9% or less, 15.8 % or less, 15.7% or less, 15.6% or less, 15.5% or less, 15.4% or less, 15.3% or less, 15.2% or less, 15.1% or less, 15% or less, 14 .9% or less, 14.8% or less, 14.7% or less, 14.6% or less, 14.5% or less, 14.4% or less, 14.3% or less, especially 14.2% or less is preferred.
  • TiO 2 improves the water resistance of the glass and lowers the melting temperature of the glass, the viscosity of the glass, and the spinning temperature Tx, so that good productivity can be maintained.
  • the content of TiO2 is 0-5.5%, 0-5.4%, 0-5.3%, 0-5.2%, 0-5.1%, 0-5%, 0 It is preferably less than ⁇ 5%, 0-4%, 0-3%, 0-2%, 0-1%, especially 0.01-1%.
  • ZrO2 is a component that improves the alkali resistance, acid resistance and water resistance of glass. If the content of ZrO 2 is too low, the alkali resistance is lowered and the durability required for GRC cannot be achieved. Therefore, the lower limit of the content of ZrO2 is 10% or more, 11% or more, 12% or more, 13% or more, 14% or more, 14.5% or more, 14.8% or more, 15% or more, 15.1% 15.2% or more, 15.3% or more, 15.4% or more, 15.5% or more, 15.6% or more, 15.7% or more, 15.8% or more, 15.9% or more, It is preferably 16% or more, 16.1% or more, 16.2% or more, 16.3% or more, 16.4% or more, particularly 16.5% or more.
  • the upper limit of the content of ZrO2 is 30% or less, 29% or less, 28% or less, 27% or less, 26% or less, 25% or less, 24% or less, 23% or less, 22% or less, 21% or less, 20% or less, 19% or less, 18.9% or less, 18.8% or less, 18.7% or less, 18.6% or less, 18.5% or less, 18.4% or less, 18.3% or less, It is preferably 18.2% or less, 18.1% or less, 18% or less, less than 18%, particularly 17.9% or less.
  • the glass fiber of the present invention may contain components other than the above components (SiO 2 , Na 2 O, TiO 2 and ZrO 2 ).
  • Y 2 O 3 is a component that enhances the alkali resistance, acid resistance, water resistance and mechanical strength of glass. If the content of Y 2 O 3 is too small, the alkali resistance is lowered, making it difficult to obtain sufficient alkali resistance. Therefore, the lower limit of the content of Y 2 O 3 is 0.001% or more, 0.002% or more, 0.003% or more, 0.004% or more, 0.005% or more, 0.006% or more, and 0.006% or more.
  • the upper limit of the content of Y 2 O 3 is 0.1% or less, less than 0.1%, 0.09% or less, 0.08% or less, 0.07% or less, 0.06% or less, 0.09% or less. 05% or less, particularly preferably less than 0.05%.
  • HfO 2 is a component that enhances the alkali resistance, acid resistance, water resistance and mechanical strength of glass. If the content of HfO 2 is too low, the alkali resistance is lowered, making it difficult to obtain sufficient alkali resistance. Therefore, the lower limit of the content of HfO2 is 0.001% or more, 0.002% or more, 0.003% or more, 0.004% or more, 0.005% or more, 0.006% or more, 0.007% 0.008% or more, 0.009% or more, 0.01% or more, 0.015% or more, 0.02% or more, 0.025% or more, 0.026% or more, 0.027% or more, It is preferably 0.028% or more, 0.029% or more, particularly 0.03% or more.
  • the upper limit of the content of HfO 2 is 1% or less, less than 1%, 0.9% or less, 0.8% or less, 0.7% or less, 0.6% or less, 0.5% or less, especially 0 It is preferably less than 0.5%.
  • Al 2 O 3 is a component that enhances the chemical durability and mechanical strength of glass.
  • Al 2 O 3 is also a component that increases the viscosity of glass. If the content of Al 2 O 3 is too high, devitrified crystals of mullite (3Al 2 O 3 .2SiO 2 ) containing Al 2 O 3 as a main component are likely to occur in the molten glass, and the viscosity of the molten glass increases. This makes it difficult to obtain a homogeneous molten state, and as a result, the dimensional accuracy of the glass fiber diameter tends to decrease.
  • the content of Al 2 O 3 is 0-3%, 0-2%, 0-1.5%, 0-1%, 0-0.8%, 0-0.7%, 0-0. 6%, 0-0.5%, 0-0.4%, 0-0.3%, 0-0.2%, particularly preferably 0.01-0.2%.
  • CaO is a component that lowers the spinning temperature Tx during glass fiber molding and improves alkali resistance. If the content of CaO is too low, it will be difficult to obtain the above effects. Therefore, the lower limit of the CaO content is 0% or more, 0.1% or more, 0.2% or more, 0.3% or more, 0.4% or more, 0.5% or more, 0.6% or more, 0 .7% or more, 0.8% or more, 0.9% or more, 1% or more, 1.1% or more, 1.2% or more, 1.3% or more, 1.4% or more, 1.5% or more , 1.6% or more, 1.7% or more, over 1.7%, 1.71% or more, 1.75% or more, 1.8% or more, 1.9% or more, 2% or more, 2.1 % or more, 2.2% or more, 2.3% or more, 2.4% or more, 2.5% or more, 2.6% or more, 2.7% or more, 2.8% or more, 2.9% or more , 3% or more, 3.2% or more, 3.4% or more, 3.5% or more, 3.6% or more
  • the upper limit of the CaO content is 10% or less, 9% or less, 8% or less, 7.5% or less, 7.4% or less, 7.3% or less, 7.2% or less, 7.1% or less , 7% or less, 6.9% or less, 6.8% or less, 6.7% or less, 6.6% or less, 6.5% or less, and particularly preferably less than 6.5%.
  • K 2 O is a component that enhances the meltability and formability of the glass by lowering the viscosity of the glass.
  • the K 2 O content is too high, the water resistance of the glass will be lowered.
  • the raw material batch tends to absorb moisture, and aggregates of the raw material powder are likely to be formed. When aggregates of raw material powder are formed, the solubility of the raw material batch deteriorates, and undissolved zirconia tends to remain in the product glass.
  • the content of K 2 O is 0-10%, 0-9%, 0-8%, 0-7%, 0-6%, 0-5%, 0-4.5%, 0-4% , 0-3.5%, 0-3%, 0-2.5%, 0-2%, 0-1.5%, 0-1.4%, 0-1.3%, 0-1. 2%, 0-1.1%, 0-1%, 0-0.9%, 0-0.8%, 0-0.7%, 0-0.6%, 0-0.5%, 0-0.4%, 0-0.3%, 0-0.3%, 0.001-0.3%, 0.001-0.25%, especially 0.001-0.2% is preferably
  • MgO is a component that reduces the viscosity of glass and improves the elastic modulus of glass.
  • the content of MgO should be 0 to 1.5%, 0 to 1.4%, 0 to 1.3%, 0 to 1.2%, 0 to 1.1%, especially 0 to 1%. is preferred.
  • P 2 O 5 is a component that lowers the liquidus temperature Ty. If the content of P 2 O 5 is too small, it will be difficult to obtain the above effects. Therefore, the lower limit of the content of P 2 O 5 is preferably 0.01% or more, 0.015% or more, particularly 0.02% or more. On the other hand, when the content of P 2 O 5 is too high, the alkali resistance tends to decrease. Therefore, the upper limit of the content of P 2 O 5 is preferably 0.2% or less, 0.1% or less, 0.07% or less, particularly 0.05% or less.
  • Li 2 O is a component that lowers the viscosity of the glass and enhances the meltability and moldability. However, since Li 2 O has a high raw material cost, the production cost is high. Therefore, the content of Li 2 O is 0-1%, 0-0.9%, 0-0.8%, 0-0.7%, 0-0.6%, 0-0.5%, 0 ⁇ 0.4%, 0-0.3%, 0-0.2%, 0-0.15%, particularly preferably 0-0.15%.
  • Fe 2 O 3 is a component that lowers the liquidus temperature Ty. If the content of Fe 2 O 3 is too small, it will be difficult to obtain the above effects. Therefore, the lower limit of the content of Fe 2 O 3 is 0.0001% or more, 0.0002% or more, 0.0003% or more, 0.0004% or more, 0.0005% or more, 0.0006% or more, especially 0 It is preferably at least 0.001%. On the other hand, if the content of Fe 2 O 3 is too high, undissolved Fe 2 O 3 tends to remain in the product glass, and unfavorable crystals are likely to occur, which may cause clogging of bushing nozzles during glass fiber molding. may become.
  • the upper limit of the content of Fe 2 O 3 is 5% or less, 4% or less, 3% or less, 2% or less, 1% or less, 0.9% or less, 0.8% or less, 0.7% or less , 0.6% or less, 0.5% or less, 0.4% or less, 0.3% or less, 0.2% or less, and particularly 0.1% or less.
  • SO3 is a component that improves clarity during glass melting. If the content of SO 3 is too small, it will be difficult to obtain the above effects. Therefore, the lower limit of the content of SO3 is 0.0001% or more, 0.0002% or more, 0.0003% or more, 0.0004% or more, 0.0005% or more, 0.0006% or more, especially 0.001% % or more. On the other hand, if the content of SO 3 is too high, a large amount of bubbles are generated in the glass melt, and bubbles are generated during molding of the glass fiber, leading to cutting of the glass fiber, thus reducing productivity.
  • the upper limit of the content of SO3 is 1% or less, 0.9% or less, 0.8% or less, 0.7% or less, 0.6% or less, 0.5% or less, 0.4% or less, It is preferably 0.3% or less, 0.2% or less, particularly 0.1% or less.
  • the glass fiber of the present invention can maintain high alkali resistance and productivity in a more preferable manner. If the Y 2 O 3 /ZrO 2 ratio is too small, the alkali resistance is lowered, the liquidus temperature Ty of the glass is raised, the temperature difference ⁇ Txy between the spinning temperature and the liquidus temperature is reduced, and the productivity is lowered. Therefore, the lower limit of Y 2 O 3 /ZrO 2 is 0.0005 or more, 0.001 or more, 0.0011 or more, 0.0012 or more, 0.0013 or more, 0.0014 or more, 0.0015 or more, 0.0015 or more.
  • the upper limit of Y 2 O 3 /ZrO 2 is preferably 1 or less, 0.5 or less, 0.4 or less, 0.3 or less, 0.2 or less, 0.1 or less, and particularly preferably less than 0.1. .
  • the glass fiber of the present invention can maintain high alkali resistance and productivity in a more preferable manner. If the ratio of Na 2 O/ZrO 2 is too large or too small, the alkali resistance of the glass is lowered, the liquidus temperature Ty is increased, and the temperature difference ⁇ Txy between the spinning temperature and the liquidus temperature is decreased, resulting in decreased productivity. descend. Therefore, the lower limit of Na 2 O/ZrO 2 is preferably 0.4 or more, 0.5 or more, 0.6 or more, 0.7 or more, particularly 0.8 or more.
  • the upper limit of Na 2 O/ZrO 2 is 1.3 or less, 1.25 or less, 1.2 or less, 1.15 or less, 1.14 or less, 1.13 or less, 1.12 or less, 1.11 or less, especially It is preferably 1.1 or less.
  • the glass fiber of the present invention can maintain high alkali resistance and productivity in a more preferable form by controlling K 2 O/CaO. If the ratio of K 2 O/CaO is too large, the liquidus temperature Ty increases, the temperature difference ⁇ Txy between the spinning temperature Tx and the liquidus temperature Ty decreases, and productivity decreases. Therefore, K 2 O/CaO is preferably 15 or less, 14 or less, 13.6 or less, particularly 13.5 or less. Although the lower limit of K 2 O/CaO is not particularly limited, it is practically 0.0001 or more.
  • the glass fiber of the present invention can maintain high alkali resistance and productivity in a more preferable manner. If the ratio of K 2 O/ZrO 2 is too large, the liquidus temperature Ty becomes high and the temperature difference ⁇ Txy between the spinning temperature Tx and the liquidus temperature Ty becomes small, resulting in a decrease in productivity.
  • K 2 O/ZrO 2 is 0.5 or less, 0.4 or less, 0.35 or less, less than 0.35, 0.34 or less, 0.33 or less, 0.32 or less, 0.31 or less, 0.
  • K 2 O/ZrO 2 is not particularly limited, it is practically 0.0001 or more.
  • the glass fiber of the present invention can maintain high productivity while suppressing raw material costs in a more preferable manner. If (Na 2 O+K 2 O)/(CaO+MgO) is too small, the liquidus temperature Ty of the glass becomes high, the temperature difference ⁇ Txy between the spinning temperature Tx and the liquidus temperature Ty becomes small, and productivity decreases.
  • (Na 2 O + K 2 O) / (CaO + MgO) is 1.5 or more, 1.6 or more, 1.7 or more, 1.75 or more, 1.8 or more, 1.9 or more, 2 or more, more than 2 , 2.1 or more, 2.11 or more, 2.12 or more, 2.13 or more, 2.14 or more, 2.15 or more, 2.16 or more, 2.17 or more, 2.18 or more, 2.19 or more , 2.2 or more, 2.25 or more, 2.3 or more, especially more than 2.3.
  • the upper limit of (Na 2 O+K 2 O)/(CaO+MgO) is not particularly limited, it is practically 1000 or less.
  • the glass fiber of the present invention can maintain alkali resistance and high productivity in a more preferable form.
  • the glass spinning temperature Tx will increase and the productivity will decrease, in addition to the decrease in alkali resistance.
  • (Na 2 O+K 2 O+CaO)/Al 2 O 3 is 80 or more, 90 or more, 100 or more, 105 or more, 110 or more, 120 or more, 125 or more, 126 or more, 127 or more, 128 or more, 129 or more, 130 131 or more, 132 or more, 133 or more, 134 or more, 135 or more, 136 or more, 137 or more, 138 or more, 139 or more, more than 139, particularly preferably 140 or more.
  • the upper limit of (Na 2 O+K 2 O+CaO)/Al 2 O 3 is not particularly limited, it is practically 5000 or less.
  • the glass fiber of the present invention contains the above components (SiO 2 , Al 2 O 3 , CaO, Na 2 O, TiO 2 , ZrO 2 , HfO 2 , Y 2 O 3 , K 2 O, MgO, P 2 O 5 , Li 2 O, Fe 2 O 3 and SO 3 ).
  • the composition it is preferable to adjust the composition so that the total content of the above components is 97% or more, 98% or more, 98.5% or more, particularly 99% or more. If the total amount of these components is less than 97%, the mixture of different components may reduce the alkali resistance, acid resistance, and water resistance, resulting in deterioration of the product characteristics, or the temperature between the spinning temperature Tx and the liquidus temperature Ty. The difference ⁇ Txy becomes small, which tends to cause problems such as a decrease in productivity.
  • trace components such as H 2 , CO 2 , CO, H 2 O, He, Ne, Ar, and N 2 may be contained up to 0.1% each.
  • a noble metal element such as Pt, Rh, and Au may be added to the glass up to 500 ppm.
  • MoO 3 is a component that can be mixed from raw materials, melting members, and the like. If the glass contains too much MoO 3 , crystals containing Mo precipitate and the glass tends to devitrify, lowering productivity.
  • the content of MoO 3 is preferably 1000 ppm or less, 900 ppm or less, 800 ppm or less, 700 ppm or less, 600 ppm or less, 500 ppm or less, 400 ppm or less, 300 ppm or less, 200 ppm or less, especially 100 ppm or less.
  • the lower limit of the MoO3 content is 0.1 ppm or more, 0.5 ppm or more, 1 ppm or more, 2 ppm or more, 3 ppm or more. , 4 ppm or more, particularly preferably 5 ppm or more.
  • B2O3 , SrO, BaO, ZnO, Cr2O3 , Sb2O3 , MnO, SnO2 , CeO2 , Cl2 , La2O3 are added to improve alkali resistance and liquidus temperature Ty .
  • WO 3 , Nb 2 O 5 and the like may be contained in a total amount of 2% or less, 1.5% or less, 1.2% or less, 1.1% or less, particularly preferably 1% or less. From the viewpoint of environmental load, it is preferable to not contain much Cr 2 O 3 and B 2 O 3 in terms of composition design.
  • the content of Cr 2 O 3 is preferably less than 1%, less than 0.5%, less than 0.3%, especially less than 0.1%, and the content of B 2 O 3 is less than 1%, 0.3%. It is preferably less than 5%, less than 0.3%, especially less than 0.2%.
  • the glass fiber of the present invention preferably has a spinning temperature Tx of 1350°C or lower, 1340°C or lower, 1330°C or lower, 1320°C or lower, 1310°C or lower, 1300°C or lower, 1290°C or lower, particularly 1280°C or lower. If the spinning temperature Tx is too high, it is necessary to perform spinning at a high temperature, which causes severe damage to the noble metal bushings, resulting in increased replacement frequency and increased production costs. Although the lower limit of the spinning temperature Tx is not particularly limited, it is practically 1100° C. or higher.
  • the glass fiber of the present invention has a temperature difference ⁇ Txy between the spinning temperature Tx and the liquidus temperature Ty of 15° C. or higher, 20° C. or higher, 30° C. or higher, 40° C. or higher, 50° C. or higher, 60° C. or higher, 70° C. or higher. It is preferably 80° C. or higher, 90° C. or higher, 100° C. or higher, particularly 110° C. or higher. If the difference ⁇ Txy between the spinning temperature Tx and the liquidus temperature Ty is too small, the productivity will decrease. Although the upper limit of ⁇ Txy is not particularly limited, it is practically 250° C. or less.
  • the glass fiber of the present invention has a liquidus temperature Ty of 1250° C. or less, 1240° C. or less, 1230° C. or less, 1220° C. or less, 1210° C. or less, 1200° C. or less, 1190° C. or less, 1185° C. or less, particularly 1180° C. or less. is preferred. If the liquidus temperature is too high, productivity will decrease. Although the lower limit of the liquidus temperature Ty is not particularly limited, it is practically 900° C. or higher.
  • the mass reduction rate of the glass when the specific gravity glass crushed and classified to a particle size of 300 to 500 ⁇ m is immersed in 100 ml of a 10% by mass NaOH aqueous solution at 80 ° C. for 168 hours is Less than 4.5%, 4.3% or less, 4.2% or less, 4% or less, 3.9% or less, 3.8% or less, 3.7% or less, 3.6% or less, 3.5% Below, it is especially preferable that it is 3.4% or less. If the mass reduction rate of the glass in this alkali resistance test is high, the alkali resistance of the glass is lowered, and the reliability as a reinforcing material for composite materials such as calcium silicate plates and GRC is lowered.
  • the method for producing the glass fiber of the present invention will be explained using the direct melt method (DM method) as an example.
  • the present invention is not limited to the following methods, and employs, for example, a so-called indirect molding method (MM method: marble melt method) in which a fiber glass material molded into a marble shape is remelted with a bushing device and spun. You can also This method is suitable for small-lot, high-mix production.
  • MM method marble melt method
  • a glass raw material batch prepared so as to have the above composition (and characteristics) is put into a glass melting furnace, vitrified, melted, and homogenized.
  • the melting temperature is preferably about 1400-1600.degree.
  • the molten glass is molded into glass fibers.
  • the molten glass is supplied to the bushing, and the molten glass supplied to the bushing is continuously pulled out in filament form from a number of bushing nozzles provided on the bottom surface of the bushing.
  • a glass strand is obtained by applying various treatment agents to the monofilament pulled out in this way and collecting the monofilament by a predetermined number.
  • the glass fibers of the present invention include not only the glass strands described above, but also short fibers such as glass wool formed by a centrifugal method or the like, and monofilaments before the glass strands are bundled.
  • the glass fibers of the present invention molded in this way are processed into chopped strands, yarns, rovings, etc., and used for various purposes.
  • the chopped strand is obtained by cutting a glass fiber (strand) obtained by bundling glass monofilaments into a predetermined length.
  • a yarn is a twisted strand.
  • a roving is a product in which a plurality of strands are combined and wound into a cylindrical shape.
  • Tables 1 to 7 show Examples (Sample Nos. 1 to 38, Nos. 40 to 68) and Comparative Example (Sample No. 39) of the glass constituting the glass fiber of the present invention, respectively.
  • the spinning temperature Tx at which the viscosity of the molten glass corresponds to 10 3 dPa ⁇ s is measured based on the platinum ball pull-up method after the molded glass is put into an alumina crucible, heated again, and heated to a molten state. It was calculated by interpolation of viscosity curves obtained from multiple measurements of each viscosity measured.
  • the liquidus temperature Ty passes through a standard sieve of 30 meshes (300 ⁇ m), and the glass powder remaining on the 50 meshes (300 ⁇ m) is filled in a platinum container so as to have an appropriate bulk density, and the maximum temperature is set to 1320 ° C. It was placed in an indirect heating type temperature gradient furnace and allowed to stand still, and heat treatment was performed in an air atmosphere for 16 hours. After that, the platinum container containing the glass sample was taken out, and the glass sample was removed from the platinum container. After allowing the glass sample to cool to room temperature, the location where crystals started to precipitate was confirmed with a polarizing microscope, and the crystal precipitation temperature was calculated from the temperature gradient in the indirect heating furnace.
  • the temperature difference ⁇ Txy between the spinning temperature Tx and the liquidus temperature Ty was calculated by (spinning temperature Tx) - (liquidus temperature Ty).
  • the alkali resistance was measured as follows. First, the above plate glass sample was pulverized, and the glass having a particle size of 300 to 500 ⁇ m in diameter was precisely weighed by the specific gravity, and then immersed in 100 ml of a 10% by mass NaOH solution at 80° C. for 168 hours. shaken. After that, the mass reduction rate of the glass sample was measured. The smaller this value, the better the alkali resistance.
  • sample No. 1 which is an example, 1-38
  • No. 40 to 68 have a glass spinning temperature Tx of 1350° C. or less, a liquidus temperature Ty of 1235° C. or less, and a temperature difference ⁇ Txy between the glass spinning temperature Tx and the liquidus temperature Ty of 18° C. or more, and are excellent in productivity.
  • the mass reduction rate which is an index of alkali resistance, was less than 4.5%.
  • Sample No. which is a comparative example, No. 39 had a mass reduction rate of 4.5%, which is an index of alkali resistance, and had low alkali resistance.
  • the glass fiber of the present invention is suitable not only as a reinforcing material for GRC, but also as a reinforcing material for calcium silicate plates and as a corrosion-resistant material for battery separators and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)

Abstract

紡糸温度と液相温度が低く、しかも液相温度と紡糸温度の差が大きく、かつ耐アルカリ性に優れたガラス繊維及びその製造方法を提供する。 ガラス組成として、酸化物換算の質量%で、SiO2 50~70%、Na2O 10~20%、TiO2 0~5.5%、ZrO2 10~30%を含有することを特徴とするガラス繊維。

Description

ガラス繊維、ガラス繊維の製造方法及びガラス
 本発明は、耐食性に優れたガラス繊維に関する。特にケイ酸カルシウム板やGRC(ガラス繊維強化コンクリート)等の補強材として、またバッテリーセパレータやアスベスト代替品等の耐食性が要求される材料として適し、生産性に優れたガラス繊維及びその製造方法に関する。
 従来、GRCの補強材としては、SiO-ZrO-RO(RはLi、Na、K)系のZrO含有耐アルカリ性ガラス繊維が使用されており、このガラス繊維はケイ酸カルシウム板の補強材やバッテリーセパレータ等の耐食性材料としても使用されている。
 GRCは、例えば所定の長さに切断されたガラス繊維と、セメント、骨材、混和剤、水等の混合物を型枠内にスプレーガンなどを使用して吹き付けることによって板状に成形され、建築用の構造材として使用される。GRCに使用されるガラス繊維は、コンクリート中で長期間経過しても信頼性に足る強度を保持できる事が求められる。
 前述のガラス繊維は、例えば、貴金属製のブッシング装置を使用して、溶融ガラスを連続的に成形、紡糸し、繊維形状にしたものである。尚、ブッシングの構造は、溶融ガラスを滞留させるために容器形状を有しており、その底部には鉛直方向に多数のノズルが配設されている。そして、ガラス繊維は、紡糸温度(ガラスの粘度が約10dPa・sとなる温度、紡糸温度とも呼ばれる)付近の温度に調整された溶融ガラスをブッシング底部のノズルから繊維状に引き出すことで成形される。
 ところで、ガラス繊維として、耐アルカリ性向上の観点からは、特許文献1に記載されているようにガラス組成中にZrOを多量に含有させることが有効であるが、この場合、ガラスの紡糸温度が高くなってしまう。ガラスの紡糸温度が高くなると、貴金属製のブッシング装置の損傷が激しくなり、交換頻度が上がり生産コストが高くなる。また液相温度が上昇し、紡糸温度と液相温度の差が小さくなる。紡糸温度と液相温度の差が小さくなると、ブッシング底部のノズルにおいてガラスが失透しやすくなり、連続生産が困難になるという問題がある。
 そこで、近年、この種のガラス繊維の生産性を向上する目的で、様々なガラス組成が提案されてきている。
 例えば、特許文献2にはZrOを低減させ、一定量のTiO、KOを含有させることによって、液相温度と紡糸温度の差を確保しつつ紡糸温度を低下させたガラス繊維が公開されている。しかしながら、このガラス繊維の耐アルカリ性は十分でないという問題がある。
特公昭49-40126号公報 国際公開第2014/065321号
 本発明は、紡糸温度と液相温度が低く、しかも液相温度と紡糸温度の差が大きく、かつ耐アルカリ性に優れたガラス繊維及びその製造方法を提供することを課題とする。
 本発明のガラス繊維は、ガラス組成として、酸化物換算の質量%で、SiO 50~70%、NaO 10~20%、TiO 0~5.5%、ZrO 10~30%を含有することを特徴とする。このようにすることで、高い耐アルカリ性を有し、生産性が良好であるガラス繊維とすることができる。
 本発明のガラス繊維は、ガラス組成として、酸化物換算の質量%で、Y3 0.001~0.1%を含有することが好ましい。
 本発明のガラス繊維は、ガラス組成として、酸化物換算の質量%で、HfO 0.001~1%を含有することが好ましい。
 本発明のガラス繊維は、ガラス組成として、酸化物換算の質量%で、SiO 57.1~64.8%、Al 0~0.3%、CaO 1.71~10%、NaO 12~20%、KO 0~6%、TiO 0~5%、ZrO 15.1~18.5%を含有することが好ましい。
 本発明のガラス繊維は、ガラス組成として、酸化物換算の質量比で、Y3/ZrOが0.0005以上であることが好ましい。ここで、「Y3/ZrO」は、Y3の含有量をZrOの含有量で除した値である。
 本発明のガラス繊維は、ガラス組成として、酸化物換算の質量比で、NaO/ZrOが0.4~1.3であることが好ましい。ここで、「NaO/ZrO」は、NaOの含有量をZrOの含有量で除した値である。
 本発明のガラス繊維は、ガラス組成として、酸化物換算の質量比で、KO/CaOが15以下であることが好ましい。ここで、「KO/CaO」は、KOの含有量をCaOの含有量で除した値である。
 本発明のガラス繊維は、ガラス組成として、酸化物換算の質量比で、KO/ZrOが0.5以下であることが好ましい。ここで、「KO/ZrO」は、KOの含有量をZrOの含有量で除した値である。
 本発明のガラス繊維は、ガラス組成として、酸化物換算の質量比で、(NaO+KO)/(CaO+MgO)が1.5以上であることが好ましい。ここで、「(NaO+KO)/(CaO+MgO)」は、NaOとKOの含有量の合量を、CaOとMgOの含有量の合量で除した値である。
本発明のガラス繊維は、ガラス組成として、酸化物換算の質量比で、(NaO+KO+CaO)/Alが80以上であることが好ましい。ここで、「(NaO+KO+CaO)/Al」は、NaO、KO及びCaOの含有量の合量を、Alの含有量で除した値である。
 本発明のガラス繊維は、紡糸温度Txが1350℃以下であることが好ましい。このようにすることで、低温で繊維化できるようになることから、ブッシング等の繊維化設備の長寿命化を図れ、生産コストを低減することができる。なお、紡糸温度Txは、溶融ガラスの高温粘度が103dPa・sに相当する温度である。
 本発明のガラス繊維は、紡糸温度Txと液相温度Tyとの温度差ΔTxyが15℃以上であることが好ましい。このようにすることで、生産性を良好にすることが可能になる。ここで、液相温度Tyは、標準篩30メッシュ(篩目開き500μm)を通過し、50メッシュ(篩目開き300μm)に残るガラス粉末を白金ボートに入れて、温度勾配炉中に16時間保持して、結晶(初相)の析出する温度を測定した値である。
 本発明のガラス繊維は、液相温度Tyが1250℃以下であることが好ましい。このようにすることで、ガラス繊維成形時に結晶(初相)の析出を抑制できる。
 本発明のガラス繊維は、300~500μmの粒度に粉砕分級された比重分のガラスを10質量%のNaOH水溶液100ml中に80℃、168時間の条件で浸漬した時のガラスの質量減少率が4.5%未満であることが好ましい。このようにすることで、耐アルカリ性の高いガラス繊維を得ることができる。
 本発明のガラス繊維の製造方法は、調合した原料バッチをガラス溶融炉で溶融し、得られた溶融ガラスをブッシングから連続的に引き出して繊維状に成形することにより、上記のガラス繊維を得ることを特徴とする。
 本発明のガラスは、ガラス組成として、酸化物換算の質量%で、SiO 50~70%、NaO 10~20%、TiO 0~5.5%、ZrO 10~30%を含有することを特徴とする。
 本発明によれば、紡糸温度と液相温度が低く、しかも液相温度と紡糸温度の差が大きく、かつ耐アルカリ性に優れたガラス繊維及びその製造方法を提供することが出来る。
 本発明のガラス繊維は、ガラス組成として、酸化物換算の質量%で、SiO 50~70%、NaO 10~20%、TiO 0~5.5%、ZrO 10~30%を含有する。ガラス組成を上記のように限定した理由を以下に示す。尚、以下の各成分の含有量に関する説明において、特に断りのない限り、「%」は「質量%」を意味する。
 SiOは、ガラス骨格構造を形成する主要成分である。また、ガラスの機械的強度やガラスの耐酸性を向上させる成分である。SiOの含有量が少なすぎると、機械的強度が低下し弾性率が低くなり、十分な強度を得難くなる。また、ガラスの耐酸性が低下する。したがって、SiOの含有量の下限は、50%以上、51%以上、52%以上、53%以上、54%以上、55%以上、56%以上、57%以上、57%超、57.1%以上、57.5%以上、57.8%以上、58%以上、58.5%以上、58.6%以上、58.7%以上、58.8%以上、58.9%以上、59%以上、59.1%以上、59.2%以上、59.3%以上、59.4%以上、特に59.5%以上であることが好ましい。一方、SiOの含有量が多すぎると、溶融ガラスの粘度が高くなりすぎて均質な溶融状態にし難くなり、その結果、ガラス繊維径の調整が困難になる可能性がある。また、粘度が高いとガラスの溶融に必要なエネルギーが増大し、また、紡糸温度Txが高くなり、貴金属製ブッシングの損傷が激しくなって交換頻度が上がり、生産コストが高くなる。したがって、SiOの含有量の上限は、70%以下、69%以下、68%以下、67%以下、66%以下、65.5%以下、65.3%以下、65%以下、64.9%以下、64.8%以下、64.7%以下、64.6%以下、64.5%以下、64%以下、63.5%以下、63.4%以下、63.3%以下、63.2%以下、63.1%以下、63%以下、63%未満、62.9%以下、62.8%以下、特に62.7%以下であることが好ましい。
 NaOはガラスの粘度を低下させることによって、ガラスの溶融性や成形性を高める成分である。NaOの含有量が少なすぎると、ガラスの粘度が高くなってガラスの溶融に必要なエネルギーが増大する。また貴金属製ブッシングの損傷が激しくなって交換頻度が高くなり、生産コストが高くなる。したがって、NaOの含有量の下限は10%以上、11%以上、12%以上、12.1%以上、12.2%以上、12.3%以上、12.4%以上、12.5%以上、12.6%以上、12.7%以上、12.8%以上、12.9%以上、13%以上、13%超、13.1%以上、13.2%以上、13.3%以上、13.4%以上、13.5%以上、特に13.6%以上であることが好ましい。一方、NaOの含有量が多すぎるとジルコン(ZrSiO)にCaO、NaO、KOなどが固溶した初相が析出しやすくなり、ガラスの液相温度が高くなり、紡糸温度と液相温度の差が小さくなって生産性が低下する。また、ガラスの耐水性が低下する。したがって、NaOの含有量の上限は20%以下、19%以下、18.5%以下、18%以下、17.5%以下、17%以下、16.9%以下、16.8%以下、16.7%以下、16.5%以下、16.4%以下、16.3%以下、16.2%以下、16.1%以下、16%以下、15.9%以下、15.8%以下、15.7%以下、15.6%以下、15.5%以下、15.4%以下、15.3%以下、15.2%以下、15.1%以下、15%以下、14.9%以下、14.8%以下、14.7%以下、14.6%以下、14.5%以下、14.4%以下、14.3%以下、特に14.2%以下であることが好ましい。
 TiOは、ガラスの耐水性を向上させると共に、ガラスの溶融温度やガラスの粘性、紡糸温度Txを低くできるため、良好な生産性を維持させることができる。一方、TiOの含有量が多すぎると、耐アルカリ性が低下する傾向にあり、さらに溶融ガラス中にTiO系の失透結晶が生じやすくなり、ガラス繊維成形時にブッシングのノズル詰まりの原因となる場合がある。したがって、TiOの含有量は、0~5.5%、0~5.4%、0~5.3%、0~5.2%、0~5.1%、0~5%、0~5%未満、0~4%、0~3%、0~2%、0~1%、特に0.01~1%未満であることが好ましい。
 ZrOは、ガラスの耐アルカリ性、耐酸性及び耐水性を向上させる成分である。ZrOの含有量が少なすぎると、耐アルカリ性が低下し、GRCに求められる耐久性を実現できない。したがって、ZrOの含有量の下限は10%以上、11%以上、12%以上、13%以上、14%以上、14.5%以上、14.8%以上、15%以上、15.1%以上、15.2%以上、15.3%以上、15.4%以上、15.5%以上、15.6%以上、15.7%以上、15.8%以上、15.9%以上、16%以上、16.1%以上、16.2%以上、16.3%以上、16.4%以上、特に16.5%以上であることが好ましい。一方、ZrOの含有量が多すぎると、ガラスの液相温度Tyが高くなり、紡糸温度Txと液相温度Tyとの温度差ΔTxyが小さくなって生産性が低下する。したがって、ZrOの含有量の上限は30%以下、29%以下、28%以下、27%以下、26%以下、25%以下、24%以下、23%以下、22%以下、21%以下、20%以下、19%以下、18.9%以下、18.8%以下、18.7%以下、18.6%以下、18.5%以下、18.4%以下、18.3%以下、18.2%以下、18.1%以下、18%以下、18%未満、特に17.9%以下であることが好ましい。
 また、本発明のガラス繊維は上記した成分(SiO、NaO、TiO及びZrO)以外の成分を含みうる。
 Yは、ガラスの耐アルカリ性、耐酸性、耐水性や機械的強度を高める成分である。Yの含有量が少なすぎると、耐アルカリ性が低下し、十分な耐アルカリ性が得難くなる。したがって、Yの含有量の下限は0.001%以上、0.002%以上、0.003%以上、0.004%以上、0.005%以上、0.006%以上、0.007%以上、0.008%以上、0.009%以上、0.01%以上、0.015%以上、0.02%以上、0.025%以上、0.026%以上、0.027%以上、0.028%以上、0.029%以上、特に0.03%以上であることが好ましい。一方、Yの含有量が多すぎるとZrOと共にイットリア安定化ジルコニアを形成し、液相温度Tyが高くなり、紡糸温度Txと液相温度Tyとの温度差ΔTxyが小さくなって生産性が低下する。また、原料コストが高いため、生産コストが高くなる。したがって、Yの含有量の上限は0.1%以下、0.1%未満、0.09%以下、0.08%以下、0.07%以下、0.06%以下、0.05%以下、特に0.05%未満であることが好ましい。
 HfOは、ガラスの耐アルカリ性、耐酸性、耐水性や機械的強度を高める成分である。HfOの含有量が少なすぎると、耐アルカリ性が低下し、十分な耐アルカリ性が得難くなる。したがって、HfOの含有量の下限は0.001%以上、0.002%以上、0.003%以上、0.004%以上、0.005%以上、0.006%以上、0.007%以上、0.008%以上、0.009%以上、0.01%以上、0.015%以上、0.02%以上、0.025%以上、0.026%以上、0.027%以上、0.028%以上、0.029%以上、特に0.03%以上であることが好ましい。一方、HfOの含有量が多すぎると、Hfを含む結晶が析出してガラスが失透しやすくなり、生産性が低下する。また、原料コストが高いため、生産コストが高くなる。したがって、HfOの含有量の上限は1%以下、1%未満、0.9%以下、0.8%以下、0.7%以下、0.6%以下、0.5%以下、特に0.5%未満であることが好ましい。
 Alは、ガラスの化学的耐久性や機械的強度を高める成分である。一方、Alは、ガラスの粘度を高める成分でもある。Alの含有量が多すぎると溶融ガラス中にAlを主成分とするムライト(3Al・2SiO)の失透結晶が生じやすくなり、さらに溶融ガラスの粘度が高くなりすぎて均質な溶融状態にし難くなり、その結果、ガラス繊維径の寸法精度が低下し易くなる。また、ガラスの溶融に必要なエネルギーが増大し、また、紡糸温度Txが高くなり、貴金属製ブッシングの損傷が激しくなって交換頻度が上がり、生産コストが高くなる。したがって、Alの含有量は0~3%、0~2%、0~1.5%、0~1%、0~0.8%、0~0.7%、0~0.6%、0~0.5%、0~0.4%、0~0.3%、0~0.2%、特に0.01~0.2%であることが好ましい。
 CaOは、ガラス繊維成形時の紡糸温度Txを低下させ、耐アルカリ性を向上させる成分である。CaOの含有量が少なすぎると、上記効果が得難くなる。したがって、CaOの含有量の下限は0%以上、0.1%以上、0.2%以上、0.3%以上、0.4%以上、0.5%以上、0.6%以上、0.7%以上、0.8%以上、0.9%以上、1%以上、1.1%以上、1.2%以上、1.3%以上、1.4%以上、1.5%以上、1.6%以上、1.7%以上、1.7%超、1.71%以上、1.75%以上、1.8%以上、1.9%以上、2%以上、2.1%以上、2.2%以上、2.3%以上、2.4%以上、2.5%以上、2.6%以上、2.7%以上、2.8%以上、2.9%以上、3%以上、3.2%以上、3.4%以上、3.5%以上、3.6%以上、3.8%以上、4%以上、4.2%以上、4.4%以上、4.5%以上、4.6%以上、4.8%以上、4.9%以上、5%以上、5.1%以上、5.2%以上、5.3%以上、5.4%以上、5.5%以上、5.6%以上、特に5.6%超であることが好ましい。一方、Caイオンは電場強度が大きいため、CaOの含有量が多すぎると、Caを固溶したジルコンが初相として析出しやすくなるため、ガラスの液相温度Tyが高くなり、紡糸温度Txと液相温度Tyとの温度差ΔTxyが小さくなって生産性が低下する。したがって、CaOの含有量の上限は10%以下、9%以下、8%以下、7.5%以下、7.4%以下、7.3%以下、7.2%以下、7.1%以下、7%以下、6.9%以下、6.8%以下、6.7%以下、6.6%以下、6.5%以下、特に6.5%未満であることが好ましい。
 KOはガラスの粘度を低下させることによって、ガラスの溶融性や成形性を高める成分である。一方、KOの含有量が多すぎるとガラスの耐水性が低下する。また、原料バッチが水分を吸収しやすくなり、原料粉末の凝集体が形成されやすい。原料粉末の凝集体が形成されると原料バッチの溶解性が悪化し、製品ガラス中に未溶解のジルコニアが残留しやすくなる。したがって、KOの含有量は0~10%、0~9%、0~8%、0~7%、0~6%、0~5%、0~4.5%、0~4%、0~3.5%、0~3%、0~2.5%、0~2%、0~1.5%、0~1.4%、0~1.3%、0~1.2%、0~1.1%、0~1%、0~0.9%、0~0.8%、0~0.7%、0~0.6%、0~0.5%、0~0.4%、0~0.3%、0~0.3%未満、0.001~0.3%未満、0.001~0.25%、特に0.001~0.2%であることが好ましい。
 MgOは、ガラスの粘度を低下させ、ガラスの弾性率を向上させる成分である。一方、MgOの含有量が多すぎると、結晶が生じやすくなり、ガラス繊維成形時にブッシングのノズル詰まりの原因となる場合がある。したがって、MgOの含有量は0~1.5%、0~1.4%、0~1.3%、0~1.2%、0~1.1%、特に0~1%であることが好ましい。
 Pは液相温度Tyを低下させる成分である。Pの含有量が少なすぎると、上記効果が得難くなる。したがって、Pの含有量の下限は0.01%以上、0.015%以上、特に0.02%以上であることが好ましい。一方、Pの含有量が多すぎると、耐アルカリ性が低下する傾向にある。したがって、Pの含有量の上限は0.2%以下、0.1%以下、0.07%以下、特に0.05%以下であることが好ましい。
 LiOはガラスの粘度を低下させ、溶融性や成形性を高める成分である。しかし、LiOは原料コストが高いため、生産コストが高くなる。したがって、LiOの含有量は0~1%、0~0.9%、0~0.8%、0~0.7%、0~0.6%、0~0.5%、0~0.4%、0~0.3%、0~0.2%、0~0.15%、特に0~0.15%未満であることが好ましい。
 Feは液相温度Tyを低下させる成分である。Feの含有量が少なすぎると、上記効果が得難くなる。したがって、Feの含有量の下限は0.0001%以上、0.0002%以上、0.0003%以上、0.0004%以上、0.0005%以上、0.0006%以上、特に0.001%以上であることが好ましい。一方、Feの含有量が多すぎると、製品ガラス中に未溶解のFeが残留しやすくなって好ましくない結晶が生じやすくなり、ガラス繊維成形時にブッシングのノズル詰まりの原因となる場合がある。したがって、Feの含有量の上限は、5%以下、4%以下、3%以下、2%以下、1%以下、0.9%以下、0.8%以下、0.7%以下、0.6%以下、0.5%以下、0.4%以下、0.3%以下、0.2%以下、特に0.1%以下であることが好ましい。
 SOはガラス溶融時の清澄性を向上させる成分である。SOの含有量が少なすぎると、上記効果が得難くなる。したがって、SOの含有量の下限は0.0001%以上、0.0002%以上、0.0003%以上、0.0004%以上、0.0005%以上、0.0006%以上、特に0.001%以上であることが好ましい。一方、SOの含有量が多すぎると、ガラス融液内に多量の泡が発生し、ガラス繊維成形時に泡が発生し、ガラス繊維の切断に繋がるため、生産性が低下する。したがって、SOの含有量の上限は1%以下、0.9%以下、0.8%以下、0.7%以下、0.6%以下、0.5%以下、0.4%以下、0.3%以下、0.2%以下、特に0.1%以下であることが好ましい。
 本発明のガラス繊維は、Y/ZrOを制御することで、より好ましい形で高い耐アルカリ性及び生産性を維持することが出来る。Y/ZrOが小さすぎると、耐アルカリ性が低下し、ガラスの液相温度Tyが高くなり、紡糸温度と液相温度との温度差ΔTxyが小さくなって生産性が低下する。したがって、Y/ZrOの下限は、0.0005以上、0.001以上、0.0011以上、0.0012以上、0.0013以上、0.0014以上、0.0015以上、0.0015超、0.0016以上、0.0017以上、0.0018以上、特に0.0018超であることが好ましい。一方、Y/ZrOが大きすぎると、YがZrOと共にイットリア安定化ジルコニアを形成し、液相温度Tyが高くなり、紡糸温度Txと液相温度Tyとの温度差ΔTxyが小さくなって生産性が低下する。したがって、Y/ZrOの上限は1以下、0.5以下、0.4以下、0.3以下、0.2以下、0.1以下、特に0.1未満であることが好ましい。
 本発明のガラス繊維は、NaO/ZrOを制御することで、より好ましい形で高い耐アルカリ性及び生産性を維持することが出来る。NaO/ZrOが大きすぎる、または小さすぎる場合、ガラスの耐アルカリ性が低下し、さらに液相温度Tyが高くなり、紡糸温度と液相温度との温度差ΔTxyが小さくなって生産性が低下する。したがって、NaO/ZrOの下限は0.4以上、0.5以上、0.6以上、0.7以上、特に0.8以上であることが好ましい。NaO/ZrOの上限は1.3以下、1.25以下、1.2以下、1.15以下、1.14以下、1.13以下、1.12以下、1.11以下、特に1.1以下であることが好ましい。
 本発明のガラス繊維は、KO/CaOを制御することで、より好ましい形で高い耐アルカリ性及び生産性を維持することが出来る。KO/CaOが大きすぎると、液相温度Tyが高くなり、紡糸温度Txと液相温度Tyとの温度差ΔTxyが小さくなって生産性が低下する。したがって、KO/CaOは、15以下、14以下、13.6以下、特に13.5以下であることが好ましい。尚、KO/CaOの下限は特に限定されないが、現実的には0.0001以上である。
 本発明のガラス繊維は、KO/ZrOを制御することで、より好ましい形で高い耐アルカリ性及び生産性を維持することが出来る。KO/ZrOが大きすぎると、液相温度Tyが高くなり、紡糸温度Txと液相温度Tyとの温度差ΔTxyの差が小さくなって生産性が低下する。KO/ZrOは、0.5以下、0.4以下、0.35以下、0.35未満、0.34以下、0.33以下、0.32以下、0.31以下、0.3以下、0.29以下、0.28以下、0.27以下、0.26以下、0.25以下、0.24以下、0.23以下、0.22以下、0.21以下、特に0.2以下であることが好ましい。尚、KO/ZrOの下限は特に限定されないが、現実的には0.0001以上である。
 本発明のガラス繊維は、(NaO+KO)/(CaO+MgO)を制御することで、より好ましい形で原料コストを抑えつつ、高い生産性を維持することが出来る。(NaO+KO)/(CaO+MgO)が小さすぎると、ガラスの液相温度Tyが高くなり、紡糸温度Txと液相温度Tyとの温度差ΔTxyが小さくなって生産性が低下する。したがって、(NaO+KO)/(CaO+MgO)は、1.5以上、1.6以上、1.7以上、1.75以上、1.8以上、1.9以上、2以上、2超、2.1以上、2.11以上、2.12以上、2.13以上、2.14以上、2.15以上、2.16以上、2.17以上、2.18以上、2.19以上、2.2以上、2.25以上、2.3以上、特に2.3超であることが好ましい。尚、(NaO+KO)/(CaO+MgO)の上限は特に限定されないが、現実的には1000以下である。
 本発明のガラス繊維は、(NaO+KO+CaO)/Alを制御することで、より好ましい形で耐アルカリ性及び高い生産性を維持することが出来る。また、(NaO+KO+CaO)/Alが小さすぎると、耐アルカリ性の低下に加え、ガラスの紡糸温度Txが大きくなって生産性が低下する。したがって、(NaO+KO+CaO)/Alは、80以上、90以上、100以上、105以上、110以上、120以上、125以上、126以上、127以上、128以上、129以上、130以上、131以上、132以上、133以上、134以上、135以上、136以上、137以上、138以上、139以上、139超、特に140以上であることが好ましい。尚、(NaO+KO+CaO)/Alの上限は特に限定されないが、現実的には5000以下である。
 また本発明のガラス繊維は、上記した成分(SiO、Al、CaO、NaO、TiO、ZrO、HfO、Y、KO、MgO、P、LiO、Fe及びSO)以外の微量成分を含みうる。ただし上記した成分の含有量が合量で97%以上、98%以上、98.5%以上、特に99%以上となるように組成を調節することが好ましい。これらの成分の合量が97%未満の場合、異種成分の混入によって耐アルカリ性、耐酸性、耐水性が低下して製品としての特性が低下したり、紡糸温度Txと液相温度Tyとの温度差ΔTxyが小さくなって生産性が低下したりする等の不都合が生じ易い。
 上記した成分以外の成分として、例えばH、CO、CO、HO、He、Ne、Ar、N等の微量成分をそれぞれ0.1%まで含有してもよい。また、ガラス中にPt、Rh、Au等の貴金属元素を500ppmまで添加してもよい。
 MoOは原料や溶融用部材などから混入しうる成分であり、多く含みすぎるとMoを含む結晶が析出してガラスが失透しやすくなり、生産性が低下する。MoOの含有量は1000ppm以下、900ppm以下、800ppm以下、700ppm以下、600ppm以下、500ppm以下、400ppm以下、300ppm以下、200ppm以下、特に100ppm以下であることが好ましい。一方で、原料に不純物として含まれるMoOの除去を行うと原料コストが増加するため、MoOの含有量の下限は、0.1ppm以上、0.5ppm以上、1ppm以上、2ppm以上、3ppm以上、4ppm以上、特に5ppm以上であることが好ましい。
 さらに耐アルカリ性、液相温度Tyの改善のために、B、SrO、BaO、ZnO、Cr、Sb、MnO、SnO、CeO、Cl、La、WO、Nb等を合量で2%以下、1.5%以下、1.2%以下、1.1%以下、特に好ましくは1%以下まで含有してもよい。尚、環境負荷の観点からは、組成設計上、Cr、Bは多く含有させないことが好ましい。Crの含有量は1%未満、0.5%未満、0.3%未満、特に0.1%未満であることが好ましく、Bの含有量は1%未満、0.5%未満、0.3%未満、特に0.2%未満であることが好ましい。
 次に、本発明のガラス繊維の特性について説明する。
 本発明のガラス繊維は、紡糸温度Txが、1350℃以下、1340℃以下、1330℃以下、1320℃以下、1310℃以下、1300℃以下、1290℃以下、特に1280℃以下であることが好ましい。紡糸温度Txが高すぎると、高温で紡糸を行う必要があることから、貴金属製ブッシングの損傷が激しくなり、交換頻度が高くなって生産コストが高くなる。尚、紡糸温度Txの下限は特に限定されないが、現実的には1100℃以上である。
 本発明のガラス繊維は、紡糸温度Txと液相温度Tyとの温度差ΔTxyが、15℃以上、20℃以上、30℃以上、40℃以上、50℃以上、60℃以上、70℃以上、80℃以上、90℃以上、100℃以上、特に110℃以上であることが好ましい。紡糸温度Txと液相温度Tyとの差ΔTxyが小さすぎると、生産性が低下する。尚、ΔTxyの上限は特に限定されないが、現実的には250℃以下である。
 本発明のガラス繊維は液相温度Tyが、1250℃以下、1240℃以下、1230℃以下、1220℃以下、1210℃以下、1200℃以下、1190℃以下、1185℃以下、特に1180℃以下であることが好ましい。液相温度が高すぎると、生産性が低下する。尚、液相温度Tyの下限は特に限定されないが、現実的には900℃以上である。
 本発明のガラス繊維は、300~500μmの粒度に粉砕分級された比重分のガラスを10質量%のNaOH水溶液100ml中に80℃、168時間の条件で浸漬した時のガラスの質量減少率が、4.5%未満、4.3%以下、4.2%以下、4%以下、3.9%以下、3.8%以下、3.7%以下、3.6%以下、3.5%以下、特に3.4%以下であることが好ましい。この耐アルカリ性試験によるガラスの質量減少率が高いと、ガラスの耐アルカリ性が低下し、ケイ酸カルシウム板やGRC等の複合材料の補強材としての信頼性が低くなる。
 次に本発明のガラス繊維の製造方法を、ダイレクトメルト法(DM法)を例にして説明する。但し、本発明は下記の方法に制限されるものではなく、例えばマーブル状に成形した繊維用ガラス材料をブッシング装置で再溶融し紡糸する、いわゆる間接成形法(MM法:マーブルメルト法)を採用することもできる。尚、この方法は少量多品種生産に向いている。
 まず上記組成(及び特性)となるように、調合したガラス原料バッチをガラス溶融炉に投入し、ガラス化し、溶融、均質化する。なお、溶融温度は1400~1600℃程度が好適である。
 続いて溶融ガラスをガラス繊維に成形する。
 一部の実施形態としては、溶融ガラスをブッシングに供給し、ブッシングに供給された溶融ガラスをその底面に設けられた多数のブッシングノズルからフィラメント状に連続的に引き出す。このようにして引き出されたモノフィラメントに各種処理剤を塗布し、所定本数毎に集束することによってガラスストランドを得る。尚、本発明のガラス繊維は、上記したガラスストランドだけでなく、遠心法等で成形するグラスウール等の短繊維や、ガラスストランドを集束する前のモノフィラメントも含む。
 このようにして成形された本発明のガラス繊維は、チョップドストランド、ヤーン、ロービング等に加工され、種々の用途に供される。尚、チョップドストランドとは、ガラスモノフィラメントを集束したガラス繊維(ストランド)を所定長の長さに切断したものである。ヤーンとは、ストランドに撚りをかけたものである。ロービングとは、ストランドを複数本合糸し、円筒状に巻き取ったものである。
 以下、実施例に基づいて、本発明を詳細に説明する。表1~7は本発明のガラス繊維を構成するガラスの実施例(試料No.1~38、No.40~68)および比較例(試料No.39)をそれぞれ示している。
 
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表の各試料は、次のようにして調製した。
 まず、表中のガラス組成になるように、天然原料、化成原料等の各種ガラス原料を秤量、混合して、原料バッチを作製した。次に、この原料バッチを白金ロジウム合金製坩堝に投入した後、間接加熱電気炉内で1550℃、5時間加熱して、溶融ガラスを得た。尚、均質な溶融ガラスを得るために、耐熱性撹拌棒を用いて、溶融ガラスを複数回攪拌した。続いて、得られた溶融ガラスを耐火性鋳型内に流し出し、板状のガラスを成形した後、徐冷炉内で徐冷処理(1013dPa・sにおける温度より30~50℃高い温度で30分間加熱した後、徐冷点~歪点の温度域を3℃/分で降温)を行った。得られた各試料につき、紡糸温度Tx、液相温度Ty、耐アルカリ性を測定した。
 溶融ガラスの粘度が103dPa・sに相当する紡糸温度Txは、成形したガラスをアルミナ坩堝に投入して、再加熱し、融液状態にまで加熱した後に、白金球引き上げ法に基づいて計測した各粘度の複数の計測によって得られた粘度曲線の内挿によって算出した。
 液相温度Tyは、標準篩30メッシュ(300μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金製容器に適切な嵩密度を有する状態に充填して、最高温度を1320℃に設定した間接加熱型の温度勾配炉内に入れて静置し、16時間大気雰囲気中で加熱処理を行った。その後、ガラス試料が入った白金製容器を取り出し、白金製容器からガラス試料を取り除いた。ガラス試料を室温まで放冷後、偏光顕微鏡によって結晶が析出し始める場所を確認し、間接加熱炉内の温度勾配から結晶析出温度を算出した。
 紡糸温度Txと液相温度Tyとの温度差ΔTxyは、(紡糸温度Tx)-(液相温度Ty)により算出した。
 耐アルカリ性は次のようにして測定した。まず、上記した板状ガラス試料を粉砕し、直径300~500μmの粒度のガラスを比重分だけ精秤し、続いて10質量%NaOH溶液100ml中に浸漬して、80℃、168時間の条件で振とうした。その後、ガラス試料の質量減少率を測定した。この値が小さいほど耐アルカリ性に優れていることになる。
 表1~7から明らかなように、実施例である試料No.1~38、No.40~68は、ガラスの紡糸温度Txが1350℃以下、液相温度Tyが1235℃以下、ガラスの紡糸温度Txと液相温度Tyとの温度差ΔTxyが18℃以上であり、生産性に優れていた。更に、耐アルカリ性の指標となる質量減少率がいずれも4.5%未満であった。
 それに対し、比較例である試料No.39は、耐アルカリ性の指標となる質量減少率が4.5%であり、耐アルカリ性が低かった。
 次に、表1~7に記載の試料No.1~38、No.40~68のガラス組成となるように調合した原料バッチをガラス溶融炉に投入し、1400~1600℃で溶融、均質化した。続いて得られた溶融ガラスをブッシングに供給し、底面に設けられたブッシングノズルからフィラメント状に連続的に引き出した。このようにして得たモノフィラメントに処理剤を塗布し、2000本~4000本に集束することによってガラスストランドを得た。
 本発明のガラス繊維は、GRCの補強材以外にも、ケイ酸カルシウム板の補強材やバッテリーセパレータ等の耐食性材料として好適である。
 

Claims (16)

  1.  ガラス組成として、酸化物換算の質量%で、SiO 50~70%、NaO 10~20%、TiO 0~5.5%、ZrO 10~30%を含有することを特徴とするガラス繊維。
  2.  ガラス組成として、酸化物換算の質量%で、Y3 0.001~0.1%を含有することを特徴とする請求項1に記載のガラス繊維。
  3.  ガラス組成として、酸化物換算の質量%で、HfO 0.001~1%を含有することを特徴とする請求項1又は2に記載のガラス繊維。
  4.  ガラス組成として、酸化物換算の質量%で、SiO 57.1~64.8%、Al 0~0.3%、CaO 1.71~10%、NaO 12~20%、KO 0~6%、TiO 0~5%、ZrO 15.1~18.5%を含有することを特徴とする請求項1又は2に記載のガラス繊維。
  5.  ガラス組成として、酸化物換算の質量比で、Y3/ZrOが0.0005以上であることを特徴とする請求項1又は2に記載のガラス繊維。
  6.  ガラス組成として、酸化物換算の質量比で、NaO/ZrOが0.4~1.3であることを特徴とする請求項1又は2に記載のガラス繊維。
  7.  ガラス組成として、酸化物換算の質量比で、KO/CaOが15以下であることを特徴とする請求項1又は2に記載のガラス繊維。
  8.  ガラス組成として、酸化物換算の質量比で、KO/ZrOが0.5以下であることを特徴とする請求項1又は2に記載のガラス繊維。
  9.  ガラス組成として、酸化物換算の質量比で、(NaO+KO)/(CaO+MgO)が1.5以上であることを特徴とする請求項1又は2に記載のガラス繊維。
  10.  ガラス組成として、酸化物換算の質量比で、(NaO+KO+CaO)/Alが80以上であることを特徴とする請求項1又は2に記載のガラス繊維。
  11.  紡糸温度Txが1350℃以下であることを特徴とする請求項1又は2に記載のガラス繊維。
  12.  紡糸温度Txと液相温度Tyとの温度差ΔTxyが15℃以上であることを特徴とする請求項1又は2に記載のガラス繊維。
  13.  液相温度Tyが1250℃以下であることを特徴とする請求項1又は2に記載のガラス繊維。
  14.  300~500μmの粒度に粉砕分級された比重分のガラスを10質量%のNaOH水溶液100ml中に80℃、168時間の条件で浸漬した時のガラスの質量減少率が4.5%未満であることを特徴とする請求項1又は2に記載のガラス繊維。
  15.  調合した原料バッチをガラス溶融炉で溶融し、得られた溶融ガラスをブッシングから連続的に引き出して繊維状に成形することにより、請求項1又は2に記載のガラス繊維を得ることを特徴とするガラス繊維の製造方法。
  16.  ガラス組成として、酸化物換算の質量%で、SiO 50~70%、NaO 10~20%、TiO 0~5.5%、ZrO 10~30%を含有することを特徴とするガラス。
     
PCT/JP2022/042388 2021-12-07 2022-11-15 ガラス繊維、ガラス繊維の製造方法及びガラス WO2023106048A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22903979.7A EP4446291A1 (en) 2021-12-07 2022-11-15 Glass fibers, method for manufacturing glass fibers, and glass
CN202280081262.8A CN118369298A (zh) 2021-12-07 2022-11-15 玻璃纤维、玻璃纤维的制造方法及玻璃
JP2023566191A JPWO2023106048A1 (ja) 2021-12-07 2022-11-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-198485 2021-12-07
JP2021198485 2021-12-07

Publications (1)

Publication Number Publication Date
WO2023106048A1 true WO2023106048A1 (ja) 2023-06-15

Family

ID=86730396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042388 WO2023106048A1 (ja) 2021-12-07 2022-11-15 ガラス繊維、ガラス繊維の製造方法及びガラス

Country Status (4)

Country Link
EP (1) EP4446291A1 (ja)
JP (1) JPWO2023106048A1 (ja)
CN (1) CN118369298A (ja)
WO (1) WO2023106048A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499117A (en) * 1978-05-18 1979-08-04 Kanebo Ltd Alkali resistant glass composition
JPS5510450A (en) * 1978-07-08 1980-01-24 Nippon Sheet Glass Co Ltd Alkali resistant glass composition
JPS55140735A (en) * 1979-03-15 1980-11-04 Pilkington Brothers Ltd Alkali resistant glass fiber
JPS55162444A (en) * 1979-05-30 1980-12-17 Nippon Sheet Glass Co Ltd Alkali-proof glass composition for fiber
JPS56134534A (en) * 1980-02-27 1981-10-21 Pilkington Brothers Ltd Alkali-resistant glass fiber and cement product reinforced with said glass fiber
JPS5844621B2 (ja) * 1976-12-08 1983-10-04 日本電気硝子株式会社 耐アルカリ性ガラス組成物
JP2008503439A (ja) * 2004-06-24 2008-02-07 サン−ゴバン テクニカル ファブリクス ヨーロッパ 耐食性ガラスヤーンによる強化プラスチック
WO2014065321A1 (ja) 2012-10-25 2014-05-01 日本電気硝子株式会社 ガラス繊維用ガラス組成物、ガラス繊維及びガラス繊維の製造方法
CN104261686A (zh) * 2014-09-05 2015-01-07 巨石集团有限公司 一种耐碱玻璃纤维组合物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5844621B2 (ja) * 1976-12-08 1983-10-04 日本電気硝子株式会社 耐アルカリ性ガラス組成物
JPS5499117A (en) * 1978-05-18 1979-08-04 Kanebo Ltd Alkali resistant glass composition
JPS5510450A (en) * 1978-07-08 1980-01-24 Nippon Sheet Glass Co Ltd Alkali resistant glass composition
JPS55140735A (en) * 1979-03-15 1980-11-04 Pilkington Brothers Ltd Alkali resistant glass fiber
JPS55162444A (en) * 1979-05-30 1980-12-17 Nippon Sheet Glass Co Ltd Alkali-proof glass composition for fiber
JPS56134534A (en) * 1980-02-27 1981-10-21 Pilkington Brothers Ltd Alkali-resistant glass fiber and cement product reinforced with said glass fiber
JP2008503439A (ja) * 2004-06-24 2008-02-07 サン−ゴバン テクニカル ファブリクス ヨーロッパ 耐食性ガラスヤーンによる強化プラスチック
WO2014065321A1 (ja) 2012-10-25 2014-05-01 日本電気硝子株式会社 ガラス繊維用ガラス組成物、ガラス繊維及びガラス繊維の製造方法
CN104261686A (zh) * 2014-09-05 2015-01-07 巨石集团有限公司 一种耐碱玻璃纤维组合物

Also Published As

Publication number Publication date
JPWO2023106048A1 (ja) 2023-06-15
EP4446291A1 (en) 2024-10-16
CN118369298A (zh) 2024-07-19

Similar Documents

Publication Publication Date Title
JP6202318B2 (ja) ガラス繊維用ガラス組成物、ガラス繊維及びガラス繊維の製造方法
KR101758938B1 (ko) 향상된 모듈러스의 리튬프리 유리
JP7480142B2 (ja) 改善された比弾性率を有する高性能ガラス繊維組成物
JP7488260B2 (ja) 改善された弾性率を有する高性能ガラス繊維組成物
CN109982982B (zh) 玻璃纤维用玻璃组合物、玻璃纤维和玻璃纤维的制造方法
EP3967669A1 (en) Glass composition for glass fibers
JP2023510200A (ja) より高い弾性率のための繊維ガラス組成物
JPWO2016093212A1 (ja) ガラス繊維用ガラス組成物、ガラス繊維及びガラス繊維の製造方法
JP7288246B2 (ja) ガラス繊維及びその製造方法
JP2019112246A (ja) ガラス繊維及びその製造方法
JP7235928B1 (ja) ガラス繊維およびガラス繊維用組成物
WO2023106048A1 (ja) ガラス繊維、ガラス繊維の製造方法及びガラス
WO2017221637A1 (ja) ガラス繊維の製造方法
JP3771073B2 (ja) ガラス繊維
JPH10231143A (ja) 耐蝕性ガラス繊維
JPH09156957A (ja) 耐蝕性ガラス繊維
JPH06157072A (ja) 耐蝕性ガラス繊維
JP2016117627A (ja) ガラス繊維の製造方法
JP7235915B1 (ja) ガラス繊維およびガラス繊維用組成物
JPH11157876A (ja) 耐蝕性ガラス繊維
JPH10231142A (ja) 耐蝕性ガラス繊維
JP2016113339A (ja) ガラス繊維ガラス組成物、ガラス繊維及びガラス繊維の製造方法
CN118745079A (zh) 一种高性能玻璃纤维组分及其制造方法
JPH11157875A (ja) 耐蝕性ガラス繊維

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903979

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023566191

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: P2024-01430

Country of ref document: AE

WWE Wipo information: entry into national phase

Ref document number: 2022903979

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022903979

Country of ref document: EP

Effective date: 20240708