WO2023098716A1 - 一种制备有机-无机纳米复合颗粒分散液的方法及其有机-无机纳米复合颗粒分散液、化学机械抛光液 - Google Patents

一种制备有机-无机纳米复合颗粒分散液的方法及其有机-无机纳米复合颗粒分散液、化学机械抛光液 Download PDF

Info

Publication number
WO2023098716A1
WO2023098716A1 PCT/CN2022/135383 CN2022135383W WO2023098716A1 WO 2023098716 A1 WO2023098716 A1 WO 2023098716A1 CN 2022135383 W CN2022135383 W CN 2022135383W WO 2023098716 A1 WO2023098716 A1 WO 2023098716A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
particle dispersion
inorganic nanocomposite
inorganic
nanocomposite particle
Prior art date
Application number
PCT/CN2022/135383
Other languages
English (en)
French (fr)
Inventor
王兴平
徐鹏宇
贾长征
刘凤茹
李守田
陈湛
Original Assignee
安集微电子(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安集微电子(上海)有限公司 filed Critical 安集微电子(上海)有限公司
Publication of WO2023098716A1 publication Critical patent/WO2023098716A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing

Definitions

  • the invention relates to a preparation method of an organic-inorganic nano composite particle dispersion liquid and a chemical mechanical polishing liquid comprising the composite particle dispersion liquid.
  • CMP chemical mechanical planarization
  • a method for preparing an organic-inorganic nanocomposite particle dispersion comprising:
  • Steps (1) and (2) are alternately repeated, and negatively charged and positively charged organic-inorganic nanocomposite particle dispersions are respectively obtained by adjusting the number of steps (1) and (2).
  • step (1) occurs at least once or more
  • step (2) occurs at least once or more
  • the method according to claim 1, wherein the dispersion method includes one or more of ultrasonic dispersion treatment, high-speed shear treatment, and ball milling treatment; preferably, when dispersing, adjust the pH of the solution to 2-8 .
  • the inorganic nanoparticles are selected from cerium oxide, cerium hydroxide and mixtures thereof.
  • the anionic organic polymer has -COOH group, -COOR 1 group, -SO 3 H group, -SO 3 R 2 group, -PO 3 H group, -PO 3 R 2 group one or more of
  • the anionic organic polymer compound having -COOH group and -COOR 1 group is selected from polyacrylic acid and its salt, polymethacrylic acid and its salt, acrylic acid and methacrylic acid copolymer and its salt, acrylic acid Copolymers with maleic acid and their salts, polyaspartic acid and their salts, acrylic acid and styrene copolymers and their salts;
  • the anionic organic polymer compound having -SO 3 H group and -SO 3 R 2 group is selected from styrene sulfonic acid homopolymer or its copolymer, methyl propane sulfonic acid and acrylamide copolymer.
  • the weight-average molecular weight of the anionic organic polymer is 1,000-1,000,000.
  • the mass percent ratio of anionic organic polymers to inorganic nanoparticles in step (1) is 0.0001-1.
  • the cationic organic polymer in step (2) is selected from one or more of allylamine polymers, diallylamine polymers, vinylamine polymers and ethyleneimine polymers.
  • the weight-average molecular weight of the cationic organic polymer is 1,000-1,000,000.
  • the mass percent ratio of cationic organic polymers to inorganic nanoparticles in step (2) is 0.0001-1.
  • step (1) is taken as the final step to obtain a negatively charged organic-inorganic nanocomposite particle dispersion, and the zeta potential range of the obtained composite particle dispersion is -60mV to 0mV.
  • step (2) is taken as the final step to obtain a positively charged organic-inorganic nanocomposite particle dispersion, and the zeta potential range of the obtained composite particle dispersion is 0mV to +60mV.
  • a chemical mechanical polishing solution comprising the organic-inorganic nanocomposite particle dispersion obtained by any one of the above methods.
  • the polishing rate of silicon oxide is greatly improved through two-step coating.
  • the surface of the cerium oxide particles is positively charged, and the surface is negatively charged by adding an anionic polymer, and then the cationic polymer is added to make the surface positively charged, which has the following technical effects:
  • Organic-inorganic nanocomposite particles are composed of a relatively hard inorganic core and a relatively soft organic shell.
  • the soft organic shell forms an effective buffer layer between the polished surface and the inorganic core, which is conducive to less defects such as scratches ;
  • Polishing abrasive particles with different surface charge properties can be obtained by adjusting the preparation process of organic-inorganic nanocomposite particles according to the requirements of chemical mechanical polishing fluid.
  • Fig. 1 is a graph of zeta potential and pH value of cerium oxide particles in Example 1A and Example 2A of the present invention.
  • Example 1A Preparation of Negatively Charged Organic-Inorganic Nanocomposite Particle Dispersion
  • Example 1B Polishing Slurry Comprising a Dispersion of Negatively Charged Organic-Inorganic Nanocomposite Particles
  • Example 1A 400 grams of the negatively charged organic-inorganic nanocomposite particle dispersion in Example 1A was added to 1600 grams of deionized water, and the pH was adjusted to 5.6 with nitric acid to obtain a CMP polishing solution with a cerium oxide concentration of 0.4 wt%.
  • Step 1 Repeat the steps in Example 1A to obtain a dispersion of negatively charged organic-inorganic nanocomposite particles.
  • Step 2 Prepare positively charged organic-inorganic nanocomposite particle dispersion:
  • the obtained cerium oxide concentration is 1.5wt%
  • the ammonium polyacrylate concentration is 0.006wt%
  • the polyquaternium-37 concentration is 0.0375wt% positively charged organic-inorganic nanocomposite particle dispersion (polyquaternium-37-poly ammonium acrylate-cerium oxide nanocomposite particles).
  • the pH, particle size and zeta potential of the organic-inorganic nanocomposite particle dispersion are listed in Table 1.
  • Example 2B Polishing Fluid Comprising Positively Charged Organic-Inorganic Nanocomposite Particle Dispersion
  • Example 2A 100 grams of the positively charged organic-inorganic nanocomposite particle dispersion in Example 2A was added to 1400 grams of deionized water, and the pH of the solution was adjusted to 4.8 with nitric acid to obtain a CMP polishing solution with a cerium oxide concentration of 0.1 wt%.
  • Step 1 Repeat the steps in Example 1A to prepare negatively charged organic-inorganic nanocomposite particle dispersion.
  • Step 2 Repeat the steps in Example 2A to prepare positively charged organic-inorganic nanocomposite particle dispersion.
  • Step 3 Preparation of Negatively Charged Organic-Inorganic Nanocomposite Particle Dispersion
  • Example 3B Polishing Fluid Including Dispersion of Negatively Charged Organic-Inorganic Nanocomposite Particles
  • Example 3A 400 grams of the third organic-inorganic nanocomposite particle dispersion in Example 3A was added to 1200 grams of deionized water, and the pH of the solution was adjusted to 4.8 with nitric acid to obtain a CMP polishing solution with a cerium oxide concentration of 0.2 wt%.
  • Example 4A Positively Charged Organic-Inorganic Nanocomposite Particle Dispersion
  • Step 1 Repeat the steps in Example 1A to prepare negatively charged organic-inorganic nanocomposite particle dispersion.
  • Step 2 Repeat the steps in Example 2A to prepare positively charged organic-inorganic nanocomposite particle dispersion.
  • Step 3 Repeat the steps in Example 3A to prepare negatively charged organic-inorganic nanocomposite particle dispersion
  • Step 4 Preparation of Positively Charged Organic-Inorganic Nanocomposite Particle Dispersion
  • the preparation method of organic-inorganic nanocomposite particles provided in this application can not only achieve stable dispersion of cerium oxide particles, but also change the surface charge properties of the cerium oxide composite particles.
  • the relational curve of the zeta potential and pH of the prepared negatively charged organic-inorganic nanocomposite particle dispersion liquid of embodiment 1A is as shown in accompanying drawing 1, and its zeta potential is always less than-20mV in the interval of pH 3-10, shows that it is at pH 3 It has good colloidal stability in the range of -10.
  • the zeta potential of the negatively charged organic-inorganic nanocomposite particle dispersion prepared in Example 2A is always greater than 20mV, indicating that it has good colloidal stability in the pH 2-10 range. This feature enables the organic-inorganic nanocomposite particles in the present invention to adapt to a wider pH range, which greatly expands its application in chemical mechanical polishing fluids.
  • the polishing rate of the organic-inorganic nanocomposite particle dispersion on silicon oxide in the above examples was further tested.
  • the specific test conditions are as follows:
  • the polishing pad used was an IC1000 polishing pad manufactured by 3M Company, the grinding pressure was 2.0 psi, the rotation speeds of the grinding disc and the grinding base were respectively 93 rpm and 87 rpm, and the flow rate of the polishing solution was 150 mL/min.
  • a 200mm PE-TEOS silicon oxide film was used as a semiconductor substrate, and the difference in TEOS film thickness was measured using a NanoSpec film thickness measurement system (NanoSpec6100-300, Shanghai Nanospec Technology Corporation). Starting at 3mm from the edge of the wafer, measure 49 points at equal intervals on the diameter line. The polishing rate is an average of 49 points.
  • Table 2 The specific test results are shown in Table 2.
  • Example 2B and Example 4A have excellent polishing rates.
  • the positive charge-inorganic nano-cerium oxide composite particles contained in the dispersions of Example 2B and Example 4A have good polishing properties.
  • the surface of the cerium oxide particles in Example 1B and Example 3B is covered with negative charges. Although it is not conducive to polishing, it is beneficial to continue to cover the surface with positive charges to change the surface properties of the nanocomposite particles.
  • the preparation method in the present invention can coat the organic layer on the surface of inorganic nanoparticles by organic-inorganic nanocomposite technology, and realize effective regulation and control of the performance of CMP polishing fluid by changing the arrangement and composition of organic components; organic-inorganic nanocomposite particles It is composed of a relatively hard inorganic core and a relatively soft organic shell.
  • the soft organic shell forms an effective buffer layer between the polished surface and the inorganic core, which is conducive to less defects such as scratches; it can be customized according to the requirements of chemical mechanical polishing fluid , by adjusting the preparation process of organic-inorganic nanocomposite particles to obtain polishing abrasive particles with different surface charge properties.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

本发明提供一种制备有机-无机纳米复合颗粒分散液的方法,所述方法包括:制备负电荷有机-无机纳米复合颗粒分散液:向阴离子有机高分子溶液中添加带有正电荷的无机纳米颗粒,充分搅拌,分散均匀,得到带有负电荷的有机-无机纳米复合颗粒分散液;制备正电荷有机-无机纳米复合颗粒分散液:向阳离子有机高分子溶液中添加带有负电荷的有机高分子-无机金属氧化物复合物分散液,充分搅拌,分散均匀,得到带有正电荷的有机高分子-无机纳米复合颗粒分散液;交替重复步骤(1)和(2),通过调整步骤(1)和(2)的次数分别获得负电荷和正电荷有机-无机纳米复合颗粒分散液。通过上述方法,可以实现对CMP抛光液性能的有效调控。

Description

一种制备有机-无机纳米复合颗粒分散液的方法及其有机-无机纳米复合颗粒分散液、化学机械抛光液 技术领域
本发明涉及一种有机-无机纳米复合颗粒分散液的制备方法及包括此复合颗粒分散液的化学机械抛光液。
背景技术
随着半导体元件不断的高密度化和微细化,化学机械平坦化(CMP)工艺在半导体元件的制造过程中发挥着不可或缺的作用。在CMP工艺中,对化学机械抛光速度、被抛光表面平坦度、刮痕和缺陷的程度要求日益增高。CMP抛光液对这些抛光性能的影响尤为重大,而抛光粒子又是抛光液的核心组分。通过对抛光粒子进行表面工程化修饰能够调节和控制抛光液的性能,开发出具有不同特性和功能的CMP抛光液。
发明内容
一种制备有机-无机纳米复合颗粒分散液的方法,所述方法包括:
(1)制备负电荷有机-无机纳米复合颗粒分散液:向带有正电荷的无机纳米颗粒分散液中添加阴离子有机高分子,充分搅拌,分散均匀,得到带有负电荷的有机高分子-无机纳米复合颗粒分散液;
(2)制备正电荷有机-无机纳米复合颗粒分散液:向带有负电荷的有机高分子-无机金属氧化物复合物分散液中添加阳离子有机高分子,充分搅拌,分散均匀,得到带有正电荷的有机高分子-无机纳米复合颗粒分散液;
(3)交替重复步骤(1)和(2),通过调整步骤(1)和(2)的次数分别获得负电荷和正电荷有机-无机纳米复合颗粒分散液。
优选的,步骤(1)至少发生1次及以上,步骤(2)至少发生1次及以上。
优选的,如权利要求1所述的方法,其中,分散方法包括超声波分散处理、高速剪切处理、球磨处理中的一种或多种;优选的,在分散时,调节溶液pH至2-8。
优选的,所述无机纳米颗粒选自氧化铈、氢氧化铈及其混合物。
优选的,所述阴离子有机高分子具有-COOH基团、-COOR 1基团、-SO 3H基团、-SO 3R 2基团、-PO 3H基团、-PO 3R 2基团中的一种或多种;
优选的,所述具有-COOH基团、-COOR 1基团的阴离子有机高分子化合物选自聚丙烯酸及其盐,聚甲基丙烯酸及其盐,丙烯酸与甲基丙烯酸共聚物及其盐,丙烯酸与马来酸共聚物及其盐,聚天冬氨酸及其盐,丙烯酸与苯乙烯共聚物及其盐;
所述具有-SO 3H基团、-SO 3R 2基团的阴离子有机高分子化合物选自苯乙烯磺酸均聚物或其共聚物、甲基丙磺酸与丙烯酰胺共聚物。
优选的,所述阴离子有机高分子重均分子量为1000~1000000。
优选的,步骤(1)中阴离子有机高分子与无机纳米颗粒的质量百分比之比为0.0001-1。
优选的,步骤(2)中阳离子有机高分子选自烯丙基胺高分子、二烯丙基胺高分子、乙烯基胺高分子以及乙烯亚胺高分子中的一种或多种。
优选的,所述阳离子有机高分子重均分子量为1000~1000000。
优选的,步骤(2)中阳离子有机高分子与无机纳米颗粒的质量百分比之比为0.0001-1。
优选的,以步骤(1)作为最终步骤可获得带负电的有机-无机纳米复合颗粒分散液,所得复合颗粒分散液的电动电势区间为-60mV到0mV。
优选的,以步骤(2)作为最终步骤可获得带正电的有机-无机纳米复合颗粒分散液,所得复合颗粒分散液的电动电势区间为0mV到+60mV。
本发明的另一方面,提供一种包含由任一上述方法获得的有机-无机纳米复合颗粒分散液的化学机械抛光液。
本发明中的制备方法,通过两步包覆实现对氧化硅抛光速率的大幅提升。氧化铈颗粒表面带正电,通过添加阴离子高分子使其表面带负电,随后添加阳离子高分子,使其表面带正电,具有下述技术效果:
(1)能够通过有机-无机纳米复合技术在无机纳米粒子表面包覆有机层,通过改变有机组分的排列和构成实现对CMP抛光液性能的有效调控;
(2)有机-无机纳米复合颗粒由相对较硬的无机内核和相对柔软的有机外壳构成,柔软的有机外壳在被抛光表面和无机内核间形成有效的缓冲层,有利于较少刮痕等缺陷;
(3)可根据化学机械抛光液的要求,通过调控有机-无机纳米复合颗粒的制备工艺获得具有不同表面电荷性质的抛光磨粒。
附图说明
图1为本发明实施例1A与实施例2A中氧化铈颗粒的电动电势与pH值曲线图。
具体实施方式
以下结合具体实施例和附图进一步阐述本发明的优点。
实施例1A:制备负电荷有机-无机纳米复合颗粒分散液
将1.6克浓度为5wt%的聚丙烯酸铵(分子量~5000)水溶液加入到598.4克去离子水中,搅拌5分钟,然后加入400克浓度为5wt%的氧化铈(光散射粒径为185nm),搅拌30分钟后,转移到20kHz的超声槽中,超声分散60分钟。最终,得到氧化铈浓度为2wt%,聚丙烯酸铵浓度为0.04wt%的带负电荷的有机-无机纳米复合颗粒分散液(聚丙烯酸铵-氧化铈纳米复合颗粒)。该有机-无机纳米复合颗粒分散液的pH、颗粒尺寸和zeta电位列于表1。
实施例1B:包括负电荷有机-无机纳米复合颗粒分散液的抛光液
将400克实施例1A中带负电的有机-无机纳米复合颗粒分散液加入到1600克去离子水中,使用硝酸调节pH至5.6,得到氧化铈浓度为0.4wt%的CMP抛光液。
实施例2A:制备正电荷有机-无机纳米复合颗粒分散液
步骤一:重复实施例1A中的步骤,得到负电荷有机-无机纳米复合颗粒分散液。
步骤二:制备正电荷有机-无机纳米复合颗粒分散液:
将18.75克浓度为2wt%的聚季铵盐-37加入230.7克去离子水里,加入0.5克5wt%硝酸,搅拌5分钟,然后加入750克步骤一中的负电荷有机-无机纳米复合颗粒分散液,搅拌30分钟后,转移到20kHz的超声槽中超声分散120分钟。最终,得到氧化铈浓度为1.5wt%,聚丙烯酸铵浓度为0.006wt%,聚季铵盐-37浓度为0.0375wt%的正电荷有机-无机纳米复合颗粒分散液(聚季铵盐37-聚丙烯酸铵-氧化铈纳米复合颗粒)。该有机-无机纳米复合颗粒分散液的pH、颗粒尺寸和zeta电位列于表1。
实施例2B:包括正电荷有机-无机纳米复合颗粒分散液的抛光液
将100克实施例2A中的正电荷有机-无机纳米复合颗粒分散液加入到1400克去离子水中,使用硝酸调节溶液pH至4.8,得到氧化铈浓度为0.1wt%的CMP抛光液。
实施例3A:制备负电荷有机-无机纳米复合颗粒分散液
步骤一:重复实施例1A中的步骤,制备负电荷有机-无机纳米复合颗粒分散液。
步骤二:重复实施例2A中的步骤,制备正电荷有机-无机纳米复合颗粒分散液。
步骤三:制备负电荷有机-无机纳米复合颗粒分散液
将4.8克浓度为5wt%聚丙烯酸铵(分子量~5000)加入618.9克去离子水中,搅拌5分钟,然后加入533.3克步骤二中所制备正电荷有机-无机纳米复合颗粒分散液,搅拌30分钟后,转移到20kHz的超声槽中超声分散120分钟。最终,得到氧化铈浓度为0.8wt%,聚丙烯酸铵浓度为0.024wt%的负电荷有机-无机纳米复合颗粒分散液(聚丙烯酸铵-聚季铵盐37-聚丙烯酸铵-氧化铈纳米复合颗粒)。该有机-无机纳米复合颗粒分散液的pH、颗粒尺寸和zeta电位列于表1。
实施例3B:包括负电荷有机-无机纳米复合颗粒分散液的抛光液
将400克实施例3A中的第三有机-无机纳米复合颗粒分散液加入到1200克去离子水中,使用硝酸调节溶液pH至4.8,得到氧化铈浓度为0.2wt%的CMP抛光液。
实施例4A:正电荷有机-无机纳米复合颗粒分散液
步骤一:重复实施例1A中的步骤,制备负电荷有机-无机纳米复合颗粒分散液。
步骤二:重复实施例2A中的步骤,制备正电荷有机-无机纳米复合颗粒分散液。
步骤三:重复实施例3A中的步骤,制备负电荷有机-无机纳米复合颗粒分散液
步骤四:制备正电荷有机-无机纳米复合颗粒分散液
将1克2wt%聚季铵盐-37加入749.0克去离子水里,搅拌5分钟,然后加入250克步骤三中制备的负电荷有机-无机纳米复合颗粒分散液,搅拌30分钟,转移到20kHz的超声槽中,超声分散120分钟。最终,得到氧化铈浓度为0.2wt%,聚季铵盐-37浓度为0.002wt%的正电荷有机-无机纳米复合颗粒分散液(聚季铵盐-37-聚丙烯酸铵-聚季铵盐-37-聚丙烯酸铵-氧化铈纳米复合颗粒)。该有机-无机纳米复合颗粒分散液的pH、颗粒尺寸和zeta电位列于表1。
对比例1:
将80克浓度为5wt%的氧化铈加入到1920克去离子水中,搅拌5分钟,通过添加硝酸调节pH至4.8,最终得到氧化铈浓度为0.2%的CMP抛光液。
对比例2:
将1g浓度为10wt%的聚季铵盐-37加入到去离子水中,搅拌均匀,然后向上述溶液中加入80克浓度为5wt%的氧化铈,添加硝酸调节pH至4.8,最终得到氧化铈浓度为0.2%的CMP抛光液。
测试上述实施例中氧化铈颗粒的表面电位及颗粒粒径,分散液的pH值,并观察相应氧化铈颗粒的稳定性。测量结果及稳定性观察结果记于表1。
表1有机-无机纳米复合颗粒表面电位、粒径及其稳定性测量结果
  pH 表面电位(mV) 颗粒尺寸(nm) 胶体稳定性
实施例1A 7.5 -24 185 >3周
实施例2A 4.8 +28 210 >3周
实施例3A 5.6 -23 195 >3周
实施例4A 4.8 +17 235 >3周
对比例1 4.8 +41 185 >3周
对比例2 4.8 +45 187 >3周
基于上述测试结果可知,本申请中所提供的有机-无机纳米复合颗粒的制备方法不仅能够实现氧化铈颗粒的稳定分散,还能改变氧化铈复合颗粒的表面电荷性质。
实施例1A所制备的负电荷有机-无机纳米复合颗粒分散液的电动电位与pH的关系曲线如附图1所示,其电动电位在pH 3-10区间始终小于-20mV,表明其在pH 3-10范围内具有良好的胶体稳定性。如附图1所示,实施例2A所制备的负电荷有机-无机纳米复合颗粒分散液的电动电位始终大于20mV,表明其在pH 2-10范围内具有良好的胶体稳定性。这种特性使得本发明中的有机-无机纳米复合颗粒能够适应更宽的pH区间,极大地扩宽了其在化学机械抛光液中的应用。
为了进一步说明本发明所制备的有机-无机纳米复合颗粒的抛光性能,进一步测试上述实施例中有机-无机纳米复合颗粒分散液对氧化硅的抛光速率。具体测试条件如下:
使用CMP研磨设备(Applied materials公司制造,商品名:Mirra)进行研磨。研磨垫使用3M公司制造的IC1000抛光垫,研磨压力为2.0psi,研磨盘和研磨座的旋转数分别为93rpm和87rpm,抛光液流速为150mL/min。
采用200mm PE-TEOS氧化硅膜作为半导体基板,使用NanoSpec膜厚测量系统(NanoSpec6100-300,Shanghai Nanospec Technology Corporation)测量TEOS膜厚差值。 从晶圆边缘3mm开始,在直径线上以同等间距测49个点。抛光速率是49点的平均值。具体测试结果如表2所示。
表2实施例及对比例中分散液的抛光速率
Figure PCTCN2022135383-appb-000001
基于上述测试结果可知,实施例2B以及实施例4A中的抛光液具有优异的抛光速率。实施例2B以及实施例4A分散液中所含有正电荷-无机纳米氧化铈复合颗粒,其具有良好的抛光性能。而实施例1B及实施例3B中的氧化铈颗粒表面覆盖有负电荷,虽不利于抛光,但有利于后续在表面继续覆盖正电荷以改变纳米复合颗粒的表面性质。
本发明中的制备方法,能够通过有机-无机纳米复合技术在无机纳米粒子表面包覆有机层,通过改变有机组分的排列和构成实现对CMP抛光液性能的有效调控;有机-无机纳米复合颗粒由相对较硬的无机内核和相对柔软的有机外壳构成,柔软的有机外壳在被抛光表面和无机内核间形成有效的缓冲层,有利于较少刮痕等缺陷;可根据化学机械抛光液的要求,通过调控有机-无机纳米复合颗粒的制备工艺获得具有不同表面电荷性质的抛光磨粒。
本发明中所有的含量百分比均是质量百分比含量。
应当注意的是,本发明的实施例有较佳的实施性,且并非对本发明作任何形式的限制,任何熟悉该领域的技术人员可能利用上述揭示的技术内容变更或修饰为等同的有效 实施例,但凡未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何修改或等同变化及修饰,均仍属于本发明技术方案的技术范围。

Claims (14)

  1. 一种制备有机-无机纳米复合颗粒分散液的方法,所述方法包括:
    (1)制备负电荷有机-无机纳米复合颗粒分散液:向阴离子有机高分子溶液中添加带有正电荷的无机纳米颗粒,充分搅拌,分散均匀,得到带有负电荷的有机-无机纳米复合颗粒分散液;
    (2)制备正电荷有机-无机纳米复合颗粒分散液:向阳离子有机高分子溶液中添加带有负电荷的有机高分子-无机金属氧化物复合物分散液,充分搅拌,分散均匀,得到带有正电荷的有机高分子-无机纳米复合颗粒分散液;
    (3)交替重复步骤(1)和(2),通过调整步骤(1)和(2)的次数分别获得负电荷和正电荷有机-无机纳米复合颗粒分散液。
  2. 如权利要求1所述的方法,步骤(1)至少发生1次及以上,步骤(2)至少发生1次及以上。
  3. 如权利要求1所述的方法,其中,分散方法包括超声波分散处理、高速剪切处理、球磨处理中的一种或多种。
  4. 如权利要求1所述的方法,其中,所述无机纳米颗粒选自氧化铈、氢氧化铈及其混合物。
  5. 如权利要求1所述的方法,其中,所述阴离子有机高分子具有-COOH基团,-COOR 1基团、-SO 3H基团及-SO 3R 2、-PO 3H基团及-PO 3R 2基团中的一种或多种。
  6. 如权利要求1所述的方法,其中,所述阴离子有机高分子重均分子量为1000~1000000。
  7. 如权利要求1所述的方法,其中,步骤(1)中阴离子有机高分子与无机纳米颗粒的质量百分比之比为0.0001-1。
  8. 如权利要求1所述的方法,其中,步骤(2)中阳离子有机高分子选自烯丙基胺高分子、二烯丙基胺高分子、乙烯基胺高分子以及乙烯亚胺高分子中的一种或多种。
  9. 如权利要求1所述的方法,其中,所述阳离子有机高分子重均分子量为1000~1000000。
  10. 如权利要求1所述的方法,其中,步骤(2)中阳离子有机高分子与无机纳米颗粒的质量百分比之比为0.0001-1。
  11. 如权利要求1所述的方法,其中,以步骤(1)作为最终步骤可获得带负电的有机-无机纳米复合颗粒分散液,所得复合颗粒分散液的电动电势区间为-60mV到0mV。
  12. 如权利要求1所述的方法,其中,以步骤(2)作为最终步骤可获得带正电的有机-无机纳米复合颗粒分散液,所得复合颗粒分散液的电动电势区间为0mV到+60mV。
  13. 一种由任一项前述权利要求所述的方法获得的有机-无机纳米复合颗粒分散液。
  14. 一种包括如权利要求13所述的有机-无机纳米复合颗粒分散液的化学机械抛光液。
PCT/CN2022/135383 2021-11-30 2022-11-30 一种制备有机-无机纳米复合颗粒分散液的方法及其有机-无机纳米复合颗粒分散液、化学机械抛光液 WO2023098716A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111450137.3A CN116200127A (zh) 2021-11-30 2021-11-30 一种制备纳米复合颗粒分散液的方法及纳米复合颗粒分散液、化学机械抛光液
CN202111450137.3 2021-11-30

Publications (1)

Publication Number Publication Date
WO2023098716A1 true WO2023098716A1 (zh) 2023-06-08

Family

ID=86513530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135383 WO2023098716A1 (zh) 2021-11-30 2022-11-30 一种制备有机-无机纳米复合颗粒分散液的方法及其有机-无机纳米复合颗粒分散液、化学机械抛光液

Country Status (3)

Country Link
CN (1) CN116200127A (zh)
TW (1) TW202323467A (zh)
WO (1) WO2023098716A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118222187A (zh) * 2022-12-13 2024-06-21 安集微电子科技(上海)股份有限公司 一种氧化铈的表面处理方法、一种氧化铈及其用途

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1654585A (zh) * 2005-01-17 2005-08-17 上海大学 核/壳型纳米粒子研磨剂抛光液组合物及其制备方法
US6964923B1 (en) * 2000-05-24 2005-11-15 International Business Machines Corporation Selective polishing with slurries containing polyelectrolytes
CN1809620A (zh) * 2003-04-21 2006-07-26 卡伯特微电子公司 用于cmp的涂覆金属氧化物颗粒
TW200630471A (en) * 2004-11-05 2006-09-01 Cabot Microelectronics Corp CMP composition containing surface-modified abrasive particles
CN109251674A (zh) * 2017-07-13 2019-01-22 安集微电子科技(上海)股份有限公司 一种化学机械抛光液
KR20200032602A (ko) * 2018-09-18 2020-03-26 주식회사 케이씨텍 연마용 슬러리 조성물
CN113004797A (zh) * 2019-12-19 2021-06-22 安集微电子(上海)有限公司 一种化学机械抛光液
CN113004796A (zh) * 2019-12-19 2021-06-22 安集微电子科技(上海)股份有限公司 一种化学机械抛光液

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6964923B1 (en) * 2000-05-24 2005-11-15 International Business Machines Corporation Selective polishing with slurries containing polyelectrolytes
CN1809620A (zh) * 2003-04-21 2006-07-26 卡伯特微电子公司 用于cmp的涂覆金属氧化物颗粒
TW200630471A (en) * 2004-11-05 2006-09-01 Cabot Microelectronics Corp CMP composition containing surface-modified abrasive particles
CN1654585A (zh) * 2005-01-17 2005-08-17 上海大学 核/壳型纳米粒子研磨剂抛光液组合物及其制备方法
CN109251674A (zh) * 2017-07-13 2019-01-22 安集微电子科技(上海)股份有限公司 一种化学机械抛光液
KR20200032602A (ko) * 2018-09-18 2020-03-26 주식회사 케이씨텍 연마용 슬러리 조성물
CN113004797A (zh) * 2019-12-19 2021-06-22 安集微电子(上海)有限公司 一种化学机械抛光液
CN113004796A (zh) * 2019-12-19 2021-06-22 安集微电子科技(上海)股份有限公司 一种化学机械抛光液

Also Published As

Publication number Publication date
CN116200127A (zh) 2023-06-02
TW202323467A (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
JP5198738B2 (ja) 分散安定性に優れている研磨スラリーの製造方法
US20070037892A1 (en) Aqueous slurry containing metallate-modified silica particles
JP2007137972A (ja) 研磨用シリカゾルおよびそれを含有してなる研磨用組成物
JP6005516B2 (ja) 無機粒子及びポリマー粒子を含む化学的機械研磨(cmp)組成物
JP5856256B2 (ja) ニッケル−リン記憶ディスク用の研磨組成物
WO2023098716A1 (zh) 一种制备有机-无机纳米复合颗粒分散液的方法及其有机-无机纳米复合颗粒分散液、化学机械抛光液
JP5322921B2 (ja) Cmpスラリー用補助剤
JP6207345B2 (ja) シリカ粒子の製造方法
TW201905157A (zh) 研磨液組合物
TWI823321B (zh) 半導體製程用拋光組合物以及使用拋光組合物的半導體裝置的製造方法
JP4151178B2 (ja) 化学機械研磨用水系分散体の製造方法
WO2023098719A1 (zh) 制备氧化铈纳米复合物的方法、氧化铈纳米复合物及化学机械抛光液
JP7356932B2 (ja) 研磨用組成物及び研磨方法
KR102396281B1 (ko) 연마용 조성물 및 이의 제조방법
TWI808978B (zh) 研磨液組合物用氧化矽漿料
Chen et al. Polystyrene-core silica-shell composite abrasives: the influence of core size on oxide chemical mechanical planarization
CN115449300A (zh) 抛光液及其在碳化硅晶体抛光中的应用
TW202223018A (zh) 化學機械拋光液及其使用方法
JP6944231B2 (ja) 研磨液組成物
KR20180068426A (ko) 화학 기계적 연마 슬러리 조성물 및 반도체 소자의 제조방법
CN114539813A (zh) 非球形的二氧化硅颗粒及其制备方法和抛光液
WO2024125481A1 (zh) 一种氧化铈的表面处理方法、一种氧化铈及其用途
CN1192073C (zh) 化学机械研磨组合物
JP6959857B2 (ja) 研磨液組成物
TW202436233A (zh) 氧化鈰的表面處理方法、氧化鈰及其用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900520

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18713122

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE