WO2023092705A1 - 光学模组和头戴显示设备 - Google Patents

光学模组和头戴显示设备 Download PDF

Info

Publication number
WO2023092705A1
WO2023092705A1 PCT/CN2021/137430 CN2021137430W WO2023092705A1 WO 2023092705 A1 WO2023092705 A1 WO 2023092705A1 CN 2021137430 W CN2021137430 W CN 2021137430W WO 2023092705 A1 WO2023092705 A1 WO 2023092705A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical module
light
polarized light
module according
Prior art date
Application number
PCT/CN2021/137430
Other languages
English (en)
French (fr)
Inventor
史柴源
Original Assignee
歌尔光学科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔光学科技有限公司 filed Critical 歌尔光学科技有限公司
Publication of WO2023092705A1 publication Critical patent/WO2023092705A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining

Definitions

  • the present invention relates to optical display technology, and more specifically, to an optical module and a head-mounted display device.
  • head-mounted display devices With the development of head-mounted display devices, the forms and types of head-mounted display devices are emerging in an endless stream, and their application fields are becoming more and more extensive. The requirements for head-mounted display devices are also getting higher and higher, especially for the size and imaging quality of the devices. The smaller the volume, the smaller the size of the display in the optical system. However, the optical system needs multiple lenses to adapt to each other. The chromatic aberration produced by multiple lenses greatly reduces the imaging quality of the optical system and affects the imaging quality. clarity.
  • an optical module includes: a third lens, a polarized reflection film, a second lens, and a first lens arranged in sequence;
  • a first quarter-wave plate is provided at any position between the third lens and the first lens
  • the side of the first lens away from the second lens is provided with a light splitting element
  • Both the refractive index of the first lens and the second lens are smaller than the refractive index of the third lens
  • the dispersion coefficient of the first lens is greater than that of the second lens, and the dispersion coefficient of the second lens is greater than that of the third lens.
  • the range of refractive index of the first lens, the second lens and the third lens is between 1.45 and 1.65.
  • the range of dispersion coefficients of the first lens, the second lens and the third lens is between 20 and 75.
  • the optical module also includes a display
  • the display is used to generate circularly polarized light, elliptically polarized light or linearly polarized light;
  • the optical module When the display is used to generate linearly polarized light, the optical module further includes a second quarter wave plate disposed between the first lens and the display, the second quarter The wave plate is used to convert the linearly polarized light emitted by the display into circularly polarized light or elliptically polarized light.
  • the first lens has positive optical power
  • the second lens has positive optical power
  • the third lens has negative optical power
  • a mirror surface of the third lens on a side away from the second lens is a concave surface.
  • the mirror surfaces of the first lens, the second lens and the third lens are all aspherical.
  • the chromatic aberration of the optical module is less than 78 ⁇ m.
  • the total optical length of the optical module is TTL, which satisfies: TTL ⁇ 15mm.
  • a head-mounted display device includes a casing and an optical module according to any one of the first aspect, and the optical module is arranged on the casing body.
  • the light when the light is incident on the first lens, the light first passes through the light splitting element, a part of the light is transmitted through the light splitting element, and the other light is reflected.
  • the circularly polarized light becomes linearly polarized light.
  • the linearly polarized light then strikes the polarized emission film, at this time, the vibration direction of the linearly polarized light is different from the transmission direction of the polarized reflective film, and the light is reflected.
  • the linearly polarized light becomes circularly polarized light, and the rotation direction of the light changes.
  • the circularly polarized light passes through the second lens and the first lens again, it continues to shoot to the beam splitting element.
  • the beam splitting element again, the light is partially reflected to pass through the first lens and the second lens in turn, and the light passes through the first quarter again.
  • the circularly polarized light becomes linearly polarized light, and the linearly polarized light goes to the polarized emission film.
  • the polarization direction of the linearly polarized light is the same as the transmission direction of the polarized reflective film, and the light passes through the third lens. Imaging in place.
  • the first lens, the second lens, and the third lens can effectively reduce chromatic aberration and improve imaging clarity by matching different refractive indices and dispersion coefficients, and combine with the folded optical path to achieve high-definition imaging.
  • FIG. 1 is one of the structural schematic diagrams of an optical module in an embodiment of the present disclosure.
  • FIG. 2 is one of the modulation transfer function diagrams of the optical module in an embodiment of the present disclosure.
  • FIG. 3 is one of the spot diagrams of the optical module in an embodiment of the present disclosure.
  • FIG. 4 is one of the vertical axis chromatic aberration diagrams of the optical module in an embodiment of the present disclosure.
  • FIG. 5 is the second schematic diagram of the structure of the optical module in an embodiment of the present disclosure.
  • FIG. 6 is the second diagram of the modulation transfer function of the optical module in an embodiment of the present disclosure.
  • FIG. 7 is the second spot diagram of the optical module in an embodiment of the present disclosure.
  • FIG. 8 is the second vertical axis chromatic aberration diagram of the optical module in an embodiment of the present disclosure.
  • an optical module is provided. As shown in FIGS. lens 3.
  • Any position between the third lens 5 and the first lens 3 is provided with a first quarter-wave plate.
  • the side of the first lens 3 away from the second lens 4 is provided with a light splitting element.
  • Both the refractive index of the first lens 3 and the second lens 4 are smaller than the refractive index of the third lens 5 .
  • the dispersion coefficient of the first lens 3 is greater than that of the second lens 4
  • the dispersion coefficient of the second lens 4 is greater than that of the third lens 5 .
  • Light for imaging and display enters through the first lens 3 and finally exits through the third lens 5 .
  • the refraction power of the first lens 3 to light is greater than that of the second lens 4 and the third lens 5 .
  • the first dispersion coefficient is greater than the second dispersion coefficient, and the second dispersion coefficient is greater than the third dispersion coefficient.
  • the first dispersion coefficient is a relatively high dispersion coefficient
  • the third dispersion coefficient is a relatively low dispersion coefficient
  • the second dispersion coefficient is between the first dispersion coefficient and the third dispersion coefficient.
  • the degree of dispersion of light by the first lens 3 is greater than that of the second lens 4
  • the degree of dispersion of light by the second lens 4 is greater than that of the third lens 5 .
  • the light entering the first lens 3 is circularly polarized light or elliptically polarized light.
  • the light firstly passes through the light splitting element, a part of the light passes through the light splitting element, and the other part of the light is reflected.
  • the circularly polarized light becomes linearly polarized light.
  • the linearly polarized light then strikes the polarized emission film, at this time, the vibration direction of the linearly polarized light is different from the transmission direction of the polarized reflective film, and the light is reflected.
  • the linearly polarized light becomes circularly polarized light, and the rotation direction of the light changes.
  • the circularly polarized light passes through the second lens 4 and the first lens 3 again, it continues to shoot to the beam splitting element.
  • the light passes through the beam splitting element again, the light is partially reflected to pass through the first lens 3 and the second lens 4 in turn, and the light passes through the second lens again.
  • the circularly polarized light becomes linearly polarized light, and the linearly polarized light goes to the polarized emission film.
  • the polarization direction of the linearly polarized light is the same as the transmission direction of the polarized reflective film, and the light passes through the third lens 5. Imaging at the position where the human eye 6 is located.
  • the first lens, the second lens, and the third lens can effectively reduce chromatic aberration and improve imaging clarity by matching different refractive indices and dispersion coefficients, and combine with the folded optical path formed by multiple reflections of light to achieve high-definition imaging.
  • the light splitting element may be a semi-transmissive and semi-reflective film.
  • the first quarter-wave plate is arranged between the polarizing reflection film and the first lens 3 .
  • the first lens 3 has a first surface 31 and a second surface 32
  • the second lens 4 has a third surface 41 and a fourth surface 42
  • the third lens 5 has a fifth surface 51 and a sixth surface 52 .
  • the first surface 31 , the second surface 32 , the third surface 41 , the fourth surface 42 , the fifth surface 51 and the sixth surface 52 are arranged in sequence.
  • the light splitting element is arranged on the side where the first surface 31 is located.
  • the second surface 32 , the third surface 41 , the fourth surface 42 and the sixth surface 52 are all provided with an antireflection film layer.
  • the optical module further includes a display 1 .
  • the display 1 is used to generate circularly polarized light, elliptically polarized light or linearly polarized light.
  • the optical module further includes a second quarter-wave plate arranged between the first lens 3 and the display 1, the second four The one-wave plate is used to convert the linearly polarized light emitted by the display 1 into circularly polarized light or elliptically polarized light.
  • the display 1 is used to emit light for displaying images.
  • the light entering the first lens 3 as circularly polarized light or elliptically polarized light, the light can form a folded optical path in the optical module to meet the imaging requirements of the optical module in the present disclosure.
  • the refractive index range of the first lens 3 , the second lens 4 and the third lens 5 is between 1.45 and 1.65.
  • the optical path of the picture light can always be in the optical path of the optical module, ensuring that the optical module can effectively affect the imaging display light.
  • the dispersion coefficients of the first lens 3 , the second lens 4 and the third lens 5 range from 20 to 75.
  • the chromatic aberration produced by the matching first lens 3 , the second lens 4 and the third lens 5 on the transmitted light can be lower, and the imaging quality can be improved.
  • the first lens 3 has positive optical power
  • the second lens 4 has positive optical power
  • the third lens 5 has negative optical power
  • the positive refractive power of the first lens 3, the positive refractive power of the second lens 4 and the negative refractive power of the third lens 5 match, and the deflection of the light rays by the first lens 3, the second lens 4 and the third lens 5 Under the effect, the optical module has higher imaging quality.
  • the mirror surface of the third lens 5 away from the second lens 4 is a concave surface.
  • the sixth surface 52 is concave.
  • the sixth surface 52 is the surface from which the imaging light of the optical module finally exits, and is located on the outermost side. Setting the sixth surface 52 as a concave surface can reduce the convex structure and make the structure of the optical module more compact. To reduce the volume of the optical module.
  • the mirror surfaces of the first lens 3 , the second lens 4 and the third lens 5 are all aspherical.
  • the first surface 31 , the second surface 32 , the third surface 41 , the fourth surface 42 , the fifth surface 51 and the sixth surface 52 are all aspheric surfaces.
  • the aspherical surface can correct the graphics in the light of the picture, solve the problem of distortion of the field of view, and at the same time make the optical module lighter and thinner. It can also maintain excellent impact resistance.
  • the refractive index of the first lens 3 is 1.55, and the dispersion coefficient of the first lens 3 is 71.7; the refractive index of the second lens 4 is 1.5 , the dispersion coefficient of the second lens 4 is 53; the refractive index of the third lens 5 is 1.64, and the dispersion coefficient of the third lens 5 is 22.4.
  • the above-mentioned refractive index and dispersion coefficient enable the picture light to be effectively folded in the first lens 3, the second lens 4 and the third lens 5, and the picture with higher definition will be passed through The sixth surface 52 is projected.
  • the optical power of the first lens 3 is 0.052
  • the optical power of the second lens 4 is 0.006
  • the optical power of the third lens 5 is -0.00025.
  • the first lens 3, the second lens 4 and the third lens 5 can realize an image with lower chromatic aberration and higher definition of the picture light output passing through the optical module.
  • the total optical length of the optical module is TTL, which satisfies: TTL ⁇ 15mm.
  • the optical module occupies less space, so that the optical module can be used in smaller devices, reducing the volume of the overall structure.
  • the central thickness of the first lens 3 is: 3mm ⁇ T ⁇ 8mm.
  • the central thickness of the second lens 4 is: 3mm ⁇ T ⁇ 5mm.
  • the central thickness of the third lens 5 is: 3mm ⁇ T ⁇ 5mm.
  • the thickness of the optical module is controlled to be less than 15mm.
  • the optical module has a smaller thickness to effectively reduce the space occupied by the optical module.
  • FIG. 1 is a schematic structural diagram of the optical module of this embodiment.
  • the sixth surface 52 is a concave surface, on the basis of satisfying the selection of the first lens 3, the second lens 4 and the third lens 5 in this embodiment, those skilled in the art can make the first surface 31, the second surface 32.
  • the third surface 41, the fourth surface 42, and the fifth surface 51 are respectively configured as one of a concave surface, a convex surface and a flat surface.
  • the first surface 31 is convex
  • the second surface 32 is concave
  • the third surface 41 is concave
  • the fourth surface 42 is convex
  • the fifth surface 51 is flat
  • the sixth surface 52 is concave.
  • FIG. 2 is a diagram of the modulation transfer function of the optical module in this embodiment. Under the condition of resolution ⁇ 25lp/mm, the modulation transfer function value of the optical module is >0.3.
  • the imaging sharpness can be characterized by the contrast of black and white line pairs.
  • the optical module is below 25lp/mm, and the modulation transfer function value is >0.3.
  • the optical module has the characteristics of clear imaging.
  • FIG. 3 is a spot diagram of the optical module in this embodiment.
  • the maximum value of the full-band image point is less than 38 ⁇ m
  • the spot diameter in this embodiment is less than 38 ⁇ m.
  • the spot diameter can be characterized by a spot diagram.
  • the spot diagram is to form a diffuse pattern scattered in a certain range after many rays of light emitted from one point pass through the optical module due to aberration so that the intersection with the image plane is no longer concentrated at the same point, which can characterize the imaging quality .
  • the maximum value of the full-wavelength image point corresponds to the maximum field of view, and the maximum value of the full-wavelength image point is ⁇ 38 ⁇ m.
  • the optical module has better imaging quality.
  • FIG. 4 it is the vertical axis chromatic aberration diagram of the optical module.
  • the maximum dispersion of the optical module is located at the position of 0.8 field of view, the maximum chromatic aberration value is less than 78 ⁇ m, and the maximum field of view is 90°.
  • the color difference value can be shown by a vertical axis color difference diagram.
  • Vertical axis chromatic aberration also known as chromatic aberration of magnification, refers to the difference between the focus positions of blue light and red light on the image plane when a polychromatic chief ray on the object side becomes multiple rays when it emerges from the image side due to the dispersion of the refraction system.
  • Vertical axis chromatic aberration also known as chromatic aberration of magnification, refers to the difference between the focus positions of blue light and red light on the image plane when a polychromatic chief ray on the object side becomes multiple rays when it emerges from the image side due to the dispersion of the refraction system.
  • the maximum dispersion of the optical module is located at the position of 0.8 field of view, the maximum chromatic aberration value is less than 78 ⁇ m, and the maximum field of view is 90°, with smaller chromatic aberration value and viewing angle.
  • z is the coordinate along the optical axis
  • Y is the radial coordinate with the lens length as the unit
  • C is the curvature (1/R)
  • k is the cone coefficient (Coin Constant)
  • ⁇ i is the coefficient of each higher order term
  • 2i is the order of Aspherical Coefficient.
  • the data represented by a4, a6, and a8 in Table 1 are the 4th, 6th, and 8th order coefficients used to bring into the corresponding surface calculation formula.
  • the optical module in this embodiment can fold the picture light to ensure high resolution. Realize high-definition picture display effect in a compact structure.
  • the refractive index of the first lens is 1.47, and the dispersion coefficient of the first lens is 66.7; the refractive index of the second lens is 1.5, and the The dispersion coefficient of the second lens is 53; the refractive index of the third lens is 1.64, and the dispersion coefficient of the third lens is 22.4.
  • the above-mentioned refractive index and dispersion coefficient enable the picture light to be effectively folded in the first lens 3, the second lens 4 and the third lens 5, and the picture with higher definition will be passed through The sixth surface 52 is projected.
  • the optical power of the first lens is 0.05203
  • the optical power of the second lens is 0.0059
  • the optical power of the third lens is -0.0002.
  • the first lens 3 , the second lens 4 and the third lens 5 can realize an image with lower chromatic aberration and higher definition output by the picture light passing through the optical module.
  • the total optical length of the optical module is TTL, which satisfies: TTL ⁇ 15mm.
  • the optical module occupies less space, so that the optical module can be used in smaller devices, reducing the volume of the overall structure.
  • the central thickness of the first lens 3 is: 3mm ⁇ T ⁇ 8mm.
  • the central thickness of the second lens 4 is: 3mm ⁇ T ⁇ 5mm.
  • the central thickness of the third lens 5 is: 3mm ⁇ T ⁇ 5mm.
  • the thickness of the optical module is controlled to be less than 15mm.
  • the optical module has a smaller thickness to effectively reduce the space occupied by the optical module.
  • FIG. 5 is a schematic structural diagram of the optical module in this embodiment.
  • the sixth surface 52 is a concave surface, on the basis of satisfying the selection of the first lens 3, the second lens 4 and the third lens 5 in this embodiment, those skilled in the art can make the first surface 31, the second surface 32.
  • the third surface 41, the fourth surface 42, and the fifth surface 51 are respectively configured as one of a concave surface, a convex surface and a flat surface.
  • the first surface 31 is convex
  • the second surface 32 is concave
  • the third surface 41 is convex
  • the fourth surface 42 is flat
  • the fifth surface 51 is flat
  • the sixth surface 52 is concave.
  • FIG. 6 it is a modulation transfer function diagram of the optical module in this embodiment. Under the condition of resolution ⁇ 25 lp/mm, the modulation transfer function value of the optical module is >0.2.
  • the imaging sharpness can be characterized by the contrast of black and white line pairs.
  • the optical module is below 25lp/mm, and the modulation transfer function value is >0.2.
  • the optical module has the characteristics of clear imaging.
  • FIG. 7 it is a spot diagram of the optical module in this embodiment.
  • the maximum value of the full-band image point is ⁇ 40 ⁇ m.
  • the maximum value of the full-band image point is less than 40 ⁇ m, and the spot diameter in this embodiment is less than 40 ⁇ m. .
  • the optical module has better imaging quality.
  • FIG. 8 it is a vertical axis chromatic aberration diagram of the optical module.
  • the maximum dispersion of the optical module is located at the maximum position of the field of view, the maximum chromatic aberration value is less than 75 ⁇ m, and the maximum field of view is 90°.
  • the maximum dispersion of the optical module is at the position with the largest field of view, the maximum chromatic aberration value is less than 75 ⁇ m, and the maximum field of view is 90°, with smaller chromatic aberration value and viewing angle.
  • z is the coordinate along the optical axis
  • Y is the radial coordinate with the lens length as the unit
  • C is the curvature (1/R)
  • k is the cone coefficient (Coin Constant)
  • ⁇ i is the coefficient of each higher order term
  • 2i is the order of Aspherical Coefficient.
  • the data represented by a4, a6, and a8 in Table 2 are the 4th, 6th, and 8th order coefficients used to bring into the corresponding surface calculation formula.
  • the optical module in this embodiment can fold the picture light to ensure high resolution. Realize high-definition picture display effect in a compact structure.
  • a head-mounted display device includes the optical module described in any one of the embodiments of the present disclosure.
  • the head-mounted display device has the technical effect brought by the optical module.
  • the head-mounted display device further includes a display 1 and a protective glass 2 arranged on the surface of the display 1 , the display 1 is used to emit light from the image of the head-mounted display device, and the protective glass 2 is arranged on the surface of the display 1 for protection.
  • the screen light passes through the protective glass 2, it enters the optical module through the first surface 31, and finally exits through the sixth surface 52, and then shoots to the final position of the human eye 6 after the user wears the head-mounted display device.
  • An image is formed in the region of the human eye 6 .
  • the imaging light enters into the area of the human eye 6 so that the picture light enters the human eye 6 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学模组及头戴显示设备,光学模组包括依序设置的第三透镜(5)、偏振反射膜、第二透镜(4)以及第一透镜(3);第三透镜(5)和第一透镜(3)之间的任一位置设有第一四分之一波片;第一透镜(3)远离第二透镜(4)的一侧设有分光元件;第一透镜(3)、第二透镜(4)的折射率均小于第三透镜(5)的折射率;第一透镜(3)的色散系数大于第二透镜(4)的色散系数,第二透镜(4)的色散系数大于第三透镜(5)的色散系数。第一透镜(3)、第二透镜(4)和第三透镜(5)通过搭配不同的折射率以及色散系数,有效的降低色差,提高成像清晰度。

Description

光学模组和头戴显示设备 技术领域
本发明涉及光学显示技术,更具体地,涉及一种光学模组和头戴显示设备。
背景技术
随着头戴显示设备的发展,头戴显示设备的形态和种类也层出不穷,其应用领域也越加广泛,对头戴显示设备的要求也越来越高,尤其是对设备的体积和成像质量,体积越小意味着光学系统中显示器的尺寸要越来越小,然而,光学系统中需要多个透镜相互适配,多个透镜产生的色差使得光学系统的成像质量大大降低,影响了成像的清晰度。
因此,需要提供一种新的技术方案,以解决上述技术问题。
发明内容
基于此,针对现有头戴显示设备中的光学系统中多个透镜产生的色差使得光学系统的成像质量大大降低的问题,有必要提供一种光学模组和头戴显示设备,旨在降低色差,提高成像清晰度,实现高清成像。
根据本发明的第一方面,提供了一种光学模组,所述光学模组包括:依序设置的第三透镜、偏振反射膜、第二透镜以及第一透镜;
所述第三透镜和所述第一透镜之间的任一位置设有第一四分之一波片;
所述第一透镜远离所述第二透镜的一侧设有分光元件;
所述第一透镜、所述第二透镜的折射率均小于所述第三透镜的折射率;
所述第一透镜的色散系数大于所述第二透镜的色散系数,所述第二透镜的色散系数大于所述第三透镜的色散系数。
可选地,所述第一透镜、所述第二透镜和所述第三透镜的折射率范围在1.45~1.65之间。
可选地,所述第一透镜、所述第二透镜和所述第三透镜的色散系数范围在20~75之间。
可选地,所述光学模组还包括显示器;
所述显示器用于产生圆偏振光、椭圆偏振光或线偏振光;
当所述显示器用于产生线偏振光时,所述光学模组还包括设置于所述第一透镜与所述显示器之间的第二四分之一波片,所述第二四分之一波片用于将所述显示器发射的线偏振光转换成圆偏振光或椭圆偏振光。
可选地,所述第一透镜具有正光焦度,所述第二透镜具有正光焦度,所述第三透镜具有负光焦度。
可选地,所述第三透镜的远离所述第二透镜一侧的镜面为凹面。
可选地,所述第一透镜、第二透镜和第三透镜的镜面均为非球面。
可选地,所述光学模组的色差小于78μm。
可选地,所述光学模组的光学总长为TTL,则满足:TTL<15mm。
根据本发明的第二方面,提供了一种头戴显示设备,所述头戴显示设备包括壳体和如第一方面任一项所述光学模组,所述光学模组设于所述壳体。
根据本公开的一个实施例,在本发明的方案中,光线在射向第一透镜时,光线首先经过分光元件,一部分光线透射分光元件,另一部光线反射。透射分光元件的光线依次经过第一透镜、第二透镜以及第一四分之一波片后,圆偏振光变为线偏振光。线偏振光再射向偏振发射膜,此时线偏振光的振动方向与偏振反射膜的透过方向不同,光线被反射。反射的光线再次经过第一四分之一波片后,线偏振光变为圆偏振光,光线的旋转方向发生了改变。圆偏振光再次经过第二透镜与第一透镜后,继续射向分光元件,光线再次经过分光元件时,光线被部分反射至依次经过第一透镜、第二透镜,光线再次经过第一四分之一波片后,圆偏振光变为线偏振光,线偏振光射向偏振发射膜,此时线偏振光的偏振方向与偏振反射膜的透射方向相同,光线透过第三透镜,在人眼所处的位置成像。此外,第一透镜、第二 透镜和第三透镜通过搭配不同的折射率以及色散系数,有效的降低色差,提高成像清晰度,与折叠光路结合实现高清成像。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1是本公开一个实施例中的光学模组的结构示意图之一。
图2是本公开一个实施例中的光学模组的调制传递函数图之一。
图3是本公开一个实施例中的光学模组的点列图之一。
图4是本公开一个实施例中的光学模组的垂轴色差图之一。
图5是本公开一个实施例中的光学模组的结构示意图之二。
图6是本公开一个实施例中的光学模组的调制传递函数图之二。
图7是本公开一个实施例中的光学模组的点列图之二。
图8是本公开一个实施例中的光学模组的垂轴色差图之二。
附图标记说明:
1、显示器;2、保护玻璃;3、第一透镜;31、第一表面;32、第二表面;4、第二透镜;41、第三表面;42、第四表面;5、第三透镜;51、第五表面;52、第六表面;6、人眼。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
根据本公开的一个实施例,提供了一种光学模组,如图1-图8所示,光学模组包括:依序设置的第三透镜5、偏振反射膜、第二透镜4以及第一透镜3。
所述第三透镜5和所述第一透镜3之间的任一位置设有第一四分之一波片。
所述第一透镜3远离所述第二透镜4的一侧设有分光元件。
所述第一透镜3、所述第二透镜4的折射率均小于所述第三透镜5的折射率。
所述第一透镜3的色散系数大于所述第二透镜4的色散系数,所述第二透镜4的色散系数大于所述第三透镜5的色散系数。
用于成像显示的光线经第一透镜3射入,并最终通过第三透镜5射出。
第一透镜3对光线的折射能力大于第二透镜4以及第三透镜5。
所述第一色散系数大于所述第二色散系数,所述第二色散系数大于所述第三色散系数。在该色散系数范围内,第一色散系数为相对较高的色散系数,第三色散系数为较低的色散系数,第二色散系数处于第一色散系数与第三色散系数之间。第一透镜3对光线的色散程度大于第二透镜4,第二透镜4对光线的色散程度大于第三透镜5。
射入第一透镜3的光线为圆偏振光或椭圆偏振光。光线在射向第一透镜3时,光线首先经过分光元件,一部分光线透射分光元件,另一部光线反射。透射分光元件的光线依次经过第一透镜3、第二透镜4以及第一四分之一波片后,圆偏振光变为线偏振光。线偏振光再射向偏振发射膜,此时线偏振光的振动方向与偏振反射膜的透过方向不同,光线被反射。反射的光线再次经过第一四分之一波片后,线偏振光变为圆偏振光,光线的旋 转方向发生了改变。圆偏振光再次经过第二透镜4与第一透镜3后,继续射向分光元件,光线再次经过分光元件时,光线被部分反射至依次经过第一透镜3、第二透镜4,光线再次经过第一四分之一波片后,圆偏振光变为线偏振光,线偏振光射向偏振发射膜,此时线偏振光的偏振方向与偏振反射膜的透射方向相同,光线透过第三透镜5,在人眼6所处的位置成像。
在该实施例中,第一透镜、第二透镜和第三透镜通过搭配不同的折射率以及色散系数,有效的降低色差,提高成像清晰度,与光线的多次反射形成的折叠光路结合实现高清成像。
例如,分光元件可以为半透射半反射膜。
例如,第一四分之一波片设置在偏振反射膜与第一透镜3之间。
例如,第一透镜3具有第一表面31和第二表面32,第二透镜4具有第三表面41和第四表面42,第三透镜5具有第五表面51和第六表面52。
第一表面31、第二表面32、第三表面41、第四表面42、第五表面51和第六表面52依次排列。分光元件设置在第一表面31所在的一侧。
可选地,第二表面32、第三表面41、第四表面42和第六表面52上均设置有抗反射膜层。
在一个实施例中,所述光学模组还包括显示器1。所述显示器1用于产生圆偏振光、椭圆偏振光或线偏振光。
当所述显示器1用于产生线偏振光时,所述光学模组还包括设置于所述第一透镜3与所述显示器1之间的第二四分之一波片,所述第二四分之一波片用于将所述显示器1发射的线偏振光转换成圆偏振光或椭圆偏振光。
在该实施例中,显示器1用于发出呈现画面的光线。通过将射入第一透镜3的光线设置为圆偏振光或椭圆偏振光,使光线能够在该光学模组中形成折叠的光路,以满足本公开中光学模组的成像需求。
在一个实施例中,所述第一透镜3、所述第二透镜4和所述第三透镜5的折射率范围在1.45~1.65之间。
在该折射率范围内,能够使画面光线的光路始终处于该光学模组的光路中,保障该光学模组能够有效地影响到成像显示的光线。
在一个实施例中,所述第一透镜3、所述第二透镜4和所述第三透镜5的色散系数范围在20~75之间。
在该色散系数范围内,能够使搭配的第一透镜3、第二透镜4和第三透镜5对透过的光线产生的色差更低,提高成像质量。
在一个实施例中,所述第一透镜3具有正光焦度,所述第二透镜4具有正光焦度,所述第三透镜5具有负光焦度。
第一透镜3的正光焦度、第二透镜4的正光焦度和第三透镜5的负光焦度相搭配,在第一透镜3、第二透镜4和第三透镜5对光线的偏折效果下,使该光学模组具有更高的成像质量。
在一个实施例中,如图1和图5所示,所述第三透镜5的远离所述第二透镜4一侧的镜面为凹面。例如,所述第六表面52为凹面。
第六表面52为该光学模组的成像光线最终射出的面,位于最外侧。将第六表面52设置为凹面,能够减少外凸的结构,能够使光学模组的结构更加紧凑。以降低光学模组的体积。
在一个实施例中,所述第一透镜3、第二透镜4和第三透镜5的镜面均为非球面。例如,第一表面31、第二表面32、第三表面41、第四表面42、第五表面51、第六表面52均为非球面。
非球面能够修正了画面光线中的图形,解决视界歪曲问题,同时能够使该光学模组更轻、更薄。也能够保持优异的抗冲击性能。
在一个实施例中,如图1-图4所示,所述第一透镜3的折射率为1.55,所述第一透镜3的色散系数为71.7;所述第二透镜4的折射率为1.5,所述第二透镜4的色散系数为53;所述第三透镜5的折射率为1.64,所述第三透镜5的色散系数为22.4。
在该实施例中,上述折射率和色散系数使画面光线能够在第一透镜3、第二透镜4和第三透镜5中完成有效的折叠,以式光路折叠后将清晰度更高的画面经第六表面52射出。
可选地,所述第一透镜3的光焦度为0.052,所述第二透镜4的光焦度为0.006,所述第三透镜5的光焦度为-0.00025。
第一透镜3、第二透镜4和第三透镜5的能够实现使经过该光学模组 的画面光线输出色差更低且清晰度更高的图像。
所述光学模组的光学总长为TTL,则满足:TTL<15mm。
在该光学总长内,光学模组占用的空间更小,使该光学模组能够应用于更小的设备内,降低了整体结构的体积。
例如,所述第一透镜3的中心厚度为:3mm<T<8mm。所述第二透镜4的中心厚度为:3mm<T<5mm。所述第三透镜5的中心厚度为:3mm<T<5mm。
通过设置第一透镜3、第二透镜4和第三透镜5的厚度,将该光学模组的厚度控制在小于15mm。使该光学模组具有更小的厚度,以有效地降低该光学模组占用的空间。
如图1,是该实施例的光学模组的结构示意图。其中,第六表面52为凹面,在满足该实施例中对第一透镜3、第二透镜4和第三透镜5的选择的基础上,本领域技术人员可以将第一表面31、第二表面32、第三表面41、第四表面42和第五表面51各自对应设置为凹面、凸面和平面中的一种。例如,第一表面31为凸面,第二表面32为凹面,第三表面41为凹面,第四表面42为凸面,第五表面51为平面,第六表面52为凹面。
如图2,为该实施例中的光学模组的调制传递函数图。在分辨率<25lp/mm的条件下,该光学模组的调制传递函数值>0.3。
在调制传递函数图中,能够通过黑白线对的对比度表征成像清晰度。该光学模组在25lp/mm以下,调制传递函数值>0.3。该光学模组具有成像清晰的特点。
如图3,为该实施例中的光学模组的点列图。在该光学模组的点列图中,全波段像点的最大值<38μm,该实施例中的光斑直径小于38μm。
光斑直径可以通过点列图表征。点列图是通过使一点发出的许多光线经该光学模组后,因像差使其与像面的交点不再集中于同一点,而形成了一个散布在一定范围的弥散图形,能够表征成像质量。而在该光学模组的点列图中,全波段像点的最大值与最大视场相对应,全波段像点的最大值<38μm。该光学模组的具有更优的成像质量。
如图4所示,为该光学模组的垂轴色差图。该光学模组的最大色散位于0.8视场位置,最大色差值小于78μm,最大视场为90°。
色差值可以通过垂轴色差图示出。垂轴色差又称倍率色差,指物方的一根复色主光线,因折射系统存在色散,在像方出射时变成多根光线,蓝光与红光在像面上的焦点位置的差值。垂轴色差又称倍率色差,指物方的一根复色主光线,因折射系统存在色散,在像方出射时变成多根光线,蓝光与红光在像面上的焦点位置的差值。该光学模组的最大色散位于0.8视场位置,最大色差值小于78μm,最大视场为90°,具有更小的色差值和视场角度。
该实施例的设计结果参阅表1,其中非球面系数可以满足如下的方程:
Figure PCTCN2021137430-appb-000001
其中,z是沿光轴方向的坐标,Y为以透镜长度为单位的径向坐标,C是曲率(1/R),k为圆锥系数(Coin Constant),α i是各高次项的系数,2i是非球面的高次方(the order of Aspherical Coefficient)。表1中的a4、a6、a8代表的数据,是用于带入相应面型计算公式的4阶、6阶、8阶系数。
该实施例中的光学模组参数如表1所示。
透镜面 半径 厚度 材料 a4 a6 a8
第六表面 -2558.9 2 OKP1 1.4E-06 -5.1E-08 2.2E-11
第五表面 inf 0.2   0.0E+00 0.0E+00 0.0E+00
第四表面 91.3 3.0 APEL -7.3E-06 0.0E+00 0.0E+00
第三表面 -1708.1 0.9   1.0E-05 -2.7E-08 2.4E-11
第二表面 -1400.0 6.8 MC-FCD500 2.7E-07 0.0E+00 0.0E+00
第一表面 -59.6 1.5   -2.0E-06 -1.3E-09 0.0E+00
表1
该实施例中的光学模组能够使画面光线折叠,保障高分辨率。在紧凑的结构中实现高清的画面显示效果。
在一个实施例中,如图5-图8所示,所述第一透镜的折射率为1.47,所述第一透镜的色散系数为66.7;所述第二透镜的折射率为1.5,所述第 二透镜的色散系数为53;所述第三透镜的折射率为1.64,所述第三透镜的色散系数为22.4。
在该实施例中,上述折射率和色散系数使画面光线能够在第一透镜3、第二透镜4和第三透镜5中完成有效的折叠,以式光路折叠后将清晰度更高的画面经第六表面52射出。
可选地,所述第一透镜的光焦度为0.05203,所述第二透镜的光焦度为0.0059,所述第三透镜的光焦度为-0.0002。
第一透镜3、第二透镜4和第三透镜5的能够实现使经过该光学模组的画面光线输出色差更低且清晰度更高的图像。
所述光学模组的光学总长为TTL,则满足:TTL<15mm。
在该光学总长内,光学模组占用的空间更小,使该光学模组能够应用于更小的设备内,降低了整体结构的体积。
例如,所述第一透镜3的中心厚度为:3mm<T<8mm。所述第二透镜4的中心厚度为:3mm<T<5mm。所述第三透镜5的中心厚度为:3mm<T<5mm。
通过设置第一透镜3、第二透镜4和第三透镜5的厚度,将该光学模组的厚度控制在小于15mm。使该光学模组具有更小的厚度,以有效地降低该光学模组占用的空间。
如图5,为该实施例中的光学模组的结构示意图。其中,第六表面52为凹面,在满足该实施例中对第一透镜3、第二透镜4和第三透镜5的选择的基础上,本领域技术人员可以将第一表面31、第二表面32、第三表面41、第四表面42和第五表面51各自对应设置为凹面、凸面和平面中的一种。例如,第一表面31为凸面,第二表面32为凹面,第三表面41为凸面,第四表面42为平面,第五表面51为平面,第六表面52为凹面。
如图6,为该实施例中的光学模组的调制传递函数图,在分辨率<25lp/mm的条件下,该光学模组的调制传递函数值>0.2。
在调制传递函数图中,能够通过黑白线对的对比度表征成像清晰度。该光学模组在25lp/mm以下,调制传递函数值>0.2。该光学模组具有成像清晰的特点。
如图7所示,为该实施例中的光学模组的点列图。在该光学模组的点 列图中,全波段像点的最大值<40μm。
而在该光学模组的点列图中,全波段像点的最大值<40μm,该实施例中的光斑直径小于40μm。。该光学模组的具有更优的成像质量。
如图8所示,为该光学模组的垂轴色差图。该光学模组的最大色散位于视场最大位置,最大色差值小于75μm,最大视场为90°。
该光学模组的最大色散位视场最大的位置,最大色差值小于75μm,最大视场为90°,具有更小的色差值和视场角度。
该实施例的设计结果参阅表2,其中非球面系数可以满足如下的方程:
Figure PCTCN2021137430-appb-000002
其中,z是沿光轴方向的坐标,Y为以透镜长度为单位的径向坐标,C是曲率(1/R),k为圆锥系数(Coin Constant),α i是各高次项的系数,2i是非球面的高次方(the order of Aspherical Coefficient)。表2中的a4、a6、a8代表的数据,是用于带入相应面型计算公式的4阶、6阶、8阶系数。
该实施例中的光学模组参数如表2所示。
透镜面 半径 厚度 材料 a4 a6 a8
第六表面 4075.1 2.0 OKP1 -4.4E-06 -4.5E-08 2.7E-11
第五表面 inf 0.2   0.0E+00 0.0E+00 0.0E+00
第四表面 inf 3.0 APEL 0.0E+00 0.0E+00 0.0E+00
第三表面 -485.3 1.1   -4.6E-06 -4.8E-09 1.9E-11
第二表面 -441.9 6.9 FC1 0.0E+00 0.0E+00 0.0E+00
第一表面 -49.3 1.5   0.0E+00 0.0E+00 0.0E+00
表2
该实施例中的光学模组能够使画面光线折叠,保障高分辨率。在紧凑的结构中实现高清的画面显示效果。
根据本公开的一个实施例,提供了一种头戴显示设备,该头戴显示设备包括如本公开实施例任意一项所述的光学模组。
该头戴显示设备具有光学模组所带来的技术效果。
例如,该头戴显示设备还包括显示器1和设置在显示器1表面的保护玻璃2,显示器1用于发出该头戴显示设备的画面光线,保护玻璃2设置在显示器1的表面,以形成保护。画面光线透过保护玻璃2后,经第一表面31射入光学模组内,最终经第六表面52射出,并射向用户佩戴该头戴显示设备后人眼6最终所处的位置,以在该人眼6的区域内成像。用于使用该头戴显示设备时,成像光线射入人眼6的区域内,以便于画面光线进入人眼6。
上文实施例中重点描述的是各个实施例之间的不同,各个实施例之间不同的优化特征只要不矛盾,均可以组合形成更优的实施例,考虑到行文简洁,在此则不再赘述。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (10)

  1. 一种光学模组,其特征在于,所述光学模组包括依序设置的第三透镜、偏振反射膜、第二透镜以及第一透镜;
    所述第三透镜和所述第一透镜之间的任一位置设有第一四分之一波片;
    所述第一透镜远离所述第二透镜的一侧设有分光元件;
    所述第一透镜、所述第二透镜的折射率均小于所述第三透镜的折射率;
    所述第一透镜的色散系数大于所述第二透镜的色散系数,所述第二透镜的色散系数大于所述第三透镜的色散系数。
  2. 如权利要求1所述的光学模组,其特征在于,所述第一透镜、所述第二透镜和所述第三透镜的折射率范围在1.45~1.65之间。
  3. 如权利要求1所述的光学模组,其特征在于,所述第一透镜、所述第二透镜和所述第三透镜的色散系数范围在20~75之间。
  4. 如权利要求1所述的光学模组,其特征在于,所述光学模组还包括显示器;
    所述显示器用于产生圆偏振光、椭圆偏振光或线偏振光;
    当所述显示器用于产生线偏振光时,所述光学模组还包括设置于所述第一透镜与所述显示器之间的第二四分之一波片,所述第二四分之一波片用于将所述显示器发射的线偏振光转换成圆偏振光或椭圆偏振光。
  5. 如权利要求1所述的光学模组,其特征在于,所述第一透镜具有正光焦度,所述第二透镜具有正光焦度,所述第三透镜具有负光焦度。
  6. 如权利要求1所述的光学模组,其特征在于,所述第三透镜的远 离所述第二透镜一侧的镜面为凹面。
  7. 如权利要求1所述的光学模组,其特征在于,所述第一透镜、第二透镜和第三透镜的镜面均为非球面。
  8. 如权利要求1至6中任一项所述的光学模组,其特征在于,所述光学模组的色差小于78μm。
  9. 如权利要求1至6中任一项所述的光学模组,其特征在于,所述光学模组的光学总长为TTL,则满足:TTL<15mm。
  10. 一种头戴显示设备,其特征在于,所述头戴显示设备包括壳体和如权利要求1至9中任一项所述光学模组,所述光学模组设于所述壳体。
PCT/CN2021/137430 2021-11-23 2021-12-13 光学模组和头戴显示设备 WO2023092705A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111397749.0A CN114236863A (zh) 2021-11-23 2021-11-23 光学模组和头戴显示设备
CN202111397749.0 2021-11-23

Publications (1)

Publication Number Publication Date
WO2023092705A1 true WO2023092705A1 (zh) 2023-06-01

Family

ID=80750646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137430 WO2023092705A1 (zh) 2021-11-23 2021-12-13 光学模组和头戴显示设备

Country Status (2)

Country Link
CN (1) CN114236863A (zh)
WO (1) WO2023092705A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114895469B (zh) * 2022-05-19 2023-07-25 歌尔光学科技有限公司 光学模组以及头戴显示设备
CN117631285A (zh) 2022-08-19 2024-03-01 大根光学工业股份有限公司 光学系统与头戴装置
CN116125668A (zh) 2023-01-20 2023-05-16 常州市瑞泰光电有限公司 光学系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180120564A1 (en) * 2016-03-21 2018-05-03 Shenzhen Dlodlo New Technology Co., Ltd. Short Range Optical Amplification Module, Spectacles, Helmet and VR System
CN110308559A (zh) * 2019-06-28 2019-10-08 上海视涯信息科技有限公司 一种虚拟现实光学模组及虚拟现实设备
CN110764266A (zh) * 2019-11-13 2020-02-07 歌尔股份有限公司 光学系统及虚拟现实设备
CN113219666A (zh) * 2021-04-30 2021-08-06 歌尔股份有限公司 光学模组和头戴显示设备
CN214011646U (zh) * 2021-01-25 2021-08-20 上海鱼微阿科技有限公司 一种光学透镜组件和光学系统
TWM615839U (zh) * 2021-02-23 2021-08-21 雙瑩科技股份有限公司 超短距目鏡系統

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110268301B (zh) * 2016-08-02 2022-04-01 苹果公司 用于头戴式显示器的光学系统
CN112596238B (zh) * 2020-12-21 2022-09-20 歌尔光学科技有限公司 成像光路和头戴显示设备
CN112904537A (zh) * 2021-03-26 2021-06-04 浙江舜宇光学有限公司 一种光学摄像镜头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180120564A1 (en) * 2016-03-21 2018-05-03 Shenzhen Dlodlo New Technology Co., Ltd. Short Range Optical Amplification Module, Spectacles, Helmet and VR System
CN110308559A (zh) * 2019-06-28 2019-10-08 上海视涯信息科技有限公司 一种虚拟现实光学模组及虚拟现实设备
CN110764266A (zh) * 2019-11-13 2020-02-07 歌尔股份有限公司 光学系统及虚拟现实设备
CN214011646U (zh) * 2021-01-25 2021-08-20 上海鱼微阿科技有限公司 一种光学透镜组件和光学系统
TWM615839U (zh) * 2021-02-23 2021-08-21 雙瑩科技股份有限公司 超短距目鏡系統
CN113219666A (zh) * 2021-04-30 2021-08-06 歌尔股份有限公司 光学模组和头戴显示设备

Also Published As

Publication number Publication date
CN114236863A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
WO2023092705A1 (zh) 光学模组和头戴显示设备
WO2022135106A1 (zh) 一种成像光路和头戴显示设备
WO2020181882A1 (zh) 一种光学系统及显示设备
CN111624767B (zh) 近眼显示装置
WO2021238079A1 (zh) 光学系统及虚拟现实设备
TWI797438B (zh) 光學鏡頭
TW201928435A (zh) 光學鏡頭
WO2020220711A1 (zh) 光学系统及具有其的虚拟现实设备
WO2022227541A1 (zh) 光学镜组和头戴显示设备
CN115421302A (zh) 光学模组及头戴显示设备
CN113341558A (zh) 一种反射式目镜光学系统及头戴近眼显示装置
WO2023097762A1 (zh) 光学系统及头戴显示设备
CN115343850A (zh) 光学模组以及头戴显示设备
WO2021243777A1 (zh) 光学系统及增强现实设备
WO2023231105A1 (zh) 光学模组以及头戴显示设备
WO2023092710A1 (zh) 光学模组及头戴显示设备
WO2023092709A1 (zh) 光学模组及头戴显示设备
CN217606187U (zh) 光学模组以及头戴显示设备
TWI798853B (zh) 擴增實境顯示裝置
WO2023221238A1 (zh) 光学模组以及头戴显示设备
CN113325566B (zh) 一种反射式目镜光学系统及头戴近眼显示装置
WO2023221239A1 (zh) 光学模组以及头戴显示设备
TWI823809B (zh) 光學透鏡組和頭戴式電子裝置
CN113341559B (zh) 一种反射式目镜光学系统及头戴近眼显示装置
CN219105279U (zh) 光学系统以及vr眼镜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965427

Country of ref document: EP

Kind code of ref document: A1