WO2021243777A1 - 光学系统及增强现实设备 - Google Patents

光学系统及增强现实设备 Download PDF

Info

Publication number
WO2021243777A1
WO2021243777A1 PCT/CN2020/099073 CN2020099073W WO2021243777A1 WO 2021243777 A1 WO2021243777 A1 WO 2021243777A1 CN 2020099073 W CN2020099073 W CN 2020099073W WO 2021243777 A1 WO2021243777 A1 WO 2021243777A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
light
augmented reality
display unit
Prior art date
Application number
PCT/CN2020/099073
Other languages
English (en)
French (fr)
Inventor
陈朋波
刘德安
鲁公涛
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2021243777A1 publication Critical patent/WO2021243777A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features

Definitions

  • the present invention relates to the field of imaging display technology, in particular to an optical system and augmented reality equipment.
  • Wearable devices are a new development direction in the field of photoelectric imaging.
  • augmented reality devices as the augmented reality devices in wearable devices, are gradually developing in the direction of lightweight and miniaturization.
  • the aperture stop is usually set between the optical system and the optical waveguide, and in order to ensure the imaging quality of the augmented reality device, at least 5 pieces are usually used
  • the lens adjusts the optical path of the optical system, and in order to reduce aberrations, at least one lens with aspheric structure is used to reduce the aberration of the optical system.
  • Aspheric lenses have higher processing costs than spherical lenses, and due to the display unit
  • the optical system is mainly concentrated in the augmented reality device worn by the user. When there are more lenses, the volume of the augmented reality device is likely to be larger.
  • the present invention provides a display assembly and related equipment, which aims to solve the need to use aspherical lenses in the optical system of the augmented reality device in the prior art, and the number of lenses is large, resulting in a larger volume and higher cost of the augmented reality device The problem.
  • the present invention proposes an optical system, which includes a display unit, a first lens, a second lens, a third lens, and a fourth lens in sequence along the light transmission direction;
  • the first lens, the second lens, the third lens, and the fourth lens are all spherical lenses
  • the refractive indexes of the first lens, the second lens, the third lens, and the fourth lens are all greater than 1.52;
  • the first lens, the second lens, and the fourth lens have positive refractive power, and the third lens has negative refractive power.
  • the light incident surface of the first lens has a concave structure, and the light output surface has a convex structure;
  • the light incident surface of the second lens has a convex structure, and the light output surface has a concave structure
  • the light incident surface of the third lens has a concave structure, and the light output surface has a concave structure
  • the light incident surface of the fourth lens has a concave structure, and the light output surface has a convex structure.
  • the optical system further includes a reflector, and the reflector is provided between the display unit and the first lens.
  • the reflecting mirror is a right-angle prism.
  • the optical system further includes a protective glass provided between the display unit and the first lens.
  • the first lens, the second lens, the third lens, and the fourth lens are all made of glass.
  • the dispersion coefficients of the first lens, the second lens, and the fourth lens are equal and greater than the dispersion coefficients of the third lens.
  • the refractive indexes of the first lens, the second lens, and the fourth lens are equal.
  • the augmented reality device includes the optical system and an aperture stop as described in any one of the above embodiments, and the aperture stop is provided on the first part of the optical system.
  • the augmented reality device further includes a housing, and the optical system is arranged in the housing.
  • the present invention provides an optical system, which includes a display unit, a first lens, a second lens, a third lens, a fourth lens, and an aperture stop in sequence along the light transmission direction; the light emitted by the display unit passes through once After the first lens, the second lens, the third lens, and the fourth lens, the optical system is emitted from the aperture stop and transmitted to the human aperture stop.
  • the first lens to the fourth lens all use spherical lenses with a refractive index greater than 1.52. By using high-refractive lenses, the While ensuring the imaging quality of the optical system, the number of lenses in the optical system is reduced.
  • the first lens, the second lens, and the fourth lens have positive refractive power
  • the third lens has negative refractive power.
  • the optical system has a higher imaging quality, and the number of lenses is small, and the manufacturing cost is low, thereby solving the problem.
  • the large number of lenses in the augmented reality device causes the problem of large volume and high manufacturing cost.
  • Fig. 1 is a schematic structural diagram of an embodiment of an optical system of the present invention
  • FIG. 2 is a schematic structural diagram of another embodiment of the optical system of the present invention.
  • Fig. 3 is a schematic structural diagram of another embodiment of the optical system of the present invention.
  • Figure 5 is a spot diagram of an embodiment of the optical system of the present invention.
  • Fig. 6 is a vertical axis chromatic aberration diagram of an embodiment of the optical system of the present invention.
  • FIG. 7 is a diagram of field curvature and optical distortion of an embodiment of the optical system of the present invention.
  • Fig. 8 is a relative contrast diagram of an embodiment of the optical system of the present invention.
  • Label name Label name 10
  • Display unit 50 Fourth lens 20 First lens 60
  • Reflector 30 Second lens 70
  • Third lens 80 Aperture stop
  • the terms “connected”, “fixed”, etc. should be understood in a broad sense, for example, “fixed” can be a fixed connection, a detachable connection, or a whole; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be a communication between two elements or an interaction relationship between two elements, unless specifically defined otherwise.
  • “fixed” can be a fixed connection, a detachable connection, or a whole; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be a communication between two elements or an interaction relationship between two elements, unless specifically defined otherwise.
  • the present invention provides an optical system and augmented reality equipment.
  • the optical system includes a display unit 10, a first lens 20, a second lens 30, a third lens 40, and a fourth lens 50 in sequence along the light transmission direction;
  • the first lens 20, the second lens 30, the third lens 40, and the fourth lens 50 are all spherical lenses;
  • the refractive indices of the first lens 20, the second lens 30, the third lens 40 and the fourth lens 50 are all greater than 1.52;
  • the first lens 20, the second lens 30, and the fourth lens 50 have positive refractive power, and the third lens 40 has negative refractive power.
  • the present invention provides an optical system, which includes a display unit 10, a first lens 20, a second lens 30, a third lens 40, a fourth lens 50, and an aperture stop 80 in sequence along the light transmission direction; After the light emitted by the unit 10 passes through the first lens 20, the second lens 30, the third lens 40, and the fourth lens 50 once, it exits the optical system from the aperture stop 80 and is transmitted To the aperture stop 80.
  • the first lens 20 to the fourth lens 50 all use spherical lenses with a refractive index greater than 1.52. By using a lens with a high refractive index, It is possible to reduce the number of lenses in the optical system while ensuring the imaging quality of the optical system.
  • the first lens 20, the second lens 30, and the fourth lens 50 have positive refractive power
  • the third lens 40 has a negative refractive power.
  • the light incident surface of the first lens 20 has a concave structure, and the light output surface has a convex structure;
  • the light incident surface of the second lens 30 has a convex structure, and the light output surface has a concave structure
  • the light incident surface of the third lens 40 has a concave structure, and the light output surface has a concave structure;
  • the light incident surface of the fourth lens 50 has a concave structure, and the light output surface has a convex structure.
  • the optical system further includes a reflecting mirror 60 which is arranged between the display unit 10 and the first lens 20.
  • the reflector 60 may be provided in the optical system, so that the light in the optical system is deflected.
  • the reflector 60 Set between the display unit 10 and the first lens 20, the light emitted by the display unit 10 is reflected by the reflector 60 and then transmitted to the first lens 20.
  • the light emitted by the display unit 10 and the plane on which the reflector 60 is located form an angle of 45 degrees, so that the light emitted by the display unit 10 and the light reflected by the reflector 60 They are perpendicular to each other, thereby facilitating positioning of the reflector 60 and the display unit 10.
  • the setting angle of the reflector 60 is not limited to this.
  • the angle between the light emitted by the display unit 10 and the reflector 60 may also be an acute or obtuse angle, and can pass through
  • the reflecting mirror 60 reflects the light and transmits it to the light incident surface of the first lens 20.
  • the reflector 60 is a right-angle prism; in a specific embodiment, the reflector 60 is an isosceles right-angled triangular prism, and the isosceles right-angled triangular prism includes a right-angled surface and an inclined surface that are perpendicular to each other, and The angle between the oblique surface and the right-angled surface is 45 degrees, and the oblique surface is provided with a reflective film. Specifically, the light enters the reflector 60 from the right-angled surface of the isosceles right-angled triangular prism.
  • the inclined surface is reflected by the reflecting film, and the reflecting mirror 60 is emitted from the other right-angled surface of the isosceles right-angled triangular prism, and the transmission direction of the light is rotated by 90 degrees through the reflecting mirror 60, thereby effectively
  • the total length of the optical system is reduced, the volume of the optical system is reduced, and when the right-angle prism is assembled, the positioning can be performed through the two right-angle faces of the first right-angle prism, thereby facilitating the The assembly of the right-angle prism.
  • the reflector 60 is composed of two equal isosceles right-angled triangular prisms.
  • the isosceles right-angled triangular prisms include an inclined plane and a right-angled plane perpendicular to each other, and the inclined plane and the right-angled plane sandwich The angle is 45 degrees, and two of the isosceles right-angled triangular prisms are glued along an inclined plane, and the inclined surface of one of the isosceles right-angled triangular prisms is coated with a reflective film.
  • the light beams from one of the isosceles right-angled triangular prisms The right-angled surface of the isosceles right-angled triangle enters the reflecting mirror 60, is reflected by the reflecting film on the inclined surface of the isosceles right-angled triangular prism, and exits the reflecting mirror 60 from the right-angled surface of the other isosceles right-angled triangular prism, passing
  • the reflecting mirror 60 rotates the transmission direction of the light by 90 degrees, thereby effectively reducing the total length of the optical system and reducing the volume of the optical system.
  • the optical system further includes a protective glass 70, and the protective glass 70 is provided between the display unit 10 and the first lens 20.
  • the spacing between the lenses in the optical system is small.
  • the display unit 10 and the The protective glass 70 is arranged between the first lens 20, and the protective glass 70 is used to protect the display unit 10 from the impact of the external environment.
  • the refractive indexes of the first lens 20, the second lens 30 and the fourth lens 50 are equal.
  • the refractive index refers to the ratio of the propagation speed of light in vacuum to the propagation speed of light in the medium. The higher the refractive index of the material, the stronger the ability to refract incident light.
  • the first lens 20, the second lens 30, the third lens 40, and the fourth lens 50 are all made of glass.
  • optical glass has better thermal stability. Since the multiple lenses in the optical system are closer to the display unit 10, the display unit 10 emits light during operation. Heat. When the lens in the optical system is an optical plastic, the optical plastic will be affected by the heat generated by the display unit 10, which will cause the optical system to run out of focus. When the lens in the optical system In the case of optical glass, since the optical glass has good thermal stability, it is not easily affected by the heat generated by the display unit 10, and therefore, the working stability of the optical system can be improved.
  • the dispersion coefficients of the first lens 20, the second lens 30, and the fourth lens 50 are equal and greater than the dispersion coefficients of the third lens 40.
  • the chromatic dispersion coefficient is an important index to measure the imaging quality of the lens, usually expressed by Abbe number. The larger the chromatic dispersion coefficient, the less obvious the chromatic dispersion, the better the imaging quality of the lens; the smaller the chromatic dispersion coefficient, the more obvious the chromatic dispersion, the lens The image quality is poor. Under normal circumstances, the dispersion coefficient is inversely proportional to the refractive index of the lens, that is, the larger the refractive index, the smaller the dispersion coefficient, and the more obvious the dispersion.
  • the dispersion coefficient of the third lens 40 is smaller than that of the first lens 40. Dispersion coefficients of a lens 20, the second lens 30, and the fourth lens 50.
  • the display unit 10 is a micro light-emitting diode (Micro Light-Emitting Diode, Micro LED). It is understood that the display unit 10 is not limited to this. In other embodiments, the The display unit 10 may also be a light-emitting diode (LED) or an organic light-emitting diode (OLED) or a mini light-emitting diode (micro LED) or a liquid crystal display (Liquid Crystal Display, LCD) or laser light sources of different wavelengths or other light source bodies capable of emitting light beams.
  • LED light-emitting diode
  • OLED organic light-emitting diode
  • micro LED mini light-emitting diode
  • LCD liquid crystal display
  • laser light sources of different wavelengths or other light source bodies capable of emitting light beams.
  • optical system design data is shown in Table 1 below:
  • the parameters are as follows:
  • the refractive index of the first lens 20 is 1.89, and the dispersion coefficient is 34.2;
  • the refractive index of the second lens 30 is 1.89, and the dispersion coefficient is 34.2;
  • the refractive index of the third lens 40 is 1.92, and the dispersion coefficient is 18.1;
  • the refractive index of the fourth lens 50 is 1.89, and the dispersion coefficient is 34.2;
  • the diaphragm diameter of the optical system is 4mm;
  • the aperture number of the optical system is 1.7;
  • the focal length f of the optical system is 8.3mm;
  • the total length of the optical system is 12.5mm;
  • the volume of the optical system is less than 1 cubic centimeter.
  • FIG. 4 is a diagram of the modulation transfer function of the optical system of the first embodiment, where the modulation transfer function (Modulation Transfer Function, MTF) refers to the difference between the degree of modulation and the number of line pairs per millimeter in the image Relationship, used to evaluate the ability to restore the details of the scene.
  • MTF Modulation Transfer Function
  • FIG. 5 is a point diagram of the first embodiment.
  • the point diagram means that after a lot of light emitted from one point passes through the optical system, the intersection point with the image plane is no longer concentrated at the same point due to aberration. A dispersion pattern scattered in a certain range is formed, which is used to evaluate the imaging quality of the optical system.
  • the maximum value of the image point in the dot sequence diagram corresponds to the maximum field of view, and the maximum value of the image point in the dot sequence diagram is less than 3.1 ⁇ m.
  • the maximum dispersion spot of the first embodiment is smaller than the size of 1 pixel, so the dispersion spot can be better controlled.
  • Figure 6 is the vertical axis chromatic aberration diagram of the first embodiment.
  • the vertical axis chromatic aberration is also known as the chromatic aberration of magnification. It mainly refers to a polychromatic chief ray on the object side. When the image side is emitted, it becomes multiple rays of light, and the difference between the focal positions of the hydrogen blue light and the hydrogen red light on the image plane; in the first embodiment, the maximum dispersion of the optical system is the visual value of the optical system At the maximum field position, the maximum chromatic aberration value of the optical system is less than 1.2 ⁇ m.
  • FIG. 7 is a field curvature and optical distortion diagram of the first embodiment.
  • the field curvature is used to indicate the position change of the beam image point of different field of view points away from the image plane, and the optical distortion refers to a certain field of view.
  • the distance from the vertical axis of the intersection of the chief ray and the image plane at the dominant wavelength from the ideal image point; in the first embodiment, the curvature of field on the tangent plane and the sagittal plane are both less than ⁇ 0.05mm, and the maximum distortion is at the maximum field of view , The maximum distortion is less than 2%.
  • FIG. 8 is a relative illuminance diagram of the first embodiment, where the relative illuminance refers to the ratio of the illuminance of different coordinate points on the image plane to the center point illuminance, and the relative illuminance of the first embodiment is greater than 0.78.
  • the present invention also provides an augmented reality device, which includes the optical system and an aperture stop 80 as described in any one of the above embodiments, and the aperture stop 80 is provided on the first On the light-emitting side of the four-lens 50, the augmented reality device further includes a housing, and the optical system is arranged in the housing. Since the optical system adopts all the technical solutions of all the above-mentioned embodiments, it has at least all the beneficial effects brought by the technical solutions of the above-mentioned embodiments, which will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学系统、增强现实设备、显示组件及相关设备,光学系统沿光线传输方向依次包括显示单元(10)、第一透镜(20)、第二透镜(30)、第三透镜(40)以及第四透镜(50);第一透镜(20)、第二透镜(30)、第三透镜(40)以及第四透镜(50)均为球面透镜,折射率均大于1.52;第一透镜(20)、第二透镜(30)以及第四透镜(50)具有正光焦度,第三透镜(40)具有负光焦度。显示组件及相关设备,旨在解决现有技术中增强现实设备中的光学系统需要使用非球面镜片,并且镜片数量较多,从而导致增强现实设备的体积较大,成本较高的问题。

Description

光学系统及增强现实设备 技术领域
本发明涉及成像显示技术领域,尤其涉及一种光学系统及增强现实设备。
背景技术
可穿戴设备是光电成像领域的新型发展方向,其中增强现实设备作为可穿戴设备中的增强现实设备正在逐渐向轻量化,小型化的方向发展。
在使用光波导的增强现实设备中,为了实现光学系统与光波导,通常会将孔径光阑设置在光学系统与光波导之间,并且为了保证增强现实设备的成像质量,通常会使用至少5片镜片对光学系统的光路进行调节,并且为了减小像差,至少会使用1片非球面结构的透镜降低光学系统的像差,非球面透镜相比球面透镜的加工成本较高,并且由于显示单元与光学系统主要集中在用户佩戴的增强现实设备中,当镜片较多时,容易造成增强现实设备的体积较大。
上述内容仅用于辅助理解本发明的技术方案,并不代表承认上述内容是现有技术。
发明内容
本发明提供一种显示组件及相关设备,旨在解决现有技术中增强现实设备中的光学系统需要使用非球面镜片,并且镜片数量较多,从而导致增强现实设备的体积较大,成本较高的问题。
为实现上述目的,本发明提出了一种光学系统,所述光学系统沿光线传输方向依次包括显示单元、第一透镜、第二透镜、第三透镜以及第四透镜;
所述第一透镜、所述第二透镜、所述第三透镜以及所述第四透镜均为球面透镜;
所述第一透镜、所述第二透镜、所述第三透镜以及所述第四透镜的折射率均大于1.52;
所述第一透镜、所述第二透镜以及所述第四透镜具有正光焦度,所述第三透镜具有负光焦度。
可选的,所述第一透镜的入光面为凹面结构,出光面为凸面结构;
所述第二透镜的入光面为凸面结构,出光面为凹面结构;
所述第三透镜的入光面为凹面结构,出光面为凹面结构;
所述第四透镜的入光面为凹面结构,出光面为凸面结构。
可选的,所述光学系统还包括反射镜,所述反射镜设于所述显示单元与所述第一透镜之间。
可选的,所述反射镜为直角棱镜。
可选的,所述光学系统还包括保护玻璃,所述保护玻璃设于所述显示单元与所述第一透镜之间。
可选的,所述第一透镜、所述第二透镜、所述第三透镜以及所述第四透镜均为玻璃材质。
可选的,所述第一透镜、所述第二透镜以及所述第四透镜的色散系数相等并均大于所述第三透镜的色散系数。
可选的,所述第一透镜、所述第二透镜与所述第四透镜的折射率相等。
为实现上述目的,本申请提出一种增强现实设备,所述增强现实设备包括如上述任一项实施方式所述的光学系统以及孔径光阑,所述孔径光阑设于所述光学系统的第四透镜的出光侧,所述增强现实设备还包括壳体,所述光学系统设于所述壳体内。
本发明提出一种光学系统,所述光学系统沿光线传输方向依次包括显示单元、第一透镜、第二透镜、第三透镜、第四透镜以及孔径光阑;所述显示单元发出的光线一次经过所述第一透镜、所述第二透镜、上述第三透镜以及所述第四透镜后,从所述孔径光阑射出所述光学系统,并传输至人孔径光阑。为了减少所述光学系统中镜片的使用数量以及降低光学系统的制造成本,所述第一透镜至所述第四透镜均使用折射率大于1.52的球面透镜,通过使用高折射率的透镜,能够在保证所述光学系统的成像质量的同时,降低所述光学系统中的镜片数量,具体的,所述第一透镜、所述第二透镜以及所述第四透镜具有正光焦度,所述第三透镜具有负光焦度,通过所述第一透镜至所述第 四透镜的组合作用,使所述光学系统具有较高的成像质量,并且镜片数量较少,制造成本较低,从而解决了现有技术中,增强现实设备中的镜片数量较多导致的体积较大,制造成本高的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1是本发明光学系统一实施例的结构示意图;
图2是本发明光学系统另一实施例的结构示意图;
图3是本发明光学系统另一实施例的结构示意图;
图4是本发明光学系统一实施例的调制传递函数图;
图5是本发明光学系统一实施例的点列图;
图6是本发明光学系统一实施例的垂轴色差图;
图7是本发明光学系统一实施例的场曲与光学畸变图;
图8是本发明光学系统一实施例的相对照度图。
附图标号说明:
标号 名称 标号 名称
10 显示单元 50 第四透镜
20 第一透镜 60 反射镜
30 第二透镜 70 保护玻璃
40 第三透镜 80 孔径光阑
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本发明中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
另外,本发明各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提出一种光学系统及增强现实设备。
请参照图1所述光学系统沿光线传输方向依次包括显示单元10、第一透镜20、第二透镜30、第三透镜40以及第四透镜50;
所述第一透镜20、所述第二透镜30、所述第三透镜40以及所述第四透镜50均为球面透镜;
所述第一透镜20、所述第二透镜30、所述第三透镜40以及所述第四透镜50的折射率均大于1.52;
所述第一透镜20、所述第二透镜30以及所述第四透镜50具有正光焦度,所述第三透镜40具有负光焦度。
本发明提出一种光学系统,所述光学系统沿光线传输方向依次包括显示单元10、第一透镜20、第二透镜30、第三透镜40、第四透镜50以及孔径光阑80;所述显示单元10发出的光线一次经过所述第一透镜20、所述第二透镜30、上述第三透镜40以及所述第四透镜50后,从所述孔径光阑80射出所述光学系统,并传输至人孔径光阑80。为了减少所述光学系统中镜片的使用数量以及降低光学系统的制造成本,所述第一透镜20至所述第四透镜50均使用折射率大于1.52的球面透镜,通过使用高折射率的透镜,能够在保证所述光学系统的成像质量的同时,降低所述光学系统中的镜片数量,具体的,所述第一透镜20、所述第二透镜30以及所述第四透镜50具有正光焦度,所述第三透镜40具有负光焦度,通过所述第一透镜20至所述第四透镜50的组合作用,使所述光学系统具有较高的成像质量,并且镜片数量较少,制造成本较低,从而解决了现有技术中,增强现实设备中的镜片数量较多导致的体积较大,制造成本高的问题。
在可选的实施方式中,
所述第一透镜20的入光面为凹面结构,出光面为凸面结构;
所述第二透镜30的入光面为凸面结构,出光面为凹面结构;
所述第三透镜40的入光面为凹面结构,出光面为凹面结构;
所述第四透镜50的入光面为凹面结构,出光面为凸面结构。
在可选的实施方式中,所述光学系统还包括反射镜60,所述反射镜60设于所述显示单元10与所述第一透镜20之间。具体的,为了减小所述光学系统的总长,可以在所述光学系统中设置所述反射镜60,从而使光学系统中的光线发生偏折,在一具体实施方式中,所述反射镜60设于所述显示单元10与所述第一透镜20之间,所述显示单元10发出的光线经过所述反射镜60反 射后传输至所述第一透镜20,优选实施方式中,为了减小所述光学系统的体积,所述显示单元10的出射光线与所述反射镜60所在的平面呈45度夹角,从而使所述显示单元10发出的光线与经过所述反射镜60反射的光线相垂直,从而方便对所述反射镜60及所述显示单元10进行定位。
可以理解的是,所述反射镜60的设置角度不限于此,于其他实施例中,所述显示单元10发出的光线与所述反射镜60的夹角还可以为锐角或钝角,并且能够通过所述反射镜60将光线反射后传输至所述第一透镜20的入光面。
优选实施方式中,所述反射镜60为直角棱镜;在一具体实施方式中,所述反射镜60为等腰直角三角棱镜,所述等腰直角三角棱镜包括相互垂直的直角面与斜面,并且斜面与直角面的夹角为45度,所述斜面设有反射膜,具体的,光线从所述等腰直角三角棱镜的直角面进入所述反射镜60,在所述等腰直角三角棱镜的斜面上被所述反射膜反射,并从所述等腰直角三角棱镜的另一直角面射出所述反射镜60,通过所述反射镜60,使所述光线的传输方向旋转90度,从而有效的减小所述光学系统的总长,降低所述光学系统的体积,并且在对所述直角棱镜进行组装时,可以通过所述第直角棱镜的两个所述直角面进行定位,从而方便所述直角棱镜的组装。
在另一具体实施方式中,所述反射镜60由两个相等的所述等腰直角三角棱镜组成,所述等腰直角三角棱镜包括斜面与相互垂直的直角面,并且斜面与直角面的夹角为45度,并且两个所述等腰直角三角棱镜沿斜面胶合,一个所述等腰直角三角棱镜的所述斜面上镀有反射膜,具体的,光线从一个所述等腰直角三角棱镜的直角面进入所述反射镜60,在所述等腰直角三角棱镜的斜面上被所述反射膜反射,并从另一个所述等腰直角三角棱镜的直角面射出所述反射镜60,通过所述反射镜60,使所述光线的传输方向旋转90度,从而有效的减小所述光学系统的总长,降低所述光学系统的体积。
在可选的实施方式中,所述光学系统还包括保护玻璃70,所述保护玻璃70设于所述显示单元10与所述第一透镜20之间。具体的,由于所述光学系统的体积较小,所述光学系统中各个透镜之间的间距较小,在所述光学系统对应的装置发生振动时,所述光学系统中的各个透镜会发生轻微的位置偏移,为了避免所述光学系统中的其他透镜对所述显示单元10造成磕碰,保护所述 显示单元10避免受到外界环境或其他元件的冲击影响,在所述显示单元10与所述第一透镜20之间设置所述保护玻璃70,所述保护玻璃70用于保护所述显示单元10避免受到外界环境的冲击影响。
在可选的实施方式中,所述第一透镜20、所述第二透镜30与所述第四透镜50的折射率相等。其中,所述折射率是指光在真空中的传播速度与光在该介质中的传播速度之比。材料的折射率越高,使入射光发生折射的能力越强。通过设置所述第一透镜20、所述第二透镜30以及所述第四透镜50的折射率相等,能够方便用户只通过对透镜的面型进行调整,改变所述光学系统的光焦度,从而方便用户根据实际要求对所述光学系统进行设计。
优选实施方式中,所述第一透镜20、所述第二透镜30、所述第三透镜40以及所述第四透镜50均为玻璃材质。具体的,光学玻璃相对于光学塑料,具有较好的热稳定性,由于所述光学系统中的多个透镜与所述显示单元10的距离较近,所述显示单元10在工作过程中会散发热量,当所述光学系统中的透镜为光学塑料时,所述光学塑料会受到所述显示单元10产生的热量影响,从而导致所述光学系统出现跑焦问题,当所述光学系统中的透镜为光学玻璃时,由于所述光学玻璃具有较好的热稳定性,因此不容易受到所述显示单元10的发热影响,因此能够提高所述光学系统的工作稳定性。
优选实施方式中,所述第一透镜20、所述第二透镜30以及所述第四透镜50的色散系数相等并均大于所述第三透镜40的色散系数。其中,所述色散系数是衡量镜片成像品质的重要指标,通常用阿贝数表示,色散系数越大,色散越不明显,表示透镜的成像品质越好;色散系数越小,色散越明显,镜片的成像品质就差。通常情况下,色散系数与镜片的折射率成反比关系,即折射率越大,色散系数越小,色散越明显。当所述第三透镜40的折射率大于所述第一透镜20、所述第二透镜30以及所述第四透镜50的折射率时,那么所述第三透镜40的色散系数小于所述第一透镜20、所述第二透镜30以及所述第四透镜50的色散系数。
在可选的实施方式中,所述显示单元10为微型发光二极管(Micro Light-Emitting Diode,Micro LED),可以理解的是,所述显示单元10不限于此,于其他实施例中,所述显示单元10还可以为发光二极管(Light Emitting Diode,LED)或有机发光二极管(Organic Light Emitting Display,OLED)或或迷你发光二极管(Mini Light-Emitting Diode,Micro LED)或液晶显示器(Liquid Crystal Display,LCD)或不同波长的激光光源或其他能够发出光束的光源体。
第一实施例
在第一实施例中,光学系统设计数据如下表1所示:
表1
Figure PCTCN2020099073-appb-000001
所述第一实施例中,各参数如下所述:
所述第一透镜20的折射率为1.89,色散系数为34.2;
所述第二透镜30的折射率为1.89,色散系数为34.2;
所述第三透镜40的折射率为1.92,色散系数为18.1;
所述第四透镜50的折射率为1.89,色散系数为34.2;
所述光学系统的光阑直径为4mm;
所述光学系统的光圈数为1.7;
所述光学系统的焦距f为8.3mm;
所述光学系统的总长为12.5mm;
所述光学系统的体积小于1立方厘米。
请参照图4,图4为第一实施例的所述光学系统的调制传递函数图,其中,调制传递函数(Modulation Transfer Function,MTF)是指调制度与图像内每毫米线对数之间的关系,用于评价对景物细部还原能力。所述第一实施例在各视场的MTF值均大于0.47。
请参照图5,图5为第一实施例的点列图,其中点列图是指由一点发出的许多光线经光学系统后,因像差使其与像面的交点不再集中于同一点,而形成了一个散布在一定范围的弥散图形,用于评价所述光学系统的成像质量。在所述第一实施例中,所述点列图中像点的最大值与最大视场相对应,所述点列图中像点的最大值为小于3.1μm,当显示单元10的像素大小为4μm时,所述第一实施例的最大弥散斑小于1个像素大小,因此弥散斑能够得到较好的控制。
请参照图6,图6为第一实施例的垂轴色差图,其中,垂轴色差是指又称为倍率色差,主要是指物方的一根复色主光线,因折射系统存在色散,在像方出射时变成多根光线,氢蓝光与氢红光在像面上的焦点位置的差值;在所述第一实施例中,所述光学系统的最大色散为所述光学系统的视场最大位置,所述光学系统的最大色差值小于1.2μm。
请参照图7,图7为第一实施例的场曲与光学畸变图,其中,场曲用于表示不同视场点的光束像点离开像面的位置变化,光学畸变是指某一视场主波长时的主光线与像面交点离开理想像点的垂轴距离;在所述第一实施例中,在切线面以及弧矢面的场曲均小于±0.05mm,最大畸变为最大视场处,最大畸变<2%。
请参照图8,图8为第一实施例的相对照度图,其中,相对照度是指像平面不同坐标点的照度和中心点照度之比,所述第一实施例的相对照度大于0.78。
为实现上述目的,本发明还提出一种增强现实设备,所述增强现实设备包括如上述任一项实施方式所述的光学系统以及孔径光阑80,所述孔径光阑80设于所述第四透镜50的出光侧,所述增强现实设备还包括壳体,所述光学 系统设于所述壳体内。由于该光学系统采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (9)

  1. 一种光学系统,其特征在于,所述光学系统沿光线传输方向依次包括显示单元、第一透镜、第二透镜、第三透镜以及第四透镜;
    所述第一透镜、所述第二透镜、所述第三透镜以及所述第四透镜均为球面透镜;
    所述第一透镜、所述第二透镜、所述第三透镜以及所述第四透镜的折射率均大于1.52;
    所述第一透镜、所述第二透镜以及所述第四透镜具有正光焦度,所述第三透镜具有负光焦度。
  2. 如权利要求1所述的光学系统,其特征在于,
    所述第一透镜的入光面为凹面结构,出光面为凸面结构;
    所述第二透镜的入光面为凸面结构,出光面为凹面结构;
    所述第三透镜的入光面为凹面结构,出光面为凹面结构;
    所述第四透镜的入光面为凹面结构,出光面为凸面结构。
  3. 如权利要求1所述的光学系统,其特征在于,所述光学系统还包括反射镜,所述反射镜设于所述显示单元与所述第一透镜之间。
  4. 如权利要求3所述的光学系统,其特征在于,所述反射镜为直角棱镜。
  5. 如权利要求1-4任一项所述的光学系统,其特征在于,所述光学系统还包括保护玻璃,所述保护玻璃设于所述显示单元与所述第一透镜之间。
  6. 如权利要求1所述的光学系统,其特征在于,所述第一透镜、所述第二透镜与所述第四透镜的折射率相等。
  7. 如权利要求1所述的光学系统,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜以及所述第四透镜均为玻璃材质。
  8. 如权利要求1所述的光学系统,其特征在于,所述第一透镜、所述第二透镜以及所述第四透镜的色散系数相等并均大于所述第三透镜的色散系数。
  9. 一种增强现实设备,其特征在于,所述增强现实设备包括如权利要求1-8任一项所述的光学系统以及孔径光阑,所述孔径光阑设于所述光学系统的第四透镜的出光侧,所述增强现实设备还包括壳体,所述光学系统设于所述壳体内。
PCT/CN2020/099073 2020-06-04 2020-06-30 光学系统及增强现实设备 WO2021243777A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010502883.1 2020-06-04
CN202010502883.1A CN111538162A (zh) 2020-06-04 2020-06-04 光学系统及增强现实设备

Publications (1)

Publication Number Publication Date
WO2021243777A1 true WO2021243777A1 (zh) 2021-12-09

Family

ID=71974208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099073 WO2021243777A1 (zh) 2020-06-04 2020-06-30 光学系统及增强现实设备

Country Status (2)

Country Link
CN (1) CN111538162A (zh)
WO (1) WO2021243777A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115166943A (zh) * 2022-07-18 2022-10-11 歌尔光学科技有限公司 一种光学系统以及增强现实设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101614863A (zh) * 2008-06-23 2009-12-30 鸿富锦精密工业(深圳)有限公司 投影镜头
CN105807419A (zh) * 2014-12-30 2016-07-27 信泰光学(深圳)有限公司 接目镜头
US20170045746A1 (en) * 2013-05-17 2017-02-16 Castar, Inc. Virtual reality attachment for a head mounted display
CN109283668A (zh) * 2017-07-19 2019-01-29 扬明光学股份有限公司 光学镜头
CN110879471A (zh) * 2019-11-26 2020-03-13 歌尔股份有限公司 光学系统、投影设备以及头戴设备
CN111175948A (zh) * 2018-11-12 2020-05-19 佳能企业股份有限公司 光学镜头

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4658517B2 (ja) * 2003-05-30 2011-03-23 オリンパス株式会社 結像光学系及びそれを用いた電子機器
CN206892464U (zh) * 2017-06-28 2018-01-16 深圳市莱通光学科技有限公司 一种光学镜头
CN109491049B (zh) * 2018-12-26 2023-08-29 歌尔光学科技有限公司 投影光学系统及具有其的增强现实眼镜
CN210129058U (zh) * 2019-06-11 2020-03-06 Oppo广东移动通信有限公司 镜头、摄像模组及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101614863A (zh) * 2008-06-23 2009-12-30 鸿富锦精密工业(深圳)有限公司 投影镜头
US20170045746A1 (en) * 2013-05-17 2017-02-16 Castar, Inc. Virtual reality attachment for a head mounted display
CN105807419A (zh) * 2014-12-30 2016-07-27 信泰光学(深圳)有限公司 接目镜头
CN109283668A (zh) * 2017-07-19 2019-01-29 扬明光学股份有限公司 光学镜头
CN111175948A (zh) * 2018-11-12 2020-05-19 佳能企业股份有限公司 光学镜头
CN110879471A (zh) * 2019-11-26 2020-03-13 歌尔股份有限公司 光学系统、投影设备以及头戴设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115166943A (zh) * 2022-07-18 2022-10-11 歌尔光学科技有限公司 一种光学系统以及增强现实设备
CN115166943B (zh) * 2022-07-18 2024-03-12 歌尔光学科技有限公司 一种光学系统以及增强现实设备

Also Published As

Publication number Publication date
CN111538162A (zh) 2020-08-14

Similar Documents

Publication Publication Date Title
WO2022016793A1 (zh) 光学系统及投影装置
TWI797438B (zh) 光學鏡頭
CN111399321B (zh) 一种适用于近眼显示器的小型投影光学组件和投影光学系统
WO2023184752A1 (zh) 一种光学投影系统以及电子设备
WO2022227538A1 (zh) 胶合镜组和头戴显示设备
WO2023092705A1 (zh) 光学模组和头戴显示设备
CN111596511A (zh) 光学系统及投影装置
CN111580267B (zh) 光学系统及投影装置
CN113359277B (zh) 光学系统及投影设备
CN111538200A (zh) 光学系统及投影装置
WO2021243777A1 (zh) 光学系统及增强现实设备
JP2019045847A (ja) ヘッドマウント式表示装置及び像形成レンズユニット
TWI768313B (zh) 光學鏡頭及頭戴式顯示裝置
CN110244459B (zh) 增强现实装置
WO2023097762A1 (zh) 光学系统及头戴显示设备
CN111258069B (zh) 光学系统及增强现实设备
CN111308709B (zh) 光学系统及增强现实设备
WO2019006672A1 (zh) 一种轻薄共光轴方向的自由曲面的光学成像系统
CN110879456B (zh) 投影镜组、投影光学系统以及增强现实设备
CN105785553B (zh) 可小型化的短焦投影镜头
CN217954824U (zh) 近眼显示光学系统及近眼显示装置
TWI745210B (zh) 光學模組
CN114706189B (zh) 一种用于近眼增强现实显示的投影光学模组
WO2021036134A1 (zh) 投影镜头及投影设备
CN212391667U (zh) 光学系统及增强现实设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939063

Country of ref document: EP

Kind code of ref document: A1